2020中国农业大学考研大纲:601高等代数

合集下载

801《高等代数》考试大纲

801《高等代数》考试大纲

801 《高等代数》考试大纲一、考试要求1.掌握基本的代数运算方法,包括:行列式的计算,矩阵运算(乘法、求秩、判别方阵的可逆性及求逆、求方阵的特征值及特征向量),线性方程组解的判定及求解,多项式运算(带余除法,辗转相除法,综合除法)等.2.掌握基本的代数分析技巧,包括:向量的线性相关和线性无关性,向量空间的基与维数,线性方程组解的结构, 线性变换和矩阵的关系,方阵可相似对角化的判定,对称矩阵与二次型,一元多项式的整除性及因式分解.3.掌握代数的基本几何背景,理解代数与几何的关系,包括:欧氏空间和酉空间,正交变换与正交矩阵, 对称变换与对称矩阵, 主轴定理, 利用二次型理论化简二次曲面方程.二、考试内容第一部分多项式1.一元多项式的定义和基本运算;2.多项式的带余除法与综合除法,多项式整除性的常用性质;3.多项式的最大公因式概念及性质,辗转相除法;4.不可约多项式的概念及性质,多项式的唯一因式分解定理,多项式的重因式;5.多项式函数与多项式的根的概念及性质;6.代数基本定理,复数域和实数域上多项式的因式分解定理,Vieta定理;7.整系数多项式的有理根,Eisenstein判别法;8.多元多项式概念及字典排列法,对称多项式.第二部分行列式1. 线性方程组和行列式的关系,排列、n阶行列式及其子式和代数余子式;2. 行列式的性质及行列式的基本计算方法;3. 克拉默法则.第三部分线性方程组1.线性方程组求解的消元法;2.矩阵的秩的概念,用矩阵的初等变换求秩;3.线性方程组可解的判别法;4.两个多项式的结式和多项式的判别式.第四部分矩阵1. 矩阵的线性运算、乘法、转置及其运算法则;2.逆矩阵概念,矩阵可逆的判定条件及可逆矩阵的性质,求可逆矩阵的逆矩阵的方法;3.矩阵的分块法,分块矩阵的运算法则.第五部分向量空间1. 向量空间及子空间的定义;2.向量组线性相关、线性无关的定义,向量组线性相关性的判定条件和性质,向量组的极大无关组;3.向量空间的基与维数,过渡矩阵及坐标变换式;4.向量空间的同构及其性质;5.齐次线性方程组的解空间与基础解系;线性方程组的结构式通解.第六部分线性变换1. 向量空间线性映射概念及其相关性质;2.线性变换的运算和矩阵的相似关系;3.不变子空间及其性质;4.方阵的特征值和特征向量;5.可以对角化的矩阵.第七部分欧氏空间和酉空间1. 向量空间中向量的内积、长度、夹角的定义及性质,规范正交基,Schmidt正交化方法;2. 正交变换与正交矩阵的定义和性质;3. 对称变换与实对称矩阵,实对称矩阵的正交相似对角化;4.酉空间的定义及其基本性质,酉变换和酉矩阵.第八部分二次型1. 二次型与对称矩阵,矩阵的合同关系;2.复数域和实数域上的二次型,用正交变换化实二次型为标准形的方法;3.正定二次型与正定矩阵,实对称矩阵正定的判定条件和性质;4.主轴定理, 利用二次型理论化简二次曲面方程.参考文献1.张禾瑞,郝鈵新《高等代数》(第四版)高等教育出版社 19992.北京大学数学系《高等代数》(第三版)高等教育出版社 20033.丘维声《高等代数》(第二版)高等教育出版社 2003。

814--《高等代数》考研大纲

814--《高等代数》考研大纲

814--《高等代数》考研大纲一、基本要求要求考生全面系统地理解高等代数的基本概念和基本理论,熟练掌握高等代数的基本思想和基本方法。

要求考生具有较强的抽象思维能力、逻辑推理能力、数学运算能力以及综合运用所学知识分析问题和解决问题的能力。

二、考试范围(一)多项式1.多项式的带余除法及整除性、最大公因式、互素多项式;2.不可约多项式、因式分解唯一性定理、重因式、复系数与实系数多项式的因式分解、有理系数多项式不可约的判定;3.多项式函数与多项式的根、代数基本定理、有理系数多项式的有理根的求法、根与系数的关系。

(二)行列式1.行列式的定义及性质,行列式的子式、余子式及代数余子式;2.行列式按一行、列的展开定理、Cramer法则、Laplace定理和行列式乘法定理、Vandermonde行列式;3.运用行列式的性质及展开定理等计算行列式。

(三)线性方程组1.Gauss消元法与初等变换;2.向量组的线性相关性、向量组的秩与极大线性无关组、矩阵的秩;3.线性方程组有解的判别定理与解的结构。

(四)矩阵1.矩阵的基本运算、矩阵的分块及常用分块方法;2.矩阵的初等变换、初等矩阵、矩阵的等价、矩阵的迹、方阵的多项式;;3.逆矩阵、矩阵可逆的条件及与矩阵的秩和初等矩阵之间的关系,伴随矩阵及其性质;4.运用初等变换法求矩阵的秩及逆矩阵。

(五)二次型理论1.二次型及其矩阵表示、矩阵的合同、二次型的标准形与规范形、惯2.实二次型在合同变换下的规范形以及在正交变换下的特征值标准型的求法;3.实二次型或实对称矩阵的正定、半正定、负定、半负定的定义、判别法及其应用。

(六)线性空间1.线性空间、子空间的定义与性质,向量组的线性相关性,线性(子)空间的基、维数、向量关于基的坐标,基变换与坐标变换,线性空间的同构;2.子空间的基扩张定理,生成子空间,子空间的和与直和、维数公式;3.一些常见的子空间,如线性方程组的解空间、矩阵空间、多项式空间、函数空间。

2017年中国农业大学考研参考书

2017年中国农业大学考研参考书

情报学基础教程
科学出版社(2006) 叶鹰等
840 农业概论
《农业概论》
高等教育出版社 翟虎渠
842 马克思主义哲学
《马克思主义哲学原理》 北京出版社,2000 袁贵仁
《马克思主义哲学原理》 年第一版
陈先达
中国人民大学出版
社,2004 年 5 月第
一版
845 农业生物环境原理 《农业生物环境原理》 农业出版社
中国农业大学 2017 年硕士招生考试参考书目
科目 代码
考试科目
参考书
出版社
作者
213 日语二外
《标准日本语》初级 2 册,人民教育出版社 李妲莉
中级 1 册
高等教育出版社 赵华敏
《初级日语综合教程》第 北京大学出版社
三单元
《初级日语》1、2 册
215 法语二外
《简明法语教程》
商务印书馆
孙辉
360 高等代数
《民事诉讼法》(第二版) 北京大学出版社 魏振瀛
《民法学》
高等教育出版社 张文显主编
《法理学》
北京大学出版社
北京大学出版社
高等教育出版社
806 生物化学
《生物化学》
高等教育出版社 王镜岩等
807 环境化学与环境监测 环境化学
高等教育出版社 戴树桂
环境监测
高等教育出版社 奚旦立等编

808 综合化学(附考试基本内 分析化学(分析化学中的
李红艳
传播学史)
《中国新闻传播史》 中国传媒大学出版 方汉奇
《外国新闻传播史》 社
郑超然、程曼
中国人民大学出版 丽、王泰玄

中国人民大学出版

726 基础英语

考研《高等代数》(学术学位)考试大纲

考研《高等代数》(学术学位)考试大纲
掌握可逆矩阵、奇异矩阵、非退化矩阵等概念。会计算方阵的伴随矩阵,能计算可逆阵的逆矩阵。能利用分块方法进行矩阵运算。能证明有关结论。
(3)初等矩阵与初等变换
掌握矩阵的初等变换和初等矩阵的概念,明确二者关系。能熟练进行矩阵的初等变换,能利用初等变换求解线性方程组,并能进行有关证明。
(4) 相似矩阵与矩阵合同
三、主要参考书目
1、《高等代数》(第三版),北京大学数学系几何与代数教研室前代数小组著,高等教育出版社 2003 或之后版本
2、《高等代数(上下册)》(第二版),丘维声著,高等教育出版社,1999 或之后版本
硕士研究生入学考试自命题科目考试大纲
科目代码、名称:
专业类别:
■学术学位□专业学位
适用专业:
数学
一、基本内容
1、多项式
本部分要求掌握一元多项式及其整除问题、多项式函数、最大公因式、重因式和因式分解定理等有关概念和基本结论,能够进行多项式的有关计算和有关问题的证明。
2、行列式
(1)定义与性质
要求熟悉排列、逆序、对换等概念;理解行列式的定义;掌握行列式的性质。
9、欧几里得空间
掌握欧几里得空间的定义与性质,掌握内积、正交性、标准正交基的概念及有关计算方法,能证明有关性质和结论。
二、考试要求(包括考试时间、总分、考试方式、题型、分数比例等)
考试时间:180分钟
总分:150分
考试方式:笔试,闭卷
题型:填空题,计算与证明题
分数比例:填空题(60分)占40%,计算与证明题(90分)占60%。
(3)线性方程组解的结构
掌握线性方程组解的判定定理,会求有解的线性方程组的通解,熟练掌握线性方程组常用的解
法,并能证明有关结论。
4、矩阵

专业课《高等代数》考研大纲和参考书目

专业课《高等代数》考研大纲和参考书目
施密特正交化方法求标准正交基;
*正交变换,对称变换;
*对称矩阵的标准型及用正交线性替换化二次型为标准型;
酉空间介绍。
矩阵线性运算,乘法,转置及运算律;
矩阵初等变换,初等矩阵;
逆矩阵极其存在条件,求逆矩阵;
分块矩阵运算;
二次型:
*二次型的矩阵表示;
矩阵合同
*可逆线性变换化二次型为标准型;
惯性定理;
*正定二次型判定;
线性空间
线性空间的定义与性质;
*有限维线性空间的基与维数,向量坐标;
*基变换与坐标变换;
*子空间定义,维数与基、维数公式;
*复系数与实系数多项式的因式分解;
行列式:
*行列式的定义;
*行列式性质及按行按列展开法则,并用此计算行列式;
Laplace定理;
*克莱拇法则;
*线性方程组:
消元法;
向量组的线性相关与线性无关性,向量组的极大无关组与秩;
矩阵的秩及求法;
线性方程组有解判别定理;
线性方程组基础解系、通解及解的结构;
*矩阵:
专业课《高等代数》考研大纲和参考源自目参考教材及参考书:《高等代数》(第三版),北京大学编,高等教育出版社
《高等代数教程》(上、下册),王萼芳等编,清华大学出版社
课程内容(打*部分内容或章节要求重点掌握)
多项式:
*整除概念,带余除法理论;
最大公因式定义及求法;
*多项式互素的概念与性质;
*因式分解定理和不可约多项式的性质;
*子空间的交与和,直和;
线性空间的同构;
*线性变换
线性变换的运算,线性变换的矩阵
特征值与特征向量;
可对角化问题;
线性变换的值域与核;

长沙理工大学2020考研大纲:601高等数学

长沙理工大学2020考研大纲:601高等数学

长沙理工大学2020考研大纲:601高等数学考研大纲频道为大家提供长沙理工大学2019考研大纲:601高等数学,一起来看看吧!更多考研资讯请关注我们网站的更新!长沙理工大学2019考研大纲:601高等数学科目代码:601科目名称:高等数学一、考试要求考生应系统地理解高等数学中函数、极限和连续、一元函数微分学、一元函数积分学、向量代数与空间解析几何、多元函数微积分学、无穷级数、常微分方程的基本概念与基本理论;学会、掌握或熟练掌握上述各部分的基本方法。

应注意各部分知识的结构及知识的内在联系;应具有一定的抽象思维能力、逻辑推理能力、数学运算能力、空间想象能力;能运用基本概念、基本理论和基本方法正确地推理,准确地计算;能综合运用所学知识分析并解决工程和生活中的实际问题。

二、考试内容1、函数和极限函数的概念及表示法,函数的有界性、单调性、周期性和奇偶性,复合函数、反函数、分段函数和隐函数,基本初等函数性质及其图形。

数列极限与函数极限的定义以及它们的性质,无穷小和无穷大的概念及其关系,无穷小的性质及无穷小的比较,极限的四则运算,极限存在的两个准则(单调有界准则和夹逼准则)两个重要极限。

函数连续的概念,函数间断点的类型,初等函数的连续性,闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理)。

2、一元函数微分学导数和微分的概念,导数的几何意义和物理意义,函数的可导性与连续性之间的关系,平面曲线的切线和法线,基本初等函数的导数,导数和微分的四则运算,复合函数、反函数、隐函数以及参数方程所确定的函数的微分法,高阶导数的概念和求法,一阶微分形式的不变性,微分在近似计算中的应用,洛尔(Rolle)定理,拉格朗日(Lagrange)中值定理,柯西(Cauchy)中值定理,泰勒(Taylor)定理,洛必达(L’Hospital)法则,函数的极值及其求法,函数单调性,函数图形的凹凸性、拐点及渐近线,函数图形的描绘,函数最大值和最小值的求法及简单应用,弧微分,曲率的概念,曲率半径。

2020考研农学门类联考数学大纲:线性代数

2020考研农学门类联考数学大纲:线性代数

2020考研农学门类联考数学大纲:线性代数出国留学考研网为大家提供2017考研农学门类联考数学大纲:线性代数,更多考研资讯请关注我们网站的更新!2017考研农学门类联考数学大纲:线性代数一、行列式考试内容行列式的概念和基本性质行列式按行(列)展开定理考试要求1.了解行列式的概念,掌握行列式的性质.2.会应用行列式的性质和行列式按行(列)展开定理计算行列式.二、矩阵考试内容矩阵的概念矩阵的线性运算矩阵的乘法方阵的幂方阵乘积的行列式矩阵的转置逆矩阵的概念和性质矩阵可逆的充分必要条件伴随矩阵矩阵的初等变换初等矩阵矩阵的秩矩阵的等价考试要求1.理解矩阵的概念,了解单位矩阵、对角矩阵、三角矩阵的定义及性质,了解对称矩阵、反对称矩阵及正交矩阵等的定义和性质.2.掌握矩阵的线性运算、乘法、转置以及它们的运算规律,了解方阵的幂与方阵乘积的行列式的性质.3.理解逆矩阵的概念,掌握逆矩阵的性质以及矩阵可逆的充分必要条件,了解伴随矩阵的概念,会用伴随矩阵求逆矩阵.4.了解矩阵的初等变换和初等矩阵及矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的逆矩阵和秩的方法.三、向量考试内容向量的概念向量的线性组合与线性表示向量组的线性相关与线性无关向量组的极大线性无关组等价向量组向量组的秩向量组的秩与矩阵的秩之间的关系考试要求1.了解向量的概念,掌握向量的加法和数乘运算法则.2.理解向量的线性组合与线性表示、向量组线性相关、线性无关等概念,掌握向量组线性相关、线性无关的有关性质及判别法.3.理解向量组的极大线性无关组和秩的概念,会求向量组的极大线性无关组及秩.4.了解向量组等价的概念,了解矩阵的秩与其行(列)向量组的秩之间的关系.四、线性方程组考试内容线性方程组的克拉默(Cramer)法则线性方程组有解和无解的判定齐次线性方程组的基础解系和通解非齐次线性方程组的解与相应的齐次线性方程组的解之间的关系非齐次线性方程组的通解考试要求1.会用克拉默法则解线性方程组.2.掌握非齐次线性方程组有解和无解的判定方法.3.理解齐次线性方程组的基础解系的概念,掌握齐次线性方程组的基础解系和通解的求法.4.了解非齐次线性方程组的结构及通解的概念.5.掌握用初等行变换求解线性方程组的方法.五、矩阵的特征值和特征向量考试内容矩阵的特征值和特征向量的概念、性质相似矩阵的概念及性质矩阵可相似对角化的充分必要条件及相似对角矩阵实对称矩阵的特征值、特征向量及其相似对角矩阵考试要求1.理解矩阵的特征值、特征向量的概念,掌握矩阵特征值的性质,掌握求矩阵特征值和特征向量的方法.2.了解矩阵相似的概念和相似矩阵的性质,了解矩阵可相似对角化的充分必要条件,会将矩阵化为相似对角矩阵.3.了解实对称矩阵的特征值和特征向量的性质.。

中国海洋大学856 高等代数2020年考研专业课初试大纲

中国海洋大学856 高等代数2020年考研专业课初试大纲

856 高等代数
一、考试性质
高等代数是数学、统计学硕士研究生招生初试考试的专业基础课程。

二、考查目标
力求反映数学相关硕士学位的特点,科学、准确、规范地测评考生对高等代数所具有的基本素质和综合能力,具体考查考生对高等代数基础理论的掌握情况,以及运用高等代数的理论与方法分析问题、解决问题的能力。

在三个层次上测试考生对高等代数理论的掌握程度和运用能力。

三个层次的基本要求分别为:
1、基本概念和基本理论的理解、掌握;
2、运用基本理论解决基础性问题的分析、计算和推理能力;
3、综合运用高等代数知识分析问题、解决问题的能力。

三、考试形式
(一)试卷满分及考试时间
本试卷满分为150分,考试时间为180分钟。

(二)答题方式
答题方式为闭卷、笔试。

(三)试卷结构
(1)试卷分值构成:
多项式理论部分约占分值20分;
1。

硕士研究生入学考试大纲-853高等代数

硕士研究生入学考试大纲-853高等代数

目录I 考查目标 (2)II 考试形式和试卷结构 (2)III 考查内容 (2)IV. 题型示例及参考答案 (4)全国硕士研究生入学统一考试高等代数考试大纲I 考查目标要求考生比较系统地理解高等代数的基本概念和基本理论,掌握高等代数的基本思想和方法具有抽象思维能力、逻辑推理能力、运算能力和综合运用所学的知识分析问题和解决问题的能力。

II 考试形式和试卷结构一、试卷满分及考试时间试卷满分为150分,考试时间180分钟。

二、答题方式答题方式为闭卷、笔试。

三、试卷内容与题型结构计算题(30%)、证明题(70%)III 考查内容一、多项式1.熟练掌握多项式因式分解理论及整除理论。

2.掌握多项式、不可约多项式、最大公因式、重因式的概念;掌握整除、互素、不可约等概念的联系与区别。

3.掌握带余除法、辗转相除法、艾森斯坦因(Eisenstein)判别法。

4.会求两个多项式的最大公因式,会求有理系数多项式的有理根,会判别两个多项式互素。

二、行列式1.熟练掌握行列式的性质及行列式的计算。

2.掌握n阶行列式的定义。

3.掌握克拉默(Cramer)法则。

三、线性方程组1.熟练掌握向量线性相关性的概念、性质、判别法,会求向量组的秩及最大线性无关组。

2.掌握基础解系的概念及计算,熟练掌握线性方程组的解的判别定理,以及齐次和非齐次线性方程组的求解。

3.熟练掌握矩阵的秩的概念及计算。

四、矩阵1.熟练掌握矩阵、可逆矩阵、初等矩阵的概念与性质。

2.理解分块矩阵的概念,掌握分块矩阵的运算及思想方法。

3.熟练掌握矩阵的加法、减法、乘法,数乘、转置等运算。

4.熟练掌握可逆矩阵的判别方法及逆矩阵的计算。

5.能熟练使用矩阵的初等变换方法。

五、二次型1.掌握二次型的标准形、实二次型的规范形的概念。

2.熟练掌握正定二次型的概念、性质、判别方法。

3.掌握化二次型为标准形的思想方法。

4.理解合同矩阵的概念及背景。

六、线性空间1.掌握线性空间、子空间的概念及判定方法。

2018中国农业大学理学院考研复试通知复试时间复试分数线复试经验

2018中国农业大学理学院考研复试通知复试时间复试分数线复试经验

2018中国农业大学理学院考研复试通知复试时间复试分数线复试经验启道考研网快讯:2018年考研复试即将开始,启道教育小编根据根据考生需要,整理2017年中国农业大学理学院考研复试细则,仅供参考:一、复试科目(启道考研复试辅导班)080100力学程结构计算与分析7①101思想政治理论②201英语一③301数学一④832工程力学学、材料力学、弹性力学02(全日制)散体力学与数值仿真学03(全日制)疲劳与断裂力学04(全日制)新二、复试通知(启道考研复试辅导班)根据研究生院文件精神,理学院结合本院特点,坚持公平、公正、公开和科学选拔的原则,淡化初试,加强复试,避免录取高分低能的考生,制定了2018年硕士研究生的复试方案,全面衡量考生的德智体情况,按需招生、择优录取。

一、理学院硕士研究生招生领导小组组长:王鹏成员:何志巍、刘尚钟、侯松波、秦太验、高阳、林海波、刘丰茂、王学进二、复试基本要求调剂复试:我院数学、生物物理学、力学、化学需少量调剂生。

(校内外调剂均需通过全国硕士研究生招生调剂服务系统)(1)校内调剂:遵循专业相近、业务课相近的原则,初试成绩必须达到报考学科门类的我校复试分数线和我院接收学科的复试分数线。

(2)校外调剂:校外调剂生除初试成绩必须满足报考学科门类教育部及我校公布的学科复试分数线外,考生须本科毕业于双一流建设大学(含一流大学建设高校42所和一流学科建设高校95所),或一志愿报考单位为双一流建设大学或中科院系统的研究所。

(3)设置统考数学的专业除遵循上述原则外,考生应有统考数学成绩,且按数学一、二、三顺调。

符合我院调剂原则的考生将本人的调剂申请表发到指定邮箱(若不满足调剂要求,恕不回复邮件),待全国硕士研究生招生调剂服务系统开通后,校内外调剂均需通过该系统。

生物物理专业:wangxjhb@;化学专业:cau_chem@三、复试时间:1、化学、农药学、农产品安全专业:3月15日-16日;2、数学专业:3月22日;3、生物物理专业:3月23日;4、力学专业:3月22日。

硕士《高等代数》考研大纲

硕士《高等代数》考研大纲

硕士《高等代数》考研大纲课程名称:高等代数科目代码:865适用专业:数学与应用数学专业参考书目:《高等代数》第三版,北京大学数学系几何与代数教研室代数小组编,高等教育出版社一、课程基本要求(一)多项式1.理解一元多项式和整除的概念;2.掌握最大多项式概念、因式分解定理以及重因式概念;3.掌握多项式函数概念和复系数和实系数多项式的因式分解;(二)行列式1.理解排列、和n阶行列式的概念;2.掌握行列式的性质以及计算方法;3.掌握克莱姆法则和Laplace展开定理。

(三)线性方程组1.了解解方程组的消元法和n维向量空间的概念;2.重点掌握线性相关性的概念以及矩阵的秩;3.掌握线性方程组有解的判定方法以及解的结构;(四)矩阵1.掌握矩阵的概念和运算;2.掌握矩阵乘积的行列式与秩;3.重点掌握矩阵的逆;4.了解矩阵的分块;5.掌握初等矩阵的概念及其应用;(五)二次型1.理解二次型的概念及矩阵表示;2.掌握二次型的标准型和唯一性;3.掌握正定二次型的概念及判定方法。

(六)线性空间1.掌握线性空间的定义及性质;2.理解维数、基及坐标的概念;3.掌握基变换与坐标变换;4.掌握线性子空间的交与和运算及性质;5.了解线性空间的同构。

(七)线性变换1.理解线性变换的定义及运算;2.掌握线性变换的矩阵表示;3.重点掌握特征值与特征向量的概念及计算方法;4.掌握线性变换的相似性及化矩阵为标准型;(八)欧几理得空间1.理解欧几理得空间的定义及性质;2.掌握标准正交基的概念;3.重点掌握正交变换的概念及性质;4.重点掌握对称矩阵的标准型;。

(完整word版)《高等代数》课程教学大纲

(完整word版)《高等代数》课程教学大纲

《高等代数》课程教学大纲课程编号:090085、090022总学时:162学分:8适用专业:数学与应用数学、信息与计算科学课程类型:专业必修课开课单位:一、课程的性质、目的与任务通过本课程的教学,使学生对高等代数乃至代数学的思想和方法有较深刻的认识, 提高他们的抽象思维、逻辑推理和运算的能力;使学生初步地掌握基本的、系统的代数知识和抽象的、严格的代数方法,进而加深对中学代数的理解;使学生能应用代数思想和方法去理解与处理有关的问题, 培养与提高代数的理论分析问题与解决问题的能力;使学生学习数学学科后续课程(如近世代数、离散数学、计算方法、偏微分方程、泛函分析等)提供一些所需要的基础理论和知识;使学生在智能开发、创新能力培养等方面获得重要的平台。

《高等代数》是数学与应用数学、信息与计算科学本科专业最重要的基础课程之一,是数学各专业报考研究生的必考课程之一,也是理论性、应用性很强的一门数学基础课。

讲授本课程的目的主要在于培养学生的代数基础理论和思想素质,基本掌握代数中的论证方法, 获得较熟练的演算技能和初步应用的技巧, 提高分析问题、解决问题的能力,为进一步学习其它数学知识打下坚实的基础。

本课程的主要任务是通过教学的主要环节(课堂讲授与讨论、习题课、作业、辅导答疑等),使学生学习和掌握多项式理论、线性代数的代数理论(行列式、线性方程组、矩阵、λ矩阵)及线性代数的几何理论(线性空间、线性变换、欧氏空间)。

二次型、-二、课程教学内容和基础要求(1)理解多项式的定义,掌握最大公因式,互素,不可约多项式, 因式分解等有关的一系列性质。

(2)理解行列式的定义, 掌握行列式的基本运算性质和行列式的行(列)展开性质;理解向量组的线性相关性,掌握线性方程组的通解求法;理解矩阵的概念和运算,掌握矩阵的可逆、矩阵的分块、矩阵的等价关系的性质及应用;理解二次型的定义,掌握二次型的标准形的求法及正定二次型的一系列性质。

(3)理解线性空间的定义,掌握交空间、和空间及直和的判定及性质;理解线性变换的定义及简单性质,掌握线性变换在不同基下的矩阵的性质、线性变换的值域与核的应用问题;会求矩阵的若当标准形;理解欧氏空间及对称变换的定义,掌握对称变换与实对称矩阵之间的关系的有关性质。

高等代数参考大纲

高等代数参考大纲

《高等代数》考试大纲髙等代数是大学数学系本科学生的最基本课程之一,也是大多数理工科专业学生的必修基础课。

它的主要内容包括多项式、行列式和线性方程组、矩阵及其标准形、特征值和特征向呈:。

要求考生熟悉基本概念、掌握基本左理、有较强的运算能力和综合分析解决问题能力。

一、考试的基本要求要求考生比较系统地理解髙等代数的基本概念和基本理论,掌握髙等代数的基本思想和方法。

要求考生具有抽象思维能力、逻辑推理能力、运算能力和综合运用所学的知识分析问题和解决问题的能力。

二、考试方法和考试时间高等代数考试采用闭卷笔试形式,试卷满分为150分,考试时间为180分钟。

三、考试内容(-)多项式1.一元多项式的因式、带余除法公式及互素的槪念及判别;2.复根存在定理:3.根与系数关系:4.多元多项式。

(二)行列式1.行列式的置换、对换、巻换奇偶性:2.行列式的泄义,基本性质及计算:3.Vandermonde 行列式:4.行列式的代数余子式、Cranier法则。

(三)矩阵1.矩阵基本运算、分块矩阵运算;2.初等矩阵、初等变换和矩阵的秩:3.矩阵的逆、伴随阵、线性方程组的矩阵形式:4.行列式乘积定理;5.矩阵和转置、H亡nmte共轨:6.对角阵、三角阵、三对角阵;7.矩阵的迹、方阵多项式:(四)线性方程组求解1.线性方程组有解的充分必要条件:2.Gauss消元法;3.三角分解。

(五)线性空间和线性变换;1.向量的线性相关和线性无关:2.线性空间的定义及性质:3.向量组的秩、线性空间的基及坐标:4.线性变换的矩阵表示:5.矩阵相似;6.不变子空间:7.子空间的直接和、维数公式;8.线性空间的同构。

(六)特征值和特征向量1.特征值和特征多项式:2.特征向疑、特征子空间、度数和重数:3.特征值估计的圆盘定理;(七)内积空间和等积变换1.Euclid空间的标准正交基,施密特(Schmidt)正交化:2.Gram行列式;3.正交变换及其矩阵表示:4.初等旋转和镜像变换:5.QR分解:6.酉空间和酉变换:7.正交相似变换和酉相似变换;8.向量到子空间的距离、最小二乘。

中国农业大学考研大纲

中国农业大学考研大纲
中国农业大学本科生招生专业目录(学制4年)
学院
学科
农学与生物技术学院
农学
园艺学
设施农业科学与工程
园林学
植物保护
种子科学与工程
生物学院
生物科学,生物技术
动物科技学院
草业科学,动物科学
动物医学院
动物医学(学制5年)
食品科学与营养工程学院
食品质量与安全
食品科学与工程
葡萄与葡萄酒工程
生物工程
资源与环境学院
土地资源管理
农业水利工程
土木工程
水利水电工程
农业建筑环境与能源工程
理学院
工程力学,化学,数学与应用数学
经济管理学院
金融学
国际经济与贸易
会计学
农林经济管理
工商管理
市场营销
公共管理
人文与发展学院
农村区域发展,社会学,传播学
环境工程
农业资源与环境
资源环境科学
应用气象学
生态学
信息与电气工程学院
信息管理与信息系统
地理信息系统ห้องสมุดไป่ตู้
通信工程
计算机科学与技术
电子信息工程
电气工程及其自动化
电子信息科学与技术
自动化
工学院
工业设计
机械设计制造及其自动化
测控技术与仪器
热能与动力工程
交通运输
车辆工程
农业机械化与自动化
农业工程
水利与土木工程学院
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020中国农业大学考研大纲:601高等代数
出国留学考研网为大家提供2017中国农业大学考研大纲:601
高等代数,更多考研资讯请关注我们网站的更新!
2017中国农业大学考研大纲:601高等代数
《高等代数》考试大纲
一、考试性质
《高等代数》课程是数学专业硕士研究生入学考试必考科目之一,有些对数学知识要求较高的理工类非数学专业也考此门课程,是由
教育部授权各招生院校自行命题的选拔性考试。

《高等代数》考试
的目的是测试考生的高等代数相关基础知识和分析及运用能力。

二、评价目标
要求考生具有较全面的高等代数基础知识,并且具有应用高等代数知识解题、证明及分析问题的能力。

三、考试内容
(1)行列式的定义、性质及各种计算方法;
(2)向量组的线性相关与无关、向量组的秩;线性方程组有解的充分必要条件及线性方程组求解的各种方法;
(3)矩阵的各种运算(包括矩阵的逆运算);矩阵的分块,矩阵的相抵(也叫等价)、相似和合同;矩阵的特征值与特征向量;矩阵可对角
化的各种判别方法;矩阵的约当标准形。

(4)二次型的标准型及其求法;正定二次型与正定矩阵及其判别。

(5)一元多项式的带余除法、最大公因式;不可约多项式与唯一因式分解定理;重因式及其判定;有理数域上的不可约多项式及其判别
方法;
(6)线性空间及其子空间的交与直和;线性变换的核与象及矩阵表示;线性变换的特征值与特征向量,不变子空间;线性变换的最小多项式。

-矩阵及其标准型和应用。

(7)欧几里得空间及性质,正交矩阵、正交变换与对称变换。

四、考试形式和试卷结构
(一)试卷满分及考试时间
本试卷满分为150分,考试时间为180分钟。

(二)答题方式
答题方式为闭卷、笔试。

试卷由试题和答题纸组成。

答案必须写在答题纸相应的位置上。

(三)试卷题型
本试卷以解答题为主,包括计算题和证明题两部分。

同时,根据情况,也可能含有填空、选择题,但分值不超过总分的20%。

相关文档
最新文档