细胞计数仪说明书
BC-5800血液细胞分析仪标准操作程序(不带清洁液)
BC-5800血液细胞分析仪标准操作程序1.检验验项目及检验原理适用于血液白细胞计数及分类,红细胞计数,血红蛋白,血小板计数,红细胞压积,红细胞体积分布宽度,平均红细胞血红蛋白含量,平均红细胞血红蛋白浓度,平均红细胞体积,血小板体积分布宽度、平均血小板体积和血小板压积等检验。
本分析仪采用电阻抗法检测红细胞和血小板的数目以及体积分布;采用比色法测量血红蛋白浓度;采用半导体激光流式细胞技术获得白细胞总数和五类白细胞的分类统计计数。
在此基础之上,分析仪计算出其余参数的结果。
2.仪器设备试剂BC-5800血液细胞分析仪专用试剂:M-58D稀释液;M-58LEO(I) 溶血剂、M-58LEO(II) 溶血剂、;M-58LH 溶血剂、M-58LBA溶血剂、探头清洁液。
所有试剂应参照试剂的使用说明进行保存。
变质、超过效期的所有试剂不能使用。
3.仪器设备标本原始样品采集、制备、处理、检验和存放见检验科相关规范。
4.仪器设备性能参数BC-5800血液细胞分析仪一般资料见附件1;BC-5800血液细胞分析仪性能指标见附件2。
5.仪器设备环境要求,使用安全措施5.1 仪器设备环境要求5.1.1 空间安装要求仪器应安装在稳固工作台上。
在仪器两侧各保留至少1米的空间,以方便维护和保养。
仪器和气源后部分别至少要有0.50米的空间,以防止阻碍热气的排放并保证主机后的液路管道不受挤压。
将BC-5800血液细胞分析仪安放在通风良好、灰尘少的地方。
避免在过热或过冷以及日光直射的环境中使用BC-5800血液细胞分析仪。
保证操作台面以及主机下方有足够的空间放置稀释液、废液桶。
5.1.2 运行条件环境温度要求:10℃~40℃。
环境相对湿度要求:10%~90%。
电源电压要求:100-240 V~,50/60Hz。
仪器设备周围应尽可能无尘、无机械振动、无污染、无大噪音源和电源干扰;远离强电磁场干扰源;不要靠近电刷型电机、闪烁荧光灯和经常开关的电接触性设备;建议在运行设备之前对实验室的电磁环境进行评估;避免强光直接照射;避免置于热源及风源前;选择一个通风良好的位置;具有良好的接地环境;不要将主机放置在斜面上;室5.2 仪器安全在仪器设备上面和周围不要使用可燃性危险品,避免引起火灾和爆炸。
Scepter 2.0 单细胞计数仪说明书
Scepter™ 2.0 Cell Counter Precise, handheld cell countingThe life science business of Merck KGaA,Darmstadt, Germany operates as/scepterupgrade Precise, handheld cell countingScepter™ 2.0 cell counters mark the next generation in Scepter™ technology, highlighted by:Compatibility with More Cell TypesIncreased Cell Concentration RangePowerful Software for Complex, Effortless Cell AnalysisScepter™ 2.0 Cell Counter• Recommended based on size • Customer Validated• MilliporeSigma Validated“At last, an alternative to lining up for the Coulter Counter ®, and far easier than sweating over fragile hemocytometers.”Amy A. Caudy is a Lewis-Sigler Fellow at Princeton University’s Lewis-Sigler Institute for Integrative GenomicsThe Scientist , Dec. 2010. Top Ten Innovations of 2010.The power of precisionTrust Scepter™ devices with your most valuable samples to get reproducible and reliable counts. The reliability of Scepter™ cell counters is particularly apparent with smallercell types. Because the Scepter™ cell counter measures volume using the Coulter Principle, it can quantify cells based on size and will discriminate larger cells from smaller debris, unlike vision-based techniques, which rely on object recognition software and cannot reliably detect small cells.Scepter™ sensor technologyCompatible with 60 μm and 40 μm sensors, theScepter™ 2.0 cell counter can meet even more of your cell- and particle-counting needs. Use the 60 μm sensor for particles between 6 and 36 μm. Use the 40 μm sensor for particles between 3 and 17 μm.• Precise volumes are drawn into the Scepter™ sensor.• As cells flow through the aperture in the sensor, resistance increases. This increase in resistance causes a subsequent increase in voltage.• Voltage changes are recorded as spikes with each passing cell.• Spikes of the same size are bucketed into a histogram and counted. This histogram gives you quantitative data on cell morphology that can be used to examine the quality and health of your cell culture.Particles are detected by Ohm’s Law V=IR (V=voltage, I=current, and R=resistance).Table 1.Cell types validated with the Scepter™ cell counter and the recommended Scepter™ sensor.Cell Type Measuredsize (μm)40 μm sensor 60 μm sensorMeg-0116-17•MG-6315-17•Mouse ES Cell5-13••Mesenchymal Stem Cell 15-16•MRC-5•NCI-H14610-13•NIH 3T315•NTERA2, clone D113••OK 17-18•PBMCs 7-12•PC129-13•Primary Astrocytes 7•Primary Neuronal Cell •Raji 12-15••Ramos11-12••Rat Dorsal Root Ganglion Cells 7•Rat Whole Blood 4.6•Red Blood Cells 5-7•Rat Neural Stem Cell 11-13•RAW 264.712-15•RBL 11-13••RIN-mF513-14•SF913•SH-SY5Y 12•Sk-Br-315-20•SK-MEL-2817-19•SK-N-MC 14-15•SK-N-SH 14-15•Splenocytes 7-9•SW-48015•SW-62013-14••T8414-18•T98G 17•TF-113-14••U25116-20•U2OS 16-19•U26612•U87-HumanGlioblastoma cell line 12-14•U93711-13••WI-3812-15•Y7913-14•Yeast- Pichia Pastoris 5•Yeast- S.cerevisiae 6•Cell Type Measuredsize (μm)40 μm sensor 60 μm sensor2102 Ep 15-19•454 beads •A17215•A25314-18•A37516•A43115-17•A549•Algae (various)7-9•B3513-16••B Cells6-11•C2C1212••C30512-14••C612-13•CA4610-12••Caco-217•CHO 14-17•COS-112••Cos-715•D28312•Daudi 10-12••DU-14515-17•Epithelia 14-15•HCT-11610••HEK29311-15•HeLa 12-14•HepG212•HFF 18-20•Hs2714••HT-108014-16•HT-2911•HUH7- Hepatoma line •Human ES Cells 9-12•HUVEC 14-15•IMR-3212-14••IMR-9015••Jurkat 13•K56222•KB 14•KG-110-13••L614-16•LNCaP15-16•Luminex ® beads 5-6•MCF715-17•MDCK13-15•Scepter™ cell counterHemocytometer= Average % CV= Coulter counter % CVVision-based counter1234567Figure 2.The average percent coefficient of variation (CV) for each counting method shown was calculated using cell concentration measurementsat 50,000 cells/mL samples of 19 different cell lines. The Scepter™ cell counter is more precise than vision-based counting and hemocytometry, and approaches the precision of the Coulter Counter ® standard (yellow bars). Error bars represent standard deviation.of cell diameter or cell volume FormatCounting methods Samplevolume needed Samplevolume counted Cells counted in a 100,000 cell/mL sample Average % CV Hemocytometer Slide and microscope Manual, vision-based 10 μL 0.1 μL /square 10/square 41.8Brand L Benchtop Automated vision-based system10 μL 0.4 μL 4032.1Scepter™ Cell Counter HandheldImpedance-based cell detection100 μL50 μL50009.1Intuitive analysis softwareFrom simple counts to complex volume measurements used to assess cell health parameters, Scepter™ Software Pro provides an intuitive, intelligent platform to perform high-level cell analysis based on the size measurements captured with the Scepter™ cell counter.Using the Scepter™ Software Pro on your computer, you can:• Compare several samples and data sets side by side using histogram overlay and multiparametric tables • Create and save gates to be used from one experiment to the next • Create attractive graphical presentations and reports with your dataA View of Scepter™ Software ProData:Data files from your Scepter™ cell counter Current Plot:Working plot and data file Group Stats:Customizable statistics from your selected data filesMultifunctional Plot:Multiple data sets/histogram overlays Reports:Export, print selected graphs/files, cut and pasteAnalysis Templates:Saved gating parametersPrepare the sample:Start with a single-cell suspension, diluted to a total volume of 100 μL (recommended) in phosphate buffered saline (such as EmbryoMax ® 1x DPBS) to 10,000-500,000 cells/mL (operating range for 60 μm sensor) in a 1.5 mL microcentrifuge tube.Perform cell count:• Turn on the Scepter™ cytometer by pressing the toggle on the back of the instrument and wait for on-screen instructions to appear.• When prompted, attach a sensor to the end of the Scepter™ unit with the electrode sensing panel facing toward the front of the instrument, and you’ll see detailed instructions for each step of the counting process.• Pipette once to draw sample into the sensor. 50 μL of your cell suspension is drawn into the microfabricated, precision-engineered channel embedded in the sensor. The cell sensing zone detects each cell drawn into the sensor and thus cell concentration is calculated.• The sensing zone also measures cell sizes and cell volumes with sub-micron and sub-picoliter resolution, enabling the Scepter™ cytometer to display a As easy as pipetting100MDMA231 cellsFlow cytometryScepter™Trypan blue + hemocytometerNIH 3T3 cells% V i a b i l i t y1009080706050403020100Flow cytometryScepter™Trypan blue + hemocytometer% V i a b i l i t yA.B.ApplicationsMilliporeSigma continues to expand the capabilities of Scepter™ technology, and the latest generation Scepter™ 2.0 device features enhanced analytical powers, enabling you to count even more cell types and sizes.Figure 3.Rapid cell analysis using the Scepter™ 2.0 device provides reliable assessments of cell viability compared to flow cytometry (ViaCount ® assay) and hemocytometry (using Trypan blue staining). MDMA231 cells (A) and NIH 3T3 cells (B) were treated with camptothecin 24 hours prior to analysis.“Cell counting is normally a very tedious process and usually only provides minimal information on the cell population. This instrument, which is only slightly larger than an automatic pipette, allows you to count cells in your tissue-culture hood, simplifies the procedure, and provides much useful data, such as the fraction of intact cells.”H. Steven Wiley is a lead biologist at the Environmental Molecular Sciences Laboratory at the Pacific Northwest National LaboratoryThe Scientist , Dec. 2010. Top Ten Innovations of 2010.Scepter™ 2.0 cell counter for counting heterogeneous cell populationsCount blood cells and other cells with small diameters with the highest precision. Biological samples such as primary isolates or cultured cells are often heterogeneous mixtures of cells that differ by type and/or function. Such differences in cellularattributes are most commonly determined by multicolor fluorescent antibody detection of cell type specific surface marker(s) using flow cytometry. Notably,in addition to variations in protein expression, many cell types and physiological states are also uniquely distinguishable on the basis of size alone. The ability to identify population subsets on the basis ofphenotypic differences and further determine their relative frequencies (and concentrations) is critical to many aspects of research.Scepter™ 2.0 cell counter for cell healthInstantly gauge the health of your cell cultures without even leaving the culturehood. Because the Scepter™ cell counter displays high-resolution histograms of entire cell populations, you can differentiate live cells from dead cells and debris by simply gating on the histogram peak corresponding to larger-diameter cells. No staining is required! The resulting calculation for % viable cells agrees with viability calculations obtained using flow cytometry (ViaCount ® reagent) and Trypan blue staining/hemocytometry (shown here with MDMA231 and NIH 3T3 cells).% C o e ffic i e n t o f V a r i a t i o n (%C V )(40 µm sensor)Vision-based Counter Counting MethodPBMCsAverage % CV Z2 Coulter Counter C o u n tC o u n tForward ScatterFlow CytometryPlot PO3, ungatedScepter™ (40 µm)Current AcquisitionDiameter (µm)100200300400500600700800900100001000200030004000500060005.6 µm Polystyrene MILLIPLEX ® Antibody-Conjugated MicrospheresC o u n tDiameter (µm)1,500,000500,000250,000125,00050,000750,0000.0E+00M e a s u r e d C e l l C o n c e n t r a t i o n (c e l l s /m L )Theoretical Cell Concentration (cells/mL)4.0E+058.0E+051.2E+061.6E+06Theoretical Cell ConcentrationZ2 Coulter Counter Scepter™ - 40 µm SensorsScepter™ 2.0 │ Precise, handheld cell countingScepter™ 2.0 cell counter for countingheterogeneous cell populations (continued)Distinguishing lymphocytes from monocytes in freshly isolated PBMCs . The assessment of immune profiles of the various immune cell subsets can help identify molecular signatures that may facilitate research. The Scepter™ cell counter, when used in combination withScepter™ Software Pro, provides a tool for rapid determination of lymphocyte and monocyte concentrations as well as the relative frequency of these cell types in PBMC isolates.Figure 4.The Scepter™ 2.0 cell counter counts PBMCs with greater precision than other counting methods, as reflected by low coefficients of variation. % CVs were calculated using average cell counts of four replicate samples.Figure 6.Scepter™ Software Pro displays imported size distribution histograms as either a single sample histogram or as overlaid histograms for multiple samples. Shown is an overlaid histogram for serially diluted 5.6 μm MILLIPLEX ® map microspheres.Figure 7.The Scepter™ cell counter counts yeast cells with good accuracy and linearity. Measured yeast cell concentrations were compared totheoretical concentrations. The solid blue line represents the theoretical values. Dotted lines represent best linear fit to data. Both the Scepter™ and Coulter Counter ® platforms show a loss of linearity and accuracy upon an increase in cell concentration.Figure 5.Representative comparison of histogram plots for human PBMCsamples acquired on the Scepter™ cell counter (diameter histogram on right) and guava ® easyCyte™ flow cytometry (forward scatterhistogram on left) platforms. Analysis plots derived from both platforms demonstrate three distinct peaks corresponding to 1) dead cell/debris, 2) lymphocyte and 3) monocyte fractions. The difference in counts displayed (Y-axis) is due to differences in sample dilution between the guava ® easyCyte™ flow cytometer and the Scepter™ cell counter.Cell Fraction Scepter™ 1Forward Scatter 2Staining 31Lymphocyte 586563Monocyte 4235372Lymphocyte 687271Monocyte 3228293Lymphocyte 666971Monocyte343129Precise and accurate bead counting with the Scepter™ 2.0 cell counterMicron-sized beads are used in a variety of biological applications, ranging from daily validation of flowcytometer performance to purification of fusion protein constructs from cell lysates. Accurate determination of bead counts at the onset of each assay allows for standardization of bead concentrations acrossmultiple samples and minimizes errors and variation in downstream results. The Scepter™ cell counter is well suited for precise counting for beads of numerous types and can improve reproducibility of bead-based assays, such as immunoprecipitation and multiplexed detection.Scepter™ devices can facilitate yeastcell counting for brewing and wine industriesIntroduction of a consistent yeast cell concentration is required for successful beer and wine fermentation as well as to maintain batch-to-batch reproducibility and ensures consistent fermentation over many cycles. Scepter™ cell counter can be used to monitor yeast size and concentration by yielding interpretable histograms that could be gated to provide this depth of information.Ordering InformationDownloadable Scepter™ Software 1O-Rings2Scepter™ Test Beads 1PHCCBEADS Scepter™ USB Cable 1PHCCCABLE Scepter™ Sensors, 60 μm50PHCC60050500PHCC60500Scepter™ Sensors, 40 μm 50PHCC40050500PHCC40500Universal Power Adapter1PHCCP0WER Scepter™ O-Ring Kit (includes 2 O-rings and 1 filter cover)1PHCC0CLIP Table 2.Lymphocyte and monocyte subset frequencies from three individual PBMC samples. Aliquots from each sample were analyzed using the guava ® easyCyte™ flow cytometry and Scepter™ platforms. 1 Values were derived from the diameter histogram plot. 2 Values were derived from the forward scatter histogram plot based on total events measured on guava ® easyCyte™ flow cytometry platform. 3 Staining frequencies derived as follows: % Lymphocytes = (% CD3+ T cells) + (%CD16/56+ NK cells) + (%CD19+ B cells); % Monocytes = % CD14+ cells.vMilliporeSigma400 Summit Drive Burlington, MA 01803。
自动血细胞分析仪操作规程
4.操作程序4.1开机启动首先开启仪器主机侧面板的电源开关,然后开电脑主机,仪器主机前面板状态指示灯变为橙绿闪烁,仪器主机初始化后开始自检,自检时仪器会自动灌注稀释液、清洗液及溶血剂,并清洗液路。
自检完成后,仪器进入血液细胞分析窗口。
4.2本底测试4.2.1放置洁净的空试管于采样针下,应确保采样针轻挨试管底部。
在血液细胞分析窗口,点击“排液”图标,仪器通过采样针排出稀释液到试管中。
4.2.2在血液细胞分析窗口,点击“编号”图标,进入下一个编号操作,输入“0”,再点击“确定”按钮返回血液细胞分析窗口。
(注意:仪器系统软件将本底测试的顺序号设定为0,试测试数据将不存储在仪器中,但禁止将血液样本的顺序号设定为0)。
4.2.3将盛有稀释液的试管放在采样针下,按仪器前面板的“RUN”键,待听到“滴”的一声后,方可移走试管。
仪器开始自动计数、测量。
4.2.4计数过程中,在窗口的右下方有WBC、RBC的计数计时器,显示WBC、RBC的计数时间。
当计数时间过长或过短时,仪器会发出故障报警,并给出报警提示。
若出现报警提示,即参照说明第9章《故障处理》进行处理。
4.3质量控制首次装机或在每天进行血液样本测试之前必须对仪器进行质控,具体参照说明第5章《质量控制》进行处理。
4.4标定若本底测试,质控结果达不至要求,且某些参数漂移变化较大,则必须对仪器进行重新标定,具体参照说明第6章《标定》进行处理。
4.5血液样本的采集4.5.1由于所有的临床样本、质控物、标定物均可能含有人血或人的血清,具有潜在的传染性,因此在处理这些物品时必须遵守已建立的实验室或临床操作规程,穿好工作服,戴好医用手套及安全眼镜。
4.5.2采血过程避孕必须干净、无污染,必须使用合格的抗凝剂。
严禁剧烈摇动采血管。
在室温下,静脉血只能保存4个小时,若在短时间内不能将血样处理完毕,须将血样存放于2℃~8℃的冷藏室内保存。
4.5.3静脉血(全血)的采集利用静脉穿刺采取静脉血,放于含有抗凝剂(EDTA-K2·2H2O)的干净试管内,抗凝剂能够保持红细胞、白细胞的形态不变,同时可抑制血小板聚集。
SOP002BC-5390CRP血细胞分析仪
BC-5390 CRP血液细胞分析仪标准操作程序1.仪器设备检验项目适用于血液白细胞计数及分类,红细胞计数,血红蛋白,血小板计数,红细胞压积,红细胞体积分布宽度,平均红细胞血红蛋白含量,平均红细胞血红蛋白浓度,平均红细胞体积,血小板体积分布宽度、平均血小板体积和血小板压积等检验。
适用于血液 C- 反应蛋白的检测。
2.仪器设备试剂BC-5390 CRP血液细胞分析仪专用试剂:M-53D 稀释液;M-5LEO(I)溶血剂;M-5LEO(II) 溶血剂;M-53LH 溶血剂; M-53P探头清洁液;LC溶血剂;C-反应蛋白(CRP)测定试剂盒(乳胶免疫比浊法)。
所有试剂应参照试剂的使用说明进行保存。
变质、超过效期的所有试剂不能使用。
3.仪器设备环境要求,使用安全措施3.1仪器设备环境要求3.1.1空间安装要求仪器应安装在稳固工作台上。
在仪器两侧各保留至少1米的空间,以方便维护和保养。
后部至少要有0.50米的空间,以防止阻碍热气的排放并保证主机后的液路管道不受挤压。
将BC-5390CRP血液细胞分析仪安放在通风良好、灰尘少的地方。
避免在过热或过冷以及日光直射的环境中使用BC-5390 CRP血液细胞分析仪。
保证操作台面以及主机下方有足够的空间放置稀释液、废液桶。
3.1.2运行条件环境温度要求:- 10℃~40℃。
环境相对湿度要求:10%~90%。
电源电压要求:100 ~240V AC,50/60Hz 。
仪器设备周围应尽可能无尘、无机械振动、无污染、无大噪音源和电源干扰;仪器附近无强电磁干扰源以及电刷型电机、闪烁荧光灯和经常开关的电接触性设备;不应放在通风条件差、阳光直射的环境中,或热源及风源前。
3.2仪器安全在仪器设备上面和周围不要使用可燃性危险品,避免引起火灾和爆炸。
在电源打开状态下,禁止打开仪器前上面、侧面及背面面板,以免损害线路板;禁止触摸BC-5390 CRP 血液细胞分析仪外壳里面的电子元件,尤其避免湿手触摸,以免造成电击。
流式细胞仪干细胞计数程序
保证流式细胞仪检测外周血或骨髓液中造血干/祖细胞计数的工作质量,旨在保证造血干/祖细胞计数检测正确的操作程序和控制检测结果的精确度。
二、修改程序:本标准操作程序的改动,可由任一使用本SOP的工作人员提出,并报经下述人员批准签字:质量主管、授权人(科主任),方可改动。
三、适用范围:外周血或骨髓液中造血干/祖细胞计数。
四、溯源:美国BD公司ProCOUNT Progenitor Cell Enumeration Kit 产品说明书(CAT:340498)。
五、实验原理:ProCOUNT方法根据祖细胞的特征,低SSC、CD45弱阳性、核酸染料阳性及CD34阳性;采用核酸染料/CD34/CD45染色方法,特异识别样本中干/祖细胞,同时,ProCOUNT实验加入TRUCOUNT绝对值计数管作定量分析,计算CD34+细胞cell/ul,从而避免了血球计数仪可能带来的误差。
六、主要试剂:ProCOUNT Progenitor Cell Enumeration Kit (美国BD Biosciences公司;CAT:340498),其中包括:1、核酸染料/CD34-PE/CD45-PreCP2、核酸染料/IgG1-PE/CD45-PreCP3、TruCOUNT Tubes七、实验操作:抗凝真空采血管,抽取静脉血2ml;或新鲜肝1、标本采集:使用EDTA-K2素抗凝骨髓。
2、染色和固定细胞:(1)标本管编号A,另取TruCOUNT管两只AT、AC。
(2) AT管加入核酸染料/CD34-PE/CD45-PreCP 20ul。
AC管加入核酸染料/IgG1-PE/CD45-PreCP 20ul。
(3) AT、AC管中精确加入全血50Ul,混均。
(4)置室温,避光孵育15min。
(5)加入FACSLysing溶血液0.5ml,置室温,避光孵育30min。
3、混匀后上机检测;仪器自动分析结果;打印实验报告。
八、参考值:外周血CD34+细胞:0.01-0.1%骨髓中CD34+细胞:0.05-0.5%九、临床意义:在恶性血液病时,大剂量化疗或放疗摧毁了病变的骨髓细胞后,造血干细胞移植保证了血细胞及基质细胞的造血重建。
BC-5180全自动血液细胞分析仪操作规程
每日应执行正常关机;样本计数次数累计已达到或超过100时,应执行一次探头清洁液浸泡;若样本量较少,分析仪每使用2周也应执行一次探头清洗液浸泡;分析仪短途运输(运输时间小于2h)前,应执行排空液路的操作;若分析仪长时间闲置不用(1周以上)或长途运输(运输时间大于2h)前,应执行“打包”操作。(详见使用说明书 第10章 服务)
全血样本6uL
↓
↓ ←稀释液2.5mL 取52.08uL
稀释比为1::417:6的样本←←←←←
↓←M-53LH溶血剂0.5mL ↓←←稀释液2.672mL
稀释比约为1:500的白细胞/ ↓
血红蛋白检测样本 稀释比约为1:20000的红细胞、血小板计数样本
A分析仪必须在良好接地条件下使用;
B确认输入电压符合分析仪要求。
2环境要求
正常工作温度范围:15℃-30℃;
运行温度范围:10℃-40℃;
正常工作湿度范围:30%-85%;
正常工作大气压力范围:70kpa-106kpa;
环境应尽可能无尘、无机械振动、无污染、无大噪音源和电源干扰;
建议在运行设备之前对实验室的电磁环境进行评估;
10 关机
每日工作完毕,在主界面点击快捷按钮区的“关闭仪器”按钮执行关机,并按照界面的提示将主机左侧的“O/I”电源开关置于”O”以关掉主机电源。
在主界面点击快捷按钮区的”退出系统”按钮,退出终端软件。按照操作系统的关机流程关闭外置计算机及其外接设备。清空废液桶中废液,并妥善处理。
注意事项
1电源要求
4.3 稀释样本
待测样本吸取到主机后被分为两份,在并行的稀释流程中经过不同的试剂作用,分别形成用于红细胞、血小板测量、白细胞计数、血红蛋白测量以及白细胞分类测量的检测样本。
小型红细胞计数仪的使用说明书
*Correspondenceto:Goto,K.:******************.ac.jp ©2017 The Japanese Society of Veterinary ScienceThis is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives (by-nc-nd)License. (CC-BY-NC-ND 4.0: https:///licenses/by-nc-nd/4.0/)Laboratory Animal ScienceEvaluation of mouse red blood cell and platelet counting with an automated hematology analyzerTeruko FUKUDA 1), Eri ASOU 2), Kimiko NOGI 2) and Kazuo GOTO 1)*1)Department of Clinical Laboratory Medicine, Teikyo University, 2-1-11 Kaga Itabashi, Tokyo 173-8605, Japan 2)Teikyo University Hospital, 2-1-11 Kaga, Itabashi, Tokyo 173-0005, JapanABSTRACT. An evaluation of mouse red blood cell (RBC) and platelet (PLT) counting with anautomated hematology analyzer was performed with three strains of mice, C57BL/6 (B6), BALB/c (BALB) and DBA/2 (D2). There were no significant differences in RBC and PLT counts between manual and automated optical methods in any of the samples, except for D2 mice. For D2, RBC counts obtained using the manual method were significantly lower than those obtained using the automated optical method (P <0.05), and PLT counts obtained using the manual method were higher than those obtained using the automated optical method (P <0.05). An automated hematology analyzer can be used for RBC and PLT counting; however, an appropriate method should be selected when D2 mice samples are used.KEY WORDS: automated hematology analyzer, mouse, platelet, red blood cellHematological analysis is an important test for the detection of disease and for monitoring the health of humans and animals. Automated hematology analyzers have been routinely used as a rapid, accurate and simple diagnostic method, not only for humans [5, 14], but also for animals [8, 15]. The three major procedures performed in red blood cell (RBC) and platelet (PLT) counting are manual phase contrast microscopy, impedance and optical light scatter/fluorescence [3]. Results produced from these three methods are not necessarily identical due to differences in PLT particle size and aggregation, and red and/or white blood cell fragmentation. Evaluations of the automated hematology analyzer using human and animal samples have been reported [1, 12]. However,despite the fact that RBC and PLT in mice are smaller in size and more numerous than in humans, evaluations of the automated hematology analyzer using murine samples have not been reported, to the best of our knowledge.In this study, correlations between results from manual direct cell counting by microscopy and an automated hematology analyzer, including optical and impedance methods, were evaluated using commonly used three mouse strains.C57BL/6NCrl (B6), BALB/cAnNCrlCrlj (BALB) and DBA/2NCrl (D2) inbred mice were obtained from Charles River Japan (Yokohama, Japan). Fifteen mice (five 3-week-old and ten 20-week-old male mice) from each strain were included in the study. Approximately 500 µl blood samples were collected from the axillary arteries and veins of mice under isoflurane anesthesia and placed into sample tubes (Terumo Venoject II, TERUMO Corp., Tokyo, Japan) containing ethylenediaminetetraacetic acid (EDTA-2K). Experiments were approved by the Animal Care and Use Committee of the Teikyo University. The regulations were established in compliance with the law for the humane treatment and management of animals.RBC and PLT were counted using an automated hematology analyzer (Sysmex XE-5000 hematology analyzer, Sysmex, Kobe, Japan) in EDTA-anticoagulated whole blood samples. Measurements included RBC and PLT counts by optical and impedance methods. Samples were thoroughly inverted and then analyzed according to the manufacturer’s instructions.Whole blood samples in EDTA were diluted with isotonic solution (Gower’s solution), and then the diluted blood was introduced into the counting chamber where the cell count was performed microscopically (E200, Nikon, Tokyo, Japan).PLTs were counted in accordance with the brecher-chronkite method [2]. Whole blood samples were diluted with 1%ammonium oxalate solution. The isotonic balance of the diluent was such that all erythrocytes are lysed while the platelets remain intact. The dilution was mixed well and incubated at 25°C for 15 min to permit erythrocyte lysis. Following the incubation period, the dilution was mounted on a hematocytometer (ERMA Inc., Tokyo, Japan). The cells were allowed to settle and were then counted in a specific area of the hemocytometer chamber under a microscope.Statistical analysis was performed using IBM SPSS ® statistics software version 22 (Tokyo, Japan). Significant differences between the manual direct and automated counts were determined using Student’s t -test, and the coefficient of variation (CV) ofReceived: 12 July 2017Accepted: 7 August 2017Published online in J-STAGE: 27 August 2017J. Vet. Med. Sci.79(10): 1707–1711, 2017doi: 10.1292/jvms.17-0387T. FUKUDA ET AL.the measurement results was calculated. P -values <0.05 were considered statistically significant. Correlations between both test results were evaluated using the Pearson’s correlation coefficient test.Mean± standard deviation (SD) RBC and PLT manual and automated counts for the different methods, including optical and impedance methods, in BALB, B6 and D2 mice (n=10, 20-week-old mice each) are shown in Table 1A–C .For the manual counting method, mean± SD RBC counts in BALB mice (1,092.2 ± 95.4 × 104 cells/µl ) were significantly higher than those in C57BL/6 (989.6 ± 97.3 × 104 cells/µl ) and D2 mice (1,003.2 ± 43.1 × 104 cells/µl ) (P <0.05). There was no significant difference in RBC counts between B6 and D2 mice. Mean ± SD PLT counts in BALB mice (121.8 ± 13.3 × 104 cells/µl ) were significantly higher than in B6 (104.4 ± 18.2 × 104 cells/µl ) and D2 mice (107.8 ± 14.3 × 104 cells/µl ) (P <0.05). There was no significant difference in PLT counts between B6 and D2 mice.For RBC counts in BALB mice, the automated count using the impedance method generated significantly lower values (998.2 ± 25.8 × 104 cells/µl ) than the manual method (1,092.2 ± 95.4 × 104 cells/µl ) (P <0.05). For RBC counts in D2 mice, automated counts using the optical method (1,094.7 ± 44.1 × 104 cells/µl ) were significantly higher than those using the manual method (1,003.2 ± 43.1 × 104 cells/µl ) (P <0.05). There were no significant differences in counts between manual and automated methods for the BALB and B6 strains of mice (P >0.05).For PLT in BALB B6 and D2 mice, automated counts using the impedance method (BALB: 59.9 ± 6.1 × 104 cells/µl , B6: 55.9 ± 8.9 × 104 cells/µl and D2: 47.5 ± 9.7 × 104 cells/µl ) were significantly lower than those using the manual method (BALB: 121.8 ± 13.3 × 104 cells/µl , B6: 104.4 ± 18.2 × 104 cells/µl and D2: 107.8 ± 14.3 × 104 cells/µl ) (P <0.05). Furthermore, PLT counts in D2 mice using the automated optical method were also lower than those using the manual method (P =0.025). The CV with the manual method was higher than that with the automated methods as shown in Table 1. Correlations between manual and automated methods using 10-, 20-week-old and five 3-week-old mice of each strain are shown in Figs. 1 and 2.For RBC counts, the regression equation between manual (Y) and impedance (X) in BALB mice was Y=1.52X+426 (r=0.858, P <0.05), while the regression equation between manual (Y) and optical (X) in D2 mice was Y=0.72X+203 (r=0.841, P <0.05).PLT counts between manual and automated impedance methods in BALB and B6 mice, between manual and automated optical methods in D2 mice, and between manual and automated impedance methods in D2 mice are shown in Figs. 3 to 6. Regression equations were Y=2.66X+39.76 (r=0.926, P <0.05), Y=1.69X+7.45 (r=0.849, P <0.05), Y=1.12X+2.09 (r=0.95, P <0.05) andY=2.29X+4.81 (r=0.854, P <0.05), respectively. Abnormal RBC morphology or PLT aggregation was not observed microscopically in B6 and BALB mice. In contrast, PLT clotting was observed in all blood samples from D2 mice including at 3 weeks and 20 weeks of age, as shown in Fig. 7.In this study, an evaluation of mouse red blood cell (RBC) and platelet (PLT) counting with an automated hematology analyzer, including impedance and optical methods, was performed by comparing data with that obtained by manual direct cell counting under a microscope. Fully automated analyzers have been widely used to clarify hematological parameters in both humans andanimals. The automated hematology analyzer used in this study, the Sysmex XE-5000, has two modes: the optical method andTable 1.Mean (± standard deviation) manual and automated counts of RBC and PLT for the different parameters, optical and impedance(A) Samples were from BALB/c strain of mouse aged 20 weeks.AutomatedOptical 1,094.7 ± 44.1 (4.0)0.00094.5 ± 9.8 (10.3)0.025Impedance1,011.9 ± 31.1 (3.1)0.61147.8 ± 6.5 (13.6)0.000a) Count was compared with manual method and automated method. b) A coefficient of variation of the mesurment results.EVALUATION OF RBC AND PLT COUNTING BY AUTOMATED HEMATOLOGY ANALYZERimpedance method. Manual phase contrast microscopy count is still currently recognized as the gold standard or reference method [3], because automated procedures are influenced by PLT clotting and cell size [3, 12]. Impedance PLT counting can provide an accurate PLT count down to 20 × 103 cells/µl ; however, a major disadvantage of this method is the difficulty in distinguishing large PLT from extremely microcytic or fragmented RBC. In contrast, optical PLT counting can distinguish between small and large PLT, RBC fragments and debris [3, 12]. In particular, in the case of human blood samples, results from optical and impedance methods have revealed differences in the presence of small-sized RBC, crushed erythrocytes, large PLT, fragments of RBC and/or white blood cells, and aggregation of PLT and/or RBC [3]. It has been previously reported that the type of anticoagulant affects PLTFig. 1. Correlation between manual and automated impedance methods for RBC assessment in BALB/c mice blood samples. Cor -relation coefficient: r=0.858, P <0.05. Regression equation betweenmanual (Y) and optical (X) methods: Y=1.52X+426.Fig. 2. Correlation between manual and automated optical methods for RBC assessment in DBA/2 mice blood samples. Correlation coefficient: r=0.841, P <0.05. Regression equation between manual(Y) and optical (X) methods: Y=0.72X+203.Fig. 3. Correlation between manual and automated impedance methods for PLT assessment in BALB/c mice blood samples. Cor -relation coefficient: r=0.926, P <0.05. Regression equation betweenmanual (Y) and optical (X) methods: Y=2.66X+39.76.Fig. 4. Correlation between manual and automated impedance methods for PLT assessment in C57BL/6 mice blood samples. Cor -relation coefficient: r=0.849, P <0.05. Regression equation between manual (Y) and optical (X) methods: Y=1.69X+7.45.T. FUKUDA ET AL.aggregation. Blood samples had significantly lower PLT counts and more PLT aggregation in heparinized tubes than in EDTA tubes [13]; EDTA tubes were used in the present study. If blood specimens show an anomalous particle-size distribution curve in the area where PLT counts are low (exceptionally low PLT count samples), the counting method is automatically switched over to optical. In the present study, even when the method was changed to optical, the PLT count of DBA2 mice was lower compared with the manual method, suggesting that mouse strain should be taken into account when PLT is measured using an automated hematology analyzer.Mouse blood samples, including cell size and volume, are relatively different compared with human samples. The average size of RBC in humans and mice is 7.3 and 5.8 µm in diameter [6], respectively, and the average RBC count is 3.80–5.50 × 106 cells/µl and 10.2 × 106 cells/µl [7, 9], respectively. The average size of PLT in humans and mice is1–2 µm and 0.5 µm [11], respectively, and the average countis 150–400 × 103 cells/µl and 1,000–1,500 × 103 cells/µl , respectively [11]. Therefore, RBC and PLT sizes are larger in humans than in mice, while counts are lower in humans than in mice.In this study, to evaluate the automated analyzer using samples from three strains of mice (BALB, B6 and D2), the results of optical and impedance methods were compared with those of the standard manual microscopic counting method. The results, including RBC and PLT counts, suggested that the automated data from the impedance method were lower than those of the manual microscopic method except with samples from B6 and D2 mice. For B6 and D2 mice samples, significant differencesbetween automated impedance and manual microscopic methods were not observed. There were no significant differences between the automated data from the optical and manual methods except for samples from D2 mice. The RBC counts of the automated optical method were higher than those of manual method in D2 samples, while the PLT counts of the automated optical method were lower than those of the manual method. PLT from D2 mice showed a clumping tendency by microscopic analysis (data not shown) that may have caused a lower count compared with the manual method; however, RBC condition, including form, did not differ between mouse strains. Mean RBC count in D2 mice using the automated optical method was 1,094.7 ± 44.1 × 104 cells/µl , which was within the normal range, suggesting the necessity for the definition of the normal range using automated methods with D2 mice. D2 mice showed PLT clotting, the size of the clotting ranged between 50 and 100 µm (data not shown), suggesting thatFig. 5. Correlation between manual and automated optical method for PLT assessment in DBA/2 mouse blood samples. Correlation coefficient: r=0.95, P <0.05. Regression equation between manual(Y) and optical (X) methods: Y=1.12X+2.09.Fig. 6. Correlation between manual and automated impedance methods for PLT assessment in DBA/2 mouse blood samples. Cor -relation coefficient: r=0.854, P <0.05. Regression equation betweenmanual (Y) and optical (X) methods: Y=2.29X+4.81.Fig. 7. Platelet clotting in blood samples from DBA/2 mice aged 20 weeks (bar=100 µm).EVALUATION OF RBC AND PLT COUNTING BY AUTOMATED HEMATOLOGY ANALYZERclotting PLT resulted in incorrect counts with the impedance method. The analytical imprecision, CV, for PLT counting was higher than that for RBC counting, which may have been caused by PLT clotting. It was reported that PLT aggregation response in the whole blood was different depending on the animal species, for example, the aggregation response against adenosine diphosphate; ADP was lower in baboons comparing with in human [10]. The anticoagulants, such as citrate, affect spontaneous aggregation of PLT in Wistar rat but not in Beagle dog [3]. These reports suggested that animal species should be taken into account to count PLT using an automated hematology analyzer.Despite the fact that the data from manual and automated methods did not necessarily match, a correlation between RBC and PLT results from both methods was recorded. This suggests that automated data can be converted to manual data using a regression equation.It has been reported that blood counts including RBC and PLT vary depending on several factors, such as anticoagulants, technique for obtaining a blood sample and sampling site [7, 16]. All of the samples used in the present study were collected in the same manner, using EDTA as a coagulant; therefore, the differences between strains should be due to PLT function, such as ease of clotting.In conclusion, an automated hematology analyzer, involving optical and impedance methods, can be used as a rapid, accurate and simple diagnostic method. Sample conditions can influence the accurate assessment of RBC and PLT counts. Our data showed that PLT counts using samples from the D2 mouse strain were significantly lower compared with the manual method due to PLT clotting. This suggests that the mouse strain should be taken into consideration when performing hematological assessments.REFERENCES1. Bourgès-Abella, N. H., Geffré, A., Deshuillers, P. L., Braun, J. P. and Trumel, C. 2014. Changes in hematology measurements in healthy anddiseased dog blood stored at room temperature for 24 and 48 hours using the XT-2000iV analyzer. Vet. Clin. Pathol.43: 24–35. [Medline][CrossRef]2. Brecher, G., Schneiderman, M. and Cronkite, E. P. 1953. The reproducibility and constancy of the platelet count. Am. J. Clin. Pathol.23: 15–26.[Medline][CrossRef]3. Briggs, C., Harrison, P. and Machin, S. J. 2007. Continuing developments with the automated platelet count. Int. J. Lab. Hematol.29: 77–91.[Medline][CrossRef]4. Defontis, M., Côté, S., Stirn, M. and Ledieu, D. 2013. Optimization of Multiplate® whole blood platelet aggregometry in the Beagle dog and Wistarrat for ex vivo drug toxicity testing. Exp. Toxicol. Pathol.65: 637–644. [Medline][CrossRef]5. Kotepui, M., PhunPhuech, B., Phiwklam, N. and Uthaisar, K. 2017. Differentiating between dengue fever and malaria using hematologicalparameters in endemic areas of Thailand. Infect. Dis. Poverty6: 27–35. [Medline][CrossRef]6. Namdee, K., Carrasco-Teja, M., Fish, M. B., Charoenphol, P. and Eniola-Adefeso, O. 2015. Effect of variation in hemorheology between humanand animal blood on the binding efficacy of vascular-targeted carriers. Sci. Rep.5: 11631–11644. [Medline][CrossRef]7. Nemzek, J. A., Bolgos, G. L., Williams, B. A. and Remick, D. G. 2001. Differences in normal values for murine white blood cell counts and otherhematological parameters based on sampling site. Inflamm. Res.50: 523–527. [Medline][CrossRef]8. Novacco, M., Martini, V., Grande, C. and Comazzi, S. 2015. Analytic errors in Sysmex-generated hematology results in blood from a dog withchronic lymphocytic leukemia. Vet. Clin. Pathol.44: 337–341. [Medline][CrossRef]9. Osei-Bimpong, A., McLean, R., Bhonda, E. and Lewis, S. M. 2012. The use of the white cell count and haemoglobin in combination as an effectivescreen to predict the normality of the full blood count. Int. J. Lab. Hematol.34: 91–97. [Medline][CrossRef]10. Ponschab, M., van Griensven, M., Heitmeier, S., Laux, V., Schlimp, C. J., Calatzis, A., Bahrami, S., Redl, H. and Schöchl, H. 2016. Platelet functionin baboons and humans - A comparative study of whole blood using impedance platelet aggregometry (Multiplate®). Thromb. Res.147: 115–121.[Medline][CrossRef]11. Schmitt, A., Guichard, J., Massé, J. M., Debili, N. and Cramer, E. M. 2001. Of mice and men: comparison of the ultrastructure of megakaryocytesand platelets. Exp. Hematol.29: 1295–1302. [Medline][CrossRef]12. Schoorl, M., Schoorl, M., Oomes, J. and van Pelt, J. 2013. New fluorescent method (PLT-F) on Sysmex XN2000 hematology analyzer achievedhigher accuracy in low platelet counting. Am. J. Clin. Pathol.140: 495–499. [Medline][CrossRef]13. Shojania, A. M. and Turnbull, G. 1987. Effect of heparin on platelet count and platelet aggregation. Am. J. Hematol.26: 255–262. [Medline][CrossRef]14. Takubo, T., Tatsumi, N., Satoh, N., Matsuno, K., Fujimoto, K., Soga, M., Yamagami, Y., Akiba, S., Sudoh, T. and Miyazaki, M. 2002. Evaluation ofhematological values obtained with reference automated hematology analyzers of six manufacturers. Southeast Asian J. Trop. Med. Public Health33 Suppl 2: 62–67. [Medline]15. Tvedten, H. and Johansson, P. 2010. Feline platelet counting with prostaglandin E1 on the Sysmex XT-2000iV. Vet. Clin. Pathol.39: 190–192.[Medline][CrossRef]16. Wiedmeyer, C. E., Ruben, D. and Franklin, C. 2007. Complete blood count, clinical chemistry, and serology profile by using a single tube of wholeblood from mice. J. Am. Assoc. Lab. Anim. Sci.46: 59–64. [Medline]。
GMP文件 Countstar细胞计数仪操作规程
细胞计数仪操作规程1、Countstar细胞计数仪简介1.1 基于经典台盼蓝染色法原理开发。
1.2 采自动优化成像系统,无需人工调焦,摒除人工调焦的误差。
1.3 精确标定死活细胞和校正结团细胞,能快速进行细胞计数、细胞形态和细胞统计图分析。
1.4 样本需求量低,快速:20µl/样本,<20s/样本。
1.5 自动光学对焦、成像并进行数据分析,每个样本可进行多个视野检测,系统自动统计出平均结果。
1.6 测量浓度范围:1×104~3×107/ml。
1.7 直径范围:5-180µm大小的各种原代细胞及传代细胞、干细胞、肿瘤细胞、血细胞、昆虫细胞、藻类及部分浮游动物。
2、操作过程简介2.1 打开配套电脑,进入Windows操作系统;2.2 双击桌面上的Countstar图标,进入Countstar控制中心;2.3 打开计数仪:按下计数仪上的ON/OFF按钮,按钮亮表示仪器已打开;2.4 设定所测的细胞参数;2.5 取样。
当样品浓度过大时,用盐水或PBS将样品稀释至细胞数不高于5×106/ml;2.6 染色。
使用0.2%台盼蓝染色(一般为10μl、1:1):台盼蓝对血清蛋白亲和力更强,若大量血清蛋白导致图像背景过暗,可以将样品离心,用无蛋白培养基或生理盐水悬浮细胞进行计数;将细胞悬液充分混匀;2.7 加样。
移液枪取细胞悬液加入样品板,每槽20μl;2.8 插入计数板;2.9 自动计数结果;2.10 根据测试结果可适当调整细胞参数以达到最佳测试结果;微调旋钮同一样本可进行多个视野检测,系统自动统计出平均结果。
3、检测结果包括2.1 细胞图片2.2 总细胞浓度2.3 活细胞浓度2.4 死细胞浓度2.5 细胞存活率2.6 细胞平均直径2.7 细胞增长曲线2.8 细胞大小柱状图2.9 细胞平均圆度2.10 细胞结团率2.11 细胞结团柱状图(具体操作参见说明书)4、细胞总浓度的检测4.1无台盼蓝染色时,Countstar细胞计数仪可以检测细胞浓度、细胞平均直径、细胞平均圆度和细胞聚团率(绿色圈所示为有效计数细胞)。
迈瑞BC-5800血液细胞分析仪标准操作程序
BC-5800血液细胞分析仪标准操作程序1 检验项目及检验原理适用于血液白细胞计数及分类,红细胞计数,血红蛋白,血小板计数,红细胞压积,红细胞体积分布宽度,平均红细胞血红蛋白含量,平均红细胞血红蛋白浓度,平均红细胞体积,血小板体积分布宽度、平均血小板体积和血小板压积等检验。
本分析仪采用电阻抗法检测红细胞和血小板的数目以及体积分布;采用比色法测量血红蛋白浓度;采用半导体激光流式细胞技术获得白细胞总数和五类白细胞的分类统计计数。
在此基础之上,分析仪计算出其余参数的结果。
2 仪器设备试剂BC-5800血液细胞分析仪专用试剂:M-58D稀释液;M-58LEO(I) 溶血剂、M-58LEO(II) 溶血剂、;M-58LH 溶血剂、M-58LBA溶血剂、M-58 清洁液、探头清洁液。
所有试剂应参照试剂的使用说明进行保存。
变质、超过效期的所有试剂不能使用。
3 仪器设备标本原始样品采集、制备、处理、检验和存放见检验科相关规范。
4 仪器设备性能参数BC-5800血液细胞分析仪一般资料见附件1;BC-5800血液细胞分析仪性能指标见附件2。
5 仪器设备环境要求,使用安全措施5.1 仪器设备环境要求5.1.1 空间安装要求仪器应安装在稳固工作台上。
在仪器两侧各保留至少1米的空间,以方便维护和保养。
仪器和气源后部分别至少要有0.50米的空间,以防止阻碍热气的排放并保证主机后的液路管道不受挤压。
将BC-5800血液细胞分析仪安放在通风良好、灰尘少的地方。
避免在过热或过冷以及日光直射的环境中使用BC-5800血液细胞分析仪。
保证操作台面以及主机下方有足够的空间放置稀释液、废液桶。
5.1.2 运行条件环境温度要求:10℃~40℃。
环境相对湿度要求:10%~90%。
电源电压要求:100-240 V~,50/60Hz。
仪器设备周围应尽可能无尘、无机械振动、无污染、无大噪音源和电源干扰;远离强电磁场干扰源;不要靠近电刷型电机、闪烁荧光灯和经常开关的电接触性设备;建议在运行设备之前对实验室的电磁环境进行评估;避免强光直接照射;避免置于热源及风源前;选择一个通风良好的位置;具有良好的接地环境;不要将主机放置在斜面上;室内使用。
优利特-2900全自动血细胞分析仪
URIT-2900全自动血细胞分析仪使用说明书产品性能通过对血液进行测量分析、给出白细胞总数、淋巴细胞比率、中值细胞比率、中性粒细胞比率、淋巴细胞总数、中值细胞总数、红细胞总数、血红蛋白、红细胞压积、红细胞平均体积、平均血红蛋白含量、平均血红蛋白浓度、红细胞分布宽度标准差、红细胞分布宽度重复性、血小板总数、血小板平均体积、血小板分布宽度、血小板压积等参数和WBC、RBC、PLT三个直方图。
产品使用范围使用于对血液中有形成分进行定量分析。
测量参数仪器对所测试的样品数据能够自动分析、排列,分别给出白细胞三分类、红细胞、血小板的直方图。
工作状态指示灯:显示仪器的电源和工作状态仪器通电后,指示灯亮绿色:仪器处于等待状态,可以进行计数分析橙色:仪器处于分析状态,此时使用者应等待。
工作模式指示灯:灯亮为全血模式,灯灭为预稀释模式。
采样针:采集测量标本。
RUN按键:计数分析启动按键,在血细胞分析窗口和质控运行窗口可进行计数分析,其他窗口按键无效。
记录仪:可以将检测结果通过内置热敏记录仪打印出来。
键盘:0~9数字键,对仪器进行数字输入操作;.键:输入数据时可以输入小数点;序列号许可时,可以输入字母;静音键:消除仪器的报警音;记录键:启动内置记录仪,打印测试结果;菜单键:功能菜单键,菜单功能调用或退出当前选择,返回血细胞分析主窗口;稀释液键:排液键,从采样针中排除稀释液,主要用于末梢血的预稀释;删除键:删除输入的数字文字信息;打印键:启动外接打印机,打印测试结果;确认键:对选择的内容进行确认;模式键:工作方式转换键,可对全血和预稀释模式进行转换;←→↑↓键:方向键,可进行光标移动,选择需要的菜单或项目。
试剂:所有试剂必须在室温下保存才能保持理想的化学性能,在保存过程中应避免过冷、过热及阳光直接照射,温度低于0℃易造成试剂结冰,引起试剂的化学性能、导电性能发生改变。
在使用过程中,为了最大限度的减少试剂蒸发、降低外界对试剂的污染,盛放试剂的容器应用容器盖盖紧,管路通过容器盖插入试剂中。
五分类血细胞分析仪的使用流程
五分类血细胞分析仪的使用流程下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。
文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor. I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!五分类血细胞分析仪是一种自动化、高精度的血液检测设备,能够对血液中的红细胞、白细胞、血小板等成分进行分类和计数。
流式细胞仪操作规程-SOP
流式细胞仪操作规程目录
1:淋巴细胞亚群测定及绝对计数
2:活化淋巴细胞亚群、记忆T及纯真T的检测
3:HLA-B27测定
4:CD55/CD59测定
5:干细胞检测和绝对计数
6:白血病免疫分型测定
7:淋巴细胞T细胞亚群细胞内因子IFN-γ/IL-4测定8:细胞周期分析
9:活化血小板检测
10:血小板抗体测定
11:红细胞抗体测定
12:粒细胞抗体测定
淋巴细胞亚群测定
(流式细胞仪)
医院检验科
操作规程文件号:
200 年月日起实施
第1版
(共3页)
本规程每2年复审一次
复审日期:年月日
复审人:
规程编写者:
审批者:
批准日期:年月日
文件分发部门和/或个人
院档案室保管者:
检验科主任:
检验科实验室:
淋巴细胞亚群测定
点击
点击
3色
点击
(命名,点击save)画图
此图为CD45圈门
填写Flow-Count的浓度
活化淋巴细胞亚群、记忆T及纯真T的测定
HLA-B27测定
点击
点击
X-Mean=17.1 negative(-)
X-Mean=1.2 X-Mean=5.8
CD55/CD59测定
2.RBC: abnormal
干细胞检测和绝对计数
白血病免疫分型测定
T细胞亚群细胞内因子IFN-γ/IL-4检测
细胞周期分析
2.画图
血小板膜表面抗体测定
红细胞膜蛋白结构测定(红细胞抗体)
粒细胞抗体测定。
血细胞分析仪操作规程
BC-3000血液分析仪基本操作规范1、开机前的准备检查稀释液,冲洗液,溶血剂是否足量,有无浑浊变质,试剂管道有无扭结,倒空废液瓶.检查记录仪,打印纸是否充足,安装是否到位。
2、开机1)按下机器后部的开关键,电源指示灯亮。
2)主机进行内部初始化,屏幕显示Initializing……该程序持续约30秒,3)仪器自检系统硬件工作是否正常,试剂是否足量。
完毕后进入计数界面。
3、本底测试按[开始]键,机器计数本底,本底结果要求:WBC≤0。
3 RBC≤0。
03 HGB≤1 PLT≤10如果本底达不到该要求,按[清洗]键,执行液路清洗。
4、测量1)按[菜单]选择“模式"项,将模式设置为“全血”。
2)用EDTA 二钾作抗凝剂取抗凝血标本,(EDTA二钾用量为1。
5—2。
2mg/ml)混匀抗凝血,充分摇匀血样,将血样放在采样针下,让采样插入抗凝血,按[开始]键,计数开始,当采样针抬起后移开血样,约一分钟后仪器显示计数结果.5、关机1)每天测试完毕一定要有E—Z液执行关机程序。
2)约一分钟后,屏幕提示可以关闭电源后再关掉主机电源。
3)检查废液桶,妥善处理废液.6、BC-3000血液细胞分析仪的保养方法6.1日常维护为保证分析仪的稳定性和分析结果的准确性,请在每天工作完成后执行关机程序,仪器会自动进行清洗维护保养。
6。
2更换稀释液当出现“无稀释液”报警,提示用户更换稀释液,用户更换完稀释液后,执行“菜单” →“维护”中执行“更换稀释液”使相关管路中充满稀释液。
1)用[←][↑][→][↓] 键,将光标移到“更换稀释液”选项。
2)按[确认]执行更换稀释液操作。
6.3更换冲洗液当出现“无冲洗液”报警,提示用户更换冲洗液,用户更换完冲洗液后,执行“菜单” →“维护”中执行“更换冲洗液”使相关管路中充满冲洗液.1)用[←][↑][→][↓] 键,将光标移到“更换冲洗液”选项。
2)按[确认]执行更换冲洗液操作。
6.4更换溶血剂当出现“无溶血剂”报警,提示用户更换溶血剂,用户更换完溶血剂后,执行“菜单" →“维护”中执行“更换溶血素"使相关管路中充满溶血素.1)用[←][↑][→][↓]键,将光标移到“更换溶血剂”选项。
细胞计数仪说明书
Countess™自动细胞计数仪
货号:C10227 修订日期:2009 年 9 月 15 日 MP10227
用户手册
ii
目录
产品内容.............................................................................................................................................................iv 安全信息................................................................................................................................................v 产品规格...............................................................................................................................................vii Countess™ 自动细胞计数仪的描述.....................................................................................................viii
细胞计数板使用方法
细胞计数板使用方法
细胞计数板是实验室常用的一种工具,用于在显微镜下对细胞数量进行准确计数。
正确的使用方法能够确保实验结果的准确性,下面将介绍细胞计数板的使用方法。
首先,准备工作。
在开始使用细胞计数板之前,需要确保仪器是清洁的。
用96%乙醇将细胞计数板和盖玻片擦拭干净,然后用无菌纱布擦干。
这样可以避免细胞计数板表面的污染对实验结果的影响。
其次,取样。
将需要计数的细胞悬液均匀搅拌后,用吸管吸取适量的悬液,然后将悬液滴在细胞计数板的计数室中。
注意不要使悬液溢出计数室,以免影响计数结果。
接着,放置盖玻片。
将盖玻片轻轻放在计数室上,让悬液充分填满计数室,同时避免产生气泡。
然后,观察计数。
将细胞计数板放在显微镜下,调整合适的放大倍数,通过目镜和物镜观察计数室中的细胞数量。
细胞通常呈现为圆形或椭圆形,可以根据自己的实验需要选择计数室中的一个小方格或整个计数室进行计数。
最后,计数。
使用显微镜中的目镜标尺进行计数,根据每个小方格或整个计数室中的细胞数量进行计算,得出细胞密度。
通常情况下,细胞计数板的计数室是一个正方形,每个小方格又被划分成16个小格,因此可以通过计算每个小格中的细胞数量来得出总的细胞密度。
在使用完细胞计数板后,要及时清洗和消毒,以确保下次使用时的准确性。
细胞计数板的使用方法并不复杂,但需要一定的耐心和细致。
正确的使用方法能够保证实验结果的准确性,为科研工作提供可靠的数据支持。
希望本文介绍的细胞计数板使用方法能够对您有所帮助。
吉满生物科技 Cynomolgus_cMET CHO-K1细胞系产品说明书
产品手册Cynomolgus_cMET CHO-K1 Cell LineCynomolgus_cMET CHO-K1细胞系For research use only!本品仅供科研使用,严禁用于治疗!版本号:V2.8目录一、产品基本信息及组分 (3)二、包装、运输及储存 (3)三、材料准备 (3)1.细胞培养、冻存、复苏试剂准备 (3)2.试剂耗材准备 (3)四、细胞培养、复苏、冻存 (4)1.Cynomolgus_cMET CHO-K1 Cell Line细胞复苏 (4)2.Cynomolgus_cMET CHO-K1 Cell Line细胞传代 (4)3.Cynomolgus_cMET CHO-K1 Cell Line细胞冻存 (5)五、验证结果 (6)1.流式检测蛋白表达 (6)使用许可协议: (7)附录1 Cynomolgus_cMET氨基酸序列 (8)一、产品基本信息及组分基本信息产品编号产品名称规格GM-C21328Cynomolgus_cMET CHO-K1 Cell Line5E6 Cells/mL组成成分产品编号产品名称规格数量储存Fetal Bovine Serum500 mL Thermo/10099141F12K 500 mL BOSTER/PYG0036Anti-H_HGFR(Met) hIgG4 Antibody / Genomeditech/GM-28859AB 重要仪器细胞计数仪ThermoFisher Scientific/Countess 3流式细胞仪常州必达科生物科技有限公司/BeamCyte-1026四、细胞培养、复苏、冻存1.Cynomolgus_cMET CHO-K1 Cell Line细胞复苏a)细胞冻存密度为5 × 106 cells/mL,冻存管分装1 mL。
b)在37℃水浴锅预热培养基,加入预热完全培养基5 mL到15 mL离心管。
c)从液氮中取出冻存的细胞并迅速放入37℃恒温水浴锅,将细胞液面浸至水面以下不断摇动至融化。
医用耗材说明书:T淋巴细胞计数仪(非流式)
T淋巴细胞计数仪(非流式)【导读】T淋巴细胞计数仪是一种用于测量人体外周血液中T淋巴细胞数量的设备。
该产品是临床实验室中常用的一种检测仪器,用于辅助医生进行疾病诊断和治疗方案的制定。
T淋巴细胞计数仪(非流式)分类根据使用原理和技术方法的不同,T淋巴细胞计数仪可以分为多种类型。
其中常见的分类包括光学计数法、荧光流式细胞技术和电子计数法等。
1.光学计数法:这种类型的T淋巴细胞计数仪利用的是光学原理,通过测量细胞在光束中的光散射和光吸收等特性,从而实现对T淋巴细胞数量的计数和分析。
2.荧光流式细胞技术:这种类型的T淋巴细胞计数仪采用流式细胞仪的原理,通过标记淋巴细胞表面的荧光抗体,结合激光器和探测器的共同作用,实现对不同亚群T淋巴细胞的鉴定和计数。
3.电子计数法:这种类型的T淋巴细胞计数仪利用的是电子计数技术,通过对细胞进行电子计数和测量,实现对T淋巴细胞数量的准确计数。
T淋巴细胞计数仪(非流式)简介T淋巴细胞计数仪(非流式)非侵入性的体外诊断设备,用于快速、准确地计算血液中T 淋巴细胞的数量,可作为疾病诊断、治疗和监测的辅助工具。
该设备采用激光散射技术自动识别并计数血液中的T淋巴细胞,具有简单、快速、精准、无辐射等优点,广泛应用于医疗机构和科研实验室中。
T淋巴细胞计数仪(非流式)操作简便,无需特殊培训,且具有自动校准和质控功能,确保测试结果的准确性和可靠性。
T淋巴细胞计数仪(非流式)用途T淋巴细胞计数仪(非流式)主要用于计算患者血液中的T淋巴细胞数量。
这种仪器通过特殊的试剂和光学技术,将血液样本中的T淋巴细胞与其他成分区分出来,并在计数仪中进行计数,以确定其数量。
这种计数仪在研究免疫系统功能、诊断和监测某些疾病和疾病治疗方案的设计等方面具有重要作用。
例如,在艾滋病患者的治疗和监测过程中,T淋巴细胞计数仪可以用来检测CD4+细胞数量,以帮助医生确定治疗的效果和疾病的进展情况。
T淋巴细胞计数仪(非流式)原理T淋巴细胞计数仪基于特定的检测原理工作。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Countess™ 自动细胞计数仪配有一台相机 (2.3X 物镜及 310 万像素)。
Countess™ 细胞计数板规格 材料: 尺寸: 计数板深度: 计数板容积: Countess™ USB 驱动器:
聚甲基丙烯酸甲脂 (PMMA) 75 mm (w) × 25 mm (d) × 1.8 mm (h) 100 μm 10 μL 1 GB
vii
Countess™ 自动细胞计数仪的描述
Countess™ 自动细胞计数仪的正
视图
Countess™ 自动细胞计数仪是一款台式自动细胞计数仪,它采用台盼蓝染色进行细胞 计数或存活率检测。 正视图显示了 Countess™ 自动细胞计数仪的各种部件,如下图所示。
电源按钮
电源按钮用来开启和关闭仪器。红色状态灯表示仪器已关闭;绿色状态灯表示仪器已开 启。
简介...............................................................................................................................................1
产品概述.................................................................................................................................................1
附录...............................................................................................................................................25
附件........................................................................................................................................................25 技术支持.................................................................................................................................................26 购买者告示.......................................................................................................27
触摸显示屏位于仪器前方,包含了执行所有功能所需的按钮,并显示细胞计数的数据。
细胞计数板接口
细胞计数板接口用来将 Countess™ 细胞计数板 (装有经台盼蓝染色的样本) 插入计数 仪,以供分析。
USB 接口
您可以通过 USB 接口将细胞计数数据和图像传输并保存至您的计算机中,以供保存和 打印。本仪器提供的 USB 驱动器或其它任何标准 USB 驱动器均可插入 USB 接口进 行数据传输。有关将数据传输至 PC 机的信息,请参见第 16 页。
CE 标志代表本产品符合该标识所需的所有欧共体相关规定。必须按照本手册所述的条 件操作仪器。 如未按 Invitrogen 指定的方式使用本仪器,则可能损害仪器提供的防护。
本产品符合 UL61010-1/CSA C22.2 No. 61010-1“测量、控制和实验室用电气设备的安 全要求第 1 部分:通用要求。”带有 TUV 标志的仪器已经 TUV 产品服务有限公司认 证,符合美国和加拿大相关安全标准的要求。
安装仪器,请参见第 3 页。
收到仪器后,请立即将台盼蓝染料置于室温贮存。
iv
安全信息
安全预防措施
请查看并遵循下述安全说明: z 请勿将仪器安装于高湿环境下 (例如温室或孵箱),以免发生电击危险。如果水或其
它物质进入仪器、接线或电源插座中,应立即切断电源线并与服务人员联系。有关 操作环境的信息,请参考产品规格 (第 vii 页)。 z 请勿用湿手触摸主插头或电源线。 z 请始终确保电源输入电压与您所在地提供的电压相匹配。 z 本仪器为空气冷却型,因此在操作过程中其表面可能发热。安装仪器时,在其周围 应留出至少 10 cm (4 英寸) 的空隙,且不要在仪器和墙壁之间放置任何物体。 z 请勿将仪器定装在斜面或易发生震动的地方,以免导致仪器出现故障或造成损坏。 z 请勿将任何物体插入仪器的通气孔内,以免导致电击、人身伤害及设备损坏。 z 将电源线牢固地插在壁装电源插座和交流适配器上。 z 为避免潜在的电击危险,请确保电源线适当地接地。 z 确保设备安放位置合适,以方便切断仪器电源。 z 在拔掉电源线并/或移动仪器前,请先关闭仪器。 z 如果仪器损坏或掉落,请切断电源线并与服务人员联系。请勿擅自拆卸本仪器。 z 仅可使用授权附件 (插头、电源线和 USB 驱动器)。
接下页
v
安全信息 (续)
安全预防措施 (续)
z 请勿使用金属物体装配或拆卸电池。 z 请勿加热电池或使电池受热。有关操作环境的信息,请参见产品规格 (第 vii 页)。 z 如果仪器发出烟雾,请将电源线从壁装电源插座中拔出,并与服务人员联系。
标志
Countess™ 自动细胞计数仪中使用的标志如下所示。
vi
产品规格
Countess™ 自动细胞计数仪规格
环境条件 负载功率 频率 电输入 安装位置: 工作温度: 最大相对湿度: 海拔高度: 暂时类别: 污染等级: 防护等级:
100–240 VAC,1.5 A 50/60 Hz 12 VDC,1.0 A 仅限室内使用 10–35°C 20–80% ≤2,000 m 安装类别 II 2 IPX0
Countess™自动细胞计数仪
货号:C10227 修订日期:2009 年 9 月 15 日 MP10227
用户手册
ii
目录
产品内容.............................................................................................................................................................iv 安全信息................................................................................................................................................v 产品规格...............................................................................................................................................vii Countess™ 自动细胞计数仪的描述.....................................................................................................viii
iii
产品内容
Countess™ 自动细胞计数仪
Countess™ 自动细胞计数仪的详细内容如下: 成分
规格
Countess™ 自动细胞计数仪
1
4 接头电源线 (适用于美国/加拿大/中国台湾/日本、欧洲或英国)
1
Countess™ 细胞计数板
50 块/盒
台盼蓝染料 (0.4%)
2 × 1 mL
Countess™ USB 驱动器
方法...............................................................................................................................................3
启动........................................................................................................................................................3 一般准则.................................................................................................................................................9 使用 Countess™ 自动细胞计数仪.......................................................................................................10 清洁与维护............................................................................................................................................19 更新和校准 Countess™ 自动细胞计数仪.............................................................................................20 疑难解析................................................................................................................................................22 Countess™ 自动细胞计数仪错误代码...................................................................................................24