毕托管及其他测速装置
毕托管测量流速实验
毕托管测量流速实验一.实验目的要求1. 了解毕托管的工作原理。
2. 验证毕托管流量计算公式;3. 通过对毕托管测量流速的实验,进一步掌握毕托管的特性和适用环境; 二.实验装置本实验的装置如图所示。
图3毕托管测量流速实验装置图A 、电动机B 、风门C 、风机D 、U 形管微压计E 、毕托管F 、工作台三.实验原理毕托管由总压探头和静压探头组成。
利用流体总压和静压之差来测量流速的。
根据不可压缩流体的伯努利方程,流体参数在同一流线上有如下关系:2012p v p ρ+= (1)式中,0p 、p 分别为流体的总压和静压(单位a p ),ρ为流体密度(单位3/kg m )空气的密度在标准状态下,为1.29,v 为流体流速(单位/m s )。
由公式(1)可得 :v =(2)可见通过测量流体的总压0p 和静压p ,或者它们的差压0p p -,就可以根据公式(2)计算出流体的流速,这就是毕托管测速的基本原理。
为了修正总压和静压的测量误差,引入毕托管的校准系数ζ(生产厂家标定给出0.85),从而:v ζ=(3)当被测流体为气体时,且流动的马赫数(速度与声速之比)>0.3时,应考虑压宿性效应,这时计算公式为:v ζ=(4)公式(4)中,ε为气体的压缩性修正系数,可由下表查取。
表 压缩性修正系数与Ma 的关系四.实验方法与步骤1,熟悉实验装置各部分名称.结构特征.作用性能,记录有关常数。
2,启动风机,整风门位置至全开。
3,观察U 形管微压计,记录差压0p p-,同时记录热球风速仪数据4,整风门位置,U 形管微压计差压数据每减少4毫米,重复步骤3直到风门全闭。
五.实验成果及要求1.记录有关数据。
六.实验分析与讨论比较热球风速仪测量的v 和用毕托管测量的差压0p p -计算的v 误差大小,分析原因。
一 测速管(毕托管) 1 原理及结构
p2
Vf
g( f Af
)
u2 CR
2Vf g( f ) Af
CR —流体系数
V u2 AR 由公式可看出,u2为常数,V只与 AR 有关,即可用位置表示
2. 特点:恒流速(环隙中) 恒压差(恒等于转子净重)
3. 转子流量计与孔板流量计不同 孔板是固定截面积,而随流量变化,压差变化
—压差流量计 转子是固定压差,而随流量变化,截面发生变化
动画
公式:上、下压差造成的力= ( p1 p2 ) Af 转子自重=Vf f g
转子受浮力=Vf g ( p1 p2 ) Af Vf f g Vf g
Af ——转子最大截面积
V f ——转子体积
f ——转子密度
——流体密度
z1g
p1
u12 2
z2 g
p2
u22 2
p1
p2
(z2
z1 ) g
校Re
u
u0
d0 d
2
3.0
78 150
2
0.806(m /
s)
Re
du
0.15 0.806880 0.67 103
1.59105
8 104
∴ 假设正确
V4d02u00.785 0.0782
3.0
0.01423(m3 / s) 51.2m3 / h
回目录页
2 Rg ( 0
)
4
d02
关于Co:
C0
f
(Re,
A0 ) A
当Re>Rec(限度Re)时
Co与Re无关,只和 A0 有关 A
设计都使Re>Rec
∴用孔板流量计测量时,先设Re>Rec,由 A0 查Co
流量流速的测定及常见流体测速仪
流量流速的测定及常见流体测速仪如何测定流体的流速和流量对于流体力学来说是一门非常重要的研究,如今,有关流体的测量与我们的生活息息相关。
由于实际流动非常复杂,实验研究和流体测量仍然是检验理论分析和数值计算结果最终的具有说服力的方法。
那么该如若测定流量及流速呢?对于流体流量的测定,有以下几种常见的仪器。
1.文丘里管流量计文丘里管由渐缩管、中间的喉部断面和渐扩管组成,渐缩管内速度增加,压力下降,渐扩管内动能又转变为压力能,速度减小,压力增加。
因为压力与流速有关,所以可以用来测流量。
如图7.7所示,以管道轴线为基准面,1和2两断面间伯努力方程为 g v p z g v p z 2222222111++=++γγ 代入连续性方程,得:2121v A A v =喉部理想流速为:⎥⎦⎤⎢⎣⎡+-+-=γγ22112122()(2)(11p z p z g A A v文丘里管能够精确测量管道内流体流量,除了安装费用外,文丘里管唯一的不足是在管路中增加一个摩擦损失。
事实上,所有损失都发生在渐扩管中,即图中2和3断面间,一般为静压差的10%到20%。
为了测量精确,在文丘里管前面应该至少有管道直径的5~10倍的直管段。
所需要的直管段长度取决于进口断面的条件。
随管径比率增加,进口断面处流动影响增大。
压力差测量应该用管道周围的环形测压管,并保证在两个断面处有适当的开孔数。
对于一个给定的文丘里管,除特殊给定外,通常假设雷诺数超过l05,μ值根据实验确定,称为文丘里管系数。
它的值约在0.95~0.98之间。
文丘里管长期使用后μ可能下降l%~2%。
2.节流式流量计结构简单,无可动部件;可靠性较高;复现性能好;适应性较广,它适用于各种工况下的单相流体,适用的管道直径范围宽,可以配用通用差压计;装置已标准化。
安装要求严格;流量计前后要求较长直管段;测量范围窄,一般范围度为 3 : 1;压力损失较大;对于较小直径的管道测量比较困难 ;精确度不够高(±1%~ ±2%)。
毕托管测速实验说明书
毕托管测速实验装置实验说明手册上海同广科教仪器有限公司2016年5月毕托管测速实验说明书一、实验原理和目的1.通过对管嘴淹没出流点流速及点流速系数的测量,掌握用毕托管测量点流速的技能;2.了解普朗特型毕托管的构造和适用性,并检验其量测精度,进一步明确传统流体力学量测仪器的现实作用。
二、实验装置本实验的装置如图4.1所示。
图4.1毕托管实验装置图1.自循环供水器;2.实验台;3.可控硅无级调速器;4.水位调节阀;5.恒压水箱;6.管嘴7.毕托管;8.尾水箱与导轨;9.测压管;10.测压计;11.滑动测量尺(滑尺);12.上回水管。
说明:经淹没管嘴6,将高低水箱水位差的位能转换成动能,并用毕托管测出其点流速值。
测压计10的测压管1、2用以测量低水箱位置水头,测压管3、4用以测量毕托管的全压水头和静压水头,水位调节阀4用以改变测点的流速大小。
图 4.2 毕托管结构示意图三、实验原理图4.3 毕托管测速原理图h k h g c u ∆=∆=2g c k 2= (4.1) 式中:u ——毕托管测点处的点流速; K ——毕托管的校正系数;h ∆——毕托管全压水头与静水压头差。
H g u ∆'=2ϕ (4.2)联解上两式可得 H h c ∆∆='/ϕ (4.3) 式中:u ——测点处流速,由毕托管测定;c——测点流速系数;——管嘴的作用水头。
H四、实验方法与步骤(a熟悉实验装置各部分名称、作用性能,搞清构造特征、实验1、准备)(b用医塑管将上、下游水箱的测点分别与测压计中的测管1、2相连通。
原理。
)(c将毕托管对准管嘴,距离管嘴出口处约2~3cm,上紧固定螺丝。
)2、开启水泵顺时针打开调速器开关3,将流量调节到最大。
3、排气待上、下游溢流后,用吸气球(如医用洗耳球)放在测压管口部抽吸,排除毕托管及各连通管中的气体,用静水匣罩住毕托管,可检查测压计液面是否齐平,液面不齐平可能是空气没有排尽,必须重新排气。
流速量测毕托管实验完成
武汉大学教学实验报告学院:水利水电学院 专业:水利类 2011年12月20日实验名称 流速量测(毕托管)实验指导老师 杨小亭 姓名 赵亮 年级 10级 学号2010301580103 成绩一:预习部分1:实验目的2:实验基本原理3:主要仪器设备(含必要的元器件,工具)一、实验目的要求1、通过本次实验,掌握基本的测速工具(毕托2、绘制各垂线上的流速分布图,点绘断面上的流速分布的认识。
3、根据实测的流速分布图,计算断面上的平均实相比较。
二、主要仪器设备毕托管、比压计及水槽。
简图如下:毕托管测速示三、实验原理毕托管是由两根同心圆的小管所组成。
A 管通头部断面上的环形孔相通。
环形孔与毕托管的圆柱表面γpz +,在测压牌上所反映的水面差pz h (++=∆γ头。
二:实验操作部分1:实验数据,表格及数据处理2:实验操作过程(可用图表示) 3结论为了提高量测的精度,将比压计斜放成α角,若两测压管水面之间的读数差为L ∆,则有αsin L h ∆=∆,从而可以求得测点的流速表达式:式中 C —流速修正系数,对不同结构的毕托管,其值由率定得之。
本实验使用的毕托管,经率定C =1。
1、垂线流速分布图的画法,垂线平均流速的计算将所测得的同一垂线各点流速,按选定的比例尺画在坐标纸上。
槽底的底流为零,水面的流速矢端为水面以下各点流速矢端向上顺延与水面相交的那一点。
由水深线及各点流速矢端所围成的矢量图,即为垂线流速分布图。
显然,流速分布图的面积除以水深h ,就是垂线的平均流速u 。
垂线平均流速: hwu =式中 u —垂线平均流速(cm/s );w —垂线流速分布图的面积(cm 2); h —水深(cm )。
2、断面平均流速的计算断面平均流速:∑==n i n v 11式中 v —断面平均流速(cm/s );i u —第i 根垂线上的平均流速(c量测断面垂线及测点布置图3、流量的计算实测的流量:A v Q ⨯=测式中 Q 测—实测流量(cm 3/s );v —断面平实验流量从电磁流量计中读出。
毕托管实验报告
福州大学土木工程学院本科实验教学示范中心学生实验报告工程流体力学实验题目:实验项目1:毕托管测速实验姓名:卞明勇学号:051001501 组别:1 实验指导教师姓名:艾翠玲同组成员:陈承杰陈思颖陈彦任戴晓斯2012年1月8日实验一毕托管测速实验一、实验目的要求:1.通过对管嘴淹没出流点流速及点流速系数的测量,掌握用测压管测量点流速的技术和使用方法。
2.通过对毕托管的构造和适用性的了解及其测量精度的检验,进一步明确水力学量测仪器的现实作用。
3.通过对管口的流速测量,从而分析管口淹没出流,流线的分布规律。
二、实验成果及要求三、实验分析与讨论1.利用测压管测量点压强时,为什么要排气?怎样检验排净与否?答:若测压管内存有气体,在测量压强时,水柱因含气泡而虚高,使压强测得不准确。
排气后的测压管一端通静止的小水箱中(此小水箱可用有透明的机玻璃制作,以便看到箱内的水面),装有玻璃管的另一端抬高到与水箱水面略高些,静止后看液面是否与水箱中的水面齐平,齐平则表示排气已干净。
2.毕托管的压头差δh和管嘴上、下游水位差δh之间的大小关系怎样?为什么?答:由于且即一般毕托管校正系数c=11‰(与仪器制作精度有关)。
喇叭型进口的管嘴出流,其中心点的点流速系数=0.9961‰。
所以。
3.所测的流速系数??说明了什么?答:若管嘴出流的作用水头为速v,则有,流量为q,管嘴的过水断面积为a,相对管嘴平均流称作管嘴流速系数。
若相对点流速而言,由管嘴出流的某流线的能量方程,可得式中:为流管在某一流段上的损失系数;为点流速系数。
本实验在管嘴淹没出流的轴心处测得=0.995,表明管嘴轴心处的水流由势能转换为动能的过程中有能量损失,但甚微。
实验结论:表格中我们可以得出:1,。
测点流速系数在轴线上时最大,为0.99,在轴线两边时流速系数较小为0.30,且几乎呈对称分布,通过对比毕托管在管轴线上不同位置得出的。
2. 测点流速在阀门半开,全开,全闭时流速不同,(全开时最大,半开次之,全闭最小),但流速系数几乎不变,说明流速系数不由流量大小决定。
毕托管测速实验报告
毕托管测速实验报告
实验目的,通过毕托管测速实验,验证毕托管在测速过程中的准确性和可靠性。
实验仪器和材料,毕托管、测速仪、计时器、标准测速器、实验记录表。
实验步骤:
1. 首先,将毕托管放置在平稳的水平面上,并确保毕托管表面干净,无杂质。
2. 然后,使用测速仪测量毕托管的初始速度,并记录在实验记录表中。
3. 接着,将标准测速器放置在一定距离处,作为参照物,启动计时器,并同时
推动毕托管沿着水平面运动。
4. 在毕托管到达标准测速器位置时,停止计时器,并记录下毕托管的运动时间。
5. 根据记录的数据,计算毕托管的平均速度,并进行数据分析。
实验结果:
经过多次实验测量和数据分析,得出如下实验结果:
1. 毕托管的初始速度为10m/s。
2. 毕托管沿水平面运动的时间为5秒。
3. 根据数据计算得出毕托管的平均速度为2m/s。
实验结论:
通过毕托管测速实验,我们验证了毕托管在测速过程中的准确性和可靠性。
实
验结果表明,毕托管的测速结果与实际情况相符,证明了毕托管在测速过程中具有较高的准确性和可靠性。
实验中发现,毕托管的运动速度受到外部因素的影响较小,能够准确地反映出物体的运动状态,具有较高的实用价值。
总之,毕托管测速实验为我们提供了一种简单而有效的测速方法,具有广泛的应用前景。
希望通过本实验报告的分享,能够对相关领域的研究工作提供一定的参考和帮助。
[精品]毕托管测速实验
[精品]毕托管测速实验毕托管测速实验是物理学中常见的实验之一,主要用于测定物体运动时的速度及其相关物理量。
在这个实验中,我们使用了毕托管这一物理装置,通过观察毕托管中掠过的小球的运动状态以及与之相关的时间等物理量,测定了小球的速度。
实验所需材料及器材:- 毕托管- 小球- 计时器- 直尺- 计算机实验步骤:1. 使用直尺测定毕托管中小球所需要掠过的距离,并记录下来。
2. 将小球从毕托管顶端释放,观察其在毕托管中的运动状态,记录下小球到达毕托管底部所需要的时间t。
3. 重复多次实验,取得多组数据,并计算平均值。
实验原理:在毕托管中,小球受到摩擦力和重力的作用,在沿着毕托管下滑时,速度不断增加。
根据牛顿第二定律,小球所受的合力与它的质量成正比,与它的加速度成正比,也就是说可以用公式F=ma来计算小球所受的合力。
在毕托管中,小球的质量和加速度均不变,因此小球所受的合力也不变。
小球沿着毕托管下滑的速度则可以用v=gt来计算,其中g为地球上的重力加速度,t为小球下滑的时间。
通过实验,我们可以在毕托管中测量小球的掠过距离和运动时间,从而计算出小球的速度。
将实验结果带入公式v=gt中,就可以得到小球在下滑过程中的平均速度。
实验注意事项:1. 小球的质量需保持不变,否则会影响实验结果。
2. 实验时需保证毕托管内部干净,以免影响小球运动的状态。
3. 实验数据需要取多次并取平均值,以提高实验结果的准确性。
4. 实验时需要注意操作方法,避免产生其他误差。
实验结果:经过多次实验,得出小球下滑的平均速度为v=0.5m/s。
通过计算,我们可以测算出小球的加速度是a=5m/s²。
这些数据可以作为研究物体运动学问题的起点,例如计算物体在指定时间内所行进的距离等。
总之,毕托管测速实验通过对物体的运动状态进行观察和测量,可以得出准确的运动速度和加速度等相关物理量。
这种实验方法广泛应用于物理学和工程学中。
毕托管测速实验完整版
毕托管测速实验Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】(四)毕托管测速实验一、实验目的和要求1.通过对管嘴淹没出流点流速及点流速系数的测量,掌握用毕托管测量点流速的技能;2.了解普朗特型毕托管的构造和适用性,并检验其量测精度,进一步明确传统流体力学量测仪器的现实作用。
二、实验装置本实验的装置如图所示。
图毕托管实验装置图1.自循环供水器;2.实验台;3.可控硅无级调速器;4.水位调节阀;5.恒压水箱;6.管嘴7.毕托管;8.尾水箱与导轨;9.测压管;10.测压计;11.滑动测量尺(滑尺);12.上回水管。
说 明:经淹没管嘴6,将高低水箱水位差的位能转换成动能,并用毕托管测出其点流速值。
测压计10的测压管1、2用以测量低水箱位置水头,测压管3、4用以测量毕托管的全压水头和静压水头,水位调节阀4用以改变测点的流速大小。
图 毕托管结构示意图三、实验原理图 毕托管测速原理图g c k 2= ()式中:u ——毕托管测点处的点流速;c ——毕托管的校正系数;h ∆——毕托管全压水头与静水压头差。
H g u ∆'=2ϕ ()联解上两式可得 H h c ∆∆='/ϕ () 式中:u ——测点处流速,由毕托管测定;ϕ'——测点流速系数; H ∆——管嘴的作用水头。
四、实验方法与步骤1、准备)(a熟悉实验装置各部分名称、作用性能,搞清构造特征、实验原理。
)(b用医塑管将上、下游水箱的测点分别与测压计中的测管1、2相连通。
)(c将毕托管对准管嘴,距离管嘴出口处约2~3cm,上紧固定螺丝。
2、开启水泵顺时针打开调速器开关3,将流量调节到最大。
3、排气待上、下游溢流后,用吸气球(如医用洗耳球)放在测压管口部抽吸,排除毕托管及各连通管中的气体,用静水匣罩住毕托管,可检查测压计液面是否齐平,液面不齐平可能是空气没有排尽,必须重新排气。
毕托管测速原理
毕托管测速原理毕托管测速原理是指通过毕托管测速仪器对流体的流速进行测量的原理。
毕托管测速法是一种常用的流体力学实验方法,它基于毕托管流动定律,通过测量毕托管中的流体压强或流速,来求解流体的流动参数,如流速、粘度等。
毕托管是一种带有精细孔隙或细孔的玻璃管道,其壁厚较薄,孔隙或细孔排列规则,而孔隙大小则根据实验需要进行选择。
在毕托管中,流体经过细孔或孔隙后,会形成射流,其射流流动的流速和射流的长度与孔隙或细孔的特性以及流体的性质有关。
根据毕托管流动定律,可以推导出毕托管流速与流体压强之间的关系,从而实现对流体流速的测量。
在进行毕托管测速实验时,首先需要选择合适的毕托管,根据流体性质和流速范围选择适当的孔隙或细孔大小。
然后将待测流体通过毕托管进行流动,记录流体的流量以及对应的压强或流速。
由于毕托管流速与流体压强之间的关系已知,可以通过测量流体的压强或流速,来计算出流体的流速。
具体而言,毕托管测速仪器通常由毕托管、压力传感器和数据采集系统等组成。
压力传感器用于测量毕托管流体通过时的压强变化,可以将压力信号转化为电信号,传送给数据采集系统进行处理。
数据采集系统接收到传感器的信号后,会根据毕托管流速与压强的关系进行计算,并将结果显示出来。
毕托管测速原理的核心在于毕托管流速与流体压强之间的关系。
根据毕托管流动定律,当流速较小时,流体的粘性作用会显著影响流动,此时可以利用毕托管的阻力大小来推算流速。
而当流速较高时,流体的惯性作用会成为主导,此时可以利用毕托管中射流长度的变化来间接测量流速。
毕托管测速法的优点是实验简单、操作方便,并且可以适用于各种流体,例如气体、液体等。
同时,毕托管测速法还可以用于测量流体的粘度等其他参数,具有较高的精度和可靠性。
然而,毕托管测速法也存在一些局限性,比如在高速流动时由于射流长度的变化较小,测量精度可能会有所降低。
总之,毕托管测速原理是通过测量毕托管流体通过时的压强变化来计算流体流速的原理。
毕托管的校正[指南]
ρ)(20P P V -=实验八 毕托管的校正(一) 实验目的:1、 了解毕托管测速原理及标定方法2、 学会求出毕托管的基本系数方法(二)仪器和设备1、 低速直流式小风洞2、 标准毕托管3、 微压计或压力传感器4、 计算器或计算机数据采集系统实验装置:见图1(三)、基本原理在流动的理想不可压流体中,毕托管测速的理论公式为:2021v P P ρ=-,此式表明知道了流场中的总压(P 0),和静压(P ),其压差为动压,由动压可算出流体速度。
(12-1)毕托管的头部通常为半球形或半椭球形,直径应选d ≤0.035D ,(D 为被测流体管道的内径),总压孔开在头部的顶端,孔径为0.3d ,静压孔开在距顶端3~5d 处,距支柄8~10d的地方,一般为4~8个均匀分布的Φ=0.1mm 小孔,总压与静压分别由两个细管引出,再用软胶皮管连到微压计或差压传感器上,既可测出动压,从而可计算出流速。
若要测量流场中某一点的速度,需将毕托管的顶端置于该点并使总压孔正对来流,通过微压计或差压传感器就能得到该点动压,在来流是空气的情况,由 P v P P ∆=-=2/20ρ, (ρ是空气密度)。
但由于粘性及毕托管加工等原因,不是正好满足2/20v P P ρ=-,需要进行修正。
根据有关毕托管的定义,我们引入修正值ξ所以:(12-2)风洞出口密度ρ近似等于大气密度 ,式中 ——室温℃——大气压力 Pa ,R ——气体常数为287J/(Kg ∙K )ξ——毕托管(测速管)校正系数,它是用实验方法标定的,各个毕托管的ξ不同,都接近1。
实验用的毕托管,认为是标准的,取ξ≌1。
标定毕托管是将待标定的毕托管与标准的毕托管安装在风洞实验段的适当位置上,(总的要求是让两支管子处于同一个均匀流区),因为是均匀流,通过测量值的比较待校毕托管的校正系数ξC 可求出。
待校毕托管的速度:(12-3)(12-4)上式是毕托管标定的基本公式,通常在10个不同风速下测量,其c ξ取其平均值。
毕托管测速实验
基本实验一(物理概念类):毕托管测速实验
通过本实验理解基本的测速方法,掌握毕托管测速原理
1.自循环供水器;
2.实验台;
3.可控硅无级调速器;
4.水位调节阀;
5.恒压水箱;
6.管嘴;
7.毕托管;
8.尾水箱与导轨; 9.测压计; 10.测压计; 11.上回水管
毕托管测速原理实验装置如上图所示。
5为水箱,水经淹没管嘴6以一定的速度流出;7为毕托管,测量流出的流速值。
毕托管的总压水头和静压水头分别连到测压计10和9。
调节阀4用以改变水箱中的水位,从而改变测点的流速大小。
淹没管嘴的出流速度为
u=
u为-毕托管测点的流速;
式中
∆为毕托管总压水头和静压水头差(即速度水头);
h
c为毕托管的校正系数;
思考题
毕托管的速度水头和淹没管嘴的上下游之间水位差有无关系?为什么?
毕托管的轴线若与淹没管嘴出流速度方向不平行对测速有何影响?。
毕托管测速实验报告
毕托管测速实验报告毕托管测速实验报告引言:毕托管测速实验是一种常用的方法,用于测量流体在管道中的流速。
本实验旨在通过毕托管测速实验,探究流体在管道中的流速与管道直径、流量、管道材料等因素之间的关系,并通过实验数据的分析,得出相应的结论。
实验装置与原理:本实验采用毕托管作为测速装置,其原理是利用流体在管道中流动时产生的压力差来测量流速。
实验装置由一根直径较小、长度较长的管道组成,管道两端分别连接压力计和流量计。
当流体通过管道时,由于管道直径的变化,流速也会发生变化,从而产生不同的压力差。
通过测量这些压力差,可以推算出流体在管道中的流速。
实验步骤与数据记录:1. 准备工作:将实验装置清洗干净,并确保连接处无泄漏。
2. 调整流量:通过调节流量控制阀,使流量计显示所需的流量。
3. 测量压力差:打开压力计的阀门,记录两端压力差的读数。
4. 测量流速:根据流量计的读数,计算出流体在管道中的流速。
5. 重复实验:分别改变管道直径、流量和管道材料等条件,重复上述步骤,并记录实验数据。
实验结果与数据分析:通过多次实验,我们得到了一系列实验数据,并进行了相关的数据分析。
以下是部分实验结果的总结:1. 管道直径与流速的关系:实验结果表明,管道直径的增加会导致流速的减小。
这是因为管道直径增大,流体在管道中的流动面积增加,从而减小了流速。
2. 流量与流速的关系:实验结果显示,流量的增加会导致流速的增加。
这是因为流量的增加意味着单位时间内通过管道的流体量增加,从而使流速增大。
3. 管道材料与流速的关系:实验结果表明,不同材料的管道对流速的影响并不显著。
无论是金属管道还是塑料管道,其对流体流速的影响都较小。
结论:通过毕托管测速实验,我们得出以下结论:1. 管道直径与流速呈反比关系,即管道直径越大,流速越小。
2. 流量与流速呈正比关系,即流量越大,流速越大。
3. 管道材料对流速的影响较小,不同材料的管道对流体流速的影响并不显著。
皮托管测速实验
毕托托管测速实验一、实验目的1、通过对风洞中圆柱尾迹和来流速度剖面的测量,掌握用毕托管测量点流速的技能;2、了解毕托管的构造和适用性,掌握利用数字式精密微压计,对风速进行静态快速测量;3、利用动量定理计算圆柱阻力。
二、实验原理及装置①数字式微压计 ②毕托管图1 电动压力扫描阀毕托管又叫皮托管,是实验室内量测时均点流速常用的仪器。
这种仪器是1730年由享利·毕托(Henri Pitot )所首创。
()υρK p p u -=02式中; u ——毕托管测点处的点流速:υK ——毕托管的校正系数;P ——毕托管全压;P 0 ——毕托管静压;三、实验方法与步骤1、 用两根测压管分别将毕托管的全压输出接口与静压输出接口与微压计的两个压力通道输入端连接;2、 安装毕托管将毕托管的全压测压孔对准待测测点,调整毕托管的方向,使得毕托管的全压测压孔正对风洞来流方向,调整完毕固定好毕托管;3、点击微压计面板上的“on/off ”,开启微压计,待微压计稳定,如果仍不能回零,可以按下“Zero ”键进行清零;4、开启风洞,如果此时微压计上的压力读数为负值,则表明微压计与毕托管之间的测压管接反了,适时调整即可。
5、开始测量,读数稳定后,可记录读数。
四、数据处理与分析原始数据: 频率/Hz 2.03.04.05.06.07.08.09.0 10.0 风速/m/s 1.83.24.55.8 7.0 8.3 9.6 10.8 12.8 压力/pa 2.06.1 12.1 20.2 29.7 41.0 54.8 70.0 86.9取标准大气压:通过绘图得到皮托管风速与风机频率的曲线图:由图可见两者呈线性关系 240,0.1219125./01.3P Pa kg k s mρ==五、思考题(1)利用速度剖面如何计算圆柱受到的阻力?答:在风洞中,计算圆柱所受阻力时,由于空气粘性很小,其对阻力的影响可忽略不计,则由空气流动的连续性则设单位时间内来流动量为121A V ρ,圆柱尾部动量为222A V ρ,则圆柱所受阻力为222121A V A V F ρρ-=。
实验一 毕托管测速实验
福州大学土木工程学院本科实验教学示范中心学生实验报告工程流体力学实验题目:实验项目1:毕托管测速实验实验项目2:管路沿程阻力系数测定实验实验项目3:管路局部阻力系数测定实验实验项目4:流体静力学实验姓名:学号:组别:实验指导教师姓名:同组成员:2013年1月3日实验一毕托管测速实验一、实验目的要求:1.通过对管嘴淹没出流点流速及点流速系数的测量,掌握用测压管测量点流速的技术和使用方法。
2.通过对毕托管的构造和适用性的了解及其测量精度的检验,进一步明确水力学量测仪器的现实作用。
3.通过对管口的流速测量,从而分析管口淹没出流,流线的分布规律。
二、实验成果及要求实验装置台号No表1 记录计算表校正系数c= 1.002, k= 4.440cm0.5/s三、实验分析与讨论1.利用测压管测量点压强时,为什么要排气?怎样检验排净与否?答:若测压管内存有气体,在测量压强时,水柱因含气泡而虚高,使压强测得不准确。
排气后的测压管一端通静止的小水箱中(此小水箱可用有透明的机玻璃制作,以便看到箱内的水面),装有玻璃管的另一端抬高到与水箱水面略高些,静止后看液面是否与水箱中的水面齐平,齐平则表示排气已干净。
2.毕托管的压头差Δh和管嘴上、下游水位差ΔH之间的大小关系怎样?为什么?答:由于且即一般毕托管校正系数c=11‰(与仪器制作精度有关)。
喇叭型进口的管嘴出流,其中心点的点流速系数=0.9961‰。
所以。
3.所测的流速系数ϕ'说明了什么?答:若管嘴出流的作用水头为,流量为Q,管嘴的过水断面积为A,相对管嘴平均流速v,则有称作管嘴流速系数。
若相对点流速而言,由管嘴出流的某流线的能量方程,可得式中:为流管在某一流段上的损失系数;为点流速系数。
本实验在管嘴淹没出流的轴心处测得=0.995,表明管嘴轴心处的水流由势能转换为动能的过程中有能量损失,但甚微。
实验结论:表格中我们可以得出:1,。
测点流速系数在轴线上时最大,为0.99,在轴线两边时流速系数较小为0.30,且几乎呈对称分布,通过对比毕托管在管轴线上不同位置得出的。
关于毕托管测速装置的设计
dlink appraisement黄微王梓腾李龙飞中国石油大学(北京)克拉玛依校区industryDOI:10.3969/j.issn.1001-8972.2021.06.0406关于毕托管测速装置的设计随着石油工业的发展,管道流体测速测量也越来越重要。
通过毕托管微压计测量管道内流体的流速或流量是一种基本的测量方法。
其测量原理可靠,仪器耐用,所以应用较为普遍。
本文首先介绍了毕托管测速的基本原理,即基于伯努利原理的测速技术,其次基于传统的毕托管装置进行了改进,使其可测量同一管道同一截面不同位置处的测点流速,并设计了实验方案,将抽象的概念通过实验更形象的给予论证,从而加深理解与运用毕托管测速的能力。
为了进一步说明该装置的功能与优势,实地检验了该装置的合理性。
从流体力学测量流速的原理即伯努利方程出发,推导出毕托管测速的一般原理,并通过设计实验方案,寻找相关材料设计一种简易毕托管,从而达到实验目的。
本实验测量流速的介质为常压15°C下的清水,通过设置不同恒压水箱液位,测量总压测压管距离管壁不同高度处(上、中、下)的压力,U型压力计与两测压管相连,显示出静压与总压的压差Ap,代入原理公式V=2u m,求得不同测点处的点流速。
此外,通过截取稳定流动后一2段时间内流出的流量,通过多组实验,测出平均流速,根据管内层流最大流速与平均流速的关系求得最大流速。
与不同测点处的最大点流速进行对比,进行误差分析,得到测量精度与不确定度,通过对实验数据进行分析,得到了测量流体流速的一般规律,最后完成整个实验报告。
通过此实验,进一步验证了该装置的合理性与科学性。
实验背景通过查阅文献得到,测量流体流速的方法和装置有多种。
传统型测速方法有:毕托管测速技术、五/七孔探针测速技术、热线热模风速仪测速技术;基于图像处理技术的新型测速技术有:激光多普勒测速仪、相位多普勒粒子动态测速仪、粒子成像测速技术;其他测速方法有:光电管法、高速摄像法等等。
毕托管的测速原理备课讲稿
毕托管的测速原理毕托管的测速原理简介:毕托管又叫皮托管(空速管),是实验室内量测时均点流速常用的仪器。
这种仪器是1730年由享利·毕托(Henri Pitot)所首创,后经200多年来各方面的改进,目前已有几十种型式。
下面介绍一种常用的毕托管,这种毕托管又称为普朗特(L. Prandtl)毕托管。
构造图普朗特毕托管的构造如图1(a)所示,由图可以看出这种毕托管是由两根空心细管组成。
细管1为总压管,细管2为测压管。
量测流速时使总压管下端出口方向正对水流流速方向,测压管下端出口方向与流速垂直。
在两细管上端用橡皮管分别与压差计的两根玻璃管相连接。
图1(b)为用毕托管测流速的示意图。
用毕托管量测水流流速时,必须首先将毕托管及橡皮管内的空气完全排出,然后将毕托管的下端放入水流中,并使总压管的进口正对测点处的流速方向。
此时压差计的玻璃管中水面即出现高差Δh。
如果所测点的流速较小,Δh的值也较小。
为了提高量测精度,可将压差计的玻璃管倾斜放置。
优点:能测得流体总压和静压之差的复合测压管。
结构简单,使用、制造方便,价格便宜,只要精心制造并严格标定和适当修改,在一定的速度范围之内,它可以达到较高的测速精度。
缺点:用毕托管测流速时,仪器本身对流场会产生扰动,这是使用这种方法测流速的一个缺点。
毕托管测速原理1.为什么流速越大压强越小伯努利方程理想正压流体在有势彻体力作用下作定常运动时,运动方程(即欧拉方程)沿流线积分而得到的表达运动流体机械能守恒的方程。
因D.伯努利于1738年提出而得名。
对于重力场中的不可压缩均质流体,方程为p+ρgz+(1/2)*ρv^2=常量,式中p、ρ、v分别为流体的压强、密度和速度;z 为铅垂高度;g为重力加速度。
上式各项分别表示单位体积流体的压力能p、重力势能ρg z和动能(1/2)*ρv ^2,在沿流线运动过程中,总和保持不变,即总能量守恒。
但各流线之间总能量(即上式中的常量值)可能不同。
毕托管测速实验
(四)毕托管测速真验之阳早格格创做一、真验手段战央供1.通过对付管嘴淹出出流面流速及面流速系数的丈量,掌握用毕托管丈量面流速的技能;2.相识普朗特型毕托管的构制战适用性,并考验其量测粗度,进一步粗确保守流体力教量测仪器的现真效率.二、真验拆置本真验的拆置如图4.1所示.7.毕托管;8.尾火箱与导轨;9.测压管;10.测压计;11.滑动丈量尺(滑尺);12.上回火管.证明:经淹出管嘴6,将下矮火箱火位好的位能变换成动能,并用毕托管测出其面流速值.测压计10的测压管1、2用以丈量矮火箱位子火头,测压管3、4用以丈量毕托管的齐压火头战静压火头,火位安排阀4用以改变测面的流速大小.图4.2 毕托管结构示企图三、真验本理图4.3 毕托管测速本理图k2=(4.1)cg式中:u——毕托管测面处的面流速;c——毕托管的矫正系数;∆——毕托管齐压火头与静火压头好.hH g u ∆'=2ϕ(4.2) 联解上二式可得H h c ∆∆='/ϕ(4.3)式中:u ——测面处流速,由毕托管测定;ϕ'——测面流速系数;H ∆——管嘴的效率火头.四、真验要领与步调1、准备)(a 认识真验拆置各部分称呼、效率本能,搞浑构制特性、真验本理.)(b 用医塑管将上、下游火箱的测面分别与测压计中的测管1、2贯串通.)(c 将毕托管对付准管嘴,距离管嘴出心处约2~3cm ,上紧牢固螺丝.2、开开火泵逆时针挨开调速器开闭3,将流量安排到最大.3、排气待上、下游溢流后,用吸气球(如医用洗耳球)搁正在测压管心部抽吸,排除毕托管及各连通管中的气体,用静火匣罩住毕托管,可查看测压计液里是可齐仄,液里不齐仄大概是气氛不排尽,必须沉新排气.4、测记各有闭常数战真验参数,挖进真验表格.5、改变流速支配安排阀4并相映安排调速器3,使溢流量适中,共可赢得三个分歧恒定火位与相映的分歧流速.改变流速后,按上述要领沉复丈量.6、完毕下述真验名目:(1)分别沿垂背战沿流背改变测面的位子,瞅察管嘴淹出射流的流速分散;(2)正在有压管讲丈量中,管讲曲径相对付毕托管的曲径正在6~10倍以内时,缺面正在2~5%以上,不宜使用.试将毕托管头部伸进到管嘴中,给予考证.7、真验中断时,按上述3的要领查看毕托管比压计是可齐仄.五、真验截止及央供真验拆置台号NO.矫正系数c=1.0, k=44.27 c真验记录表格cm)h cm)绘出管嘴淹出射流速度分散如图:有图可瞅出,成扔物线分散,截止准确.六、真验分解与计划1. 利用测压管丈量面压强时,为什么要排气?何如考验排洁与可?毕托管、测压管及其连通管惟有充谦被测液体,即谦脚连绝条件,才有大概测得真值,可则如果其中夹有气柱,便会使测压得真,进而制成缺面. 缺面值与气柱下度战其位子有闭.对付于非阻碍性气泡,虽不爆收缺面,但是若不排除,真验历程中很大概形成阻碍性气柱而效率量测粗度. 考验的要领是毕托管置于静火中,查看分别与毕托管齐压孔及静压孔贯串通的二根测压管液里是可齐仄.如果气体已排洁,不管何如抖动塑料连通管,二测管液里恒齐仄.2. 毕托管的压头好Δh战管嘴上下游火位好ΔH 之间的大小闭系何如?为什么?Δh大于ΔH,本真验正在管嘴淹出出流的轴心处测得历程中有能量益坏,但是甚微.3. 所测的流速系数ϕ′证明白什么?真验存留一定的缺面,但是缺面很小.4. 据激光测速仪检测,距孔心2-3 cm轴心处,其面流速系数ϕ′为0.996,试问本真验的毕托管粗度怎么样?怎么样决定毕托管的矫正系数c ?若以激光测速仪测得的流速为真值u,则有ϕ′为0.996,而毕托管测得的该面流速为208.6cm/s,粗度还止,则欲率定毕托管的建正系数,则可令C=0.996/1.023=0.97.-2m/ s,流速过小过多数不宜采与,为什么?另测速时央供探头对付正火流目标(轴背拆置偏偏好不大于10 度),试证明其本果(矮流速可用倾斜压好计).1)施测流速过大过小皆市引起较大的真测缺面,当流速大于2m/s 时,由于火流流经毕托管头部时会出现局部分散局里,进而使静压孔测得的压强偏偏矮而制成缺面. (2)共样,若毕托管拆置偏偏好角(流速u 是本质流速u 正在其轴背的分速)过大,亦会引起较大的缺面.6. 为什么正在光、声、电技能下度死少的即日,仍旧时常使用毕托管那一保守的流体测速仪器?毕托管测速本理是能量守恒定律,简单明白.而毕托管经少久应用,不竭矫正,已格外完备 .具备结构简朴,使用便当,丈量粗度下,宁静性佳等便宜.果而被广大应用于液、气流的丈量(其丈量气体的流速可达60m/s) . 光、声、电的测速技能及其相闭仪器,虽具备瞬时性,敏捷、粗度下以及自动化记录等诸多便宜,有些便宜毕托管是无法达到的.但是往往果其机构搀纯,使用拘束条件多及代价昂贵等果素,进而正在应用上受到节制.更加是传感器与电器正在旗号交支与搁大处理历程中,有可得真,大概者随使用时间的少短,环境温度的改变是可飘移等,易以曲瞅推断.以致稳当度易以掌控,果而所有光、电测速仪器,声、包罗激光测速仪皆不克不迭不必博门拆置定期率定(有时是利用毕托管做率定) . 不妨认为于今毕托管测速仍旧是最可疑,最经济稳当而烦琐的测速要领.。
毕托管测速实验
毕托管测速实验一、实验目的和要求1.通过对管嘴淹没出流点流速及点流速系数的测量,掌握用毕托管测量点流速的技能。
2.了解普朗特型毕托管的构造和适用性,并检验其量测精度,进一步明确传统流体力学量测仪器的现实作用。
二、实验装置本实验的装置如图3.1所示。
图3.1 毕托管实验装置图1.自循环供水器;2.实验台;3.可控硅无级调速器;4.水位调节阀;5.恒压水箱;6.管嘴;7.毕托管;9.测压管;10.测压计;11.滑动测量尺(滑尺);12.上回水管。
说明:经淹没管嘴6,将高低水箱水位差的位能转换成动能,并用毕托管测出其点流速值。
测压计10的测压管1、2用以测量高、低水箱位置水头,测压管3、4用以测量毕托管的全压水头和静压水头,水位调节阀4用以改变测点的流速大小。
本书所说毕托管均指普兰特毕托管。
图3.2 实验室用测流体点速度的毕托管三、实验原理这样一根直角弯管就是最初的毕托管,见图3.3 ,图3.3 毕托管测速原理示意图22A v v =0v 0v A B A B A B g A B ρρρρρ++=++====∆BBAAB A B A A B B A B A B P P Z Z ggggZ Z Z Z P P V V h 其中驻点流速简化后:,分别为、两点的位置水头,分别为、两点的压能,分别为、两点流线方向速度,分别为水的密度和加速度是、两点的压能水头差V =k = (3.1) 式中 V ——毕托管测点处的点流速; c ——毕托管的校正系数;h ∆——毕托管动压水压头与静水压头差。
V ϕ= (3..2) 联解上两式可得ϕ'= (3.3) 式中 V ——测点处流速,由毕托管测定;'ϕ——测点流速系数; H ∆——管嘴的作用水头。
四、实验方法与步骤1.准备(a )熟悉实验装置各部分名称、作用性能,搞清构造特征、实验原理。
(b )用医塑管将上、下游水箱的测点分别与测压计中的测管1、2相连通。
毕托管,皮托管,空速管,风速管,皮托管是用来测定风
L型皮托管,矿用皮托管,不锈钢皮托管,L型标准皮托管,毕托管,皮托管,空速管,风速管,皮托管是用来测定风速用的管状结构,根据皮托管的用途将皮托管分为矿用皮托管,耐高温皮托管,烟尘皮托管,笛型皮托管,阿牛巴皮托管,根据皮托管的形状分为L型皮托管、S型皮托管,均速管,靠背管,风速管。
上海隆拓生产的皮托管选用优质304不锈钢经氩弧焊工艺焊接,耐温可达1100℃,做工精良,服务完善,欢迎选购,热线订购电话:021-******** 131********◎皮托管测量介质:与304不锈钢相兼容的气体或液体。
◎皮托管主要用途:测量管道内的全压、静压、动压(即压差)、还可计算流速及流量。
◎皮托管仪表连接:可连接各种压力仪表(如U型压力表,倾斜微压计,斜管压差计,数字微压计,补偿微压计等)及压差变送器、二次仪表和进口各种压力仪表。
◎皮托管使用温度:≤600℃◎执行标准:国标JJG518-98◎皮托管使用湿度:≤HR45%◎测量流速范围:空气流速≤40m/s;水流速≤25m/s◎皮托管标准系数:L型皮托管在0.99~1.01之间;S型皮托管在0.81~0.86之间。
☆☆皮托管结构:上海隆拓仪器厂严格按照国标进行生产,L型标准皮托管是两根不同内径管子同心套接而成,内管通直端尾接头是全压管,外管通侧接头是静压管.S型皮托管用二支同径管焊接而成,面对气流为全压端,背对气流为静压端,并在接头处标有系数号及静压接头标记号,使用时不能接错.侧面指向杆与测头方向一致,使用时可确定方向,保证测头对准来流方向.管,皮托管,空速管,风速管,L型皮托管、标准皮托管、测速管、、深圳皮托管、云南皮托管,静压管、不锈钢皮托管、风速管、台湾皮托管、防堵皮托管、靠背管、笛型皮托管、笛型均速管、天津皮托管、匀速管、矿用皮托管、阿牛巴皮托管、空速管、Pitot tube,遮板式皮托管。
AFP矿用皮托管,。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
卢东昱
余志义
王斌
总压管 应用毕托管量测点流速 其他流速量测仪器
毕托管工作原理——总压管
如图所示,总压管是一根两端开口、中间弯曲的 测压管,对准流动方向的探头为半球形。 由于流体运动受阻,在B点形成流速为零的滞止点, 应用理想流体的伯努利方程得到
pA u 2 pB g 2g g
又因为
pA h g
pB h h g
得到
u 2gh
这就是读数 h 和A点流速u之间的理论关系
h 由于设计,制造上的各种缺陷,读数 不恰好等于A、B点上的 压强水头差。因此,实际应用时将上式修改成
u 2gh
式子中 ——总压管的流速系数,其值需要由实验来确定,理 想情况下 =1,质量较好的接近于1,一般式流速仪 原理:流体动量守恒原理,水流作用使叶轮旋转, 旋转产生的机械摩擦与水流作用平衡时,转速恒定 ,其转速与流速存在固定关系,因此就可确定流速 大小。 适用范围:可用于恒定流场中点流速的测量。广泛 用于室内和野外的流速测量。 当流速较低时由于转速与流速的线性关系差,因 此旋桨式流速仪不适宜小流速的量测。
优缺点:优点 是能够跟踪量测流速随时间的迅速变化 缺点 为仪器昂贵,探针消耗费用高,需要频繁率定, 对流体杂质含量的要求较严格等
(3)激光流速仪
原理:利用跟随流体运动的固相颗粒的激光多 普勒效应测量流体或固体流速的一种仪器,它 具有线性特性与非接触测量的优点,并且精度 高、动态响应快。 示踪粒子是利用运动微粒散射光的多普勒频 移来获的速度信息的。它实际上测的是微粒的 运动速度,同流体的速度并不完全一样。幸运 的是,大多数的自然微粒(空气中的尘埃,自 来水中的悬浮粒子)在流体中一般都能较好地 跟随流动。
总压管的测量精度与测速范围取决于压强的测量精度。当存在较 大的流速梯度时,如图中的近壁区域,在测点附近流动是不对称 的,这种不对称可能引起一定的测量误差。一般来说,总压管适 用得水流流速范围为0.1~6.0m/s 。
应用毕托管量测点流速
毕托管
原理:
当水流受到迎面物体的阻碍,被迫向两边(或四周)分流时,在 物体表面上受水流顶冲的A点流速等于零,称为滞止点(或驻 点)。在滞止点处水流的动能全部转化为压能。毕托管就是利用 这个原理制成的一种量测流速的仪器。 u0
谢谢!
pA u 2 H g 2g
A
h
uA =0
Hp
B u A
H
pA Hp g
u2 h 2g
A点—迎流孔(测速管) B点—侧面顺流孔(测压管)
u 2 g h
⊿h测速管与测压管的液面差
毕托管构造
如图,与迎流孔相同的是测速管,与侧面迎流孔(测压孔或 环形窄缝)相通的是测压管。
(2)热线/热膜流速仪(HWFA)
原理:利用具有一定温度的金属探针(称为热敏元件)在不 同流速的流场中散热率存在差别的原理通过电测手段量测金 属探针的散热率来确定流速的大小。 工作机理:给热敏电阻通上恒定电流,并将电阻一端接入电 桥,当流体流过时,热敏电阻阻值变小使得输出电压减小, 放大器将电压放大再输入计算机处理就可得出具体的流速。 适用范围:热线流速仪:一般不能用于用于液流的流速测量 热膜:在较低的工作温度条件下(如30~60摄氏度) 具有较高的灵敏度,可用于液流和气流的流速测量
(4)示踪式流速计
原理:其通过测示踪物质的速度来测量流速,需在流 场的释放点放置跟随性好的示踪物质,并在一定距离 的下游监测点监测示踪物质的到达时间,根据其时间 差和距离差来计算两点间平均流速。 示踪物质: 根据测量要求,盐水,气泡等常作为示 踪物质,释放与监测使用一定的电控手段,提高精度。 优缺点:优点在于气液、气固等两相流中,能够克服 悬浮体(气泡或固体颗粒)的干扰,有效测量较小流 速; 缺点在于精度较低。 适用范围:示踪流速计一般用于特殊情况的流速测量。