蒙特卡罗方法及应用实验讲义2016
第六讲 蒙特卡洛方法ppt课件
蒙特卡罗方法的特点
优点 能够比较逼真地描述具有随机 性质的事物的特点及物理实验 过程。 受几何条件限制小。 收敛速度与问题的维数无关。 具有同时计算多个方案与多个 未知量的能力。 误差容易确定。 程序结构简单,易于实现。 缺点 收敛速度慢。 误差具有概率性。 在粒子输运问题中, 计算结果与系统大小 有关。
2 2 t / 2 P X E ( X ) e dt 1 N 0 N 2
f(X)是X的分布密度函数。则
0 ( x E ( X )) f ( x ) dx
2 2
平均值
当N充分大时,有如下的近似式
X N
MC方法随机理论的基础
MC方法的随机理论基础
g(u)均匀分布
N 1 x 2 t/ 2 P X E ( X ) x e dt N lim x N 2
MC方法随机理论的基础
• 大数法则
MC方法随机理论的基础
中心极限定理
该定理指出,如果随机变量序列 X1 ,X2,…, XN独立 同分布,且具有有限非零的方差σ2 ,即
MC方法概述
• 为了得到具有一定精确度的近似解,所需随机试 验的次数是很多的,通过人工方法作大量的试验 相当困难,甚至是不可能的。因此,蒙特卡罗方 法的基本思想虽然早已被人们提出,却很少被使 用。本世纪四十年代以来,由于电子计算机的出 现,使得人们可以通过电子计算机来模拟随机试 验过程,把巨大数目的随机试验交由计算机完成, 使得蒙特卡罗方法得以广泛地应用,在现代化的 科学技术中发挥应有的作用。
• 目前,已经广泛的应用于社会科学,材料, 物理,系统工程,科学管理,生物遗传等 领域。可以说,有随机工程事件的领域, 就可以应用Monte Carlo模拟。
蒙特卡罗方法
)
其中 c0 2.515517, c1 0.802853,c2 0.010328;
d1 1.432788; d2 0.189269; d3 0.001308
§2 随机数的产生和随机变量的抽样
随机变量的抽样
连续型随机变量的抽样:
3.正态随机变量的抽样方法
(2)基于中心极限定理的方法
N i 1
Xi )2
§1 蒙特卡洛方法该概述---减小误差
减小方差的各种技巧:
显然当给定置信度α(λα)后,误差ε由σ和N决定。要减小ε:
(1)增大试验次数N。在σ固定的情况下,要把精 度提高一个数量级,试验次数N需增加两个数量级。 因此,单纯增大N不是一个有效的办法。
N
(2)减小估计的均方差σ,比如降低一半,那误差就减小一半,这 相当于N增大四倍的效果。
理论依据: 大数定理:均匀分布的算术平均收敛于真值 中心极限定理:置信水平下的统计误差
两个例子: Buffen投针实验求π 射击问题(打靶游戏)
§1 蒙特卡罗方法概述---基本思想
Buffon 投针问题:平面上画很多平行线,间距为 a.向此平面投掷长为l (l < a) 的
针,此针与任一平行线相交的概率 p。
数r,计算满足条件:p(i-1) r p(i)的i值,所
对应的i即为离散型随机变量的一个样本值。
§2 随机数的产生和随机变量的抽样
随机变量的抽样
离散型随机变量的抽样:
2.泊松分布的抽样方法
若N是服从泊松分布的离散型随机变量,其取值为n的概
率为
P(N n) e n (n 0,1, 2,...)
3.计算机方法
根据数论方法,通过数学递推公式运算来实现。 这种方法得到的随机数其实是一种伪随机数。
物理问题的计算机模拟方法(2)—蒙特卡罗方法
第三章 随机性模拟方法—蒙特卡罗方法(MC )§ 3.1 预备知识例:一个粒子在一个二维正方格点上跳跃运动随机行走:每一时间步上,粒子可选择跳到四个最近邻格点上的任何一个,而记不得自己来自何方;自回避行走:粒子记得自己来自什么地方,而回避同它自己的路径交叉。
随机行走的每一步的结果就是系统的一个状态,从一个状态到另一个状态的跃迁只依赖于出发的状态,这些状态形成一个序列,这就是一个马尔可夫链。
状态序列:x 0, x 1, …, x n , …已给出状态x 0, x 1, …, x n+1 的确定值,x n 出现的概率叫做条件概率 ()01,x x x -n n P 马尔可夫链的定义:如果序列x 0, x 1, …, x n , …对任何n 都有 ()()101,--=n n n n P P x x x x x 则此序列为一个马尔可夫链(或过程)。
§ 3.2 布朗动力学(BD ) 1.郎之万方程 v t R dtdvmβ-=)( 方程右边第一项为随机力,对粒子起加热作用;第二项为摩擦力,避免粒子过热。
将方程变形为:dt mvt R dt m v dv )(+-=β 于是,解可写为:])0()(11[)0( )0()(0)()(10⎰+≈⎰=---tt mt md v R m tm d ev R m ev eev t v tττββτττβ⎰+≈---t m t t md Re m ev 0)()(1)0( ττβτβ当随机力R(t)服从高斯分布时,上述方程的解描述的即为布朗运动,于是,布朗运动问题就化为在一些补充条件下求解郎之万方程,即⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧><=>=<>=<=+><--)( 2)()(2)0()(,0)()(222/2/12高斯分布R R B e R R P t T k R t R t R m t R m v dt dv πδββ 注:)()()(t t q t R t R '->='<δ 表示随机力R 在t 和t ’时刻没有关联, q 为噪声强度。
蒙特卡罗方法教学课件第七章蒙特卡罗方法在积分计算中的应用两份文件
2. 重要抽样
1) 偏倚抽样和权重因子 取Vs上任一联合概率密度函数 f1(P),令
则有 现从 f1(P) 中抽样 N 个点:Pi,i=1,2,…,N, 则
就是θ的又一个无偏估计。
2) 重要抽样和零方差技巧
要使 最小,就是使泛函I[f1] 极小。 利用变分原理,可以得到最优的 f1(P) 为
舍弃圆外的点,余下的就是所要求的点。 抽样方法为:
>
抽样效率 E=π/4≈0.785
为实现散射方位角余弦分布抽样,最重要的是在 上半个单位圆内产生均匀分布点。下面这种方法,首 先在单位圆的半个外切正六边形内产生均匀分布点, 如图所示。
于是便有了抽样效率更高的抽样方法:
≤
>
抽样效率
例12. 正态分布的抽样
标准正态分布密度函数为:
引入一个与标准正态随机变量X独立同分布的随机变 量Y,则(X,Y)的联合分布密度为:
作变换
则(ρ,φ)的联合分布密度函数为: 由此可知,ρ与φ相互独立,其分布密度函数分别为 分别抽取ρ,φ :
从而得到一对服从标准正态分布的随机变量X和Y:
对于一般的正态分布密度函数 N(μ,σ2) 的抽样,其 抽样结果为:
特别地,当 g(P)≥0 时,有
这时 即 g1的方差为零。实际上,这时有 不管那种情况,我们称从最优分布 fl(P)的抽样为重要 抽样,称函数 | g(P) | 为重要函数。
3. 俄国轮盘赌和分裂
1) 分裂 设整数 n≥1,令
则 于是计算θ的问题,可化为计算 n 个θi 的和来得到,而 每个 gi(P) 为原来θ的估计 g(P) 的 1/ n ,这就是分裂技 巧。
其中,ξ1,ξ2,…,ξN为随机数序列。为方便起见, 将上式简化为:
《蒙特卡罗方法》PPT课件
5
1.引言
Monte Carlo方法简史 简单地介绍一下Monte Carlo方法的发展历史
1、Buffon投针实验: 1768年,法国数学家Comte de Buffon利用投针实验估计的值
完整版ppt
L
d
p
2L d
6
1.引言
7 完整版ppt
1.引言
8 完整版ppt
1.引言
9 完整版ppt
23 完整版ppt
1.引言
注意以下两点: • Monte Carlo方法与数值解法的不同: ✓ Monte Carlo方法利用随机抽样的方法来求解物理问题;
✓数值解法:从一个物理系统的数学模型出发,通过求解一 系列的微分方程来的导出系统的未知状态;
• Monte Carlo方法并非只能用来解决包含随机的过程的问题:
28 完整版ppt
2.MC基本思想
二十世纪四十年代中期,由于科学技术的发展和 电子计算机的发明,蒙特卡罗方法作为一种独立的方 法被提出来,并首先在核武器的试验与研制中得到了 应用。但其基本思想并非新颖,人们在生产实践和科 学试验中就已发现,并加以利用。
➢ 两个例子 例1. 蒲丰氏问题 例2. 射击问题(打靶游戏)
4. 编程进行计算机模拟
5. 获得统计量
j
17 完整版ppt
1.引言
MC的模拟方法-1 确定统计方案
1 确定统计模型 1) 现象 模型
随机现象Y=Y(Xi), Xi={X1, X2, X3,…}
2) 确定随机变量Xi的分布特征fi(x) 平均分布,指数分布,正态分布,Γ分布…
2 确定统计量
j
i lnim1nkn1ik(xi,...)
1.引言
蒙特卡罗方法完整教程(WORD文档内附有源码)
Monte Carlo 方法法§1 概述Monte Carlo 法不同于确定性数值方法,它是用来解决数学和物理问题的非确定性的(概率统计的或随机的)数值方法。
Monte Carlo 方法(MCM ),也称为统计试验方法,是理论物理学两大主要学科的合并:即随机过程的概率统计理论(用于处理布朗运动或随机游动实验)和位势理论,主要是研究均匀介质的稳定状态。
它是用一系列随机数来近似解决问题的一种方法,是通过寻找一个概率统计的相似体并用实验取样过程来获得该相似体的近似解的处理数学问题的一种手段。
运用该近似方法所获得的问题的解in spirit 更接近于物理实验结果,而不是经典数值计算结果。
普遍认为我们当前所应用的MC 技术,其发展约可追溯至1944年,尽管在早些时候仍有许多未解决的实例。
MCM 的发展归功于核武器早期工作期间Los Alamos (美国国家实验室中子散射研究中心)的一批科学家。
Los Alamos 小组的基础工作刺激了一次巨大的学科文化的迸发,并鼓励了MCM 在各种问题中的应用[2]-[4]。
“Monte Carlo ”的名称取自于Monaco (摩纳哥)内以赌博娱乐而闻名的一座城市。
Monte Carlo 方法的应用有两种途径:仿真和取样。
仿真是指提供实际随机现象的数学上的模仿的方法。
一个典型的例子就是对中子进入反应堆屏障的运动进行仿真,用随机游动来模仿中子的锯齿形路径。
取样是指通过研究少量的随机的子集来演绎大量元素的特性的方法。
例如,)(x f 在b x a <<上的平均值可以通过间歇性随机选取的有限个数的点的平均值来进行估计。
这就是数值积分的Monte Carlo 方法。
MCM 已被成功地用于求解微分方程和积分方程,求解本征值,矩阵转置,以及尤其用于计算多重积分。
任何本质上属随机组员的过程或系统的仿真都需要一种产生或获得随机数的方法。
这种仿真的例子在中子随机碰撞,数值统计,队列模型,战略游戏,以及其它竞赛活动中都会出现。
蒙特卡洛方法的应用课件
材料属性模拟
蒙特卡洛方法可以模拟材料的物理和化学属性,如热导率、电 导率、扩散系数等,为材料的选择和应用提供依据。
结构可靠性分析
蒙特卡洛方法可以用于结构可靠性分析,通过模拟结构在 不同工况下的失效概率,评估结构的可靠性和安全性。
系统可靠性分析
系统可靠性评估
蒙特卡洛方法可以用于评估系统 的可靠性,通过模拟系统在不同 条件下的运行状态,评估系统的 可靠性和故障概率。
控制系统优化
蒙特卡洛方法可以用于控制系统的优化,通过模拟控制系 统的不同参数和控制策略,优化控制系统的性能和稳定性 。
控制系统故障诊断
蒙特卡洛方法可以用于控制系统的故障诊断,通过模拟控 制系统的运行状态和故障模式,诊断控制系统的故障和问 题。
05
蒙特卡洛方法在社会科学领 域的应用
人口统计学模拟
总结词
要点一
金融风险管理
蒙特卡洛方法可以用于评估金融衍生品的风险,通过模拟 标的资产价格的波动,计算出衍生品的价值及其波动性。
要点二
物理模拟
蒙特卡洛方法可以用于模拟物理现象,如粒子运动、气体 扩散等,通过大量模拟实验得出物理量的统计结果。
感谢您的观看
THANKS
它通过构造一个概率模型或随机过程 ,将需要求解的问题转化为一个概率 问题,然后通过大量的随机抽样来近 似求解该概率问题。
蒙特卡洛方法的原理
蒙特卡洛方法的原理基于大数定律和中心极限定理,通过大量的随机抽样来逼近真实概率分布的特征 值或概率质量函数。
在每个抽样点上,根据问题的具体条件和约束,进行相应的计算和判断,最终得到问题的近似解。
化学反应模拟
总结词
蒙特卡洛方法在化学领域常用于模拟化 学反应的过程和机理。
《蒙特卡罗方法》课件
REPORTING
优点
高效性
蒙特卡罗方法在处理大规模、复杂问 题时,相对于解析方法,具有更高的 计算效率。
适用性强
该方法适用于各种类型的问题,无论 是数学、物理还是工程领域。
灵活性高
蒙特卡罗方法允许使用各种随机抽样 技术,可以根据问题的特性灵活调整 。
易于实现
蒙特卡罗方法的算法相对简单,容易 编程实现。
估计精度
统计估计的精度与样本数量和估计方法的选 择有关。
误差分析
误差来源
蒙特卡罗方法的误差主要来源于概率模型的近似和随机抽样的不 确定性。
误差控制
通过增加样本数量、改进概率模型等方法来减小误差。
误差评估
通过方差、置信区间等统计方法对误差进行评估和检验。
PART 03
蒙特卡罗方法的实现步骤
REPORTING
《蒙特卡罗方法》 PPT课件
REPORTING
• 蒙特卡罗方法简介 • 蒙特卡罗方法的原理 • 蒙特卡罗方法的实现步骤 • 蒙特卡罗方法的应用实例 • 蒙特卡罗方法的优缺点 • 蒙特卡罗方法的未来发展与展望
目录
PART 01
蒙特卡罗方法简介
REPORTING
定义与特点
定义
蒙特卡罗方法是一种基于概率统计的 数值计算方法,通过随机抽样和统计 模拟来求解数学、物理、工程等领域 的问题。
代。
PART 04
蒙特卡罗方法的应用实例
REPORTING
金融衍生品定价
总结词
蒙特卡罗方法在金融衍生品定价中应用广泛 ,通过模拟标的资产价格变化,计算衍生品 价格和风险。
详细描述
蒙特卡罗方法通过随机抽样和概率统计,模 拟标的资产(如股票、外汇或商品等)的价 格变化,从而计算出衍生品(如期权、期货 或掉期等)的预期收益或风险。这种方法能 够处理复杂的衍生品定价问题,并给出较为 精确的估计。
蒙特卡罗方法及应用实验讲义2016资料
蒙特卡罗方法及应用实验讲义东华理工大学核工系2016.8实验一 蒙特卡罗方法基本思想一、实验目的1、了解蒙特卡罗方法方法的基本思想;2、掌握蒙特卡罗方法计算面积、体积的方法;3、掌握由已知分布的随机抽样方法。
二、实验原理Monte Carlo 方法,又称统计模拟方法或计算机随机模拟方法,是一种基于“随机数”进行数值模拟的方法,一种采用统计抽样理论近似求解物理或数学问题的方法。
如待求量可以表述成某些特征量的期望值、某些事件出现的概率或两者的函数形式,那么可采用蒙特卡罗方法求解。
在求解某些特征量的期望值或某些事件出现的概率时,必须构建合符实际的数学模型。
例如采用蒙特卡罗方法计算某函数所围面积时,构建的数学模型是构造一已知面积的可均匀抽样区域,在该区域投点,由伯努利定理大数定理可知,进入待求区域投点的频率依概率1收敛于该事件出现的概率(面积之比)。
由已知分布的随机抽样方法指的是由已知分布的总体中抽取简单子样。
具体方法很多,详见教材第三章。
三、实验内容1、安装所需计算工具(MATLAB 、fortran 、C++等);2、学习使用rand(m,n)、unifrnd(a,b,m,n)函数3、求解下列问题:3.0、蒲丰氏投针求圆周率。
3.1、给定曲线y =2 – x 2 和曲线y 3 = x 2,曲线的交点为:P 1( – 1,1 )、P 2( 1,1 )。
曲线围成平面有限区域,用蒙特卡罗方法计算区域面积;3.2、计算1z z ⎧≥⎪⎨≤⎪⎩所围体积其中{(,,)|11,11,02}x y z x y z Ω=-≤≤-≤≤≤≤。
4、对以下已知分布进行随机抽样:4.1、()()[]23321,0,12f x x x x =+-∈; 4.2、()()()[]11,1,21E f x f x x E k E =⋅∈+ 其中()()()()()2123221111211411ln 212221E x f x E x x x x E k E E E E E ⎧+-⎛⎫=+-+⎪ ⎪⋅⎝⎭⎪⎨+⎡⎤⎪=-⋅+++-⎢⎥⎪+⎣⎦⎩。
蒙特卡罗方法PPT课件
5.2 随机数和伪随机数
• 5.2.2 伪随机数
• 伪随机数是用数学方法产生的随机数,在给定初值下,由以下的递推公式
• 确定
(n=1,2,…)n。1 T (n )
(5.9)
• 由此产生的随机数n1并不相互独立,可通过适当地选取递推公式来近似满足
独立性要求;另一方面,在电子计算机表示中在(0,1)之间的随机数是有
第25页/共83页
5.3.2 重要抽样
• 把任意陡的被积函数变换成非常平滑的函数且调整积分区间的想法是至要 抽样法的基本思想。换句话.由简单抽样法扩展为重要抽样法,其一个最 主要的改进应当是使用了权重被积函数。这就是说,所使用的伪随机数是 从非均勾分布中选取的。这种操作方法允许我们把精力集中于在空间区域 对函数值的计算与评价,使其对积给出恰当的贡献。引入权重函数g(x), 则对积分J得估算可以写成:
第4页/共83页
• 针相对于平行线的位置可以用一个随机向量表示 A [0, d )
[0, )
• 随机向量平均分布在区间[0,d)×[0,).
• 其概率密度函数为1/d.
•
针
与
平
行
线p
相
交
0
的0lsin概 d1率d为Ad
2l
d
(5.1)
第5页/共83页
5.1 基本思想和一般过程
• 5.1.2 马尔科夫(Markov)过程
•
初 或
始 转
概
率
p
(
x
0
)=
1
。
因
此
将
这
些
条
件
概率称之
为单步 (5.3)
跃
数学建模十大经典算法之蒙特卡罗方法讲义课件
f(X)是X的分布密度函数。则
lim P N
N
X N E( X ) x
1 x et2 / 2dt
2 x
当N充分大时,有如下的近似式
P
XN
E(X )
N
2 et2 / 2dt 1 2 0
其中α称为置信度,1-α称为置信水平。
这表明,不等式
XN
E(X )
N
近似地以概率
1-α成立,且误差收敛速度的阶为 O(N 1/ 2 )。
5) 误差容易确定。
6) 程序结构简单,易于实现。
1) 能够比较逼真地描述具有随机性质 的事物的特点及物理实验过程
从这个意义上讲,蒙特卡罗方法可以部分代替物 理实验,甚至可以得到物理实验难以得到的结果。用 蒙特卡罗方法解决实际问题,可以直接从实际问题本 身出发,而不从方程或数学表达式出发。它有直观、 形象的特点。
1901 3408
3.1415929
例2. 射击问题(打靶游戏)
设r表示射击运动员的弹着点到靶心的距离,g(r)
表示击中r处相应的得分数(环数),f(r)为该运动员的 弹着点的分布密度函数,它反映运动员的射击水平。 该运动员的射击成绩为
g 0 g(r) f (r)dr
用概率语言来说,<g>是随机变量g(r)的数学期
为数学期望<g>的估计值(积分近似值)。
➢ 基本思想
由以上两个例子可以看出,当所求问题的解是某 个事件的概率,或者是某个随机变量的数学期望,或 者是与概率、数学期望有关的量时,通过某种试验的 方法,得出该事件发生的频率,或者该随机变量若干 个具体观察值的算术平均值,通过它得到问题的解。 这就是蒙特卡罗方法的基本思想。
➢ 作业
《MonteCarlo方法》PPT课件
f (x)
Sum areas of shapes approximating shape of curve
b
Evaluating the general integral I f ( x ) d x
a
x
n uniformly separated points
Quadrature formula Ixi n1f(xi)b nai n1f(xi)
精选PPT
23
2. 频率检验
检验每组观测频数 ni与理论频数mi = N 1/k之间相差的显著性
3. 独立性 按先后顺序排列的 N 个伪随机数中 , 每个数的出现是否与 其前后各个数独立无关。 对于两组伪随机数来说 , 独立性 就是指它们不相关 。
4. 组合规律性 将 N 个伪随机数按一定的规律组合起来 , 则各种组合的出现具 有一定的概率。
提高精度一位数 , 抽样次数要增加100 倍 ; 减小随机变量的标准 差 , 可以减小误差 。
精选PPT
15
Monte Carlo 方法具有以下四个重要特征 :
① 由于 Monte Carlo 方法是通过大量简单的重复抽样来实现的 , 因 此 , 方法和程序的结构十分简单 。
② 收敛速度比较慢 , 因此 , 较适用于求解精度要求不高的问题。
蒙特卡罗方法的介绍与建模应用___视频课程课件2016_03_31
p
P{Y
f
(X )}
y f (x)
M
1 ba
Iaxb,0 yM dxdy
ab[0f
(x)
M
1
b
a dy]dx
b
a M
1
b
a
f
(x)dx
M
b
a
南京信息工程大学
2019/9/20 13:10
③ 根据概率模型的特点和随机变量的分布特性,设计和选取 合适的抽样方法,并对每个随机变量进行抽样(包括直接 抽样、分层抽样、相关抽样、重要抽样等)
④ 按照所建立模型进行仿真试验、计算,求出问题的随机解
⑤ 统计分析模拟试验结果,给出问题的估计以及其精度估计。 必要时,还应改进模型以降低估计方差和减少试验费用, 提高模拟计算的效率。
南京信息工程大学
2019/9/20 13:10
离散分布
例:病人视网膜疾病术后观察时间一般为[5,15]天,
其人数分布如直方图所示,求满足该分布的术后观
察天数序列。
天数 概率 分布函数值 区间
5
3/101
3/101
1
6
2/101
5/101
2
7
7/101
12/101
3
8
16/101
28/101
4
9
11/101
yy=y(1); for i=2:length(y)
yy=[yy,y(i)+yy(i-1)]; end yy=yy/yy(end);
for i=1:10000 r=rand(1); d=size(find(r>=yy),2)+1; X(i)=x(d);
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
蒙特卡罗方法及应用实验讲义东华理工大学核工系2016.8实验一 蒙特卡罗方法基本思想一、实验目的1、了解蒙特卡罗方法方法的基本思想;2、掌握蒙特卡罗方法计算面积、体积的方法;3、掌握由已知分布的随机抽样方法。
二、实验原理Monte Carlo 方法,又称统计模拟方法或计算机随机模拟方法,是一种基于“随机数”进行数值模拟的方法,一种采用统计抽样理论近似求解物理或数学问题的方法。
如待求量可以表述成某些特征量的期望值、某些事件出现的概率或两者的函数形式,那么可采用蒙特卡罗方法求解。
在求解某些特征量的期望值或某些事件出现的概率时,必须构建合符实际的数学模型。
例如采用蒙特卡罗方法计算某函数所围面积时,构建的数学模型是构造一已知面积的可均匀抽样区域,在该区域投点,由伯努利定理大数定理可知,进入待求区域投点的频率依概率1收敛于该事件出现的概率(面积之比)。
由已知分布的随机抽样方法指的是由已知分布的总体中抽取简单子样。
具体方法很多,详见教材第三章。
三、实验内容1、安装所需计算工具(MATLAB 、fortran 、C++等);2、学习使用rand(m,n)、unifrnd(a,b,m,n)函数3、求解下列问题:3.0、蒲丰氏投针求圆周率。
3.1、给定曲线y =2 – x 2 和曲线y 3 = x 2,曲线的交点为:P 1( – 1,1 )、P 2( 1,1 )。
曲线围成平面有限区域,用蒙特卡罗方法计算区域面积;3.2、计算1z z ⎧≥⎪⎨≤⎪⎩所围体积其中{(,,)|11,11,02}x y z x y z Ω=-≤≤-≤≤≤≤。
4、对以下已知分布进行随机抽样:4.1、()()[]23321,0,12f x x x x =+-∈; 4.2、()()()[]11,1,21E f x f x x E k E =⋅∈+ 其中()()()()()2123221111211411ln 212221E x f x E x x x x E k E E E E E ⎧+-⎛⎫=+-+⎪ ⎪⋅⎝⎭⎪⎨+⎡⎤⎪=-⋅+++-⎢⎥⎪+⎣⎦⎩。
四、实验报告编写1、给出各题的抽样程序并解释语句的含义;2、给出3.1和3.2抽样结果误差随抽样次数的关系图,并解释原因;表1 实验记录表3、给出4.1和4.2的抽样框图、试验累积频率与理论累积频率关系图,并给出抽样次数(>106)与抽样时间。
实验二 由已知分布的随机抽样方法一、实验目的1、掌握由已知分布的随机抽样方法。
2、用编程语言实现某具体随机抽样方法。
二、实验原理由已知分布的随机抽样方法指的是由已知分布的总体中抽取简单子样。
具体方法很多,本实验综合直接抽样方法、挑选抽样方法和替换抽样方法,以散射方位角余弦分布的抽样为例。
实验原理详见教材对应章节。
1.连续型分布的直接抽样方法对于连续型分布,如果分布函数F(x) 的反函数F -1(x)存在,则直接抽样方法是:1()F X F ξ-=2.挑选抽样方法为了实现从己知分布密度函数f(x)抽样,选取与f(x)取值范围相同的分布密度函数h(x),如果()sup()x f x M h x -∞<<∞=<∞ 则挑选抽样方法为:3.替换法抽样方法为了实现某个复杂的随机变量 y 的抽样,将其表示成若干个简单的随机变量x 1,x 2,…,x n 的函数12(,,,)n y g x x x =得到 x 1,x 2,…,x n 的抽样后,即可确定 y 的抽样,这种方法叫作替换法抽样。
蒲丰氏问题的算法 如何产生任意的(x,θ)?x 在[0,a ]上任意取值,表示x 在[0,a ]上是均匀分布的,其分布密度函数为:11/,0()0,a x af x ≤≤⎧=⎨⎩其他 类似地,θ的分布密度函数为:21/,0()0,f πθπθ≤≤⎧=⎨⎩其他 因此,产生任意的(x,θ)的过程就变成了由f 1(x)抽样x 及由f 2(θ)抽样θ的过程了。
由此得到:12x a ξθπξ==其中ξ1,ξ2均为(0,1)上均匀分布的随机变量。
每次投针试验,实际上变成在计算机上从两个均匀分布的随机变量中抽样得到(x,θ),然后定义描述针与平行线相交状况的随机变量s(x,θ),为1,sin (,)0x l s x θθ≤⋅⎧=⎨⎩,其他 如果投针N次,则11(,)NN i i i s s x N θ==∑是针与平行线相交概率P的估计值。
事实上,12sin 00(,)()()d d d d 2ππl P s x f x f x x la aπθθθθθ===⎰⎰⎰⎰于是有22πNl laP as =≈1、给出源程序程序并解释语句的含义;2、作出抽样框图、试验累积频率与理论累积频率关系图,并给出抽样次数(>106)与抽样时间。
实验三MCNP方法在实验核物理中的应用一、实验目的1、了解MCNP程序运行流程;2、掌握MCNP输入文件编写规范;3、理解模拟内容、并能编写输入文件、运行,并获得计算结果;二、实验原理MCNP是一种常见的粒子输运模拟软件,软件的安装、运行和输入文件编写方法详见相关参考资料。
MCNP输入文件编写完成后,先确认输入模型是否正确,在DOS环境下进行,打开运行DOS环境,进行以下操作:DOS命令操作命令含义Mcnp i=name.inp o=name.o 打开画图框PX vx 输出模型在x=vx面上的切面PY vy 输出模型在y=vy面上的切面PZ vz 输出模型在z=vz面上的切面FACTOR m 将输出图放大1/m倍Extent a b 切面沿两坐标轴方向分别放大ORIGIN X Y Z 定义画图中心位置(X,Y,Z)三、实验内容1、学习MCNP程序常见各种运行方法;2、编写以下问题的输入文件;2.1对课堂讲解的实例,模拟溴化镧探测器对点源的能谱,实验做一遍。
2.2有一HPGe探测器,结构如图1所示。
分别给出位于探测器轴心、距离探测器晶体中心25cm处的137Cs源、60Co、131I源对应特征γ射线的探测效率(计算时相应特征射线的源粒子至少为107个),并给出三者混合源(活度比为1:1:3)的能谱图(源发射总粒子数大于3×108个)。
Cu 的尺寸1.75cm0.09cmAl 壳0.05cm图1 HPGe 探测器结构图四、实验报告1、给出2.1和2.2的MCNP 输入文件并解释每一行的含义;2、分别运行实例,给出实验结果,并对结果进行分析。
实验四 MCNP 模拟计算γ射线造成的剂量一、实验目的1、掌握应用软件MCNP 、应用范围以及在辐射剂量计算和防护中的作用;2、进一步掌握MCNP 程序基本用法;3、利用MCNP 解决一个简单的求解γ射线在空气、组织等效材料(肌肉)中造成的剂量沉积的计算问题,并进行结果分析,得出结论;4、利用MCNP 程序解决实际工作中碰到的实际问题; 二、实验内容1、学习MCNP 程序的基本组成、操作方法以及问题描述文件的写法;2、利用MCNP 程序计算简单的γ射线源在空气、肌肉模型中的剂量沉积分布,并对计算结果进行分析并绘图,得出结论,调整数据重新计算,并与理论计算结果进行比较; 三、内容简介1、MCNP 程序的计算流程如下图1所示:2、MCNP 输入文件通过这个文件描述并建立一个蒙特卡罗计算问题,对问题的几何结构、材料、记数要求等给以描述,如果需要,便可直接运行。
该文件的格式如下: 栅元卡1 栅元卡2 。
栅元卡n空行分隔符曲面卡1曲面卡2。
曲面卡n空行分隔符数据卡1数据卡2。
数据卡n空行分隔符(optional)其它选择项(optional)其中栅元卡用来描述由不同的封闭曲面分割的立体空间区域,并用独有的数字ID号加以标示,同时在各个栅元卡中说明包围该区域的曲面类型(曲面卡)、填充该区域的材料类型(材料卡)以及对应的材料密度等;曲面卡是用来描述不同类型曲面的,并用独有的数字ID号加以标示,最终曲面卡被应用在栅元卡中,并利用交(与)、联(或)、补(非)这些逻辑运算符号联合不同曲面组成所需要的复杂的栅元。
在mcnp中支持的常见曲面类型见参考文献[3,4]。
数据卡类型很多,主要有粒子类型标识卡mode、重要性卡imp、通用源卡sdef、粒子计数器卡Fn、材料描述卡Mn以及粒子截断卡(nps或ctme)等,数据卡的类型涉及到了方方面面,类型很多,具体请见参考文献[3,4]。
下面利用一个简单的例子来配合说明mcnp中的输入卡(inp)的编写格式。
3、一个简单的说明例子为说明如何填写INP文件,这里例举一个简单问题。
如图3所示,在一个边长10cm的石墨立方体3中有两个半径0.5cm的球形空间,球1中充满氧气,球2是铁球。
在球1中置一14MeV各向同性中子点源,计算球2外表面与能量相关的中子通量。
建立的INP文件如下:SAMPLE PROBLEM INPUT DECK1 1 –0.0014 -72 2 –7.86 -83 3 –1.60 1 –2 –34 –567 84 0 -1:2:3:-4:5:-6空行1 PZ -54321874321y 图3 例子的几何示意图2 PZ 53 PY 54 PY -55 PX 56 PX -57 S 0 –4 –2.5 .58 S 0 4 4 .5←空行MODE pIMP:p 1 1 1 0SDEF POS=0 –4 –2.5 ERG=14F2:n 8E0 1E-5 1E-4 1E-3 .01 .1 1 2 3 4 5 6 7 8 9 10 11 12 13M1 8016 1M2 26000 1M3 6000 1NPS 100000←空行本例中没有信息块,第一行是标题卡,之后至空格前为栅元块。
栅元卡上依次填写栅元号、材料号、密度和构成栅元界面的曲面号(带正负号),这里定义了4个栅元:栅元1由球面7围成,里面填充材料1(16O2气体),密度是0.0014g/cm3;栅元2由球面8围成,填充材料2(铁),密度7.86g/cm3;栅元3由平面1、2、3、4、5、6围成,不包括球面7、8以内的空间,填充材料3(石墨),密度1.6g/cm3;栅元4是栅元3以外的空间,为真空。
曲面卡上需要填写曲面号、曲面类型和曲面参数,本例中定义了8个曲面,前6个为与原点距离5cm垂直于各坐标轴的平面,后两个是半径0.5cm的球面,球心分别在(0,-4,-2.5)和(0,4,4)。
数据块中指定了问题类型、源、记数方式、材料和运行粒子数,各卡数据项的意义如下:MODE卡问题类型是中子输运IMP卡4个栅元的中子重要性分别是1 1 1 0SDEF卡位于(0,-4,-2.5)、能量14MeV的各向同性点源F2卡在曲面8上做中子通量记数E0卡对记数能量分区,1~14MeV之间间隔为1MeV,1MeV~10-5MeV之间间隔为一个数量级M1卡材料1是16O核素M2卡材料2是Fe元素M3卡材料3是C元素NPS卡运行源粒子数100000以上例子仅用于说明INP文件格式,有关各输入卡的详细内容,具体使用方法见参考文献[3,4]。