最新初中数学三角形难题汇编含答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
本题考查了平行四边形的性质、折叠的性质、三角形的内角和定理等知识,属于常考题型,熟练掌握上述基本知识是解题关键.
4.如图,折叠直角三角形纸片的直角,使点C落在AB上的点E处,已知BC=24,∠B=30°,则DE的长是()
A.12B.10C.8D.6
【答案】C
【解析】
【分析】
由折叠的性质可知;DC=DE,∠DEA=∠C=90°,在Rt△BED中,∠B=30°,故此BD=2ED,从而得到BC=3BC,于是可求得DE=8.
A.5cmB.4cmC.3cmD.2cm
【答案】C
【解析】
∵点D到AB的距离是DE,
∴DE⊥AB,
∵BD平分∠ABC,∠C =90°,
【答案】C
【解析】
【分析】
要验证是否可以组成直角三角形,根据勾股定理的逆定理,只要验证三边的关系是否满足两边平方是否等于第三边的平方即可,分别验证四个选项即可得到答案.
【详解】
A. ,故不能组成直角三角形;
B. ,故不能组成直角三角形;
C. ,故可以组成直角三角形;
D. ,故不能组成直角三角形;
故选C.
5.如图,在△ABC中,∠C=90°,∠A=30°,以点B为圆心,适当长为半径的画弧,分别交BA,BC于点M、N;再分别以点M、N为圆心,大于 MN的长为半径画弧,两弧交于点P,作射线BP交AC于点D,则下列说法中不正确的是()
A.BP是∠ABC的平分线B.AD=BDC. D.CD= BD
【答案】C
最新初中数学三角形难题汇编含答案
一、选择题
1.如图,在菱形 中,点 在 轴上,点 的坐标轴为 ,点 的坐标为 ,则菱形 的周长等于()
A. B. C. D.
【答案】C
【解析】
【分析】
如下图,先求得点A的坐标,然后根据点A、D的坐标刻碟AD的长,进而得出菱形ABCD的周长.
【详解】
如下图,连接AC、BD,交于点E
【答案】C
【解析】
【分析】
根据三角形的三边关系可判断x的取值范围,进而可得答案.
【详解】
解:由三角形三边关系定理得7-2<x<7+2,即5<x<9.
因此,本题的第三边应满足5<xΒιβλιοθήκη Baidu9,把各项代入不等式符合的即为答案.
4,5,9都不符合不等式5<x<9,只有6符合不等式,
故选C.
【点睛】
本题考查的是三角形的三边关系,属于基础题型,掌握三角形的三边关系是解题的关键.
【答案】A
【解析】
【分析】
根据题意可以求得OA和AC的长,从而可以求得点C的坐标,进而求得k的
值,本题得以解决.
【详解】
等腰直角三角形 的顶点 、 分别在 轴、 轴的正半轴上, ,CA⊥x轴, ,

, ,
点 的坐标为 ,
点 在函数 的图象上,

故选: .
【点睛】
本题考查反比例函数图象上点的坐标特征、等腰直角三角形,解答本题的关键
本题考查勾股定理在实际生活中的应用,解题关键是将题干中生活实例抽象成数学模型,然后再利用相关知识求解.
9.如图,已知△ABC是等腰直角三角形,∠A=90°,BD是∠ABC的平分线,DE⊥BC于E,若BC=10cm,则△DEC的周长为()
A.8cmB.10cmC.12cmD.14cm
【答案】B
【解析】
【详解】
解:∵四边形ABCD是平行四边形,∴∠D=∠B=48°,
由折叠的性质得:∠D'=∠D=48°,∠D'EC=∠DEC=180°﹣∠D﹣∠ECD=107°,
∴∠AEC=180°﹣∠DEC=180°﹣107°=73°,
∴∠D'EA=∠D'EC﹣∠AEC=107°﹣73°=34°.
故选:B.
【点睛】
由于 ,
根据勾股定理的逆定理得: 是直角三角形;
因此有两个直角等三角形;
故选C.
【点睛】
本题主要考查了勾股定理和勾股定理的逆定理,能灵活运用所学知识是解题的关键.
16.如图,在方格纸中,以AB为一边作△ABP,使之与△ABC全等,从P1,P2,P3,P4四个点中找出符合条件的点P,则点P有()
A.1个B.2个C.3个D.4个
3.如图,在▱ABCD中,E为边AD上的一点,将△DEC沿CE折叠至△D′EC处,若∠B=48°,∠ECD=25°,则∠D′EA的度数为( )
A.33°B.34°C.35°D.36°
【答案】B
【解析】
【分析】
由平行四边形的性质可得∠D=∠B,由折叠的性质可得∠D'=∠D,根据三角形的内角和定理可得∠DEC,即为∠D'EC,而∠AEC易求,进而可得∠D'EA的度数.
【详解】
解:∵∠ADC为三角形ABD外角
∴∠ADC=∠B+∠DAB

∴∠B=∠DAB

在Rt△ADC中,由勾股定理得:
∴BC=BD+DC=
故选B
【点睛】
本题考查勾股定理的应用以及等角对等边,关键抓住 这个特殊条件.
14.下列几组线段中,能组成直角三角形的是()
A. , , B. , , C. , , D. , ,
A.一个图形经过旋转后得到的图形,与原来的图形全等
B.一个图形经过中心对称后得到的图形,与原来的图形全等
C.一个图形放大后得到的图形,与原来的图形全等
D.一个图形经过轴对称后得到的图形,与原来的图形全等
【答案】C
【解析】
A.一个图形经过旋转后得到的图形,与原来的图形全等,正确,不符合题意;
B.一个图形经过中心对称后得到的图形,与原来的图形全等,正确,不符合题意;
【分析】
根据“AAS”证明ΔABD≌ΔEBD.得到AD=DE,AB=BE,根据等腰直角三角形的边的关系,求其周长.
【详解】
∵BD是∠ABC的平分线,
∴∠ABD=∠EBD.
又∵∠A=∠DEB=90°,BD是公共边,
∴△ABD≌△EBD(AAS),
∴AD=ED,AB=BE,
∴△DEC的周长是DE+EC+DC
【详解】
设网格的小正方形的边长是1,
由勾股定理(两直角边的平方等于斜边的平方)可知,
的三边分别是:AB= ,AC= ,BC= ;
由于 ,
根据勾股定理的逆定理得: 是直角三角形;
的三边分别是: = , = , = ;
由于 ,
根据勾股定理的逆定理得: 不是直角三角形;
的三边分别是: = , = , = ;
是明确题意,利用数形结合的思想解答.
8.将一根24cm的筷子,置于底面直径为15cm,高8cm的装满水的无盖圆柱形水杯中,设筷子浸没在杯子里面的长度为hcm,则h的取值范围是()
A.h≤15cmB.h≥8cmC.8cm≤h≤17cmD.7cm≤h≤16cm
【答案】C
【解析】
【分析】
筷子浸没在水中的最短距离为水杯高度,最长距离如下图,是筷子斜卧于杯中时,利用勾股定理可求得.
∵四边形ABCD是菱形,∴DB⊥AC,且DE=EB
又∵B ,D
∴E(2,1)
∴A(2,0)
∴AD=
∴菱形ABCD的周长为:
故选:C
【点睛】
本题在直角坐标系中考查菱形的性质,解题关键是利用菱形的性质得出点A的坐标,从而求得菱形周长.
2.长度分别为 , , 的三条线段能组成一个三角形, 的值可以是()
A. B. C. D.
=AD+DC+EC
=AC+EC=AB+EC
=BE+EC=BC
=10 cm.
故选B.
【点睛】
本题考查了等腰直角三角形的性质,角平分线的定义,全等三角形的判定与性质.掌握全等三角形的判定方法(即SSS、SAS、ASA、AAS和HL)和全等三角形的性质(即全等三角形的对应边相等、对应角相等)是解题的关键.
∵∠C=90°,∠A=30°,
∴∠ABC=60°,
∴∠ABD=30°=∠A,
∴AD=BD,所以B选项的结论正确;
∵∠CBD= ∠ABC=30°,
∴BD=2CD,所以D选项的结论正确;
∴AD=2CD,
∴S△ABD=2S△CBD,所以C选项的结论错误.
故选:C.
【点睛】
此题考查含30°角的直角三角形的性质,尺规作图(作角平分线),解题关键在于利用三角形内角和进行计算.
【详解】
解:如图,延长AB交CF于E,
∵∠ACB=90°,∠A=30°,
∠ABC=60°,
∵∠1=38°,
∴∠AEC=∠ABC-∠1=22°,
∵GH∥EF,
∴∠2=∠AEC=22°,
故选B.
【点睛】
本题考查了三角形的内角和定理,三角形外角性质,平行线性质的应用,主要考查学生的推理能力.
11.对于图形的全等,下列叙述不正确的是( )
【详解】
解:由折叠的性质可知;DC=DE,∠DEA=∠C=90°,
∵∠BED+∠DEA=180°,
∴∠BED=90°.
又∵∠B=30°,
∴BD=2DE.
∴BC=3ED=24.
∴DE=8.
故答案为8.
【点睛】
本题考查的是翻折的性质、含30°锐角的直角三角形的性质,根据题意得出BC=3DE是解题的关键.
【详解】
当筷子笔直竖立在杯中时,筷子浸没水中距离最短,为杯高=8cm
AD是筷子,AB长是杯子直径,BC是杯子高,当筷子如下图斜卧于杯中时,浸没在水中的距离最长
由题意得:AB=15cm,BC=8cm,△ABC是直角三角形
∴在Rt△ABC中,根据勾股定理,AC=17cm
∴8cm≤h≤17cm
故选:C
【点睛】
6.如图,在菱形ABCD中,AB=10,两条对角线相交于点O,若OB=6,则菱形面积是( )
A.60B.48C.24D.96
【答案】D
【解析】
【分析】
由菱形的性质可得AC⊥BD,AO=CO,BO=DO=6,由勾股定理可求AO的长,即可求解.
【详解】
解:∵四边形ABCD是菱形,
∴AC⊥BD,AO=CO,BO=DO=6,
12.如图,在 中, 的垂直平分线交 于点 ,交 于点 . 的周长为 , 的周长为 ,则 的长为()
A. B. C. D.
【答案】B
【解析】
【分析】
根据线段垂直平分线的性质和等腰三角形的性质即可得到结论.
【详解】
∵AB的垂直平分线交AB于点D,
∴AE=BE,
∵△ACE的周长=AC+AE+CE=AC+BC=13,△ABC的周长=AC+BC+AB=19,
【点睛】
本题主要考查了勾股定理的逆定理(如果三角形两边的平方等于第三边的平方,那么这个三角形是直角三角形),掌握勾股定理的逆定理是解题的关键.
15.如图为一个 的网格,在 , 和 中,直角三角形有()个
A. B. C. D.
【答案】C
【解析】
【分析】
根据题中的网格,先运用勾股定理计算出各个三角形的边长,再根据勾股定理的逆定理判断是否为直角三角形即可.
∴AB=△ABC的周长-△ACE的周长=19-13=6,
故答案为:B.
【点睛】
本题考查了线段垂直平分线的性质:垂直平分线垂直且平分其所在线段;垂直平分线上任意一点,到线段两端点的距离相等.
13.如图,在 中, , ,点 在 上, , ,则 的长为()
A. B. C. D.
【答案】B
【解析】
【分析】
根据 ,可得∠B=∠DAB,即 ,在Rt△ADC中根据勾股定理可得DC=1,则BC=BD+DC= .
【解析】
【分析】
A、由作法得BD是∠ABC的平分线,即可判定;
B、先根据三角形内角和定理求出∠ABC的度数,再由BP是∠ABC的平分线得出∠ABD=30°=∠A,即可判定;
C,D、根据含30°的直角三角形,30°所对直角边等于斜边的一半,即可判定.
【详解】
解:由作法得BD平分∠ABC,所以A选项的结论正确;
【答案】C
【解析】
【分析】
【详解】
要使△ABP与△ABC全等,必须使点P到AB的距离等于点C到AB的距离,即3个单位长度,所以点P的位置可以是P1,P2,P4三个,故选C.
17.如图,Rt△ABC中,∠C=90°,∠ABC的平分线BD交AC于D,若AD=5cm,CD=3cm,则点D到AB的距离DE是()
∴AO= ,
∴AC=16,BD=12,
∴菱形面积= =96,
故选:D.
【点睛】
本题考查了菱形的性质,勾股定理,掌握菱形的对角线互相垂直平分是本题的关键.
7.如图,在平面直角坐标系中,等腰直角三角形 的顶点 、 分别在 轴、 轴的正半轴上, , 轴,点 在函数 的图象上,若 ,则 的值为()
A.1B. C. D.2
C.一个图形放大后得到的图形,与原来的图形不全等,故错误,符合题意;
D.一个图形经过轴对称后得到的图形,与原来的图形全等,正确,不符合题意,
故选C.
【点睛】本题考查了对全等图形的认识,解题的关键是要明确通过旋转、轴对称、平移等都可以得到与原图形全等的图形,而通过放大或缩小只能得到与原图形形状一样的图形,得不到全等图形.
10.如图所示,将含有30°角的三角板(∠A=30°)的直角顶点放在相互平行的两条直线其中一条上,若∠1=38°,则∠2的度数()
A.28°B.22°C.32°D.38°
【答案】B
【解析】
【分析】
延长AB交CF于E,求出∠ABC,根据三角形外角性质求出∠AEC,根据平行线性质得出∠2=∠AEC,代入求出即可.
相关文档
最新文档