位置随动系统
位置随动系统的分析与设计
位置随动系统的分析与设计1.系统需求分析-实时追踪目标位置:系统需要能够实时获取目标的位置信息,可以通过各种传感器如GPS、惯性测量单元等进行实现。
-实时控制移动对象:系统需要能够根据目标位置进行实时控制移动对象,例如调整机器人的航向、调整无人驾驶汽车的速度等。
-高精度定位:系统需要能够实现高精度的目标定位,以保证位置随动控制的准确性。
-快速响应:系统需要能够快速响应目标位置的变化,并及时调整移动对象的控制策略,以保持目标与移动对象之间的距离恒定。
-可靠性与鲁棒性:系统需要具备高可靠性和鲁棒性,能够应对传感器误差、环境变化等因素的影响。
2.系统设计-目标追踪模块:该模块用于实时获取目标的位置信息。
可以采用多种传感器,如GPS、激光测距仪等。
目标追踪模块需要具备高精度定位和高响应速度的特点,以确保位置信息的准确性和实时性。
-控制算法模块:该模块根据目标位置信息计算出移动对象的控制策略。
控制算法可以根据实际需求选择不同的模型,例如PID控制、模糊控制、最优控制等。
控制算法需要具备良好的控制性能和鲁棒性,以保证位置随动控制的稳定性和可靠性。
-控制器模块:该模块负责将控制策略转化为实际的控制指令,并对移动对象进行实时控制。
控制器可以采用硬件控制器或软件控制器的方式实现,也可以使用现有的控制器模块或定制开发控制器模块。
-反馈系统:该系统用于实时获取移动对象的状态信息,如位置、速度、加速度等。
反馈系统可以采用传感器进行实现,例如编码器、惯性测量单元等。
反馈系统可以为控制算法提供实时的状态反馈信息,以便对控制指令进行调整和优化。
3.系统实现位置随动系统的实现需要进行系统建模、算法设计和软硬件集成等工作。
在系统建模过程中,可以使用系统分析和系统设计方法,如UML建模、数据流图、状态转换图等,对系统进行建模和分析。
在算法设计过程中,可以根据系统需求和设计目标选择合适的算法,并进行仿真验证和优化调整。
在软硬件集成过程中,可以使用现有的软硬件平台,如嵌入式系统、机器人操作系统等,将设计好的算法和控制器模块集成到实际的系统中,并进行测试和调试。
一类位置随动系统的测速反馈控制
一类位置随动系统的测速反馈控制1位置随动系统原理1.1位置随动系统工作原理图1-1位置随动系统原理图该系统为一自整角机位置随动系统,用一对自整角机作为位置检测元件,并形成比较电路。
发送自整角机的转子与给定轴相连:接收自整角机的转子与负载轴(从动轴)相连。
TX 与TR 组成角差测量线路。
若发送自整角机的转子离开平衡位置转过一个角度r θ,则在接收自整角机的单相绕组转子的单相绕组上将感应出一个偏差电压e u ,它是一个振幅为em u 、频率与发送自整角机激励相同的交流调制电压。
即sin e em u u t ω=∙在一定范围内,em u 正比于r c θθ-,即[]em e r c u k θθ=-,所以可得[]sin e e r c u k t θθω=-这就是随动系统中接收自整角机所产生的偏差电压的表达式,它是一个振幅随偏差()r c θθ-的改变而改变的交流电压。
因此,e u 经过交流放大器放大,放大后的交流信号作用在两相伺服电动机两端。
电动机带动负载和接收自整角机的转子旋转,实现r c θθ=,以达到跟随的目的。
为了使电动机转速恒定、平稳,引入了测速负反馈。
系统的被控对象是负载轴,被控量使负载轴转角c θ,电动机是执行机构,功率放大器器信号放大作用,调制器负责将交流调制为直流电供给直流测速发电机工作电压,测速电动机是检测反馈元件。
1.2单元电路模块分析1.2.1自整角机自整角机是常用的位置检测装置,将角位移或者直线位移转换成模拟电压信号的幅值或相位。
自整角机作为角位移传感器,在位置随动系统中是成对使用的。
与指令轴相连的是发送机,与系统输出轴相连的是接收机。
则自整角机的表达式为()[()()]()r c u t K t t K t εεθθθ=-=∆在零初始条件下,拉氏变换为()()u s K s εθ=∆,则自整角机的传递函数为1()()()u s G s K s εθ==∆ 自整角机的结构图如图1-2所示图1-2 自整角机1.2.2功率放大器由于运算放大器具有输入阻抗很大,输出阻抗小的特点,在工程上被广泛用来作信号放大器。
自动控制原理课程设计——位置随动系统
自动控制原理课程设计——位置随动系统
在工业自动化领域,位置随动系统扮演着重要的角色。
它能够使驱动装置根据指令精确地移动到指定位置,并保持稳定。
位置随动系统的核心是自动控制系统,该系统通过反馈机制实时监测和调整驱动装置的位置。
在位置随动系统中,通常采用步进电机或伺服电机作为驱动装置。
这些电机能够根据控制系统的指令精确地转动一定的角度,从而实现位置的精确控制。
为了确保系统的稳定性,通常会采用闭环控制,即通过位置传感器实时监测电机的位置,并将位置信息反馈给控制系统。
在自动控制原理课程设计中,学生需要了解并掌握位置随动系统的基本原理、组成和实现方法。
学生需要自行设计并实现一个简单的位置随动系统,通过实验验证系统的性能和稳定性。
在设计过程中,学生需要考虑系统的硬件组成、控制算法的选择和实现、传感器选择和校准、系统调试和优化等方面的问题。
学生需要通过理论分析和实验验证相结合的方法,不断优化和完善系统设计。
通过这个课程设计,学生可以深入了解自动控制原理在实际应用中的重要性,提高自己的动手能力和解决问题的能力。
同时,这个课程设计也可以为学生未来的学习和工作打下坚实的基础。
基于步进电机的位置随动系统的设计
0 引言
随动控制 系统 又 名伺 服 驱动 系 统 , 是一 种 以机 械位置 或角度 作为 控 制对 象 的 自动 控制 系统 , 使用
的驱动电机具有响应速度快 、 定位准确、 转动惯量较 大等特 点 。步进 电机 是将 电脉 冲信 号转换 成相应 的 角位移 或线 位移 的控 制 电动机 。基 于步进 电机 的位
A c r i g t h itn e a d t e c a ae it so e t n mi e n e ev r t e i f r d s n o T1 8 c o d n o t e d s c h h r tr i f r s t ra d r c ie , nr e e s rS a n sc h t a t h a 8
21 0 2年第2 期
文章编 号:0 9- 5 2 2 1 )2— 02— 3 10 2 5 (02 0 0 8 0 中图分类号 :P 1 T3 1 文献标识码 : A
基 于步 进 电机 的位 置 随动 系统 的设 计
赖若麒 ,刘竹林 ,任 帅 ,苏再卿 黄 丽 , ,孙 亚豪
2 Sh o o a o  ̄ E u a o ,h n o gE o o i ies y Jn n2 0 1 , hn ) . co l f f n d ct n S a d n c n m cUnvri ,i 50 4 C ia Ni i t a
Ab t a t r i a e e in o iin ev y tm . s r c : h s p p r d sg s p st s r o s se whih i lme t n l r c ig fr t e b rir o c mp e ns a ge ta kn o h a re .
位置随动系统
图9-1 典型的位置随动系统的组成
位置随动系统的特点
位置随动系统与调速系统比较,有下面一些特点:
输入量是在不断变化着的(而不是恒量),它主要 是要求输出量能按一定精度跟随输入量的变化。 而调速系统则主要是要求系统能抑制负载扰动对
供电电路应是可逆电路,使伺服电动机可以正、 反两个方向转动,以消正或负的位置偏差。而调
交流伺服电动机的基本结构、工作 原理和工作特性
位置随动系统的组成
位置随动系统有开环控制系统,如由单片 机控制、步进电动机驱动的位置随动系统, 以前开环控制精度较低,如今已有精度相 当高(10000step/r以上)的步进随动系统。
在跟随精度要求较高、而且驱动力矩又较 大的场合,多采用闭环控制系统,它们多 采用直流(或交流)伺服电动机驱动。典型的 位置随动系统的组成如图9-1所示。
电动机惯量小,电动机灵敏,空载始动电
很强的刚性,不易产生振动。
直流伺服电动机的结构特点
由于上述的要求,因此直流伺服电动机与 普通直流电动机相比,其电枢形状较细较 长(惯量小),磁极与电枢间的气隙较小,加 工精度与机械配合要求高,铁心材料好。
直流伺服电动机按照其励磁方式的不同, 又可分为电磁式(即他励式)(型号为SZ),(见 图9-7a)和永磁式(即其磁极为永久磁钢)(型 号为SY)(见图9-b)。
位置随动系统的主环为位置环,调速系统的主环
位置随动系统的技术指标,主要是对单位斜坡输 入信号的跟随精度(稳态的和动态的),其他还有 最大跟踪速度、最大跟踪加速度等。
9.2 位置随动系统的主要部件
位置随动系统的主要部件一般都有: 线位移检测元件(同步感应器) 角位移检测元件 直流伺服电机或交流伺服电机
运动控制系统第6章位置随动系统
2)定位精度与速度控制范围 定位精度是评价位置随动系统控制准确度的性能指标。系统最终定 位点与指令目标值间的静止误差定义为系统的定位精度。 位置伺服系统,应当能对位置输入指令输入的最小设定单位(1脉 冲当量),作出相应的响应。为了实现这一目标,一是要采用分辨 率足够高的位置检测器,二是要求系统的速度单元具有足够宽的调 速范围,也就是说速度单元要有较好的低速运行性能。 图6-3为速度控制单元的输入输出特性
2. 交流伺服电动机
在现代伺服系统中,更多的采用交流伺服电动机。交流伺服电动机可 以是异步电动机或者永磁同步电动机。
交流异步伺服电动机有下述特点:
1)采用二相结构,电动机定子上布置有空间相差90º电角度的二相绕组, 一相称励磁绕组,一相称控制绕组,分别施加相位差90º的交流电压;
2)励磁绕组电压不变控制绕组电压为零时,旋转磁场变成了静止脉动磁 场,电动机立即停止转动,克服了普通异步电动机失电时的“自转”现象, 符合机床的要求;
6.2.4 数控机床的轨迹控制原理及其实现
1. 数控插补概述 以数控机床为例,其控制的目标是被加工的曲线或曲面,在加工过程
中要随时根据图纸参数求解刀具的运动轨迹,其计算的实时性有时难 以满足加工速度的需求。因此实际工程中采用的方法是预先通过手工 或自动编程,将刀具的连续运动轨迹分成若干段,而在执行程序的过 程中实时地将这些轨迹段用指定的具有快速算法的直线、圆弧或其它 标准曲线予以逼近。 插补是一个实时进行的数据密化过程。轨迹插补与坐标轴位置伺服是 数控机床的二个主要环节。 插补必须实时完成,因此除了要保证插补运算的精度外,还要求算法简 单。一般采用迭代算法。 就目前普遍应用的算法而言,可以分为两大类:脉冲增量插补,数据 采样插补。
位置随动系统
位置随动系统位置随动系统的被控制量(输出量)是负载机械空间位置的线位移或角位移,当位置给定量(输入量)作任意变化时,该系统的主要任务是使输出量快速而准确地复现给定量的变化。
顾名思义,位置随动系统是一个带位置反馈的自动控制系统,但这只是狭义的随动系统。
广义的随动系统输出量不一定是位置,也可以是其它物理量。
随动系统的另一个名称:“伺服系统”也体现了这个共性,伺服(Servo)一词意味着“伺候”和“服从”,具有意译和音译的双重意义。
位置随动系统的组成(1) 位置传感器(2) 电压比较放大器(A)(3) 电力电子变换器(UPE)(4) 伺服电机(SM)(5) 减速器与负载以上五个部分是各种位置随动系统都有的,在不同情况下,由于具体条件和性能要求的不同,所采用的具体元件、装置和控制方案可能有较大的差异。
位置随动系统的特征及其与调速系统的比较位置随动系统的主要特征如下:(1) 位置随动系统的主要功能是使输出位移快速而准确地复现给定位移;(2) 必须有具备一定精度的位置传感器,能准确地给出反映位移误差的电信号;(3) 电压和功率放大器以及拖动系统都必须是可逆的;(4) 控制系统应能满足稳态精度和动态快速响应的要求。
位置随动系统和调速系统一样,都是反馈控制系统,即通过对输出量和给定量的比较,组成闭环控制,两者的控制原理是相同的。
它们的主要区别在于,调速系统的给定量一经设定,即保持恒值,系统的主要作用是保证稳定和抵抗扰动;而位置随动系统的给定量是随机变化的,要求输出量准确跟随给定量的变化,系统在保证稳定的基础上,更突出需要快速响应。
总起来看,稳态精度和动态稳定性是两种系统都必须具备的,但在动态性能中,调速系统多强调抗扰性,而位置随动系统则更强调快速跟随性能。
位置传感器精确而可靠地发出位置给定信号并检测被控对象的位置是位置随动系统工作良好的基本保证。
位置传感器将具体的直线或转角位移转换成模拟的或数字的电量,再通过信号处理电路或算法,形成与控制器输入量相匹配的位置误差信号。
8 位置随动系统解析
指导教师评定成绩:审定成绩:重庆邮电大学自动化学院自动控制原理课程设计报告设计题目:位置随动系统单位(二级学院):学生姓名:专业:班级:学号:指导教师:设计时间:重庆邮电大学自动化学院制目录一、设计题目 (2)二.报告正文 (3)摘要 (3)2.1 问题一的分析与求解 (4)2.2 问题二的分析与求解 (5)2.3 问题三的分析与求解 (10)2.4 问题四的分析与求解 (14)三、设计总结 (18)四、参考文献 (19)五、附录 (20)附录一 (20)附录二 (20)一、 设计题目自动控制原理课程设计任务书1某位置随动系统原理如下图所示。
输入量为转角r θ,输出量为转角c θ,p R 为圆盘式滑动电位器,SM 为伺服电动机,TG 为测速发电机。
要求:(1)查阅相关资料,分析系统的工作原理,指出被控对象、被控量和给定量,画出系统方框图。
(2)分析系统每个环节的输入输出关系,代入相关参数求取系统传递函数。
(3)分析系统时域性能和频域性能。
(4)运用根轨迹法或频率法校正系统,使之满足给定性能指标要求。
(已知条件和性能要求待定)二、设计报告正文摘要随动系统是指系统的输出以一定的精度和速度跟踪输入的自动控制系统,并且输入量是随机的,不可预知的,主要解决有一定精度的位置跟随问题,如数控机床的刀具给进和工作台的定位控制,工业机器人的工作动作,导弹制导、火炮瞄准等。
控制技术的发展,使随动系统得到了广泛的应用。
位置随动系统是反馈控制系统,是闭环控制,其位置指令是经常变化的,要求输出量准确跟随给定量的变化,输出响应的快速性、灵活性和准确性成了位置随动系统的主要特征。
本次课程设计研究的是一类位置随动系统的滞后校正,首先通过分析原理求出传递函数,并利用主导极点进行降阶,得出一个二阶系统传递函数,并通过MATLAB分析时域和频域的各个性能,得出相角裕度太小和超调量太大,然后设计PD控制装置,改善系统的阻尼比,来使系统的各个性能达到要求。
位置随动系统教学课件
跟踪性能
跟踪性能
跟踪性能是指位置随动系统能够实时 跟踪目标位置变化的能力。良好的跟 踪性能能够确保系统快速响应目标变 化。
影响因素
提高方法
通过优化控制算法、提高执行机构性 能和提高系统响应速度,可以提高跟 踪性能。
跟踪性能受到系统响应速度、控制算 法和执行机构性能等因素的影响。
稳定性
稳定性
稳定性是指位置随动系统在各种 工作条件下能够保持稳定运行的 能力。良好的稳定性能够减少故
详细描述
位置随动系统涉及到多个领域的知识和技术, 需要进行系统集成和优化。通过对系统硬件 和软件的优化设计,可以提高系统的响应速 度、减小系统体积和重量,同时提高系统的 稳定性和可靠性,满足各种复杂的应用需求。
智能化与自主化
总结词
智能化与自主化是位置随动系统未来的发展趋势,能够提高系统的智能化水平和自主能 力。
03
位置随动系统的性能指标
定位精度
定位精度
定位精度是衡量位置随动 系统能够准确确定目标位 置的能力。高定位精度能 够减少误差,提高系统性能。
影响因素
定位精度受到多种因素的 影响,包括传感器精度、 算法误差、环境条件等。
提高方法
通过改进传感器技术、优 化算法和提高数据处理能 力,可以提高定位精度。
总结词
自适应控制是一种能够自动调整控制参数以适应系统参数变 化的控制策略。
详细描述
自适应控制通过实时监测系统参数的变化,自动调整控制参 数以适应这些变化,从而保持系统性能的稳定。自适应控制 能够有效地处理系统参数不确定性和外部干扰的问题,提高 系统的鲁棒性和适应性。
模糊控制
总结词
模糊控制是一种基于模糊逻辑和模糊集合论的控制策略,通过将专家的经验转换为模糊规则来实现控制系统。
简述位置随动系统
简述位置随动系统学院:机电工程学院班级:电气二班姓名:姚怀磊学号:8指导老师:张琦时间:2012-6-2目录:引言(一)位置随动系统的概述✧1.什么是位置随动系统✧2.位置随动系统的分类✧3.位置随动系统的结构原理✧4.位置随动系统的特点(二)位置随动系统的主要部件✧1.线位移检测元件(感应同步器)✧2.自整角机✧3.光电编码盘✧4.功率放大——PWM放大器✧5.相敏整流器的工作原理及传递函数✧6.伺服电动机✧7.减速系统(三)位置随动系统的工作原理✧1.系统工作原理✧2.各元部件传递函数✧3.位置随动系统的结构框图✧4.位置随动系统的信号流图✧5.相关函数的计算(四)位置随动系统的应用及前景引言:随动系统是指系统的输出以一定的精度和速度跟踪输入的自动控制系统,并且输入量是随机的,不可预知的,主要解决有一定精度的位置跟随问题,如数控机床的刀具给进和工作台的定位控制,工业机器人的工作动作,导弹制导、火炮瞄准等。
控制技术的发展,使随动系统得到了广泛的应用。
位置随动系统是反馈控制系统,是闭环控制,调速系统的给定量是恒值,希望输出量能稳定,因此系统的抗干扰能力往往显得十分重要。
而位置随动系统中的位置指令是经常变化的,要求输出量准确跟随给定量的变化,输出响应的快速性、灵活性和准确性成了位置随动系统的主要特征。
简言之,调速系统的动态指标以抗干扰性能为主,随动系统的动态指标以跟随性能为主。
(一)位置随动系统的概述1.什么是位置随动系统随动控制系统又名伺服控制系统。
其参考输入是变化规律未知的任意时间函数。
随动控制系统的任务是使被控量按同样规律变化并与输入信号的误差保持在规定范围内。
这种系统在军事上应用最为普遍.如导弹发射架控制系统,雷达天线控制系统等。
其特点是输入为未知。
伺服驱动系统(Servo System)简称伺服系统,是一种以机械位置或角度作为控制对象的自动控制系统,例如数控机床等。
使用在伺服系统中的驱动电机要求具有响应速度快、定位准确、转动惯量较大等特点,这类专用的电机称为伺服电机。
位置随动系统
前言位置随动是指输出的位移随位置给定输入量而变化。
在位置随动控制系统中,一般执行电动机常选用伺服电动机,所以也称位置私服控制系统。
位置随动系统的应用十分广泛。
如,军事工业中自动火炮跟踪雷达天线或跟踪电子望远镜的目标控制,陀螺仪的惯性导航控制,飞行器及火箭的飞行姿态控制;冶金工业中轧钢机轧辊压下装置的自动控制,按给定轨迹切割金属的火焰喷头的控制;仪器仪表工业中函数记录仪的控制以及机器人的自动控制等。
一般来说,随动控制系统要求有好的跟随性能。
位置随动系统是非常典型的随动系统,是个位置闭环反馈系统,系统中具有位置给定,位置检测和位置反馈环节,这种系统的各种参数都是连续变化的模拟量,其位置检测可用电位器、自整角机、旋转变压器、感应同步器等。
位置随动系统中的给只给定量是经常变动的,是一个随机量,并要求输出量准确跟随给定量的变化,输出响应具有快速性、灵活性和准确性。
为了保证系统的稳定性,并具有良好的动态性能,必须设有校正装置,如在正向通道中设置串联校正装并联校正装置等,为了提高位置随动系统的控制精度,还需要增加系统的开环放大倍数或在系统中增加积分环节等。
1 设计原理及性能指标要求1.1设计原理要使角位移的输出量能够跟随给定角位移的输入量的变化而变化,达到位置随动的目的,可以通过位置的检测,反馈,校正等环节,形成位置闭环反馈系统。
系统中具有位置给定,位置检测和位置反馈环节,这种系统的各种参数都是连续变化的模拟量,其位置检测可用电位器、自整角机、旋转变压器、感应同步器等。
1.2设计性能指标根据现实需要,位置随动系统主要技术指标如下: (1)误差系数s C C )200/1(,010== (2)单位阶跃响应的超调量%3%≤σ (3)单位阶跃响应的调节时间s t s 7.0≤ (4)幅值裕度dB dB h 6)(≥通过对数学模型进行系统分析和动态校正,最后设计出一个符合稳定性、准确性和快速性要求的自整角机随动控制系统。
简述位置随动系统
简述位置随动系统学院:机电工程学院班级:电气二班姓名:姚怀磊学号:100101228指导老师:张琦时间:2012-6-2目录:引言(一)位置随动系统的概述✧1.什么是位置随动系统✧2.位置随动系统的分类✧3.位置随动系统的结构原理✧4.位置随动系统的特点(二)位置随动系统的主要部件✧1.线位移检测元件(感应同步器)✧2.自整角机✧3.光电编码盘✧4.功率放大——PWM放大器✧5.相敏整流器的工作原理及传递函数✧6.伺服电动机✧7.减速系统(三)位置随动系统的工作原理✧1.系统工作原理✧2.各元部件传递函数✧3.位置随动系统的结构框图✧4.位置随动系统的信号流图✧5.相关函数的计算(四)位置随动系统的应用及前景引言:随动系统是指系统的输出以一定的精度和速度跟踪输入的自动控制系统,并且输入量是随机的,不可预知的,主要解决有一定精度的位置跟随问题,如数控机床的刀具给进和工作台的定位控制,工业机器人的工作动作,导弹制导、火炮瞄准等。
控制技术的发展,使随动系统得到了广泛的应用。
位置随动系统是反馈控制系统,是闭环控制,调速系统的给定量是恒值,希望输出量能稳定,因此系统的抗干扰能力往往显得十分重要。
而位置随动系统中的位置指令是经常变化的,要求输出量准确跟随给定量的变化,输出响应的快速性、灵活性和准确性成了位置随动系统的主要特征。
简言之,调速系统的动态指标以抗干扰性能为主,随动系统的动态指标以跟随性能为主。
(一)位置随动系统的概述1.什么是位置随动系统随动控制系统又名伺服控制系统。
其参考输入是变化规律未知的任意时间函数。
随动控制系统的任务是使被控量按同样规律变化并与输入信号的误差保持在规定范围内。
这种系统在军事上应用最为普遍.如导弹发射架控制系统,雷达天线控制系统等。
其特点是输入为未知。
伺服驱动系统(Servo System)简称伺服系统,是一种以机械位置或角度作为控制对象的自动控制系统,例如数控机床等。
使用在伺服系统中的驱动电机要求具有响应速度快、定位准确、转动惯量较大等特点,这类专用的电机称为伺服电机。
位置随动系统设计
位置随动系统设计
1.传感器选择和安装:位置随动系统需要实时获取工作位置的信息,
因此需要选择合适的传感器进行安装。
常用的传感器有光电传感器、编码
器等,可以通过测量角度、距离、速度等参数来获取实时位置信息。
2.控制算法设计:位置随动系统的核心是控制算法,通过运算和判断
实现对位置的准确控制。
常用的控制算法有PID控制、模糊控制、自适应
控制等,根据具体的需求和系统特点选择合适的算法。
3.电机选择和驱动:位置随动系统需要通过电机来实现位置的调整,
因此需要选择合适的电机类型和驱动方式。
常用的电机有步进电机、直流
电机等,可以根据系统的负载、工作环境和速度要求选择适当的电机类型。
4.通信和数据处理:位置随动系统通常需要与其他设备进行通信,并
处理大量的位置数据。
因此,需要选择合适的通信方式和协议,并设计相
应的数据处理算法。
常用的通信方式有串口通信、以太网通信等,可以根
据实际需求选择合适的通信方式。
5.安全和稳定性:位置随动系统通常应用于工业生产等关键环境,因
此需要考虑系统的安全性和稳定性。
系统设计应考虑故障诊断和容错设计,确保系统能够在异常情况下安全停机或切换到备用模式。
总的来说,位置随动系统的设计需要综合考虑传感器选择、控制算法
设计、电机选择和驱动、通信和数据处理以及安全和稳定性等多个方面。
通过合理的设计和优化,可以实现位置随动系统的高精度、高效率和稳定性,为各个领域的自动化系统提供良好的控制和调整能力。
自动控制原理课程设计_位置随动系统的分析与设计说明
成绩课程设计报告课程设计名称:自动控制原理课程设计题目:位置随动系统的分析与设计姓名专业学号指导教师2012年12月24日设计任务书引言:《自动控制原理》课程设计是该课程的一个重要教学环节,既有别于毕业设计,更不同于课堂教学。
它主要是培养学生统筹运用自动控制原理课程中所学的理论知识,掌握反馈控制系统的基本理论和基本方法,对工程实际系统进行完整的全面分析和综合。
一. 设计题目:位置随动系统的分析与设计二.系统说明:该系统结构如下图所示其中:放大器增益为Ka=15,电桥增益6K ε=,测速电机增益2t k =,Ra=7Ω,La=10mH,J=0.005kg.m/s 2,J L =0.03kg.m/s 2,f L =0.08,C e =1,Cm=3,f=0.1,K b =0.2,i=0.02三.系统参量系统输入信号:)(tθ1系统输出信号:)(tθ2四.设计指标e;1.在单位斜坡信号x(t)=t作用下,系统的稳态误差01.0≤ss2.开环截止频率30>w;c3.相位裕度︒γ;>40c五.基本要求:1.建立系统数学模型——传递函数;2.利用频率特性法分析系统:(1)根据要求的稳态品质指标,求系统的开环增益值;(2)根据求得的值,画出校正前系统的Bode图,并计算出幅值穿越频率、相位裕量,以检验性能指标是否满足要求。
若不满足要求,则进行系统校正。
3.利用频域特性法综合系统:(1)画出串联校正结构图,分析并选择串联校正的类型(超前、滞后和滞后-超前校正);(2)确定校正装置传递函数的参数;(3)画出校正后的系统的Bode图,并校验系统性能指标。
若不满足,则重新确定校正装置的参数。
4.完成系统综合前后的有源物理模拟电路:六、课程设计报告:1.报告内容(包括课程设计的主要内容、基本原理以及课程设计过程中参数的计算过程和分析过程);(1)课程设计计算说明书一份;(2)原系统组成结构原理图一张(自绘);(3)系统分析,综合用精确Bode图各一张;(4)系统综合前后的模拟图各一张。
运动控制系统第6章位置随动系统
本章教学要求与目标 掌握位置随动系统的特点、要求和组成 熟悉位置随动系统的控制方法 了解位置随动系统的数学模型和校正设计
6.1 位置随动系统概述
伺服(Servo)的意思是“伺候”和“服从”,广义的伺服系统是精确 地跟踪或复现某个给定过程的控制系统,也称为随动系统,它的主要 目标是实现精确、快速的轨迹跟踪,在现代工业中不可缺少。典型的 应用领域如数控机床、机器人、雷达跟踪、绘图仪等。
速度控制 转矩控制
速度反馈 位置反馈
伺服 电动机
机械传 输出 动机构
旋转 编码器
图6-1 半闭环位置伺服系统结构示意图
全闭环位置伺服系统
全闭环结构的位置伺服系统以工作台的平动位移为被控量,采用光栅尺(也可 用感应同步器)作为位置检测元件。全闭环结构在一些大型机械设备和超精密 机械设备中得到应用。由于全闭环位置伺服系统将机械传动机构也包括到了位 置控制回路中,就使得机械传动结构的误差也可以通过闭环控制得到减小,但 同时也增大了位置闭环整定的难度。
2)定位精度与速度控制范围 定位精度是评价位置随动系统控制准确度的性能指标。系统最终定 位点与指令目标值间的静止误差定义为系统的定位精度。 位置伺服系统,应当能对位置输入指令输入的最小设定单位(1脉 冲当量),作出相应的响应。为了实现这一目标,一是要采用分辨 率足够高的位置检测器,二是要求系统的速度单元具有足够宽的调 速范围,也就是说速度单元要有较好的低速运行性能。 图6-3为速度控制单元的输入输出特性
(3)最大快移速度
最大快移速度即为系统速度控制单元所能提供的最高速度Vmax,最大快移 速度也是决定系统定位精度的一个重要参数。系统最小分辨率为
(4)伺服刚度
自控课程设计(位置随动系统)
位置随动系统建模与分析1位置随动系统的原理分析1.1位置随动系统的原理图位置随动系统的基本原理图如下所示:图1-1 位置随动系统的原理图1.2 位置随动系统工作基本原理位置随动系统工作原理:位置随动系统通常由测量元件、放大元件、伺服电动机、测速发电机、齿轮系以及绳轮等基本环节组成,它通常采用负反馈控制原理进行工作,其原理图如图1-1所示。
在图1-1中,测量元件为由电位器Rr 和Rc组成的桥式测量电路。
负载就固定在电位器Rc的滑臂上,因此电位器Rc的输出电压Uc和输出位移成正比。
当输入位移变化时,在电桥的两端得到偏差电压ΔU=Ur-Uc,经放大器放大后驱动伺服电机,并通过齿轮系带动负载移动,使偏差减小。
当偏差ΔU=0时,电动,表明输出位移与输入位移相对应。
测机停止转动,负载停止移动。
此时δ=δL速发电机反馈与电动机速度成正比,用以增加阻尼,改善系统性能。
1.3 位置随动系统的基本组成环节1.3.1 自整角机作为常用的位置检测装置,将角位移或者直线位移转换成模拟电压信号的幅值或相位。
自整角机作为角位移传感器,在位置随动系统中是成对使用的。
与指令轴相连的是发送机,与系统输出轴相连的是接收机。
u(t)=Kτ(θ1(t)−θ2(t))=Kτ∗∆θ(t) (1-1) 在零初始条件下,对上式求其拉普拉斯变换,可求得电位器的传递函数。
则其传递函数如下式所示:G(s)=U(s)/∆Θ(s)=Kτ(1-2) 根据所求得的传递函数,绘制出自整角机结构图可用图1-2表示如下:图 1-2 自整角机1.3.2 功率放大器由于运算放大器具有输入阻抗很大,输出阻抗小的特点,在工程上被广泛用来作信号放大器。
其输出电压与输入电压成正比,传递函数为:G(s)=Ua(s)/U1(s)=Ka(1-3) 式中参数Ua为输出电压,U1为输入电压,Ka为放大倍数。
功率放大器结构图可用图1-3表示:图 1-3 功率放大器1.3.3 两台伺服电动机列出其工作方程如下:T m∗[d2θ(t)/dt2]+dθ(t)/dt=K m∗u a(t) (1-4) 根据式(1-4),对两边进行拉普拉斯变换,可以求得其传递函数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5.1.2 位置随动系统的分类
1)按输出功率分:小功率、超小功率、中功率、大 功率和超大功率位置随动系统。
2)按位移性质分:转角式和直线式; 3)按采用的电动机不同分:直流式和交流式; 4)按照控制器的类型分:模拟式随动系统和数字式
随动系统。
5.2 位置随动系统组成及工作原理
电位器式位置随动系统原理图
光电式脉冲编码器通常与电机做在一起,或者安装在电机非
轴伸端,电动机可直接与滚珠丝杠相连,或通过减速比为i的减
速齿轮,然后与滚珠丝杠相连。
5.4 位置随动系统稳态误差分析
(1)检测误差 由检测元件引起,大小取决于检测元件本身的精度。
(2)系统误差 包括稳态给定误差和扰动作用下的稳态误差。由系统自身
的结构形式、系统特征参数和给定输入信号的形式决定。 a: 位置调节器选用比例控制(Ⅰ型系统 ) b: 位置调节器选用PI或PID控制(Ⅱ型系统 )
旋转光电编码器 旋转 两路正交信号和定位信号
直线光电编码器 旋转 两位正交信号和定位信号
绝对位置编码器 旋转 多位并行信号
旋转变压器
旋转 模拟幅值或相位信号,坚固
5.3.1 光电编码盘
光电编码盘可直接将角位移信号转换 成数字信号,它是一种直接编码装置。 和旋转变压器一样,按照编码原理划 分,有增量式和编对式两种光电编码 盘。
光电式脉冲编码器结构示意图
一、绝对式编码器
绝对式编码器是一种旋转式检测装置,可直接把 被测转角用数字代码表示出来,且每一个角度位置均 有其对应的测量代码,它能表示绝对位置,没有累积 误差,电源切除后,位置信息不丢失,仍能读出转动 角度。绝对式编码器有光电式、接触式和电磁式三种, 以接触式四位绝对编码器为例来说明其工作原理。
本章小结
重点掌握: ❖ 位置随动系统的一般组成及其工作原理 ❖ 位置随动系统与调速系统的联系与区别
❖ 位置检测器:由电位器RP1与RP2组成 ❖ 电压比较放大器:由运算放大器A1和A2组
成 ❖ 可逆功率放大器 ❖ 执行机构:永磁式直流伺服电动机SM
(1)数字式位置随动系统的一般组成
位置 给定
控制计 算机
驱动器
驱动 电机
速度反馈
齿轮传 动链
系统 负载 输出
位置反馈的比较
❖ 相同: ❖ 都是负反馈控制系统,都是闭环控制, ❖ 其控制原理是一致的;
❖
不同:
❖
调速系统的转速给定量是恒值,要求输
出量能维持在和输入量相对应的数值上不变。
调速系统的动态指标以抗干扰性能为主。
❖
位置随动系统的位置给定量是经常变化
的,要求输出量能尽可能准确跟随给定量的变
本章提要
❖ §5.1 位置随动系统概述 ❖ §5.2 位置随动系统主要组成及其工作原
理 ❖ §5.3 位置随动系统中的位置检测装置 ❖ §5.4 采用自整角机的位置随动系统
5.1 位置随动系统概述
❖ 位置随动系统又称伺服系统
❖ 主要解决的问题:对象的位置控制
❖ 根本任务:实现执行机构对位置指令的准确
6 0110
1110 15
7 0111
1111 14
0101
1101
5
0100 1100
13
4 12
四位格雷码盘
二、增量式脉冲编码器
增量式脉冲编码器分光电式、接触式和电磁感应式三种。就 精度和可靠性来讲,光电式脉冲编码器优于其它两种,它的型号 是用脉冲数/转(p/r)来区分,常用2000、2500、3000p/r等, 现在已有每转发10万个脉冲的脉冲编码器。脉冲编码器除用于角 度检测外,还可以用于速度检测。
化。随动系统的动态指标则以跟随性能为主。
5.3 位置随动系统中的位置检测装置(教材P220)
作用: 将位移转换成一定形式的电量。
常用的模拟式位置检测装置: 自整角机、旋转变压器、感应同步机
常用的数字式位置检测装置: 光栅(位移检测)、 光电编码盘(角度检测)
位置传感器 运动方式
特点
电位器
旋转 模拟信号、价廉、低性能
0
15
1
0000 1111
14
0001
1110
2 0010
1101 13
3 0011
1100 12
4 0100
1011 11
5 0101
1010 10
0110
1001
6
0111 1000
9
7
8
四位二进制编码盘
08
1 0000 1000
9
0001
1001
3 0011
1011 11
2 0010
1010 10
❖
跟踪。
❖ 给定量和被控量:位移(角位移、直线位移)
❖ 特点:给定量是随机变化
5.1.1 位置随动系统主要应用
❖ 数控机床中的定位控制和加工轨迹控制; ❖ 仪表工业中各种记录仪的笔架控制,如温度记录仪等; ❖ 光驱中的激光头的定位控制; ❖ 轮船上的自动操舵装置; ❖火炮方位的自动跟踪; ❖ 雷达天线位置控制; ❖ 宇航设备的自动驾驶; ❖ 机器人的动作控制等等。