发酵罐对发酵过程中溶氧控制

发酵罐对发酵过程中溶氧控制
发酵罐对发酵过程中溶氧控制

发酵罐对发酵过程中溶氧控制

在微生物/细胞发酵过程中,溶氧是需氧发酵控制中最重要的参数之一。溶氧的大小对发酵产物的形成及产量都会产生不同的影响,其结果直接影响整个发酵的效率。

现在市面上发酵罐对溶氧的控制,主流的方式是通过控制通入气体的量或者改变通入气体中氧气的比例来调节发酵液中溶氧%。更高一级的控制是将发酵液中溶氧%和通入气体的量、搅拌桨的转速、添加的补料及罐压进行关联,从而通过发酵系统自动控制这些参数来调节溶氧%。但是,直到今日,还没有任何一家发酵罐制造厂家的发酵罐能实现溶氧%与上述4个参数实现4级以上关联。现在市场上普遍能实现的是二级关联,及溶氧%与搅拌转速和通气量的关联,而其中做的最好的是赛多利斯(贝朗)发酵罐,由于其柜式集成化自动关联控制系统,能对发酵总体要求进行自动化多级(最多4级)参数关联调节。

2012年香港环球分析测试仪器有限公司引进了意大利Solaris发酵罐/生物反应器,其智能化的控制系统和全自动化的设计,实现了溶氧%与上述参数4级以上关联,准确说是在参数上下限限制条件内,能实现无限制关联,从而使发酵过程中溶氧%的控制更加方便和精确,并为高密度培养中需要更高的溶氧浓度提供了可能。

意大利Solaris发酵罐/生物反应器的这一特点,在不同程度上超越了赛多利斯(贝朗)等同类厂家,使其在全球的用户感受到实实在在的技术革新。

Solaris发酵罐/生物反应器实现溶氧%无限制关联界面图如下:

上图设置方式是先设定一个你需要的溶氧%,然后,将其与搅拌桨转速关联,如果当转速达到设定的上限的时候实现了你需要的溶氧%,就不进行下一级的关联;如果没有达到你需要的溶氧%,那么你就可以设置2级关联,如果达到设定参数的上限还未达到你需要的溶氧%,那么你就可以设置3级关联,如果达到设定参数的上限还未达到你需要的溶氧%,那么你就可以设置4级关联,如此循环下去,直至达到你需要的溶氧%。在此设置关联参数过程中,同一参数可重复多次设定。

(完整word版)双闭环控制系统

课程设计报告 课程课程设计 课题双闭环控制系统设计 班级 姓名 学号

目录 第1章双闭环系统分析 (1) 1.1系统介绍 (1) 1.2系统原理 (1) 1.3双闭环的优点 (1) 第2章系统参数设计 (2) 2.1电流调节器的设计 (2) 2.1.1时间参数选择 (2) 2.1.2计算电流调节参数 (2) 2.1.3校验近似条件 (3) 2.2转速调节器的设计 (3) 2.2.1电流环等效时间常数: (3) 2.2.2转速环截止频率为 (5) 2.2.3计算控制器的电阻电容值 (5) 第3章仿真模块 (6) 3.1电流环模块 (6) 3.2转速环模块 (6) 第4章仿真结果 (7) 4.1电流环仿真结果 (7) 4.2转速环仿真结果 (7) 4.4稳定性指标的分析 (8) 4.4.1电流环的稳定性 (8) 4.4.2转速环的稳定性 (8) 结论 (9) 参考文献 (10)

第1章双闭环系统分析 1.1系统介绍 整流电路可从很多角度进行分类,主要分类方法是:按组成的器件可分为不可控,半控和全控三种;按电路结构可分为桥式电路和零式电路;按交流输入相数分可分为单相、双相、三相和多相电路;按控制方法又可分为相控整流和斩波控制整流电路。 本系统采用的是三相全控桥式晶闸管相控整流电路。这是因为电机容量相对较大,并且要求直流脉动小、容易滤波。其交流侧由三相电网直接供电,直流侧输出脉动很小的直流电。在分析时把直流电机当成阻感性加反电势负载。因为电机电流连续所以分析方法与阻感性负载相同,各参量计算公式亦相同。 1.2系统原理 ASR(速度调节器)根据速度指令Un*和速度反馈Un的偏差进行调节,其输出是电流指令的给定信号Ui*(对于直流电动机来说,控制电枢电流就是控制电磁转矩,相应的可以调速)。 ACR(电流调节器)根据Ui*和电流反馈Ui的偏差进行调节,其输出是UPE(功率变换器件的)的控制信号Uc。进而调节UPE的输出,即电机的电枢电压,由于转速不能突变,电枢电压改变后,电枢电流跟着发生变化,相应的电磁转矩也跟着变化,由Te-TL=Jdn/dt,只要Te与TL不相等转速会相应的变化。整个过程到电枢电流产生的转矩与负载转矩达到平衡,转速不变后,达到稳定。 1.3双闭环的优点 双闭环调速系统属于多环控制系统,每一环都有调节器,构成一个完整的闭环系统。工程设计方法遵循先内环后外环的原则。步骤为:先设计电流环(内环),对其进行必要的变换和近似处理,然后依照电流环的控制要求确定把它校正成哪一种典型系统,再根据控制对象确定其调节器的类型,最后根据动态性能指标的要求来确定其调节器的有关参数。电流环设计完成以后,把电流环看成转速环(外环)中的一个环节,再用同样的方法设计转速环。 在电流检测信号中常有交流分量,为了不让它影响调节器的输入,加入了低通滤波器,然而滤波环节可以使反馈信号延迟,为了消除此延迟在给定位置加一个相同时间常数的惯性环节。同理,由测速发电机得到的转速反馈电压常含有换向纹波,因此也在给定和反馈环节加入滤波环节。

发酵罐温度串级控制系统概述

一、被控对象工作原理及结构特点等 发酵工程是应用生物(主要是微生物)为工业大规模生产服务的一门工程技术,也称微生物工程。发酵工程是包括微生物学、化学工程、基因工程、细胞工程、机械工程和计算机软硬件工程的一个多学科工程。 现代发酵工程不但应用于生产酒精类饮料、醋酸和面包,而且还可以生产胰岛素、干扰素、生长激素、抗生素和疫苗等多种医疗保健药物,天然杀虫剂、细菌肥料和微生物除草剂等农用生产资料,在化学工业上生产氨基酸、香料、生物高分子、酶以及维生素和单细胞蛋白等。 发酵反应器(发酵罐)是发酵企业中最重要的设备。发酵罐式必须具有适宜于微生物生长和形成产物的各种条件,促进微生物的新陈代谢,使之能在低消耗下获得较高产量。例如,发酵罐的结构应尽可能简单,便于灭菌和清洗;循环冷却装置维持适宜的培养温度;由于发酵时采用的菌种不同、产物不同或发酵类型不同,培养或发酵条件又各有不同,还要根据发酵工程的特点和要求来设计和选择发酵罐的类型和结构。 通风发酵设备要将空气不断通入发酵液中,供给微生物所需的氧,气泡越小,气泡的表面积越大,氧的溶解速率越快,氧的利用率也越高,产品的产率就越高。通风发酵罐有鼓泡式、气升式、机械搅拌式、溢流喷射自吸式等多种类型。 机械搅拌通风发酵罐是发酵工厂常用的类型之一,它是利用机械搅拌器的作用,使空气和賿液充分混合促使氧在賿液中溶解,以保证供给微生物生长繁殖、发酵所需要的氧气,同时强化热量传递。无论是微生物发酵、酶催化或动物植物细胞培养的微生物工程工厂都应用此类设备,占目前发酵罐总数的70%~80%,常用语抗生素、氨基酸、有机酸和酶的发酵生产。机械搅拌通风发酵罐是属于一种搅拌釜式反应器,除用作化学反应和生物反应器外搅拌反应器还大量用于混合、分散、溶解、结晶、萃取、吸收或解吸传热等操作。搅拌反应器由搅拌容器和搅拌机两大部分组成。加班容器包括筒体、换热原件及内构件、搅拌器、搅拌轴及其密封装置、传动装置等统称为搅拌机。 1.1温度对发酵的影响 微生物药品发酵所用的菌体绝大多数十中温菌,如丝状真菌、放线菌和一般细菌。它们的最适生长温度一般在20~40摄氏度。在发酵过程中,应维持适当温度,以使微生物生长代谢顺利进行。由于微生物的种类不同,所具有的酶系及其性质也不同,因此所要求的温度也不同,如细菌的生长温度大多比霉菌高。有些微生物在生长、繁殖和合成代谢产物等各个阶

发酵罐安全操作流程通用版

操作规程编号:YTO-FS-PD456 发酵罐安全操作流程通用版 In Order T o Standardize The Management Of Daily Behavior, The Activities And T asks Are Controlled By The Determined Terms, So As T o Achieve The Effect Of Safe Production And Reduce Hidden Dangers. 标准/ 权威/ 规范/ 实用 Authoritative And Practical Standards

发酵罐安全操作流程通用版 使用提示:本操作规程文件可用于工作中为规范日常行为与作业运行过程的管理,通过对确定的条款对活动和任务实施控制,使活动和任务在受控状态,从而达到安全生产和减少隐患的效果。文件下载后可定制修改,请根据实际需要进行调整和使用。 一、准备工作 1、检查蒸汽发生器,确保已开启; 2、检查空气源,保证供气压力在0.4~0.7MPa之间,相对湿度应小于60%;再调节空气减压阀,使其出口压力在0.2~0.25MPa之间; 3、检查各管道、阀门是否有泄漏,进料口、补料口硅胶垫是否需要更换,如有请及时修整; 4、检查各压力表是否归零,不能归零的予以更换; 5、检查罐内是否清洗干净; 6、查看控制系统、传动系统是否良好; 7、检查完毕进行打压试漏:压力0.15MPa保持 30min,如果出现压力下降,请用肥皂水查找泄漏点,并进行修复; 8、安装已标定的PH电极、溶氧电极等其他检测设备,确保已安装到位、螺母旋紧; 9、检查一切无问题,如实填写记录并签字; 二、空气过滤器消毒

基于LCL滤波器的逆变器的双闭环控制

年级专业:14电气工程 学号:S14085207021 姓名:于尚民 授课教师:王晓寰 日期:2015.7.3

并网逆变器通常采用L滤波器,虽然结构和控制简单,但是随着功率级别的增加会地带来体积重量增大等问题。LCL滤波器使用用于功率较大的场合。高等电力电子课程所讲述的正是这种并网逆变器的控制策略。 电力电子变化的主要任务是通过控制使电力电子系统完成既定的点萌变换,并输出期望的电流、电压和功率。那么,对于电力电子系统的控制将显得十分的重要。一般采用双闭环控制,而控制所采用的反馈信号又根据不同的要求而不同。 本文是基于有源逆变系统来进行控制系统的设计。采用基于LCL滤波器的并网系统。主要讨论控制系统的结构、调节器设计和参数整定。一主要参数 有功功率: 电容:C=20 逆变器侧电感: 电网侧电感: 开关频率: 电网电压: 电网频率: 直流电源:U=800V 首先给出基于LCL滤波的电压型有源逆变器的主电路,这主要是根据此图可以建立数学模型。

图1 基于LCL滤波的电压型有源逆变器的主电路需要注意的是参数中将电感的等效内阻忽略,直流侧用直流电源代替。 二逆变器控制系统的内环结构 外环采用输出电流反馈。内环则有多种方式,下面主要基于电容电流和网侧电感电压反馈的单位调节器内环进行控制说明。 1基于电容电流反馈的单位调节器 图2 基于电容电流反馈的单位调节器结构框图 对上图进行简化后可得到开环传递函数 因为是单位调节器,即开环增益,如上式。 根据参数和开环传递函数可以画出闭环传递函数极点的根轨迹

图3 基于电容电流 反馈的单位调节器内环根轨迹 无论内环增益K 如何变化,基于电容电流 反馈的单位调节器内环控制始终是稳定的。 2基于网侧电感电压 反馈的单位调节器 与上述同理先画出结构框图 图4 基于网侧电感电压 反馈的单位调节器结构框图 对结构框图简化同样可以得到开环传递函数 画闭环传递函数极点根轨迹 4 Root Locus Real Axi s I m a g i n a r y A x i s

PI控制器控制的双闭环控制串级调速系统

目录 第一章概述 (2) 第二章双闭环控制串级调速系统 (3) 2.1双闭环控制串级调速系统的组成 (3) 2.2异步电动机串级调速时转子整流电路工作状态的选择 (4) 2.3串级调速系统的动态数学模型 (6) 2.4异步电动机和转子直流回路传递函数计算 (9) 2.5调节器参数的设计-电流环和转速环设计 (10) 2.5.1 电流环的设计 (10) 2.5.2 转速环的设计 (12) 第三章 MATLAB仿真 (14) 3.1给定阶跃的仿真: (14) 3.2抗扰仿真 (14) 第四章收获与致谢 (16) 参考文献 (16)

第一章概述 串级调速理论早在20世纪30年代就已提出,到了60-70年代,当可控电力电子器件出现以后,才得到更好的应用。20世纪60年代以来,由于高压大电流晶闸管的出现,串级调速系统获得了空前的发展。60年代中期,W.Shepherd和J.Stanw 就提出了一种将绕线转子电动机的转差功率进行整流,然后经过晶闸管逆变器将整流后的转差功率逆变为电网频率的交流功率,并将其反馈到电动机的定子辅助绕组中的晶闸管串级方案,称为“定子反馈”方案,而把通过变压器,逆变变压器,将转差功率反馈到电网,常规的晶闸管串级,称为“电网反馈”方案。在“定子反馈”方案中,辅助绕组与定子绕组电气上绝缘,通过磁耦合,即电磁感应,将转差功率经过定子绕组反馈到电网,这就是我们所说的“内馈”串调。 20世纪60年代末期,我国的一些单位开始进行晶闸管串级调速的试验,70年代后期,西安整流器厂首先推出了系列产品,以后其他厂家也相继推出。国内最先是由屈维谦在80年代后期提出内馈串级调速方案的。90年代中期以后,有一家公司又推出斩波式内馈串调。随着电力电子技术和控制策略的发展,新的拓扑结构和控制策略被不断提出。到目前为止全国已有四到五家知名的内馈串级调速装置的生产厂家。如今节约能源、更加合理地、有效地利用能源是一项艰巨、利国利民造福子孙的长期工作,也是我国的一项基本国策。随着我国改革开放不断深入和国民经济、科学技术的飞速发展,国家大量拨款加速建设,现在已经取得了很大的进步,有部分项目已经达到了实用化阶段相信在不久的将来我国在双闭环串级调速系统方面一定会赶上或进一步缩小与发达国家之间的差距 本课程设计就要求结合给定的初始条件来完成直流双闭环调速系统的设计,其中包括绘制该调速系统的原理图,对调节器进行工程设计,选择调节器的参数等。要实现直流双闭环调速系统的设计需先对控制系统的组成及工作原理有一定深入的理解,弄清楚调速系统每个组成部分的作用,弄清楚转速环和电流环的工作原理,合理选择调节器的参数以便进行合理的工程设计。本设计通过变流系统将调节绕组从主绕组感应过来的电势串入电机的转子绕组,改变其串入电势的大小来实现调速。即将内反馈串级调速电动机的部分转子能量取出以改变电动机转差率来实现调速的。PI控制器控制的双闭环控制串级调速系统的设计

自动控制系统双闭环直流调速系统稳态结构解读

目录 引言 (2) 1设计目的 (3) 2直流调速系统的理论设计 (3) 2.1 系统组成及要求 (3) 2.2 电流调节器设计 (4) 2.3 转速调节器设计 (7) 3系统仿真 (10) 4结论 (12) 5心得体会 (13) 6参考文献 (13)

引言 本设计从直流电动机的工作原理入手,并详细分析了系统的原理及其静态和动态性能。然后按照自动控制原理,对双闭环调速系统的设计参数进行分析和计算,利用Simulink对系统进行了各种参数给定下的仿真,通过仿真获得了参数整定的依据。 转速、电流双闭环直流调速系统是性能很好,应用最广的直流调速系统, 采用转速、电流双闭环直流调速系统可获得优良的静、动态调速特性。应掌握转速、电流双闭环直流调速系统的基本组成及其静特性;应用工程设计方法解决双闭环调速系统中两个调节器的设计问题,等等。 通过对转速、电流双闭环直流调速系统的了解,使我们能够更好的掌握调速系统的基本理论及相关内容,在对其各种性能加深了解的同时,能够发现其缺陷之处,通过对该系统不足之处的完善,可提高该系统的性能,使其能够适用于各种工作场合,提高其使用效率。为了实现在允许条件下最快启动,关键是要获得一段使电流保持为最大值的恒流过程,按照反馈控制规律,电流负反馈就能得到近似的恒流过程。问题是希望在启动过程中只有电流负反馈,而不能让它和转速负反馈同时加到一个调节器的输入端,到达稳态转速后,又希望只要转速负反馈,不要电流负反馈发挥主作用,因此需采用双闭环直流调速系统。这样就能做到既存在转速和电流两种负反馈作用又能使它们作用在不同的阶段。

1设计目的 1进一步对自动控制系统这门学科进行理解。 2掌握双闭环直流调速系统的设计过程。 3体会参数设计的过程。 2 直流调速系统的理论设计 2.1系统组成及要求 本控制系统采用转速、电流双闭环结构,其原理图图1,双闭环直流调速系统稳态结构图图2和动态结构框图图3如下所示。 图1双环调直流速系统原理图 图2双闭环直流调速系统稳态结构图

发酵罐安全操作流程

发酵罐安全操作流程 Prepared on 24 November 2020

发酵罐安全操作流程 一、准备工作 1、检查蒸汽发生器,确保已开启; 2、检查空气源,保证供气压力在~之间,相对湿度应小于60%;再调节空 气减压阀,使其出口压力在~之间; 3、检查各管道、阀门是否有泄漏,进料口、补料口硅胶垫是否需要更换, 如有请及时修整; 4、检查各压力表是否归零,不能归零的予以更换; 5、检查罐内是否清洗干净; 6、查看控制系统、传动系统是否良好; 7、检查完毕进行打压试漏:压力保持30min,如果出现压力下降,请用肥 皂水查找泄漏点,并进行修复; 8、安装已标定的PH电极、溶氧电极等其他检测设备,确保已安装到位、螺母旋紧; 9、检查一切无问题,如实填写记录并签字; 二、空气过滤器消毒 1、首先关闭空气过滤器前的进蒸汽阀,缓慢卸掉空气过滤器内压力; 2、打开蒸汽过滤器下端的排污阀(排净冷凝水后微开),缓缓开启蒸汽 阀,排净管道内冷凝水后调整蒸汽阀大小,保证蒸汽压力以上; 3、打开空气过滤器下端的排污阀,慢慢打开过滤器前的蒸汽阀,待排尽冷 凝水后排污阀微开;

4、开启过滤器后的排气阀门,通过调整其与蒸汽阀的大小,维持压力~消毒 30min; 5、消毒结束调小排气阀与排污阀的开度,迅速关闭蒸汽阀同时打开进空气 阀(换气过程中保证压力不掉零),调整空气阀大小保持压力在~,以便吹干空气过滤器; 6、约20~30min过滤器吹干后(过滤器外壁温度降至常温,手试吹出的空气 干燥、细腻、滑润),关闭过滤器下端的排污阀及排气阀,保持正压; 三、罐空消 1、首先打开夹套下端的排水阀,排尽夹套中的水; 2、依次打开取样阀、蒸汽阀,排尽管道内冷凝水后将取样阀转为微开;稍 开罐排气阀,再缓慢开启罐底隔膜阀使蒸汽徐徐进入发酵罐; 3、在灭菌过程中时刻注意并控制罐压在~内,罐压的控制通过蒸汽阀和排气 阀来实现; 4、空消30~50min后,关闭蒸汽阀和罐底隔膜阀,关闭后压力会迅速下降, 为防止罐内产生负压,需将进空气阀打开,维持罐压~或者压力下降至零时将排气阀打开自然冷却;待温度降至80℃以下时排尽罐内冷凝水; 四、实消 1、将标定好的PH电极、溶氧电极等检测设备安装,检查确保安装到位,旋紧螺母; 2、关闭罐底隔膜阀,微通风、开低转速,按工艺要求将配制好的培养基加 入罐内,检查无漏加原料后将加料口螺母适度拧紧;

SPWM波控制逆变器双闭环PID调节器的建模与仿真

SPWM波控制逆变器双闭环PID调节器的建模与仿真 随着电力行业的快速发展,逆变器的应用越来越广泛,逆变器的好坏会直 接影响整个系统的逆变性能和带载能力。逆变器的控制目标是提高逆变器输出 电压的稳态和动态性能,稳态性能主要是指输出电压的稳态精度和提高带不平 衡负载的能力;动态性能主要是指输出电压的THD(Total Hannonic Distortion) 和负载突变时的动态响应水平。在这些指标中对输出电压的THD 要求比较高,对于三相逆变器,一般要求阻性负载满载时THD 小于2%,非线性满载(整流性 负载)的THD 小于5%.这些指标与逆变器的控制策略息息相关。文中主要介绍 如何建立电压双环SPWM 逆变器的数学模型,并采用电压有效值外环和电压 瞬时值内环进行控制。针对UPS 单模块10 kVA 单相电压型SPWM 逆变器进行建模仿真。通过仿真,验证了控制思路的正确性以及存该控制策略下的逆变 器所具有的鲁棒性强,动态响应快,THD 低等优点。并以仿真为先导,将其思想移植到具体开发中,达到预期效果。 1 三电平逆变器单相控制模型的建立 带LC 滤波器的单相逆变器的主电路结构如图1 所示。图1 中L 为输出滤波 电感,C 为滤波电容,T1,T2,T3,T4 分别是用来驱动IGBT 的三电平的SPWM 波,U0 为输出负载两端的电压。在建立控制系统的仿真模型时,需要采集负 载两端的电压与实际要求的电乐值做比较,然后通过调节器可以得到所需要调 节的值。在此仿真模型中,驱动波形采用的是三电平的SPWM 波形,具体的 产生原理在这不做详细描述。在Matlah 的Simlink 库中SPWM 波的产生如图 2 所示,这里调制比设为0.8。 图1 三电平逆变器单相主电路 图2 四相SPWM 产生电路

基于双闭环策略的并网逆变器控制方法研究(精)

基于双闭环策略的并网逆变器控制方法研究 吴婷婷 陈天琴 武奇生 长安大学信息工程学院 为了避免分布式电源并网发电时对电网产生谐波污染,必须对并网电能质量进行控制,电能质量在电压为可控变量时由电压质量决定,但由于电网公共连接点(point of coupling, PCC )处电压不可控,因而并网电能质量取决于逆变器输出的并网电流的质量。并网逆变器的控制目标就是在网侧得到近似正弦的电流波形和单位功率因数。理想情况下,输出电流谐波成对出现在载波(开关)频率和其倍数附近,这些高频分量通过滤波器可以很容易去除。然而,由于逆变器开关管的不对称和开关死区时间等的影响,往往造成输出电流基波偏离参考电流,并带进低次谐波(典型如3次,5次,7次等)。 直流母线 图1 分布式发电系统构成 图2 并网VSI 系统主电路 相关文献提出了将逆变器方程从三相静止坐标系转换到两相旋转坐标下,利用同步PI 控制器消除静态误差的思想,相关文献利用这种思想改善了馈网电流质量,但是它给定有功电流和无功电流,独立于逆变器输出电压,当逆变器输出电压质量较低时,达不到预期设定功率因素。相关文献根据逆变器输出端电压电流瞬时值计算出有功功率和无功功率,分别与给定参考值比较进行调节,但是没有考虑直流侧电压波动问题,当直流侧电压波动较大时,系统调节速度很慢。 基于此,本文根据同步坐标系下的电流特性,提出了将逆变器从三相静止坐标系模型转换到两相同步旋转坐标系下,采用基于同步PI 控制技术的电流内环和直流电压前馈控制外环的双环控制结构,实现了并网电流基波分量在同步旋转坐标轴上的静态无误差调节,有效降低了逆变器死区效应,并抑制了电流低次谐波,取得了网侧电流波形近似为正弦波、单位功率因数运行。 一、 三相逆变电源及模型 并网VSI 系统主电路结构如图2所示。分布式电源的输出经boost 升压斩波电路形成的直流源接电压型三相逆变桥的直流母线,三相逆变桥的交流输出经电抗器并接电网,其中L 为输出滤波电抗值,x v (,,x a b c =)为逆变器的三相输出电压,x i (,,x a b c =)为逆变器输出电感电流,gx v (,,x a b c =)为三相坐标系下电网电压,dc I 为分布式电源产生的电流,dc V 为直流侧母线电压,C 为直流侧母线电容。 在三相静止坐标系下,逆变器稳态输出时,系统方程为: 11a a ga b b gb c c gc i v v d i v v dt L L i v v ?????? ?? ????=-?? ???????????????? (1) 由(1)式可以看出,只要控制x v 与gx v 就可以控制x i ,而对于同一电网,gx v 是一定的,所以要控制的量就只有x v 。这种通过控制逆变器输出电压进而控制并网电流的方式,与传统的开环电压控制策略比较,具有动态响应快、过载能力强、控制精度高等优点。 二、 系统控制策略 1.同步电流PI 控制 由于系统中逆变器是三相无中线系统,三相电流之间非独立,系统模型是多输入多输出的耦合系统,将三相静止坐标变换到两相旋转坐标系下,可以简化系统模型,降低系统阶次,其转换公式为:

发酵罐温度控制系统讲解

题目:发酵罐温度控制系统设计

课程设计(论文)任务及评语院(系):教研室:Array 注:成绩:平时40% 论文质量40% 答辩20% 以百分制计算

摘要 本题要设计的是温度控制系统,发酵是放热反应的过程。随着反应的进行,罐内的温度会逐渐升高。而温度对发酵过程具有多方面的影响。因此,对发酵过程中的温度进行检测和控制就显得十分重要。 本课题设计了发酵罐温度控制系统,选择的传感器为Cu100,由于信号很小,所以就需要通过差动放大电路进行放大并且经过了滤波电路滤波,然后将处理后的电压信号经过V/I转换,输出4~20mA的电流信号,最后进行仿真分析以及参数的计算,以达到通过对冷水阀开度的控制对发酵罐温度控制的目的。 本系统应用温度控制系统,有助于提高发酵效率,有助于提高工厂产值,并且可以使资源得到更充分的作用。 关键词:温度控制;PID控制器;V/I转换;比较机构

目录 第1章绪论 (1) 第2章课程设计的方案 (2) 2.1 概述 (2) 2.2 系统组成总体结构 (2) 2.3 传感器选择 (2) 第3章电路设计 (4) 3.1 传感器电路 (4) 3.2 比较机构电路 (7) 3.3 PID调节器并联实现电路 (7) 3.4 V/I转换电路 (8) 3.5 直流稳压电源电路 (9) 第4章仿真与分析 (10) 4.1 传感器电路仿真 (10) 4.2 PID控制器电路 (11) 4.3 V/I转换电路 (12) 第5章课程设计总结 (14) 参考文献 (15) 附录Ⅰ (16) 附录Ⅱ (18) 附录Ⅲ (20)

第1章绪论 在工业生产中,电流、电压、温度、压力、流量、流速和开关量都是常用的主要被控参数。其中,温度控制也越来越重要。在工业生产的很多领域中,人们都需要对各类加热炉、热处理炉、反应炉、发酵罐和锅炉中的温度进行检测和控制。 本次课设要求设计发酵罐的温度控制系统。发酵是放热反应的过程。随着反应的进行,罐内的温度会逐渐升高。而温度对发酵过程具有多方面的影响:它会影响各种酶反应的速率,改变菌体代谢产物的合成方向,影响微生物的代谢调控机制,除这些直接影响外;温度还对发酵液的理化性质产生影响,如发酵液的粘度;基质和氧在发酵液中的溶解度和传递速率。某些基质的分解和吸收速率等,进而影响发酵的动力学特性和产物的生物合成。 并且现代发酵工程不但应用于生产酒精类饮料、醋酸和面包,而且还可以生产胰岛素、干扰素、生长激素、抗生素和疫苗等多种医疗保健药物,天然杀虫剂、细菌肥料和微生物除草剂等农用生产资料,在化学工业上生产氨基酸、香料、生物高分子等。而发酵过程是酵母在一定的条件下,利用可发酵性物质而进行的正常生命活动。 发酵工程是应用生物(主要是微生物)为工业大规模生产服务的一门工程技术,也称微生物工程。发酵工程是包括微生物学、化学工程、基因工程、细胞工程、机械工程和计算机软硬件工程的一个多学科工程。 在发酵罐温度控制系统中应用最为广泛的调节器控制规律为比例、积分、微分控制,简称PID控制,又称PID调节。PID控制器是工业控制的主要技术之一。当被控对象的结构和参数不能完全掌握,或得不到精确的数学模型,控制理论的其他技术也难以采用,系统控制器的结构和参数必须依靠经验和现场调试来确定时,应用PID控制技术最为方便。采用PID算法进行温度控制,它具有控制精度高,能够克服容量滞后的特点,特别适用于负荷变化大、容量滞后较大、控制品质要求又很高的控制系统。 本次课设要求自行设计模拟式PID控制器,通过与前面传感器测定的发酵罐温度产生的电压信号进行比较,转换为输出时的4~20mA电流信号来对冷水阀门开度进行控制,采用冷水法对发酵罐进行降温,以达到对发酵罐温度进行控制的目的。参数要求测定范围是30℃~50℃,测量精度为±0.5℃,以此作为对温度传感器的选择依据。

发酵操作流程

基因工程菌发酵操作流程 1.检查发酵车间是否达到发酵要求(所以设备处于待用状态)。 2.通知蒸汽车间按时送符合要求蒸汽。 3.种子罐基础培养基的领料及定容配制。 4.种子罐的PH、DO电极的校正安装和补料口堵头更换。 5.种子罐进料,调PH。 6.种子罐基础培养基在位灭菌,同时灭移种管道上段。 7.种子罐冷却后可连接酸、碱、消泡剂补料瓶。 8.种子罐培养基温度、PH(需进一步校准)、罐压、消泡达到发酵条 件。通知菌种室准备菌种转接。 9.无菌操作将种子罐所需MgSO4、Amp转入菌种转换罐。 10.种子罐扩增培养发酵阶段需平稳控制罐压、PH、DO、温度、消泡。 11.大罐基础培养基领料及配制。 12.大罐PH、DO电极校正安装及补料口堵头的更换。 13.大罐进料、定容、调PH;碱罐碱液的配制。 14.大罐基础培养基在位灭菌,同时对移种管道、进料管道、补料管 道、碱罐及碱管道上段的灭菌。 15.大罐基础培养基温度降至发酵温度后再次校准PH、DO。连接补 料瓶调节至发酵条件。 16.无菌操作将大罐所需MgSO4、Amp转入菌种转换罐并转入种子罐。 17.利用压力差将种子罐里的种子液移接到大罐。 18.补碱时,将管道上阀门打开。程序设为自动,控制流量。

19.补料罐补料培养基的领料定容配制。 20.补料罐补料培养基在位灭菌,同时对管道上段灭菌。 21.补料时,将管道上阀门打开。程序设为自动,设置流量。 22.诱导剂领料,在配料罐中加水配制定容。 23.将诱导剂打入种子罐,灭菌后保持罐压。 24.利用压力差将种子罐里的诱导剂移接到大罐。 25.一段时间后,大罐的PH、DO呈上升形态即为发酵结束,可放罐 离心。

SPWM波控制单相逆变器双闭环PID调节器的Simulink建模与仿真

SPWM波控制单相逆变器双闭环PID调节器的Simulink 建模与仿真 随着电力行业的快速发展,逆变器的应用越来越广泛,逆变器的好坏 会直接影响整个系统的逆变性能和带载能力。逆变器的控制目标是提高逆变器 输出电压的稳态和动态性能,稳态性能主要是指输出电压的稳态精度和提高带 不平衡负载的能力;动态性能主要是指输出电压的THD(Total Hannonic Distortion)和负载突变时的动态响应水平。在这些指标中对输出电压的THD 要 求比较高,对于三相逆变器,一般要求阻性负载满载时THD 小于2%,非线性满载(整流性负载)的THD 小于5%.这些指标与逆变器的控制策略息息相关。文中主要介绍如何建立电压双环SPWM 逆变器的数学模型,并采用电压有效值外 环和电压瞬时值内环进行控制。针对UPS 单模块10 kVA 单相电压型SPWM 逆变器进行建模仿真。通过仿真,验证了控制思路的正确性以及存该控制策略 下的逆变器所具有的鲁棒性强,动态响应快,THD 低等优点。并以仿真为先导,将其思想移植到具体开发中,达到预期效果。 1 三电平逆变器单相控制模型的建立 带LC 滤波器的单相逆变器的主电路结构如图1 所示。图1 中L 为输出 滤波电感,C 为滤波电容,T1,T2,T3,T4 分别是用来驱动IGBT 的三电平的SPWM 波,U0 为输出负载两端的电压。在建立控制系统的仿真模型时,需要 采集负载两端的电压与实际要求的电乐值做比较,然后通过调节器可以得到所 需要调节的值。在此仿真模型中,驱动波形采用的是三电平的SPWM 波形, 具体的产生原理在这不做详细描述。在Matlah 的Simlink 库中SPWM 波的产 生如图2 所示,这里调制比设为0.8.

电机控制中双闭环及PI控制的个人理解[xiu]

运动控制中多闭环反馈控制及PI 控制的个人理解(1) 虫虫QQ214081712 Email:kyo2000652@https://www.360docs.net/doc/565511439.html, 在运动控制系统中,为了实现对电机速度或者位置的良好控制,常常采用多重闭环的结构。比如有刷直流电机调速系统,交流永磁同步电动机伺服系统,都采用了类似的结构,除此之外,闭环系统一般采用PI 控制器或者PID 控制器。所以设计或调试类似系统就必须熟悉多闭环系统和PI 控制器的作用机理。本问着重从物理意义的角度谈一下这些内容,而不做较深层次的分析,因为是个人的见解,所以难免有错误或者不全面的地方,请大家指出,谢谢! 一,基本知识: 谈这个问题的时,首先要明确我们对运动控制系统的要求,其次要了解电机这个被 控对象的一些特征,只有明确了这两点才能理解为什么选用多闭环的结构。/ 1, 对运动控制系统的要求: 不同类型运动控制系统对性能的要求是不一样的,比如一些调速系统要求系统能对 负载扰动有很强的抑制能力,有的伺服系统要求系统对某类信号的静态误差不能超过 多少,或者能适应频繁启动制动的情况。但是把他们综合以下,可以大致归纳为以下 几点: A,静态性能指标:主要是系统的静态误差,一般要保证指令信号和实际输出之间没有 误差或者误差在允许范围内,假如你输入的指令是一个阶跃信号表示为50转每分, 那么电机的稳态输出就要尽量接近50转每分,当然这里说的指令信号不一定都是阶 跃信号,也有可能是斜坡或者其他信号,但是一般系统多用阶跃响应作为标准。 对于负反馈闭环控制系统来说,影响静态误差的主要因素是系统开环传递函数的型别,所以开环传函中串联的积分环节越多,系统型别就越高,静态误差越小,可以参考自动控制原理中的一些内容,这里不再深究。 B,抗扰动指标:也有不少书把该指标化归到静态性能中,这里单独把这个拿出来是为 了强调它的重要性。一般我们要求,当扰动在系统内某点产生作用时,系统输出受他 的影响最小,也就是输出波动的幅度最小,而且能在很快的时间内恢复到正常输出。在实际系统中,特别是调速系统中,我们一般把“静差率”的概念和抗扰动性能联系 起来,静差率表示系统在负载变化下转速稳定程度,相关资料可以参考陈伯时《电力 拖动自动控制系统》,实际上不仅仅是负载变化,运动控制中还有其他扰动,比如电 源的波动,有时候系统参数的时变也可以等效成一种扰动,经典控制论上一般采用扰 动点到系统输出的传递函数定义为扰动传函,我们对这个传递函数的要求是他在低频 的时候增益要足够小(一般要远在0db 以下),这和一般的传递函数不大一样。与之 相关的内容参考《自动控制原理》 ,同时可以关注一下:恢复时间和最大动态变化量

双闭环控制系统设计

双闭环控制系统设计 课程设计报告 电力拖动自动控制系统课程设计 题目:双闭环控制系统设计学生姓名:董长青专业:电气自动化技术专业班级: Z070303 学号: Z07030330 指导教师:姬宣德 日期:2010年03月10日 随着现代工业的发展,在调速领域中,双闭环控制的理念已经得 到了越来越广泛的认同与应用。相对于单闭环系统中不能随心所欲地 控制电流和转矩的动态过程的弱点。双闭环控制则很好的弥补了他的 这一缺陷。 双闭环控制可实现转速和电流两种负反馈的分别作用,从而获得 良好的静,动态性能。其良好的动态性能主要体现在其抗负载扰动以 及抗电网电压扰动之上。正由于双闭环调速的众多优点,所以在此有 必要对其最优化设计进行深入的探讨和研究。本次课程设计目的就是 旨在对双闭环进行最优化的设计。 Summary With the development of modern industry, in the speed area, the concept of dual-loop control has been increasingly widespread recognition and application. Relative to the single closed-loop system can not arbitrarily control the dynamic

process of current and torque weakness. Double closed-loop control is very good to make up for this shortcoming of his. Double-loop speed and current control can achieve the difference of two negative feedback effect, thus get a good static and dynamic performance. The good dynamic performance mainly reflected in its anti-disturbance and anti-grid load over voltage disturbance. Precisely because of the many advantages of Double Closed Loop, so here it is necessary to optimize the design of its depth discussion and study. This course is designed to designed to optimize the double loop design. 一.课程设计设计说明书4 1.1系统性能指标 1.2整流电路4 1.3触发电路的选择和同步5 1.4双闭环控制电路的工作原理6 二. 设计计算书7 2.1整流装置的计算7 2.1.1变压器副方电压7 2.1.2变压器和晶闸管的容量8 2.1.3平波电抗器的电感量8 2.1.4晶闸管保护电路9 2.2 控制电路的计算10

发酵罐温度控制系统的设计

洛阳理工学院 计算机控制技术与应用课程设计 题目:发酵培养基温度控制系统设计 学生姓名: 学号: 班级: 专业:

摘要 本题要设计的是发酵培养基温度控制系统,发酵是放热反应的过程。随着反应的进行,罐内的温度会逐渐升高。而温度对发酵过程具有多方面的影响。因此,对发酵过程中的温度进行检测和控制就显得十分重要。 本课题设计了发酵罐温度控制系统,选择的传感器为Cu100,由于信号很小,所以就需要通过差动放大电路进行放大并且经过了滤波电路滤波,然后将处理后的电压信号经过V/I转换,输出4~20mA的电流信号,最后进行仿真分析以及参数的计算,以达到通过对冷水阀开度的控制对发酵罐温度控制的目的。 本系统应用温度控制系统,有助于提高发酵效率,有助于提高工厂产值,并且可以使资源得到更充分的作用。 关键词:温度控制,PID控制器,V/I转换,比较机构

目录 前言........................................................................................ 错误!未定义书签。 1.1.1 发酵培养基简介 3 1.1.2工艺背景:................................................................ 错误!未定义书签。 1.2温度对发酵的影响...................................................... 错误!未定义书签。 1.2.1温度影响微生物细胞生长................................. 错误!未定义书签。 1.2.2温度影响产物的生成量..................................... 错误!未定义书签。 1.2.3温度影响生物合成的方向................................. 错误!未定义书签。 1.2.4温度影响发酵液的物理性质............................. 错误!未定义书签。 1.3、影响发酵温度变化的因素:..................................... 错误!未定义书签。 1.4发酵热的测定................................................................ 错误!未定义书签。 1.5最适温度的选择与发酵温度的控制............................ 错误!未定义书签。 1.5.1温度的选择....................................................................................... VII 2 培养基温度控制系统的设计.................................................. 错误!未定义书签。 2.1总体设计方案.............................................................................................. VII 2.1.1 系统总框图...................................................................................... VII 2.2硬件设计................................................................................................... V III 2.2.1温度采集电路.................................................................................. V III 2.2.2 PLC与计算机的通信......................................................................... I X 2.3软件部分......................................................................................................... X 3总结........................................................................................................................ X III 参考文献:............................................................................................................... X III

异步电机的双闭环控制

电机电子系统计算机控制与仿真 学院:信息工程学院 专业班级:电机与电器 学生姓名:仪轩杏 学号:406107016001 指导老师:张景明

异步电机的双闭环控制 1 引言 矢量控制是目前交流电机的先进控制方式,一般将含有矢量变换的交流电机控制都称之为矢量控制,实际上只有建立在等效直流机模型上,并按转子磁场准确定向的控制,电机才能获得最优的动态性能。 2 基本原理 矢量控制的基本思路是以产生相同的旋转磁动势为准则,将异步电机在静止三相坐标系上的定子交流电流通过坐标变换等效成同步旋转坐标系上的直流电流,分别加以控制,以达到直流电机的控制效果。 异步电机在两相同步旋转坐标系上的数学模型为: 11sm s s e s m e m sm st e s s s e m m st rm m e m r r s r rm rt s m m s r r r rt u R pL L pL L i u L R pL L pL i u pL L R pL L i u L pL L R pL i ωωωωωωωω+--?????? ??????+??????=?????? -+-??? ??? +?????? 00000000 sm s m sm st s m st rm m r rm rt m r rt L L i L L i L L i L L i ψψψψ??????????????????=?????????????????? ()e p m st sm sm rt T n L i i i i =- 当两相同步旋转坐标系按转子磁链定向时,应有,0rm r rt ψψψ==,即得 m e p st r r L T n i L ψ= 1m r sm r L i pT ψ= + m s st r r L i T ωψ= 其中,w e 为同步转速,w r 为转子角频率,w s 为转差角速度,T r 为转子时间常数,n p 为极对数,R s 、R r 为定子、转子电阻,L s 、L r 、L m 为定子、转子电感及定转子之间的互感,p 为微分算子,ψr 为转子磁链。

双闭环控制器设计方法

3.2.2 电流的直接控制 电流直接控制,就是采用跟踪型的PWM 控制技术对电流波形的瞬时值进行反馈控制,可以采用滞缓比较方式,也可采用三角波比较方式,进行电流的直接控制。采用PWM 技术的直接控制方法从原理上来说可以有效地滤除系统中的无功电流和全部有害电流。与间接控制方法相比较,直接控制方法具有更高的响应速度和控制精度,但它要求开关频率高,因为大功率器件很难以高开关频率运行,因此不采用电流直接控制。一般来说,电流直接控制适合于小功率场合。但从目前世界上运行的无功补偿器的情况看来,电流直接控制在中、大容量系统也有应用。日本新农用于输电80Mvar 的SVG 和日本神户用于钢厂负荷补偿20Mvar 的SVG 均采用了电流直接控制方式。前者在电网严重不对称,甚至短路时仍可照常工作;后者对炼钢电极短路引起的电网电压闪变有很好的抑制作用。电流直接控制的SVG 控制系统有两种基本结构:1.滞环比较控制;2.电压电流双闭环控制. 本文主要讨论电压电流双闭环控制方法。控制结构如图3.2所示,采用了dq 轴下的瞬时控制系统。SVG 发出的电流瞬时值经dq0坐标变换变为d i q i 0i ,与有功电流、无功电流参考值作比较后,经PI 调节器所得值,再经dq0反变换,得到三相电压信号,进行三角波比较电流跟踪型PWM 控制。其中,有功电流参考值由直流侧电压参考值与直流侧电容电压反馈值比较后经PI 调节器得到。由于 参考值*d i 和* q i ,和反馈值d i q i 在稳态时均为直流信号,因此通过PI 调节器可以实 现无稳态误差的电流跟踪控制。即此方法中采用了双闭环反馈控制,内环是电流环控制,外环是电压环控制。

相关文档
最新文档