七年级下册数学解二元一次方程组_例题
七年级下册数学二元一次方程组习题及答案
二元一次方程组》8.1二元一次方程组一、填空题1、二元一次方程 4x-3y=12,当 x=0,1,2,3 时, y=2、在 x+3y=3 中,若用 x 表示 y ,则 y= ,用 y 表示 x,则 x=3、已知方程 (k 2-1)x 2+(k+1)x+(k-7)y=k+2 ,当 k= 时,方程为一元一次方程;当k= _____ 时,方程为二元一次方程。
4、对二元一次方程 2(5-x)-3(y-2)=10 ,当 x=0 时,则 y= ______________ ;当 y=0 时,则 x= _______________________________5、方程 2x+y=5 的正整数解是_。
6、若 (4x-3) 2+|2y+1|=0 ,则 x+2= 。
x y a x 27、方程组的一个解为,那么这个方程组的另一个解是。
xy b y 31ax 2y 18、若x 时,关于 x、y的二元一次方程组的解互为倒数,则2x by 2a 2b 。
二、选择题321、方程2x-3y=5,xy= 3,x 3 ,3x-y +2z=0,x2 y 6 中是y二元一次方程的有( )个。
A、1B、2C、3D、42、方程 2x+y=9 在正整数范围内的解有( )A、1个B、2个C、3个 D 、4 个3、与已知二元一次5x-y=2 组成的方程组有无数多个解的方程是( )方程A、2B、-2C、2 或-2D、以上答案都不对.A 、10x+2y=4 B、4x-y=7 C、20x-4y=3 D、 15x-3y=64、若是5x2y m与4x n m1y2n 2同类项,则m 2n的值为()A、1B、-1 C 、- 3 D、以上答案都不对5、在方程(k2-4)x 2+(2-3k)x+(k+1)y+3k=0 中,若此方程为二元一次方程,则k值为(6、若 x 2是二元一次方程组的解,则这个方程组是( ) y17、在方程 2(x y ) 3(y x ) 3中,用含 x 的代数式表示 y ,则 (A 、 y 5x 3B 、 y x 3C 、 y 5x 38、已知x=3-k,y=k+2,则y与x的关系是() A、x+y=5 B、x+y=1 C、x-y=1 9、下列说法正确的是( )A、二元一次方程只有一个解 B、二元一次方程组有无数个解C、二元一次方程组的解必是它所含的二元一次方程的解 D、三元一次方程组一定由三个三元一次方程组成3x 5y 610、若方程组 的解也是方程3x+ky=10 的解,则k的值是( =)A、k=6 = B、k=10 C、k=91D、k=三、解答题1、解关于 x 的方程 (a 1)(a 4)x a 2(x 1)xy72、已知方程组 ,试确定 a 、c 的值,使方程组:ax 2y c (1)有一个解;(2)有无数解;(3)没有解3、关于 x 、y 的方程 3kx 2y 6k 3,对于任何 k 的值都有相同的解,试求它的解。
人教版七年级数学下册《二元一次方程组》专项练习题-附含答案
人教版七年级数学下册《二元一次方程组》专项练习题-附含答案知识点1-1 二元一次方程(组)1)二元一次方程:含有两个未知数 且 所含未知数的次数项的次数都是1的方程。
注:所有未知数项的次数必须是1 例: 不是 2x -3xy =2 不是 2)将几个相同未知数的一次方程联合起来 就组成了二元一次方程组。
注:①在方程组中 相同未知数必须代表同一未知量。
②二元一次方程组不一定都是二元一次方程组合而成 方程个数也不一定是两个。
例: 是 3)判断二元一次方程组的方法:①方程组中是否一共有两个未知数;②含未知数的项的次数是否都是1;③是否含有多个方程组成.例1.(2021·湖南·衡阳市华新实验中学七年级月考)下列方程中 ①;②;③;④ 是二元一次方程的有( ) A .1个 B .2个C .3个D .4个【答案】A【分析】根据二元一次方程的定义:含有两个未知数 并且含有未知数的项的次数都是1的整式方程叫做二元一次方程 即可判断出答案.【详解】解:①根据二元一次方程定义可知是二元一次方程 此项正确; ②化简后为 不符合定义 此项错误; ③含有三个未知数不符合定义 此项错误;④不符合定义 此项错误;所以只有①是二元一次方程 故选:A .【点睛】本题考二元一次方程 解题的关键是熟练运用二元一次方程的定义 本题属于基础题型.变式1.(2022·山东济南·八年级期末)下列方程中 为二元一次方程的是( ) A .2x +3=0 B .3x -y =2zC .x 2=3D .2x -y =5【答案】D【分析】根据二元一次方程的定义 从二元一次方程的未知数的个数和次数方面辨别. 【详解】解:A .是一元一次方程 故本选项不合题意; B .含有三个未知数 不是二元一次方程 故本选项不合题意;C .只含有一个未知数 且未知数的最高次数是2 不是二元一次方程 故本选项不合题意;D .符合二元一次方程的定义 故本选项符合题意.故选:D .20x y-=3235x y x y -=⎧⎨+=⎩6x y +=()16x y +=31x y z +=+7mn m +=6x y +=()16x y +=6xy x +=31x y z +=+7mn m +=【点睛】此题考查了二元一次方程的定义 含有两个未知数 并且含有未知数的项的次数都是1 像这样的整式方程叫做二元一次方程.例2.(2021·湖南·衡阳市华新实验中学七年级月考)已知是关于 的二元一次方程 则______. 【答案】4【分析】根据二元一次方程的定义 可得方程组 解得m 、n 的值 代入代数式即可.【详解】解:由题意得 解得: ∴ 4 故填:4. 【点睛】本题考查二元一次方程的定义 属于基础题型. 变式2.(2021·天津一中七年级期中)若是关于 的二元一次方程 则( )A .B .C .D .【答案】D【分析】二元一次方程满足的条件:含有2个未知数 未知数的项的次数是1的整式方程. 【详解】解:是关于的二元一次方程解得: .故选:D . 【点睛】此题主要考查了二元一次方程的定义 关键是掌握二元一次方程需满足三个条件:①首先是整式方程.②方程中共含有两个未知数.③所有未知项的次数都是一次.不符合上述任何一个条件的都不叫二元一次方程.例3.(2021·河南淇县·七年级期中)下列方程组中 是二元一次方程组的是( )A .B .C .D .【答案】C【分析】根据二元一次方程的定义 含有两个未知数 并且含有未知数的项的次数为1的整式方程对个选项进行一一排查即可.【详解】解:A. 第二个方程中的是二次的 故本选项错误;B.方程组中含有3个未知数 故本选项错误;C. 符合二元一次方程组的定义 故本选项正确;D. 第二个方程中的xy 是二次的 故本选项错误.故选C .3211203n m x y -+-=x y n m +=31211n m -=⎧⎨+=⎩31211n m -=⎧⎨+=⎩40n m =⎧⎨=⎩n m +=20193(2020)(4)2021m n m x n y---++=x y 2020m =±4n =±2020m =-4n =-2020m =4n =2020m =-4n =()()20193202042021m n m x n y ---++=x y ∴2019120200m m ⎧-=⎨-≠⎩3140n n ⎧-=⎨+≠⎩2020m =-4n =2214x y x +=⎧⎨=⎩1236x y y z ⎧-=⎪⎨⎪-=⎩225x y x y +=-⎧⎨-=⎩213xy y y +=⎧⎨=-⎩2x【点睛】:根据组成二元一次方程组的两个方程应共含有两个未知数 且未知数的项最高次数都应是一次的整式方程 判断各选项即可.变式3.(2021·上海市建平中学西校期末)下列方程组 是二元一次方程组的是( ).A .B .C .D . 【答案】B【详解】A 选项:在中最高次数为2 故为二元二次方程组 不合题意;B 选项:为二元一次方程组 符合题意;C 选项:在中 共有3个未知数 为三元一次方程组 不合题意;D 选项:在中最高次数为2 故为二元二次方程组 不合题意.故选B . 【点睛】本题考查了二元一次方程的概念 掌握二元一次方程的概念(含有两个未知数 并且含有未知数的项的次数都是1的方程叫做二元一次方程)是解题关键.例4.(2021·日照市新营中学七年级期中)若方程组是二元一次方程组 则a 的值为________. 【答案】-3【分析】根据二元一次方程组的定义得到|a |-2=1且a -3≠0 然后解方程与不等式即可得到满足条件的a 的值.【详解】解:∵方程组是二元一次方程组 ∴|a |-2=1且a -3≠0 ∴a =-3 故答案为:-3. 【点睛】本题考查了二元一次方程组的定义:把具有相同未知数的两个二元一次方程合在一起 就组成了一个二元一次方程组.变式4.(2021·全国·七年级课时练习)若是关于 的二元一次方程组 则__ __ __. 【答案】 3或2【分析】二元一次方程组的定义:(1)含有两个未知数;(2)含有未知数的项的次数都是1 据此列式即可求解. 【详解】解:是关于 的二元一次方程组 或0 解得:或2 答案:3或2223xy x y =⎧⎨=⎩231x y y -=⎧⎨=⎩2425x y x z -=-⎧⎨+=⎩227x y y x-+=⎧⎨=⎩223xy x y=⎧⎨=⎩231x y y -=⎧⎨=⎩2425x y x z -=-⎧⎨+=⎩227x y y x -+=⎧⎨=⎩()20390a x ya x -⎧+=⎪⎨-+=⎪⎩23(3)34a b x c xy x y -+-+=⎧⎨+=⎩x y =a b =c =2-3-23(3)34a b x c xy x y -+-+=⎧⎨+=⎩x y 30c ∴+=21a -=31b +=3a =2b =-3c =-2-【点睛】本题主要考查了二元一次方程组的定义 利用它的定义即可求出代数式的解.知识点1-2 二元一次方程(组)的解1)二元一次方程的解:使二元一次方程两边的值相等的两个未知数的值(有序数对) 例:x+y=10 (1 9) (2 8) (3 7)等。
七年级下册数学二元一次方程组的实际运用练习题含答案
七年级下册数学二元一次方程组的实际运用练习题含
答案
1.某校积极开展课外兴趣活动,已知参加球类项目的学生与参加艺术类的共32人,切参加球类的比参加艺术的多4人求球类和艺术的学生个几人?
2.某班有40民同学购买甲乙门票共用去370元,甲票每张10元,已每张8元.甲乙各买多少张?
3.李明骑车每分钟600米,跑步每分钟200米,自行车和长跑路程共25千米,求自行车和长跑路程长度?
答案:
1.设参加球类项目的学生为x人,参加艺术类的有y人
x+y=32
x-y=4
解得x=18
y=14
2.设甲门票买了x张,乙门票买了y张
x+y=40
10x+8y=370
解得x=25
y=15
3.若题目中给定一共用时t分钟.(即t已知)
设骑自行车t1分钟,跑步t2分钟
t1+t2=t
600t1+200t2=25000
t1=(125-t)/2
t2=(3t-125)/2
自行车:600t1=300(125-t)跑步:200t2=100(3t-125)。
七年级下册数学二元一次方程组题
七年级下册数学二元一次方程组题一、基础题型。
1. 已知方程2x + y = 5,当x = 2时,求y的值。
- 解析:将x = 2代入方程2x+y = 5中,得到2×2 + y=5,即4 + y = 5,解得y = 5 - 4=1。
2. 解方程组x + y = 3 x - y = 1- 解析:将两个方程相加,可得(x + y)+(x - y)=3 + 1,即2x=4,解得x = 2。
把x = 2代入x + y = 3中,得到2+y = 3,解得y = 1。
所以方程组的解为x = 2 y = 1。
3. 若x = 1 y = - 1是方程ax - 2y = 3的解,则a的值是多少?- 解析:将x = 1,y=-1代入方程ax-2y = 3中,得到a×1-2×(-1)=3,即a + 2 = 3,解得a=1。
4. 解方程组2x+3y = 8 3x - 2y=-1- 解析:给第一个方程乘以2,第二个方程乘以3,得到4x + 6y = 16 9x-6y=-3。
将这两个新方程相加,可得(4x + 6y)+(9x - 6y)=16+( - 3),即13x = 13,解得x = 1。
把x = 1代入2x+3y = 8中,得到2 + 3y = 8,解得3y = 6,y = 2。
所以方程组的解为x = 1 y = 2。
5. 已知x = 2m y = 3m满足方程2x + y = 14,求m的值。
- 解析:将x = 2m,y = 3m代入方程2x + y = 14中,得到2×2m+3m = 14,即4m+3m = 14,7m = 14,解得m = 2。
二、应用题类型。
6. 一个长方形的周长是40,长比宽多4,设长为x,宽为y,求这个长方形的长和宽。
- 解析:根据长方形周长公式C = 2(x + y),已知周长C = 40,可得方程2(x + y)=40,即x + y = 20。
又因为长比宽多4,所以x-y = 4。
七年级数学二元一次方程组练习题及答案
题目一:解方程组1.3x+2y=72.x-y=3解答:将第二个方程两边同时乘以2,得到2x-2y=6然后将第一个方程与新得到的方程相加,得到(3x+2y)+(2x-2y)=7+65x=13x=13/5将x的值代入第二个方程,求得y的值:x-y=313/5-y=3y=-2/5所以方程组的解为x=13/5,y=-2/5题目二:解方程组1.5x-2y=92.3x+4y=12解答:将第一个方程乘以2,得到10x-4y=18然后将第二个方程与新得到的方程相加,得到(3x+4y)+(10x-4y)=12+1813x=30x=30/13将x的值代入第一个方程,求得y的值:5x-2y=95(30/13)-2y=9-10/13-2y=9-2y=9+10/13-2y=127/13y=-127/26所以方程组的解为x=30/13,y=-127/26题目三:解方程组1.2x-3y=82.x+4y=7解答:将第一个方程乘以4,得到8x-12y=32然后将第二个方程与新得到的方程相加,得到(x+4y)+(8x-12y)=7+329x-8y=39将第一个方程乘以3,得到6x-9y=24然后将上式与新得到的方程相加,得到(6x-9y)+(9x-8y)=24+3915x-17y=63解得15x-17y=639x-8y=39联立解得x=207/103,y=-255/103题目四:解方程组1.4x-y=72.2x+3y=1解答:将第一个方程乘以3,得到12x-3y=21然后将第二个方程与新得到的方程相加,得到(2x+3y)+(12x-3y)=1+2114x=22x=22/14将x的值代入第一个方程,求得y的值:4x-y=74(22/14)-y=788/14-y=7-y=7-88/14-y=-38/14y=38/14所以方程组的解为x=11/7,y=19/7题目五:解方程组1.3x+2y=82.4x-3y=2解答:将第一个方程乘以4,得到12x+8y=32然后将第二个方程与新得到的方程相加,得到(4x-3y)+(12x+8y)=2+3216x+5y=34将第一个方程乘以5,得到15x+10y=40然后将上式与新得到的方程相加,得到(15x+10y)+(16x+5y)=40+3431x+15y=74解得31x+15y=7416x+5y=34联立解得x=16/11,y=58/33题目六:解方程组1.2x+y=52.3x-y=7解答:将第一个方程乘以3,得到6x+3y=15然后将第二个方程与新得到的方程相加,得到(3x-y)+(6x+3y)=7+159x=22x=22/9将x的值代入第一个方程,求得y的值:2x+y=52(22/9)+y=544/9+y=5y=5-44/9y=1/9所以方程组的解为x=22/9,y=1/9题目七:解方程组1.5x-2y=72.x+6y=3解答:将第一个方程乘以6,得到30x-12y=42然后将第二个方程与新得到的方程相加,得到(x+6y)+(30x-12y)=3+4231x-6y=45将第一个方程乘以3,得到15x-6y=21然后将上式与新得到的方程相加,得到(15x-6y)+(31x-6y)=21+4546x-12y=66解得46x-12y=6631x-6y=45联立解得x=21/17,y=-15/17题目八:解方程组1.2x-3y=52.x+2y=4解答:将第一个方程乘以2,得到4x-6y=10然后将第二个方程与新得到的方程相加,得到(x+2y)+(4x-6y)=4+105x-4y=14将第一个方程乘以4,得到8x-12y=20然后将上式与新得到的方程相加,得到(8x-12y)+(5x-4y)=20+1413x-16y=34解得13x-16y=345x-4y=14联立解得x=82/89,y=-79/89题目九:解方程组1.3x-4y=62.2x+5y=1解答:将第一个方程乘以2,得到6x-8y=12然后将第二个方程与新得到的方程相加,得到(2x+5y)+(6x-8y)=1+128x-3y=13将第一个方程乘以3,得到9x-12y=18然后将上式与新得到的方程相加,得到(9x-12y)+(8x-3y)=18+1317x-15y=31解得17x-15y=318x-3y=13联立解得x=218/229,y=-125/229题目十:解方程组1.4x-y=62.x+3y=4解答:将第一个方程乘以3,得到12x-3y=18然后将第二个方程与新得到的方程相加,得到(x+3y)+(12x-3y)=4+1813x=22x=22/13将x的值代入第一个方程,求得y的值:4x-y=64(22/13)-y=688/13-y=6-y=6-88/13-y=-70/13y=70/13所以方程组的解为x=22/13,y=70/13。
二元一次方程组的应用压轴题十种模型全攻略(解析版) 七年级数学下册
专题06二元一次方程组的应用压轴题十种模型全攻略【考点导航】目录【典型例题】 (1)【考点一二元一次方程组的应用——年龄问题】 (1)【考点二二元一次方程组的应用——分配问题】 (3)【考点三二元一次方程组的应用——古代问题】 (5)【考点四二元一次方程组的应用——行程问题】 (6)【考点五二元一次方程组的应用——工程问题】 (7)【考点六二元一次方程组的应用——和差倍分问题】 (9)【考点七二元一次方程组的应用——方案问题】 (10)【考点八二元一次方程组的应用——销售、利润问题】 (12)【考点九二元一次方程组的应用——数字问题】 (14)【考点十二元一次方程组的应用——几何问题】 (16)【过关检测】 (17)【典型例题】【考点一二元一次方程组的应用——年龄问题】例题:(2023下·江苏宿迁·七年级统考期末)爸爸、妈妈、我、妹妹,四人今年的年龄之和是101岁,爸爸比妈妈大1岁,我比妹妹大6岁,十年前,我们一家的年龄之和是63岁,今年爸爸的年龄是()A.38岁B.39岁C.40岁D.41岁【答案】C【分析】由题意得:妹妹今年的年龄为8岁,我今年的年龄为14岁,设妈妈今年的年龄为x岁,爸爸今年的年龄为y岁,再由题意:一家四口人的年龄加在一起是101岁,爸爸比妈妈大1岁,列出方程组,解方程组即可.【详解】解:现在一家四口人的年龄之和应该比十年前全家人年龄之和多40岁,但实际上1016338-=(岁),说明十年前妹妹没出生,则妹妹今年的年龄为1040388()--=(岁),我的年龄为6814+=(岁),设妈妈今年的年龄为x 岁,爸爸今年的年龄为y 岁,由题意得:8141011x y y x +++=⎧⎨=+⎩,解得:3940x y =⎧⎨=⎩,即爸爸今年的年龄为40岁,故选:C .【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.【变式训练】【详解】解:设大头儿子现在的年龄是x 岁,爸爸的年龄是y 岁,由题意得:2352(5)8y x y x =+⎧⎨+=++⎩,解得:1033x y =⎧⎨=⎩,答:大头儿子现在的年龄为10岁.【点睛】本题考查二元一次方程组的实际应用,解题的关键是根据题意列出二元一次方程组.【考点二二元一次方程组的应用——分配问题】例题:(2023上·重庆·八年级重庆八中校考期中)某共享单车运营公司准备采购一批共享单车投入市场,而共享单车安装公司由于抽调不出足够熟练工人,准备招聘一批新工人.已知2名熟练工人和3名新工人每天共安装44辆共享单车;4名熟练工人每天安装的共享单车数与5名新工人每天安装的共享单车数一样多.(1)求每名熟练工人和新工人每天分别可以安装多少辆共享单车;(2)共享单车安装公司计划抽调出熟练工人若干,并且招聘新工人共同安装共享单车.如果25天后刚好交付运营公司3500辆合格品投入市场,求熟练工人和新工人各多少人.【答案】(1)每名熟练工人和新工人每天分别可以安装10辆和8辆共享单车(2)熟练工人和新工人分别有10人、5人或6人、10人或2人、15人【分析】(1)设每名熟练工人每天可以安装x 辆共享单车,每名新工人每天可以安装y 辆共享单车,根据题意列方程组即可;(2)设熟练工人和新工人各m ,n 人,根据题意列出等式取值即可.【详解】(1)解:设每名熟练工人每天可以安装x 辆共享单车,每名新工人每天可以安装y 辆共享单车,根据题意,得:234445x y x y +=⎧⎨=⎩,解得108x y =⎧⎨=⎩,答:每名熟练工人和新工人每天分别可以安装10辆和8辆共享单车.(2)解:设熟练工人和新工人各m ,n 人,由题意得:25102583500m n ⨯+⨯=,整理得:5470m n +=,当2m =时,15n =;当6m =时,10n =;当10m =时,5n =;答:熟练工人和新工人分别有10人、5人或6人、10人或2人、15人;【点睛】本题主要考查二元一次方程组的应用,解题的关键是理解题意,找到题目蕴含的相等关系.【变式训练】1.(2023下·福建南平·七年级统考期末)“建盏”作为一种茶器,是黑瓷的代表,更是南平的一张名片.“建盏”的焙烧方法目前有两种:“柴烧”和“电烧”,制坯的原料是用当地的红土和白土.已知某种同样规格的建盏,一个柴烧的坯体原料红土需要90克,白土需要60克,一个电烧的坯体原料红土需要75克,白土需要75克.在不考虑破损的情况下,某生产车间在一次生产中恰好用了红土1530克,白土1170克.(1)在这次生产中,“柴烧”和“电烧”建盏各生产多少个?(2)该车间计划购买礼盒,现有两种礼盒可供选择,A 礼盒可装2个建盏,B 礼盒可装6个建盏,若要把本次生产的建盏恰好全部装完,且礼盒装满,有几种购买方案?请说明理由.【答案】(1)“柴烧”建盏生产12个,“电烧”建盏生产6个(2)有四种购买方案,见解析【分析】(1)设这次生产“柴烧”建盏x 个,“电烧”建盏y 个,根据“一个柴烧的坯体原料红土需要90克,白土需要60克,一个电烧的坯体原料红土需要75克,白土需要75克.”再建立方程组解题即可;(2)设A 礼盒购买m 个,B 礼盒购买n 个,根据题意,得2618m n +=,再利用方程的正整数解可得答案.【详解】(1)解:设这次生产“柴烧”建盏x 个,“电烧”建盏y 个,根据题意,得9075153060751170x y x y +=⎧⎨+=⎩解这个方程组得:126x y =⎧⎨=⎩,答:“柴烧”建盏生产12个,“电烧”建盏生产6个.(2)由(1)可知共生产18个建盏,设A 礼盒购买m 个,B 礼盒购买n 个,根据题意,得2618m n +=,化简得39m n +=,所以93m n =-,因为m ,n 均为非负整数,所以930n -≥,所以3n ≤,且n 为非负整数,所以当30n m ==时,;当23n m ==时,,当16n m ==时,,当09n m ==时,,所以共有四种购买方案.【点睛】本题考查的是二元一次方程组的应用,二元一次方程的正整数解问题,理解题意,确定相等关系建立方程或方程组是解本题的关键.【考点三二元一次方程组的应用——古代问题】【变式训练】【考点四二元一次方程组的应用——行程问题】例题:(2023上·陕西咸阳·八年级咸阳市秦都中学校考阶段练习)一艘船从甲码头到乙码头顺流而行,用了2小时,从乙码头到甲码头逆流而行,用了2.5小时,已知轮船在静水中的平均速度为27千米/时,求水流的速度和甲、乙码头间的距离?(顺水速度=静水速度+水流速度;逆水速度=静水速度-水流速度,用二元一次方程组的知识解答)【答案】水流的速度是3千米/时,甲、乙码头间的距离为60千米【分析】本题考查一元一次方程的应用,设水流的速度为x 千米/时,甲、乙码头间的距离为y 千米,则顺流的速度为()27x +千米/时,逆流的速度为()27x -千米/时,根据顺流、逆流时行驶路程相等列方程组,解方程即可.根据题意正确列出方程是解题的关键.【详解】设水流的速度是x 千米/时,甲、乙码头间的距离为y 千米,根据题意得:()()227,2.527,x y x y ⎧+=⎪⎨-=⎪⎩解得:3,60,x y =⎧⎨=⎩答:水流的速度是3千米/时,甲、乙码头间的距离为60千米.【变式训练】1.(2023下·重庆渝中·七年级重庆市求精中学校校考期中)甲乙两地相距240千米,一辆小车和一辆摩托车分别从甲、乙两地同时出发相向而行,1小时20分两车相遇.相遇后,摩托车继续前进,小车在相遇处停留1个小时后调头按原速返回甲地,小车在返回后半小时追上了摩托车,【考点五二元一次方程组的应用——工程问题】例题:(2023下·云南昆明·七年级校考阶段练习)巴川河是铜梁的母亲河,为打造巴川河风光带,现有一段长为360米的河道整治任务由A、B两个工程队先后接力完成.A工程队每天整治24米,B工程队每天整治16米,共用时20天.(1)求A、B两工程队分别整治河道多少天?(2)若A工程队整改一米的工费为200元,B工程队整改一米的工费为150元,求完成整治河道时,这两工程队的工费共是多少?【答案】(1)A工程队整治河道5天,B工程队整治河道15天(2)60000元【分析】(1)设A工程队整治河道x天,B工程队整治河道y天,根据A工程队每天整治24米,B工程队每天整治16米,共用时20天完成认为列出方程组进行求解即可;(2)分别求出A、B两个工程队的工费,然后求和即可.【详解】(1)解:设A工程队整治河道x天,B工程队整治河道y天,根据题意得:20 2416360 x yx y+=⎧⎨+=⎩,解得:515 xy=⎧⎨=⎩.答:A工程队整治河道5天,B工程队整治河道15天;(2)解:根据题意得:2002451501615⨯⨯+⨯⨯2400036000=+60000(=元).答:完成整治河道时,这两工程队的工费共是60000元.【点睛】本题主要考查了二元一次方程组的实际应用,有理数四则混合计算的实际应用,正确理解题意找到等量关系列出方程组求解是解题的关键.【变式训练】1.(2023下·湖南邵阳·七年级统考期末)一家商店进行装修,若请甲、乙两个装修组同时施工,8天可以完成,需付给两组费用共3520元;若先请甲组单独做6天,再请乙组单独做12天可以完成,需付给两组费用共3480元,问:(1)甲、乙两组单独工作一天,商店应各付多少元?(2)已知甲组单独完成需要12天,乙组单独完成需要24天,若装修完后,商店每天可盈利200元,你认为如何安排施工有利于商店经营?说说你的理由.(提示:三种施工方式:方式一甲单独完成;方式二乙组单独完成;方式三甲、乙两个装修组同时施工.)【答案】(1)甲单独工作一天应付工资300元,乙单独工作一天应付工资140元(2)由甲、乙两个装修队同时施工有利于商店经营,理由见解析【分析】(1)设甲单独工作一天应付工资x元,乙单独工作一天应付工资y元,依题意得:883520 6123480 x yx y+=⎧⎨+=⎩,进行计算即可得;(2)分别算出甲单独完成时需装修的费用和少盈利的钱,乙单独完成时需装修的费用和少盈利的钱,甲乙合作完成时需装修的费用和少盈利的钱,进行比较即可得.【详解】(1)解:设甲单独工作一天应付工资x元,乙单独工作一天应付工资y元,依题意得:883520 6123480 x yx y+=⎧⎨+=⎩,解得300140 xy=⎧⎨=⎩,答:设甲单独工作一天应付工资300元,乙单独工作一天应付工资140元.(2)解:甲单独完成:30012200126000⨯+⨯=(元)乙单独完成:14024200248160⨯+⨯=(元)甲、乙两队完成:(300140)820085120+⨯+⨯=(元)512060008160<<,∴由甲、乙两个装修队同时施工有利于商店经营.【点睛】本题考查了二元一次方程组的应用,解题的关键是理解题意,根据等量关系列出方程,正确计算.【考点六二元一次方程组的应用——和差倍分问题】例题:(2023上·江西九江·八年级统考阶段练习)为落实“五育并举”、提高学生的身体素质,某校在课后服务中大力开展球类运动,现需要购买一批足球、篮球.已知购买1个足球和1个篮球共需140元,购买2个足球和3个篮球共需340元,求足球和篮球的单价.【答案】足球的单价为80元,篮球的单价为60元【分析】本题考查了二元一次方程组的应用.设足球的单价为x元,篮球的单价为y元,根据“购买1个足球和1个篮球共需140元;购买2个足球和3个篮球共需340元”,即可得出关于x,y的二元一次方程组,解之即可求解.【详解】解:设足球的单价为x元,篮球的单价为y元,依题意得:140 23340 x yx y+=⎧⎨+=⎩,解得:8060 xy=⎧⎨=⎩.答:足球的单价为80元,篮球的单价为60元.【变式训练】1.(2023下·河南周口·七年级校联考阶段练习)“绿水青山就是金山银山”,保护环境从日常出行做起.我市实行限行政策后,某天小林在某停车场观察到:该停车场停有三轮车和小轿车两种车型共30辆,已知停车场的车轮总数为110个,求三轮车和小轿车各有多少辆?(请用二元一次方程组解答)【答案】停车场有三轮车10辆,小轿车20辆【分析】设停车场有三轮车x 辆,小轿车y 辆,根据停车场停有三轮车和小轿车两种车型共30辆,停车场的车轮总数为110个,列出方程组进行求解.【详解】解:设停车场有三轮车x 辆,小轿车y 辆.由题意得:3034110x y x y +=⎧⎨+=⎩,解得:1020x y =⎧⎨=⎩;答:停车场有三轮车10辆,小轿车20辆.【点睛】本题考查二元一次方程组的应用,解题的关键是找准等量关系,正确的列出方程组.【考点七二元一次方程组的应用——方案问题】例题:(2023上·山东·八年级期末)现欲将一批荔枝运往外地销售,若用2辆A 型车和1辆B 型车载满荔枝一次可运走10吨;1辆A 型车和2辆B 型车载满荔枝一次可运走11吨.现有荔枝31吨,计划同时租用A 型车a 辆,B 型车b 辆,一次运完,且恰好每辆车都装满货物.根据以上信息,解答下列问题::(1)1辆A 型车和1辆B 型车都载满荔枝一次可分别运送多少吨?(2)请你帮该物流公司设计租车方案.【答案】(1)1辆A 型车载满荔枝一次可运送3吨,1辆B 型车载满荔枝一次可运送4吨(2)答案见解析【分析】本题考查了二元一次方程组的应用以及二元一次方程的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)找准等量关系,正确列出二元一次方程.(1)设1辆A 型车载满荔枝一次可运送x 吨,1辆B 型车载满荔枝一次可运送y 吨,根据用2辆A 型车和1辆B 型车载满荔枝一次可运走10吨;1辆A 型车和2辆B 型车载满荔枝一次可运走11吨列出方程组求解即可;(2)根据题意可得3431a b +=,再根据a 、b 均为非负整数解方程即可得到答案.【详解】(1)解:设1辆A 型车载满荔枝一次可运送x 吨,1辆B 型车载满荔枝一次可运送y 吨,【变式训练】1.(2023上·四川达州·八年级校考期末)下列两题任选一道12两班共计有95名学生,他们的体育平均达标率(达到标准的百分率)是60%,如果一班学(1)初二()()生的达标率是40%,二班学生的达标率是78%,那么一、二班人数各是多少人?(2)某单位新盖了一栋楼房,要从相距132米处的自来水主管道处铺设水管,现有8米长的与5米长的两种规格的水管可供选用.①请你设计一种方案,如何选取这两种水管,才能恰好从主管道铺设到这座楼房?这样的方案有几种?②若8米长的水管每根50元,5米长的水管每根35元,选哪种方案最省钱?【答案】(1)一班人数是45人,二班人数是50人;(2)①共有3种选取方案,方案1:选取4根8米长的水管,20根5米长的水管;方案2:选取9根8米长的水管,12根5米长的水管;方案3:选取14根8米长的水管,4根5米长的水管;②选取14根8米长的水管,4根5米长的水管最省钱.【分析】本题主考查了解二元一次方程组以及二元一次方程组的应用.(1)设一班人数是x人,二班人数是y人,根据“初二(1)(2)两班共计有95名学生,且他们的体育平均达标率(达到标准的百分率)是60%”,可列出关于x,y的二元一次方程组解之即可得出结论;(2)①设选取m根8米长的水管,n根5米长的水管,根据需要水管的总长度为132米,可列出关于m,n的二元一次方程,结合m,n均为非负整数,即可得出各选取方案;②利用总价等于单价乘以数量,可求【考点八二元一次方程组的应用——销售、利润问题】【变式训练】【考点九二元一次方程组的应用——数字问题】例题:(2023上·江苏·七年级校考周测)一个两位数,个位上的数字与十位上的数字的和为13,若把个位上的数字与十位上的数字对调,则所得的数比原数的2倍小4,求原来的两位数.【答案】原来的两位数是49.【分析】本题考查了二元一次方程组的应用,读懂题意,找到合适的等量关系,列出方程组,是解答本题的关键.根据题意设个位数字为x,十位数字为y,利用已知条件列出二元一次方程组,由此得到答案.【详解】解:根据题意设:个位数字为x,十位数字为y,∴()()13210104x y y x x y +=⎧⎨+-+=⎩,解得:94x y =⎧⎨=⎩,∴原来的两位数为:410949⨯+=,答:原来的两位数是49.【变式训练】1.(2023下·河南南阳·七年级校考阶段练习)小明和小华在一起玩数字游戏,他们每人取了一张数字卡片,拼成了一个两位数,小明说:“哇!这个两位数的十位数字与个位数字之和恰好是9.”他们又把这两张卡片对调,得到了一个新的两位数,小华说:“这个两位数恰好也比原来的两位数大9.”那么,你能回答以下问题吗?(1)他们取出的两张卡片上的数字分别是几?(2)第一次,他们拼出的两位数是多少?【答案】(1)他们取出的两张卡片上的数字分别是4、5.(2)第一次他们拼成的两位数为45.【分析】(1)设他们取出的两个数字分别为x 、y .根据题意列方程组求解即可;(2)根据(1)的结果即可求解.【详解】(1)解:设他们取出的两个数字分别为x 、y .第一次拼成的两位数为10x y +,第二次拼成的两位数为10y x +.根据题意得:910910x y y x x y +=⎧⎨+-=+⎩①②,由②,得:1y x -=③,+①③得:5y =.把5y =代入①得:4x =,∴他们取出的两张卡片上的数字分别是4、5.(2)解:根据(1)得:十位数字是4,个位数字是5,所以第一次他们拼成的两位数为45.【点睛】本题考查二元一次方程组的应用,找出合适的等量关系是解题的关键.【考点十二元一次方程组的应用——几何问题】例题:(2023上·吉林四平·八年级统考期末)如图,在大长方形ABCD 中放入10个相同的小长方形(图中空白部分),若大长方形的周长是104,图中阴影部分的面积是327,设小长方形的长为x ,宽为y ,求一个小长方形的周长和面积分别是多少?【答案】一个小长方形的周长为26,面积为30.【分析】本题考查了二元一次方程组,找到正确的数量关系是解题的关键.由大长方形的周长是104,图中阴影部分的面积是327.列出方程组,可求解.【详解】解:由题意可得:()()()2331043310327x y x y x y x y xy ⎧+++=⎪⎨++-=⎪⎩∴2213109x y x y +=⎧⎨+=⎩()226,30x y xy ∴+==答:一个小长方形的周长为26,面积为30.【变式训练】1.(2023上·甘肃张掖·八年级校考阶段练习)如图:用8块相同的长方形拼成一个宽为48厘米的大长方形,每块小长方形的长和宽分别是多少?【答案】每块小长方形的长为36厘米,宽为12厘米【分析】本题考查了二元一次方程组的应用,观察图形、结合“大长方形宽为48厘米”列出二元一次方程组求解是解题的关键.【详解】解:设小长方形的长为x 厘米,宽为y 厘米,48x y +=⎩解得:3612x y =⎧⎨=⎩,答:每块小长方形的长为36厘米,宽为12厘米.【过关检测】一、单选题1.(2024下·全国·七年级假期作业)甲、乙两人相距42km ,若两人同时相向而行,可在6h 后相遇;若两人同时同向而行,乙可在14h 后追上甲.设甲的速度为km /h x ,乙的速度为km /h y ,列出的二元一次方程组为()A .6642141442x y y x +=⎧⎨=+⎩B .6642141442x y x y +=⎧⎨=+⎩C .66421414x y y x +=⎧⎨=⎩D .6642141442y x x y -=⎧⎨+=⎩【答案】A【解析】略2.(2024上·湖南怀化·九年级校考期末)《孙子算经》是中国传统数学的重要著作,其中有一道题,原文是:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺,木长几何?”意思是:用一根绳子去量一根木头的长,绳子还剩余4.5尺;将绳子对折再量木头,则木头还剩余1尺,问木头长多少尺?可设木头长为x 尺,绳子长为y 尺,则所列方程组正确的是()A . 4.50.51y x y x =+⎧⎨=-⎩,B . 4.521y x y x =+⎧⎨=-⎩,C . 4.50.51y x y x =-⎧⎨=+⎩,D . 4.521y x y x =-⎧⎨=+⎩,【答案】A 【分析】本题主要考查了从实际问题中抽象出二元一次方程组,设木头长为x 尺,绳子长为y 尺,根据用一根绳子去量一根木头的长、绳子还剩余4.5尺,可得 4.5y x =+,根据将绳子对折再量木头,则木头还剩余1尺可得0.51y x =-,据此列出方程组即可.【详解】解:可设木头长为x 尺,绳子长为y 尺,0.51y x =-⎩故选:A .3.(2024上·陕西宝鸡·八年级统考期末)某校课外小组的学生分组做课外活动,若每组7人,则余下3人:若每组8人,则少5人.设课外小组的人数为x ,应分成的组数为y ,可列方程组()A .7385y x y x =+⎧⎨+=⎩B .7385y x y x +=⎧⎨-=⎩C .7385y x y x =-⎧⎨=-⎩D .7385y x y x =+⎧⎨=+⎩【答案】B【分析】本题主要考查了根据实际问题列方程组,审清题意、找准等量关系是解题的关键.设课外小组的人数为x ,应分成的组数为y ,根据等量关系“若每组7人,则余下3人”和“每组8人,则少5人”即可列出方程组.【详解】解:设课外小组的人数为x ,应分成的组数为y ,根据“每组7人,则余下3人;每组8人,则少5人”可得方程组:7385y x y x +=⎧⎨-=⎩.故选B .4.(2023上·山东青岛·八年级校考阶段练习)如图是由同一种长方形的墙砖粘贴的部分墙面,其中3块横放的墙砖比1块竖放的墙砖高10cm ,2块横放的墙砖比2块竖放的墙砖矮40cm ,则每块墙砖的面积是()2cm .A .425B .525C .600D .800【答案】B 【分析】本题主要考查了二元一次方程组的应用,根据题意列出二元一次方程组是解题的关键.设墙砖的长为cm x ,宽为cm y ,根据等量关系“3块横放的墙砖比1块竖放的墙砖高10cm ,2块横放的墙砖比2块竖放的墙砖矮40cm ”列出二元一次方程组求出x 、y 的值,然后再求面积即可.【详解】解:设墙砖的长为cm x ,宽为cm y ,根据题意得:3102240y x x y -=⎧⎨-=⎩,解得:3515x y =⎧⎨=⎩,所以墙砖的面积为:23515525cm ⨯=.故选:B .二、填空题【答案】92【分析】本题考查二元一次方程组的应用.根据图中的数据,可以列出相应的二元一次方程组,然后即可求得小长方形的长和宽,然后即可计算出图中阴影部分的面积.【详解】解:设小长方形的长为cmx,宽为由图可得:212418x y yx y+-=⎧⎨+=⎩,10x=⎧三、解答题9.(2023上·山东青岛·八年级校考阶段练习)古代有一个官兵分布的问题:“一千官兵一千布,一官四尺无【答案】90cm【分析】本题考查了二元一次方程组的应用,设1支塑料凳子的高度为加ycm,即可根据题意列出方程组求解.【详解】设1台A 型机器人每小时拣垃圾a 吨,1台B 型机器人每小时拣垃圾b 吨,根据题意,得()23 2.623 3.6a b a b +=⎧⎨+=⎩,解得0.40.6a b =⎧⎨=⎩,故1台A 型机器人每小时拣垃圾0.4吨,1台B 型机器人每小时拣垃圾0.6吨.【点睛】本题考查了方程组的应用,熟练列出方程组是解题的关键.14.(2023下·湖南岳阳·七年级统考阶段练习)小明在拼图时发现8个一样大小的长方形恰好可以拼成一个大的长方形如图(1),小红看见了说:“我也来试一试.”结果小红七拼八凑,拼成了如图(2)那样的正方形,中间还留下了一个洞,恰好是边长为1mm 的小正方形.请问每个小长方形的面积是多少?【答案】215mm 【分析】设每个小长方形的长是mm x ,宽是mm y ,根据图形给出的信息可知,长方形的5个宽与其3个长相等,1个长加1的和等于两个宽的和,于是得方程组,解出即可.【详解】解:设小长方形的长是mm x ,宽是mm y ,由图(1),得35x y =,由图(2),得12x y +=,所以3512x y x y=⎧⎨+=⎩,解得53x y =⎧⎨=⎩,∴小正方形的长为5mm ,宽为3mm ,∴小长方形的面积为25315mm =⨯=,答:每个小长方形的面积是215mm .【点睛】本题考查了列二元一次方程组解实际问题的运用,二元一次方程组的解法的运用,解答时根据矩形和正方形的长与宽的关系建立方程组是关键.(1)放入1个小球水面升高______cm,放入1个大球水面升高(2)如果使水面上升到50cm,应放入大球、小球各多少个?【分析】本题考查了二元一次方程组的应用以及二元一次方程的应用,解题的关键是找准等量关系,正确列出二元一次方程组.(1)设1辆A 型车载满萝卜一次可运送x 吨,1辆B 型车载满萝卜一次可运送y 吨,根据题意列出二元一次方程组求解即可;(2)根据题意得到3431a b +=,然后由a ,b 都是正整数求解即可.【详解】(1)设1辆A 型车载满萝卜一次可运送x 吨,1辆B 型车载满萝卜一次可运送y 吨,依题意得:210211x y x y +=⎧⎨+=⎩,解得34x y =⎧⎨=⎩.答:1辆A 型车载满萝卜一次可运送3吨,1辆B 型车载满萝卜一次可运送4吨.(2)∵现有萝卜31吨,计划同时租用A 型车a 辆,B 型车b 辆,∴3431a b +=,∵a ,b 都是正整数,∴当9a =时,1b =;当5a =时,4b =;当1a =时,7b =;∴该物流公司共有3种租车方案:方案1:租用9辆A 型车,1辆B 型车方案2:租用5辆A 型车,4辆B 型车;方案3:租用1辆A 型车,7辆B 型车.。
七年级数学下册 二元一次方程组经典练习题+答案解析100道 人教新课标
二元一次方程组练习题100道(卷一)(范围:代数: 二元一次方程组) 一、判断1、⎪⎩⎪⎨⎧-==312y x 是方程组⎪⎪⎩⎪⎪⎨⎧=-=-910326523y x y x 的解 …………( )2、方程组⎩⎨⎧=+-=5231y x x y 的解是方程3x-2y=13的一个解( )3、由两个二元一次方程组成方程组一定是二元一次方程组( )4、方程组⎪⎪⎩⎪⎪⎨⎧=-++=+++25323473523y x y x ,可以转化为⎩⎨⎧-=--=+27651223y x y x ( )5、若(a2-1)x2+(a-1)x+(2a-3)y=0是二元一次方程,则a 的值为±1( )6、若x+y=0,且|x|=2,则y 的值为2 …………( )7、方程组⎩⎨⎧=+-=+81043y x x m my mx 有唯一的解,那么m 的值为m ≠-5 …………( )8、方程组⎪⎩⎪⎨⎧=+=+623131y x y x 有无数多个解 …………( )9、x+y=5且x ,y 的绝对值都小于5的整数解共有5组 …………( )10、方程组⎩⎨⎧=+=-3513y x y x 的解是方程x+5y=3的解,反过来方程x+5y=3的解也是方程组⎩⎨⎧=+=-3513y x y x 的解 ………( )11、若|a+5|=5,a+b=1则32-的值为ba ………()12、在方程4x-3y=7里,如果用x 的代数式表示y ,则437yx +=( )二、选择:13、任何一个二元一次方程都有( )(A )一个解; (B )两个解; (C )三个解; (D )无数多个解;14、一个两位数,它的个位数字与十位数字之和为6,那么符合条件的两位数的个数有( )(A )5个 (B )6个 (C )7个 (D )8个15、如果⎩⎨⎧=+=-423y x a y x 的解都是正数,那么a 的取值范围是( )(A )a<2; (B )34->a ; (C )342<<-a ;(D )34-<a ;16、关于x 、y 的方程组⎩⎨⎧=-=+my x m y x 932的解是方程3x+2y=34的一组解,那么m 的值是( )(A )2; (B )-1; (C )1; (D )-2;17、在下列方程中,只有一个解的是( )(A )⎩⎨⎧=+=+0331y x y x (B )⎩⎨⎧-=+=+2330y x y x(C )⎩⎨⎧=-=+4331y x y x (D )⎩⎨⎧=+=+3331y x y x18、与已知二元一次方程5x-y=2组成的方程组有无数多个解的方程是( ) (A )15x-3y=6 (B )4x-y=7 (C )10x+2y=4 (D )20x-4y=3 19、下列方程组中,是二元一次方程组的是( ) (A )⎪⎩⎪⎨⎧=+=+9114y x y x(B )⎩⎨⎧=+=+75z y y x(C )⎩⎨⎧=-=6231y x x(D )⎩⎨⎧=-=-1y x xyy x20、已知方程组⎩⎨⎧-=+=-135b y ax y x 有无数多个解,则a 、b 的值等于( )(A )a=-3,b=-14 (B )a=3,b=-7 (C )a=-1,b=9(D )a=-3,b=14 21、若5x-6y=0,且xy ≠0,则y x yx 3545--的值等于( )(A )32 (B )23(C )1 (D )-1 22、若x 、y 均为非负数,则方程6x=-7y 的解的情况是( )(A )无解 (B )有唯一一个解 (C )有无数多个解 (D )不能确定23、若|3x+y+5|+|2x-2y-2|=0,则2x2-3xy 的值是( )(A )14 (B )-4 (C )-12 (D )1224、已知⎩⎨⎧-==24y x 与⎩⎨⎧-=-=52y x 都是方程y=kx+b 的解,则k 与b 的值为( ) (A )21=k ,b=-4 (B )21-=k ,b=4 (C )21=k ,b=4(D )21-=k ,b=-4 三、填空:25、在方程3x+4y=16中,当x=3时,y=________,当y=-2时,x=_______ 若x 、y 都是正整数,那么这个方程的解为___________; 26、方程2x+3y=10中,当3x-6=0时,y=_________;27、如果0.4x-0.5y=1.2,那么用含有y 的代数式表示的代数式是_____________;28、若⎩⎨⎧-==11y x 是方程组⎩⎨⎧-=-=+1242a y x b y ax 的解,则⎩⎨⎧==______________b a ;29、方程|a|+|b|=2的自然数解是_____________; 30、如果x=1,y=2满足方程141=+y ax ,那么a=____________;31、已知方程组⎩⎨⎧-=+=+my x ay x 26432有无数多解,则a=______,m=______;32、若方程x-2y+3z=0,且当x=1时,y=2,则z=______;33、若4x+3y+5=0,则3(8y-x)-5(x+6y-2)的值等于_________;34、若x+y=a ,x-y=1同时成立,且x 、y 都是正整数,则a 的值为________;35、从方程组)0(030334≠⎩⎨⎧=+-=--xyz z y x z y x 中可以知道,x:z=_______;y:z=________;36、已知a-3b=2a+b-15=1,则代数式a2-4ab+b2+3的值为__________;四、解方程组□x +5y =13 ① 4x -□y =-2 ②37、⎪⎪⎩⎪⎪⎨⎧=-=-1332343n m nm ; 38、)(6441125为已知数a a y x a y x ⎩⎨⎧=-=+; 39、⎪⎪⎩⎪⎪⎨⎧=++=+125432y x yx y x ; 40、⎪⎩⎪⎨⎧=--+=-++0)1(2)1()1(2x y x x x y y x ; 41、⎪⎪⎩⎪⎪⎨⎧++=++=+=+6253)23(22)32(32523233y x y x y x y x ; 42、⎪⎪⎩⎪⎪⎨⎧=-++=-++1213222132y x y x ;43、⎪⎩⎪⎨⎧=-+-=-+=-+3113y x z x z y z y x ; 44、⎪⎩⎪⎨⎧=+=+=+101216x z z y y x ;45、⎪⎩⎪⎨⎧=-+=+-=-+35351343z y x z y x z y x ; 46、⎪⎩⎪⎨⎧=+-==30325:3:7:4:z y x z x y x ;五、解答题:47、甲、乙两人在解方程组 时,甲看错了①式中的x 的系数,解得⎪⎪⎩⎪⎪⎨⎧==475847107y x ;乙看错了方程②中的y 的系数,解得⎪⎪⎩⎪⎪⎨⎧==19177681y x ,若两人的计算都准确无误,请写出这个方程组,并求出此方程组的解;48、使x+4y=|a|成立的x 、y 的值,满足(2x+y-1)2+|3y-x|=0,又|a|+a=0,求a 的值; 49、代数式ax2+bx+c 中,当x=1时的值是0,在x=2时的值是3,在x=3时的值是28,试求出这个代数式;50、要使下列三个方程组成的方程组有解,求常数a 的值。
初一数学下册知识点《解二元一次方程组--代入消元法》150例题及解析
初一数学下册知识点《解二元一次方程组--代入消元法》150例题及解析副标题题号一二三四总分得分一、选择题(本大题共35小题,共105.0分)1.若关于x,y的二元一次方程组无解,则a的值为A. B. 1 C. D. 3【答案】A【解析】解:由②得:x=3+3y,③把③代入①得:a(3+3y)-y=4,整理得:(3a-1)y=4-3a,∵方程组无解,∴3a-1=0,且4-3a≠0,∴a=.故选:A.把第二个方程整理得到x=3+3y,然后利用代入消元法消掉未知数x得到关于y的一元一次方程,再根据方程组无解,未知数的系数等于0列式计算即可得解.本题考查了二元一次方程组的解,消元得到关于y的方程是解题的关键,难点在于明确方程组无解,未知数的系数等于0.2.由方程组,可得x与y的关系是()A. 2x+y=-4B. 2x-y=-4C. 2x+y=4D. 2x-y=4【答案】C【解析】【分析】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法,方程组消元m即可得到x与y的关系式.【解答】解:,把②代入①得:2x+y-3=1,整理得:2x+y=4,故选C.3.若方程组中x与y互为相反数,则m的值是A. 1B. D. 36【答案】C【解析】【分析】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.根据x与y互为相反数,得到x+y=0,即y=-x,代入方程组求出m的值即可.【解答】解:,根据题意得:x+y=0,即y=-x③,把③代入②得:-2x=8,即x=-4,y=4,把x=-4,y=4代入①得:-20-16=m,解得:m=-36,故C正确.故选C.4.把方程2x-y=3改写成用含x的式子表示y的形式正确的是()A. 2x=y+3B. x=C. y=2x-3D. y=3-2x【答案】C【解析】解:由2x-y=3知2x-3=y,即y=2x-3,故选:C.将x看做常数移项求出y即可得.此题考查了解二元一次方程,解题的关键是将x看做已知数求出y.5.用代入法解方程组时,用①代入②得()A. 2-x(x-7)=1B. 2x-1-7=1C. 2x-3(x-7)=1D. 2x-3x-7=1【答案】C【解析】【分析】本题考查了解二元一次方程组,主要考查了代入法的思想,比较简单.根据代入法的思想,把②中的y换为(x-7)即可.【解答】解:①代入②既是把②中的y替换成(x-7),得:2x-3(x-7)=1.故选C.6.用“代入消元法”解方程组时,把①代入②正确的是()A. 3x﹣2x+4=7B. 3x﹣2x﹣4=7C. 3x﹣2x+2=7D. 3x﹣2x﹣2=7【答案】A【解析】【分析】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.观察方程组,可知①式可直接代入②式中,再去括号,即可得到结果.【解答】解:用“代入消元法”解方程组时,把①代入②得,去括号得:故选:A.7.解方程组时,把①代入②,得()A. B.C. D.【答案】D【解析】【分析】本题主要考查二元一次方程组的解法.根据把①代入②,得到的结果即可.【解答】解:解方程组时,把①代入②,得2y-5(3y-2)=10.故选D.8.解方程组①,②,比较简便的方法是A. 都用代入法B. 都用加减法C. ①用代入法,②用加减法D. ①用加减法,②用代入法【答案】C【解析】略.9.在等式y=kx+b中,当x=1时,y=5,当x=-2时,y=11,则k、b的值为()A. B. C. D.【答案】D【解析】解:由题意得,解得.故选D.根据已知条件可以列出关于k、b的二元一次方程组,通过解该方程组得到.本题考查二元一次方程组,有加减法和代入法两种,一般选用加减法解二元一次方程组较简单.10.已知,,用只含的代数式表示正确的是()A. B. C. D.【答案】A【解析】【分析】此题主要考查了解二元一次方程组,消去t表示出y是解本题的关键.由x=2-t移项可得t=2-x,将此代入计算即可求解.【解答】解:由x=2-t得t=2-x,∴y=3+2(2-x)=3+4-2x=-2x+7.故选A.11.由方程组,可得出x与y的关系式是()A. B. C. D.【答案】A【解析】【分析】本题考查了代入消元法解方程组,是一个基础题.【解答】解:由①得m=6-x,代入方程②,即可消去m得到关于x,y的关系式.∴6-x=y-3∴x+y=9.故选A.12.如果2m9-x n y和-3m2y n3x+1是同类项,则2m9-x n y+(-3m2y n3x+1)=()A. -m8n4B. mn4C. -m9nD. 5m3n2【答案】A【解析】解:由题意,得9-x=2y且y=3x+1,解得x=1,y=4,当x=1,y=4时,2m9-x n y+(-3m2y n3x+1)=2m8n4+(-3m8n4)=-m8n4,故选:A.根据同类项的定义,所含字母相同且相同字母的指数也相同的项是同类项,可得答案.注意同类项与字母的顺序无关,与系数无关.本题考查了同类项,利用同类项得出9-x=2y且y=3x+1是解题关键,又考查了二元一次方程组.13.在关于x、y的二元一次方程组的下列说法中,正确的是①当a=3时,方程的两根互为相反数;②当且仅当a=-4时,解得x与y相等;③x,y满足关系式;④若,则a=10.A. ①③B. ①②C. ①②③D. ①②③④【答案】D【解析】【分析】本题考查三元一次方程组的解法,方程组的解.把a=3 代入原方程,求解即可判定①;把a=-4代入原方程求解,即可判定②;把原方程中第一个方程乘以2,两式相减即可得x+5y的值,即可判定③;由9x×27y=81,得32x+3y=34,所以2x+3y=4,将原方程中第二方程-第一方程,即可得2x+3y=a-6,所以有a-6=4,即可求出a值,从而可判定④.继而得出答案.【解答】解:∵,把a=3代入方程组得解得:,∴x、y互为相反数,故①正确;把a=-4代入方程组得,解得:,∴x=y,故②正确;②-①×2得x+5y=-12,故③正确;②-①得2x+3y=a-6,又∵9x×27y=81,∴32x+3y=34,∴2x+3y=4,∴a-6=4,解得:a=10,故④正确∴正确的有①②③④.故选D.14.方程组消去y后所得的方程是()A. 3x-4x+10=8B. 3x-4x+5=8C. 3x-4x-5=8D. 3x-4x-10=8【答案】A【解析】【分析】本题主要考查代入消元法解方程组.把方程中的未知数换为另一个未知数的代数式即可,比较简单.根据代入消元法,把①代入②,把②中的y换成2x-5即可.【解答】解:,把①代入②,得3x-2(2x-5)=8,即3x-4x+10=8.故选A.15.用代入法解方程组时,代入正确的是( )A. x-2-x=4B. x-2-2x=4C. x-2+2x=4D. x-2+x=4【答案】C【解析】【分析】本题考查了用代入法解二元一次方程组,是基础知识要熟练掌握.将①代入②整理即可得出答案.【解答】解:,把①代入②得,x-2(1-x)=4,去括号得,x-2+2x=4.故选C.16.解二元一次方程组时,用代入消元法整体消去4,得到的方程是()A. 2=﹣2B. 2=﹣36C. 12=﹣36D. 12=﹣2【答案】B【解析】解:由①得:4x=17-5y③,把③代入②得:17-5y+7y=-19,2y=-36,故选:B.由①得出4x=17-5y③,把③代入②即可.本题考查了解二元一次方程组,能够正确代入是解此题的关键.17.若方程组的解满足x+y=3,则a的值是()A. 6B. 7C. 8D. 9【答案】C【解析】【分析】本题主要考查加减消元法解二元一次方程组和一元一次方程组的解法,先运用加减消元法求出,再将转化为,解出a的值即可.【解答】解:得,,∵,∴解得.故选C.18.如果方程组的解与方程组的解相同,则a+b的值为()A. -1B. 2C. 1D. 0【答案】C【解析】略19.二元一次方程2x+y=5的正整数解有()A. 1个B. 2个C. 3个D. 4个【答案】B【解析】解:方程2x+y=5,解得:y=-2x+5,当x=1时,y=3;x=2时,y=1,则方程的正整数解有2个.故选:B.方程变形后表示出y,确定出正整数解的个数即可.此题考查了解二元一次方程,解题的关键是将x看做已知数求出y.20.如果方程组的解为那么被“★”“■”遮住的两个数分别为( )A. 10,4B. 4,10C. 3,10D. 10,3【答案】A【解析】【分析】本题考查的是二元一次方程组的解有关知识,把方程组的解代入2x+y=16先求出■,再代入x+y求★.【解答】解:把代入2x+y=16得12+■,解得:■=4再把代入x+y=★得★=6+4=10故选A.21.若二元一次方程组的解中x,y互为相反数,则m的值为()A. 10B. -7C. -10D. -12【答案】C【解析】【分析】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法. 由x与y互为相反数,得到x+y=0,即x=-y,代入方程组求出m的值即可.【解答】解:由x与y互为相反数,得到x+y=0,即x=-y,代入方程组得:,消去x得:3m+9=2m-1,解得:m=-10.故选C.22.如果方程组的解与方程组的解相同,则a,b的值是( )A. B. C. D.【答案】A【解析】【分析】本题考查了同解方程组的知识,解答此题的关键是熟知方程组有公共解的含义,考查了学生对题意的理解能力.因为方程组有相同的解,所以只需求出一组解代入另一组,即可求出未知数的值.【解答】解:由题意得:是的解,故可得:,解得:.故选A.23.方程组的解也是方程3x+ky=10的解,则k的值是()A. 4B. 10C. 9D.【答案】A【解析】【分析】此题考查二元一次方程解的定义和解法,解二元一次方程组首先要消元,然后再求解,同时也考查的方程的同解,比较简单.解方程组求出x、y的值,再代入方程得出关于k 的方程,解之可得.【解答】解:解方程组,①×2-②,得:3x=6,解得:x=2,将x=2代入①得:3×2+y=7,解得:y=1,∴方程组的解为,代入方程3x+ky=10得6+k=10,解得k=4,故选A.24.若点A(-4,0)、B(0,5)、C(m,-5)在同一条直线上,则m的值是( )A. 8B. 4C. -6D. -8【答案】D【解析】【分析】本题考查用待定系数法求一次函数解析式,要注意利用一次函数的特点,列出方程组,求出未知数,写出解析式,是解题的关键,已知点A(-4,0)、B(0,5)在同一条直线上,用待定系数法可求出函数关系式.再把C(m,-5)代入求出m的值.【解答】解:设直线y=kx+b,已知A(-4,0)、B(0,5)的坐标,可列出方程组,解得,写出解析式y=x+5,因为点A(-4,0)、B(0,5)、C(m,-5)在同一条直线上,则得到-5=m+5,解得:m=-8.故选D.25.二元一次方程组的解是()A. B. C. D.【答案】C【解析】【分析】此题主要考查二元一次方程组的解法.用代入消元法解二元一次方程组即可.【解答】解:,把②代入①,得x+2×2x=10,解得x=2,把x=2代入②中,得y=4,所以方程组的解为,故选C.26.已知是关于x,y的二元一次方程组的解,则a+b的值是( )A. 1B. 3C. 6D. 8【答案】D【解析】【分析】本题考查了二元一次方程组的解和解二元一次方程组,熟练掌握解方程组的方法是解题的关键,所谓“方程组”的解,指的是该数值满足方程组中的每一方程的值,只需将方程的解代入方程组,就可得到关于a、b的二元一次方程组,解得a、b的值,即可得到答案.【解答】解:把代入方程组得,,即,则a+b==8,故选D.27.已知-3a x+y b2与-a3b x是同类项,则x、y的值分别为( )A. 3、3B. -1、1C. 2、3D. 2、1【答案】D【解析】【分析】本题考查了同类项的定义,属于基础题.根据同类项的定义可得,解出x,y即可.【解答】解:因为-3a x+y b2与-a3b x是同类项,所以,解得.故选D.28.已知方程组的解是,则2m+n的值为( )A. 1B. 2C. 3D. 0【答案】C【解析】【分析】此题主要考查了二元一次方程组解的定义以及解二元一次方程组的基本方法.所谓“方程组”的解,指的是该数值满足方程组中的每一方程的值,只需将方程的解代入方程组,就可得到关于m,n的二元一次方程组,解得m,n的值,即可求2m+n的值.【解答】解:根据定义把代入方程组,得,解得.∴2m+n=2×2-1=3.故选C.29.已知关于a,b的方程组的解是,则直线y=mx+n不经过()A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】A【解析】【分析】本题考查的知识点是二元一次方程的解,解二元一次方程组,一次函数的性质,首先由方程组的解是求出m,n的值,代入得到一次函数解析式,再根据一次函数的性质,即可得到答案.【解答】解:∵关于a,b的方程组的解是,∴,∴,∴直线y=mx+n的解析式为,∵k=-2,b=-3,∴过第二、三、四象限,故选A.30.已知和都是方程mx+ny=8的解,则m、n的值分别为()A. 1,﹣4B. ﹣1,4C. ﹣1,﹣4D. 1,4【答案】D把x与y的值代入方程计算即可求出m与n的值.此题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.【解答】解:把和代入方程得:,解得:,故选:D.31.方程组的解是()A. B. C. D.【答案】B【解析】解:,把②代入①得:7x+5(x+3)=9,解得:x=-,把x=-代入②得:y=.所以原方程组的解是.故选:B.方程组利用代入消元法求出解即可.此题考查了解二元一次方程组,熟练掌握运算法则是解本题的关键.32.《九章算术》是我国东汉初年编订的一部数学经典著作.在它的“方程”一章里,一次方程组是由算筹布置而成的.《九章算术》中的算筹图是竖排的,为看图方便,我们把它改为横排,如图1、图2.图中各行从左到右列出的算筹数分别表示未知数,的系数与相应的常数项.把图1所示的算筹图用我们现在所熟悉的方程组形式表述出来,就是在图2所示的算筹图中有一个图形被墨水覆盖了,如果图2所表示的方程组中的值为,则被墨水所覆盖的图形为( )A. B. C. D.【答案】C此题是一道材料分析题,先要读懂材料所给出的用算筹表示二元一次方程组的方法,再解方程组,设被墨水所覆盖的图形表示的数据为a,根据题意列出方程组,把x=3代入,求得a的值便可.【解答】解:设被墨水所覆盖的图形表示的数据为a,根据题意得,,把x=3代入得,,由③得,y=5,把y=5代入④得,12+5a=27,∴a=3,故选C.33.二元一次方程组的解是()A. B. C. D.【答案】C【解析】【分析】本题考查的二元一次方程组的解法有关知识,首先把y=2x代入x+2y=10中,解出x,然后把x代入y=2x中即可解答.【解答】解:把②代入①可得:x+4x=10,解得:x=2,把x=5代入②可得:y=4.原方程组的解为.故选C.34.若方程,则A,B的值分别为A. 2,1B. 1,2C. 1,1D. ,【答案】C【解析】【分析】本题考查了分式的加减,利用相等项的系数相等得出关于A、B的方程组是解题关键.根据通分,可得相等分式,根据相等项的系数相等,可得关于A、B的方程组,根据解方程组,可得答案.【解答】解:通分,得:,化简:由相等项的系数相等,得:解得:故选:C.35.若﹣2a m b4与5a n+2b2m+n和为单项式,则m n的值是()A. 2B. 0C. ﹣1D. 1【答案】D【解析】【分析】本题考查了合并同类项以及二元一次方程组的解法,根据同类项是字母相同且相同字母的指数也相同,可得关于m、n的二元一次方程组,解出m、n的值,再根据有理数的乘方运算,可求得答案.【解答】解:由可以合并一项,得:,解得,∴故选D.二、填空题(本大题共20小题,共60.0分)36.二元一次方程7x+y=15的正整数解为______.【答案】或【解析】解:方程7x+y=15,解得:y=-7x+15,x=1,y=8;x=2,y=1,则方程的正整数解为或.故答案为:或把x看做已知数表示出y,即可求出正整数解.此题考查了解二元一次方程,解题的关键是将x看做已知数求出y.37.已知方程5x+2y=10,如果用含x的代数式表示y,则y=______.【答案】【解析】解:方程5x+2y=10,解得:y=,故答案为:把x看做已知数求出y即可.此题考查了解二元一次方程,解题的关键是将x看做已知数求出y.38.若a+2b=8,3a+4b=18,则a+b的值为______.【答案】5【解析】解:法一:∵a+2b=8,3a+4b=18,则a=8-2b,代入3a+4b=18,解得:b=3,则a=2,故a+b=5.法二:a+2b=8 ①,3a+4b=18 ②,②-①,得2a+2b=10,因此,a+b=5.故答案为:5.直接利用已知条件,解方程组或者根据所需条件对原式进行变形都可得出答案.此题主要考查了解二元一次方程组和代数式求值,正确选用解题方法是解题关键.39.若-2x+y=5,则y=______(用含x的式子表示).【答案】2x+5【解析】解:方程-2x+y=5,解得:y=2x+5.故答案为:2x+5.将x看做已知数求出y即可.此题考查了解二元一次方程,解题的关键是将x看做已知数求出y.40.已知x,y满足方程组,则无论k取何值,x,y恒有关系式是______.【答案】x+y=1【解析】【分析】本题主要考查二元一次方程组,解二元一次方程组的基本思想是“消元”,基本方法是代入法和加减法,此题实际是消元法的考核,由方程组消去k,得到一个关于x,y的方程,化简这个方程即可.【解答】解:由x+k=y+2得k=-x+y+2,代入到x+3y=k可得:x+3y=-x+y+2,整理可得2x+2y=2,即x+y=1,故答案为:x+y=1.41.如果单项式与是同类项,则这两个单项式的积为_______________【答案】【解析】【分析】本题考查了同类项、二元一次方程组的解法、单项式乘单项式的知识点,根据同类项的定义列出方程组是解题的关键.根据同类项的定义列出关于a、b的二元一次方程组,求解得到a、b的值,再根据单项式的乘法进行计算即可得解.【解答】解:根据题意得,,由①得,a=-2b③,③代入②得,5×(-2b)+8b=2,解得b=-1,把b=-1代入③得,a=-2×(-1)=2,∴两单项式分别为-3x5y2、x5y2,它们的积为-3x5y2•x5y2=-x10y4.故答案为.42.已知x.y,t满足方程组,则x和y之间应满足的关系式是________.【答案】x=15y-6【解析】【分析】本题主要考查了代入法解二元一次方程组,掌握代入法解二元一次方程组的步骤是解题的关键.由第一个方程可得,把t代入第二个方程即可求得答案.【解答】解:由第一个方程,得,把代入3y-2t=x,得,整理得:x=15y-6,即x和y之间的关系式为x=15y-6.43.甲、乙两名同学参加户外拓展活动,过程如下:甲、乙分别从直线赛道A、B两端同时出发,匀速相向而行.相遇时,甲将出发时在A地抽取的任务单递给乙后继续向B地前行,乙原地执行任务,用时14分钟,再继续向A地前行,此时甲尚未到达B地.当甲和乙分别到达B地和A地后立即以原路原速返回并交换角色,即由乙在A地抽取任务单,与甲相遇时交给甲,由甲原地执行任务,乙继续向B地前行.抽取和递交任务单的时间忽略不计.甲、乙两名同学之间的距离y(米)与运动时间x(分)之间的关系如图所示.已知甲的速度为60米/分,且甲的速度小于乙的速度,则甲在出发后第______分钟时开始执行任务.【答案】44【解析】【分析】本题考查了一次函数的应用,关键是把条件表述的几个过程对应图象理解清楚,再找出对应x和y表示的数量关系.函数图象可看作是线段CD、DE、EF、FH、HI构成:CD对应两人从出发到第一次相遇,其中5分钟时,两人相距980米;DE对应乙在原地执行任务,甲继续前进;EF对应甲继续向B地走,乙继续向A地走;FH对应甲到达B地返回走,乙继续向A地走,其中x=31时,两人相距1180米;HI对应两人都返回走到第二次相遇.设乙的速度为v 米/分,AB两地距离为s米,根据两个确定的x和y值找等量关系列方程.【解答】解:甲的速度为60米/分,设乙的速度为v米/分,AB两地距离为s米,∵x=5时,y=980,此时两人相距980米,列方程得:5(60+v)+980=s①当x=31时,甲走的路程为:60×31=1860(米)图象中,x=31时,y=1180,即此时甲乙两人相距1180米,甲已经到达B地并返回,乙还在前往A地列方程得:1860-s+1180=(31-14)v②①②联立方程组解得:设甲出发t分钟时开始执行任务,此时甲乙第二次相遇,两人走的总路程和为3s,列方程得:60t+80(t-14)=3×1680解得:t=44故答案为:4444.二元一次方程组的解为_______.【答案】【解析】略45.已知,则=____.【答案】-3【解析】【分析】此题考查了加减消元法解二元一次方程组,代数式的值,①﹣②得:x+3y=0,即x=-3y,将x=-3y代入中计算,即可得到答案.【解答】解:,①﹣②得:x+3y=0,即x=-3y,∴=-3,故答案为-3.46.设是一个等腰三角形的两边长,且满足,则该三角形的周长是____【答案】22【解析】【分析】本题考查了等腰三角形的性质,非负数的性质,难点在于分情况讨论并利用三角形的三边关系进行判断.根据非负数的性质列式求出a、b的值,再分a是腰长与底边两种情况讨论求解.【解答】解:根据题意得,,解得a=4,b=9,当①a=4是腰长时,三角形的三边分别为4、4、9,但4、4、9不能组成三角形,②a=4是底长时,三角形的三边分别为4、9、9,4、9、9能组成三角形,∴三角形的周长为4+9+9=22.综上所述,三角形的周长为22.故答案为22.47.若是二元一次方程,则a =________ ,b = ___________【答案】1;0【解析】【分析】本题主要考查二元一次方程的定义,根据二元一次方程的定义可知3a-2b-2=1,a+b=1,据此可解出a,b,根据未知数的次数为1,可以列出方程组求解.【解答】解:依题意,得,解得,故答案为:1,0.48.(1)的算术平方根为________.的平方根是________.(2)若,则(a+2)2的平方根是________.(3)已知一个正数的平方根是3x-2和5x+6,则这个数是________.(4)已知,则x y=________.(5)若a是(-8)2的平方根,则等于________.【答案】(1)2;;(2);(3);(4)1;(5)8.【解析】(1)【分析】本题考查算术平方根,平方根和立方根的定义,根据算术平方根,平方根和立方根的定义即可解答,关键是注意.【解答】解:∵,∴的算术平方根为2.的平方根是.故答案为2;.(2)【分析】本题考查算术平方根和平方根定义,有理数的乘方,根据算术平方根和平方根定义即可解答,关键是由得a+2=16.【解答】解:∵,∴a+2=16,∴(a+2)2=162=256,∴(a+2)2的平方根是.故答案为.(3)【分析】本题考查平方根定义,一元一次方程的解法,根据平方根的定义可知:一个正数的平方根有两个,它们互为相反数得方程3x-2+5x+6=0,解方程求出x,再求出5x+6或3x-2的值即可解答.【解答】解:∵一个正数的两个平方根分别是3x−2 和5x+6 ,∴3x−2+5x+6=0 ,解得:x =,∴5x+6=,∴这个数是.故答案为.(4)【分析】本题考查算术平方根和偶次方的非负性,求代数式的值,关键是先根据算术平方根和偶次方的非负性得方程组,解方程组求得x,y的值,再代入计算即可.【解答】解:由题意得,解得,∴故答案为1.(5)【分析】本题考查算术平方根,平方根的定义,有理数的乘方,关键是先由a是(-8)2的平方根求得a的值,再代入计算即可解答.【解答】解:∵(-8)2=64,a是(-8)2的平方根,∴a=,∴.故答案为8.综上所述答案为:(1)2;;(2);(3);(4)1;(5)8.49.当多项式取得最小值时,_______________。
人教版七年级数学下册 第八章 二元一次方程组解答题专项练习试题(无答案)
人教版七年级数学下册二元一次方程组解答题专项练习 解答题 1.解方程组 (1)73100202x y y x+=⎧⎨=-⎩ (2)(3)6,33,2312;x y z x y x y z ++=⎧⎪-=⎨⎪+-=⎩2.如果关于x ,y 的方程组 的 解中,x 与y 互为相反数,求k 的值.3.是否存在m 值,使方程(|m |-2)x 2+(m +2)x +(m +1)y =m +5是关于x ,y 的二元一次方程?若存在,求出m 的值;若不存在,请说明理由.4.已知x ,y 满足方程组,(1)用x 的代数式表示y ;(2)若不论x 取何值,代数式(kx ﹣y )(y+ x )的值都为常数,求此时k 的值以及该代数式的值.5.若,求x+y+z 的值.6.甲、乙两人共同解方程组51542ax y x by +=⎧⎨-=-⎩①② 由于甲看错了方程①中的a ,得到方程组的解为31x y =-⎧⎨=-⎩,乙看错了方程①中的b ,得到方程组的解为54x y =⎧⎨=⎩,试计算20182019(0.1)a b +-的值.7.甲乙两名学生解方程组⎩⎨⎧=-=+872y kx ny mx ,甲正确的解得⎩⎨⎧-==23y x ,乙因把k 写错了,解得⎩⎨⎧=-=22y x ,求m,n,k 的值。
8.NBA 季后赛正如火如荼地进行着,詹姆斯率领的骑士队在第三场季后赛中先落后 25 分的 情况下实现了大逆转.该场比赛中詹姆斯的技术统计数据如下表所示:(表中投篮次数和投中次数均不包括罚球,个人总得分来自 2 分球和 3 分球的得分以及罚球得分)根据以上信息,求出本场比赛中詹姆斯投中 2 分球和 3 分球的个数.9.先阅读,再解方程组.解方程组:⎩⎪⎨⎪⎧x +y 2+x -y 3=6,4(x +y )-5(x -y )=2. 设a =x +y ,b =x -y , 则原方程组变为⎩⎪⎨⎪⎧a 2+b 3=6,4a -5b =2,变形为⎩⎨⎧3a +2b =36,4a -5b =2.解这个方程组,得⎩⎨⎧a =8,b =6,即⎩⎨⎧x +y =8,x -y =6.解得⎩⎨⎧x =7,y =1.请用这种方法解下面的方程组: ⎩⎨⎧5(x +y )-3(x -y )=16,3(x +y )-5(x -y )=0. 10.某山区有23名中,小学生因贫困失学需要捐助,资助一名中学生的学习费用需要a 元,一名小学生的学习费用需要b 元,某校学生积极捐款,初中各年级学生捐款数额与用其恰好资助受捐助贫困中学生和小学生人数的部分情况如下表:(1)求a 、b 的值;(2)初三年级学生的捐款解决了其余贫困中、小学生学习的费用,请求出初三年级学生可捐助的贫困中、小学生人数各是多少?11.大学生小王积极相应“自主创业”的号召,准备投资销售一种进价为每件40元的小家电,通过试营销发现,当销售单价在40元至90元之间(含40元和90元)时,每月的销售量y (件)与销售单价x (元)之间满足等式y=ax+b ,其中a 、b 为常数.(1)根据图中提供的信息,求a 、b 的值;(2)求销售该款家电120件时所获利润是多少?(提示:利润=实际售价﹣进价)12.某中学组织学生春游,原计划租用45座客车若干辆,但有15人没有座位;若租用同样数量的60座客车,则多出一辆车,且其余客车恰好坐满,已知45座客车每日每辆租金为220元,60座客车每日每辆租金为300元.试问:(1)春游学生共多少人,原计划租45座客车多少辆?(2)若租用同一种车,要使每位同学都有座位,怎样租车更合算。
人教版初中七年级数学下册第八单元《二元一次方程组》(含答案解析)
一、选择题1.小明的妈妈在菜市场买回2斤萝卜、1斤排骨共花了41.4元,而两个月前买同重量的这两样菜只要36元,与两个月前相比,这次萝卜的单价下降了10%,但排骨单价却上涨了20%,设两个月前买的萝卜和排骨的单价分别为x 元/斤,y 元/斤,则可列方程为( ) A .()()2362110%120%41.4x y x y +=⎧⎨⨯-++=⎩ B .()()241.42110%120%36x y x y +=⎧⎨⨯-++=⎩C .()()241.4110%2120%36x y x y +=⎧⎨-+⨯+=⎩ D .()()236110%2120%41.4x y x y +=⎧⎨-+⨯+=⎩ A 解析:A【分析】 根据题目中设的两个月前的萝卜和排骨的单价,先列出两个月前的式子236x y +=,再根据降价和涨价列出现在的式子()()2110%120%41.4x y ⨯-++=,得到方程组.【详解】解:两个月前买菜的情况列式:236x y +=,现在萝卜的价格下降了10%,就是()110%x -,排骨的价格上涨了20%,就是()120%y +,那么这次买菜的情况列式:()()2110%120%41.4x y ⨯-++=,∴方程组可以列为()()2362110%120%41.4x y x y +=⎧⎨⨯-++=⎩. 故选:A .【点睛】本题考查二元一次方程组的应用,解题的关键是根据题意找到等量关系列出方程组. 2.若x ,y 均为正整数,且2x +1·4y =128,则x +y 的值为( )A .3B .5C .4或5D .3或4或5C解析:C【解析】∵2x +1·4y =128,27=128,∴x +1+2y =7,即x +2y =6.∵x ,y 均为正整数, ∴22x y =⎧⎨=⎩或41x y =⎧⎨=⎩ ∴x +y =4或5.3.解方程组232261s t s t +=⎧⎨-=-⎩①②时,①—②,得( )A .31t -= .B .33t -=C .93t =D .91t = C解析:C【分析】运用加减消元法求解即可.【详解】 解:解方程组232261s t s t +=⎧⎨-=-⎩①②时,①-②,得3t-(-6t)=2-(-1), 即,9t=3,故选:C .【点睛】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.4.下列方程中是二元一次方程的是( )A .(2)(3)0x y +-=B .-1x y =C .132x y=+ D .5xy = B 解析:B【分析】含有两个未知数,并且含有未知数的项的次数都是1的整式方程叫做二元一次方程.【详解】解:(2)(3)0x y +-=化简得3260xy x y -+-=,最高次是2次,故A 选项错误; -1x y =是二元一次方程,故B 选项正确;132x y=+不是整式方程,故C 选项错误; 5xy =最高次是2次,故D 选项错误.故选:B【点睛】本题主要考查的是二元一次方程的概念,正确的掌握二元一次方程的概念是解题的关键. 5.古代一歌谣:栖树一群鸦,鸦树不知数:三个坐一棵,五个地上落;五个坐一棵,闲了一棵树.请你动脑筋,鸦树各几何?若设乌鸦有x 只,树有y 棵,由题意可列方程组( )A .3551y x y x +=⎧⎨-=⎩B .3551y x y x -=⎧⎨=-⎩C .15355x y y x ⎧+=⎪⎨⎪=-⎩D .5315x y x y -⎧=⎪⎪⎨⎪=-⎪⎩ D 解析:D根据“三个坐一棵,五个地上落;五个坐一棵,闲了一棵树”,即可得出关于x,y的二元一次方程组,此题得解.【详解】解:设乌鸦有x只,树有y棵,依题意,得:5315xyxy-⎧=⎪⎪⎨⎪=-⎪⎩.故选:D.【点睛】本题考查了由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.6.某校七年级1班学生为了参加学校文化评比买了22张彩色的卡纸制作如下图形(每个图形由两个三角形和一个圆形组成),已知一张彩色卡纸可以剪5个三角形,或3个圆形,要使圆形和三角形正好配套,需要剪三角形的卡纸有x张,剪圆形的卡纸有y张,可列式为()A.2256x yx y+=⎧⎨=⎩B.2265x yx y+=⎧⎨=⎩C.22310x yx y+=⎧⎨=⎩D.22103x yx y+=⎧⎨=⎩A解析:A【分析】设需要剪三角形的卡纸有x张,剪圆形的卡纸有y张,根据彩色卡纸的总张数为22张其剪出三角形的数量为圆的2倍,即可得出关于x、y的二元一次方程组,此题得解.【详解】设需要剪三角形的卡纸有x张,剪圆形的卡纸有y张,根据题意得:22 56x yx y+=⎧⎨=⎩.【点睛】此题考查由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.7.已知关于x 、y 的二元一次方程组356310x y x ky +=⎧⎨+=⎩给出下列结论:①当5k =时,此方程组无解;②若此方程组的解也是方程61516x y +=的解,则10k =;③无论整数k 取何值,此方程组一定无整数解(x 、y 均为整数),其中正确的是( )A .①②③B .①③C .②③D .①②A解析:A【分析】根据二元一次方程组的解法逐个判断即可.【详解】 当5k =时,方程组为3563510x y x y +=⎧⎨+=⎩,此时方程组无解 ∴结论①正确由题意,解方程组35661516x y x y +=⎧⎨+=⎩得:2345x y ⎧=⎪⎪⎨⎪=⎪⎩把23x =,45y =代入310x ky +=得2431035k ⨯+= 解得10k =,则结论②正确 解方程组356310x y x ky +=⎧⎨+=⎩得:20231545x k y k ⎧=-⎪⎪-⎨⎪=⎪-⎩又k 为整数 x 、y 不能均为整数∴结论③正确综上,正确的结论是①②③故选:A .【点睛】本题考查了二元一次方程组的解与解法,掌握二元一次方程组的解法是解题关键. 8.把方程23x y -=改写成用含x 的式子表示y 的形式,正确的是( )A .23x y =+B .32y x +=C .23y x =-D .32y x =- C解析:C将x 看做常数移项求出y 即可得.【详解】由2x-y=3知2x-3=y ,即y=2x-3,故选C .【点睛】此题考查了解二元一次方程,解题的关键是将x 看做已知数求出y .9.已知方程组2325x y x y +=⎧⎨-=⎩,则39x y +的值为( ) A .2-B .2C .6-D .6C解析:C【分析】方程组两方程相减求出x+3y 的值,进而即可求得3x+9y 的值.【详解】 2325x y x y +=⎧⎨-=⎩①②, ①-②得:32x y +=-,∴()39336x y x y +=+=-,故选:C .【点睛】本题考查了求代数式的值以及解二元一次方程组,解二元一次方程组利用了消元的思想,消元的方法有:代入消元法与加减消元法.灵活运用整体代入法是解题的关键.10.方程组320x y x y +=⎧⎨-=⎩的解是( ) A .11x y =⎧⎨=⎩B .12x y =⎧⎨=⎩C .21x y =⎧⎨=⎩D .30x y =⎧⎨=⎩ B 解析:B【分析】二元一次方程组的求解方法有两种:(1)加减消元法;(2)代入消元法,此题用加减消元法求解更为简便;【详解】 ∵320x y x y +=⎧⎨-=⎩①② , ①+②得:3x=3,即x=1,把x=1代入①得:y=2,则方程组的解为12x y =⎧⎨=⎩,【点睛】本题考查了二元一次方程组的解法,正确利用加减消元法求解是解题的关键.二、填空题11.重庆某快递公司规定:寄件不超过1kg 的部分按起步价计费,超过1kg 不足2kg ,按照2kg 收费;超过2kg 不足3kg 按照3kg 收费,以此类推.某产家分别寄快递到重庆市内和北京,其中,寄往重庆市内的起步价为a 元,超过部分b 元/kg ;寄往北京的起步价为()7a +元,超过部分()4b +元/kg .已知一个寄往重庆市内的快件,质量为2kg ,收费13元;一个寄往北京的快件,质量为4.5kg ,收费42元.如果一个寄往北京的快件,质量为2.8kg ,应收费______元.30【分析】根据分别寄快递到上海和北京的快递质量和费用即可得出关于ab 的二元一次方程组解之然后根据28kg 按照3kg 收费即可得出应收费【详解】解:依题意得:解得寄往北京市快件重28kg 按照3kg 收费解析:30【分析】根据分别寄快递到上海和北京的快递质量和费用,即可得出关于a ,b 的二元一次方程组,解之,然后根据2.8kg 按照3kg 收费即可得出应收费.【详解】解:依题意,得:137(51)(4)42a b a b +=⎧⎨++-+=⎩, 解得112a b =⎧⎨=⎩, 寄往北京市快件重2.8kg 按照3kg 收费,应收费:7(31)(4)1172(24)30a b ++-+=++⨯+=元,故答案为:30.【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.12.甲、乙两筐苹果各有若干千克,从甲筐拿出20%到乙筐后,又从乙筐拿出25%到甲筐,这时甲、乙两筐苹果的质量相等,则原来乙筐的苹果质量是甲筐的__________ % .140【分析】设甲乙两筐苹果各有先求出从甲筐拿出20到乙筐后甲乙两筐分别为再求出从乙筐拿出25到甲筐后甲乙两筐分别为:列方程求出x 与y 的关系即可【详解】设甲乙两筐苹果各有从甲筐拿出20到乙筐后甲乙两 解析:140【分析】设甲、乙两筐苹果各有x 、kg y ,先求出从甲筐拿出20%到乙筐后,甲、乙两筐分别为80%x ,20%y x +,再求出从乙筐拿出25%到甲筐后,甲、乙两筐分别为:171204x y +,33420y x +,列方程17133204420x y y x +=+,求出x 与y 的关系即可. 【详解】设甲、乙两筐苹果各有x 、kg y ,从甲筐拿出20%到乙筐后,甲、乙两筐分别为80%x ,20%y x +,从乙筐拿出25%到甲筐后,甲、乙两筐分别为:()17180%25%20%204x y x x y +⨯+=+, ()3375%20%420y x y x ⨯+=+, 由题可得:17133204420x y y x +=+, 解得75y x =, 75y x =, 则原来乙筐苹果质量为甲筐的:7100%100%140%5y x ⨯=⨯=. 故答案为:140.【点睛】本题考查循环倒液类型问题,掌握循环倒液类型问题的解法,抓住经过两次循环两者质量相等构造等式(或方程)解决问题是关键. 13.若1,3x y =-⎧⎨=⎩是关于x ,y 的二元一次方程组5,x y m x my n +=⎧⎨-=⎩的解,则n 的值为______.5【分析】将代入方程组求解即可【详解】将代入方程组得解得故答案为:5【点睛】此题考查二元一次方程组的解解二元一次方程组正确计算是解题的关键 解析:5【分析】将13x y =-⎧⎨=⎩代入方程组求解即可. 【详解】 将13x y =-⎧⎨=⎩代入方程组5x y m x my n +=⎧⎨-=⎩,得 213m m n =-⎧⎨--=⎩解得25m n =-⎧⎨=⎩, 故答案为:5.【点睛】此题考查二元一次方程组的解,解二元一次方程组,正确计算是解题的关键.14.已知37m m n x y +-与653x y 是同类项,则m n -=_______.【分析】先根据同类项的定义可得mn 的值再代入计算即可得【详解】由题意得:解得则故答案为:【点睛】本题考查了同类项二元一次方程组的应用熟练掌握同类项的定义是解题关键解析:1-【分析】先根据同类项的定义可得m 、n 的值,再代入计算即可得.【详解】由题意得:365m m n =⎧⎨+=⎩, 解得23m n =⎧⎨=⎩, 则231m n -=-=-,故答案为:1-.【点睛】本题考查了同类项、二元一次方程组的应用,熟练掌握同类项的定义是解题关键. 15.为落实习总书记“绿水青山就是金山银山”的发展理念,我区府部门决定由甲、乙、丙三个工程队负责完成一条总工作量为a 的公园改造的施工任务.经过一段时间,甲、乙、丙三个工程队完成的工程量之比是3:4:5为更合理的分任务,经测算,将剩余工程量的916交给了丙队,其余工程量由甲、乙两个工程队共同完成,乙工程队再工作一段时间后因另有任务先离开.工程结束时发现,丙队完成的工程量占总工程量的1940,甲、乙两队完成其余工程的工程量之比为4:3.则乙队完成的工程量与总工程量之比是:______.【分析】设一开始甲乙丙三个工程队完成的工程量为b 则剩余工程量为a-b 然后表示出丙队完成的工程量根据丙队完成的工程量占总工程量的列出等式从而得到a 与b 的数量关系再表示出乙队完成的工程量把a 与b 的数量关解析:11:40.【分析】设一开始甲、乙、丙三个工程队完成的工程量为b ,则剩余工程量为a-b ,然后表示出丙队完成的工程量,根据丙队完成的工程量占总工程量的1940列出等式,从而得到a 与b 的数量关系,再表示出乙队完成的工程量,把a 与b 的数量关系代入计算即可.【详解】解:设一开始甲、乙、丙三个工程队完成的工程量为b ,则剩余工程量为a-b ,∴丙队完成的工程量为()951612a b b -+, ∴()9519161240a b b a -+=, 解得,35b a =, 乙队一开始完成的工程量为412b ,后来完成的工程量为()()73316716a b a b -⨯=-, ∴乙队完成的工程量为()43433311121612516540b a b a a a a ⎛⎫+-=⨯+-= ⎪⎝⎭, ∴乙队完成的工程量与总工程量之比是11:40.故答案是:11:40.【点睛】本题考查工程问题,考查学生分析解决问题的能力,正确求出一开始完成的工程量与总工程量的数量关系是关键.16.“九九重阳节, 浓浓敬老情”,今年某花店在重阳节推出“松鹤长春”“欢乐远长”“健康长寿”三种花束.“松鹤长春”花束中有8枝百合,16 枝康乃馨;“欢乐远长”花束中有6枝百合,16枝康乃馨,2枝剑兰;“健康长寿”花束中有4枝百合,12枝康乃馨,2枝剑兰.已知百合花每枝1元,康乃馨每枝34元,剑兰每枝5元,重阳节当天销售这三种花束共2549元,其中百合花的销售额为458元,则剑兰的销售量为________枝.【分析】设松鹤长春欢乐远长健康长寿三种花束的销量分别为:(单位:束)再分别求解一束松鹤长春欢乐远长健康长寿的单价根据重阳节当天销售这三种花束共2549元其中百合花的销售额为458元列方程组再求解剑兰解析:216.【分析】设“松鹤长春”“欢乐远长”“健康长寿”三种花束的销量分别为:,,x y z (单位:束),再分别求解一束“松鹤长春”“欢乐远长”“健康长寿”的单价,根据重阳节当天销售这三种花束共2549元,其中百合花的销售额为458元,列方程组,再求解剑兰的销量:22y z +,即可得到答案.【详解】解:设“松鹤长春”“欢乐远长”“健康长寿”三种花束的销量分别为:,,x y z (单位:束), 由题意可得:一束“松鹤长春”的单价为:318+16=204⨯⨯(元), 一束“欢乐远长”花束的单价为:316+16+52=284⨯⨯⨯(元), 一束“健康长寿”花束的单价为:314+12+25=234⨯⨯⨯(元),8644582028232549x y z x y z ++=⎧∴⎨++=⎩①② ②2⨯-①5⨯得:40564640302050982290,x y z x y z ++---=-26262808,y z ∴+=108,y z ∴+=22216,y z ∴+=即剑兰的销量为:216枝.故答案为:216.【点睛】本题考查的是三元一次方程组的应用,利用整体法求解方程组中的量是解题的关键. 17.一个两位数,交换个位与十位的数字之后,新得到的两位数比原数小63,则原来的两位数是________________.81或92【分析】结合题意设原来的两位数十位数字为x 个位数字为y 根据新得到的两位数比原数小63进行分析即可得到答案【详解】设原来的两位数十位数字为x 个位数字为y 根据题意得:∴∵一个两位数交换个位与十解析:81或92【分析】结合题意,设原来的两位数,十位数字为x ,个位数字为y ,根据新得到的两位数比原数小63进行分析,即可得到答案.【详解】设原来的两位数,十位数字为x ,个位数字为y根据题意得:()101063x y y x +-+=∴7x y -=∵一个两位数,交换个位与十位的数字之后,新得到的两位数比原数小63∴6x >当7x =时,0y =,即原两位数为:70,新得到的为:7,不是两位数,故不符合题意; 当8x =时,1y =,即原两位数为:81,新得到的为:18;当9x =时,2y =,即原两位数为:92,新得到的为:29;故答案为:81或92.【点睛】本题考查了二元一次方程的应用;解题的关键是熟练掌握用代数式表示两位数,从而完成求解.18.已知,方程12230a b x y -+-+=是关于,x y 的二元一次方程,则a b +=________.1【分析】利用二元一次方程的定义得出关于的方程解方程并代入代数式即可【详解】∵方程是关于的二元一次方程∴解得∴故答案为:1【点睛】本题考查了二元一次方程的定义熟练掌握二元一次方程的定义是解本题的关键【分析】利用二元一次方程的定义得出关于a ,b 的方程,解方程并代入代数式即可.【详解】∵方程12230a b x y -+-+=是关于x ,y 的二元一次方程,∴11a -=,21b +=,解得2a =,1b =-,∴211a b +=-=.故答案为:1.【点睛】本题考查了二元一次方程的定义,熟练掌握二元一次方程的定义是解本题的关键. 19.若方程2(3)31a a x y --+=是关于x ,y 的二元一次方程,则a 的值为_____.-3【分析】根据二元一次方程的定义:含有两个未知数并且含有未知数的项的次数都是1像这样的方程叫做二元一次方程可得|a|-2=1且a-3≠0再解即可【详解】解:由题得解得a=-3故答案为:-3【点睛】解析:-3【分析】根据二元一次方程的定义:含有两个未知数,并且含有未知数的项的次数都是1,像这样的方程叫做二元一次方程可得|a|-2=1,且a-3≠0,再解即可.【详解】 解:由题得,2130a a ⎧-⎨-≠⎩= , 解得a=-3,故答案为:-3.【点睛】本题考查了二元一次方程的定义.二元一次方程必须符合以下三个条件:(1)方程中只含有2个未知数;(2)含未知数项的最高次数为一次;(3)方程是整式方程.20.如果关于x ,y 的二元一次方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解是62x y =⎧⎨=⎩,则关于x ,y 的二元一次方程组111222325325a x b y c a x b y c +=⎧⎨+=⎩的解是______.【分析】先将所求的方程组变形为然后根据题意可得进一步即可求出答案【详解】解:由方程组可得∵关于xy 的二元一次方程组的解是∴解得故答案为【点睛】本题考查了二元一次方程组的解法正确理解题意合理变形得出是解析:105x y =⎧⎨=⎩先将所求的方程组变形为11122232553255a b c a b c x y x y ⎛⎫⎛⎫⋅⋅ ⎪ ⎪⎝⎭⎝⎭⎛⎫⎛⎫⋅⋅ ⎪ ⎪⎝⎭⎝⎭⎧+=⎪⎪⎨⎪+=⎪⎩,然后根据题意可得365225x y ⎧=⎪⎪⎨⎪=⎪⎩,进一步即可求出答案.【详解】解: 由方程组111222325325a x b y c a x b y c +=⎧⎨+=⎩可得11122232553255a b c a b c x y x y ⎛⎫⎛⎫⋅⋅ ⎪ ⎪⎝⎭⎝⎭⎛⎫⎛⎫⋅⋅ ⎪ ⎪⎝⎭⎝⎭⎧+=⎪⎪⎨⎪+=⎪⎩, ∵关于x ,y 的二元一次方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解是62x y =⎧⎨=⎩, ∴365225x y ⎧=⎪⎪⎨⎪=⎪⎩,解得105x y =⎧⎨=⎩, 故答案为105x y =⎧⎨=⎩. 【点睛】 本题考查了二元一次方程组的解法,正确理解题意、合理变形、得出365225x y ⎧=⎪⎪⎨⎪=⎪⎩是解本题的关键.三、解答题21.某水果店有甲,乙两种水果,它们的单价分别为a 元/千克,b 元/千克.若购买甲种水果5千克,乙种水果2千克,共花费25元,购买甲种水果3千克,乙种水果4千克,共花费29元.(1)求a 和b 的值;(2)甲种水果涨价m 元/千克(02)m <<,乙种水果单价不变,小明花了45元购买了两种水果10千克,那么购买甲种水果多少千克?(用含m 的代数式表示).解析:(1)a 的值为3,b 的值为5;(2)52m- 【分析】(1)根据等量关系:购买甲5千克,乙2千克,共花费25元;购买甲3千克,乙4千克,共花费29元;列出方程组求解即可;(2)可设购买甲种糖果x 千克,则购买乙种糖果(10-x )千克,根据花了45元,列出方程即可求解;【详解】解:(1)依题意有52253429a b a b +=⎧⎨+=⎩,解得35a b =⎧⎨=⎩. 故a 的值为3,b 的值为5;(2)设购买甲种水果x 千克,则购买乙种水果(10)x -千克,依题意有:(3)5(10)45m x x ++-=, 解得:52x m=-; 故购买甲种水果52m-千克. 【点睛】 本题考查了二元一次方程组的应用,解题的关键是找准等量关系,正确列出二元一次方程组.22.解方程组:()()41622358x y x y ⎧+=-⎪⎨-=-⎪⎩①② 解析:9412x y ⎧=-⎪⎪⎨⎪=-⎪⎩【分析】将原方程化简整理后再运用加减消元法求解即可.【详解】解:原方程组可化为233,252,x y x y -=-⎧⎨-=-⎩③④③-④,得21y =-, 12y , 将12y 代入③,得94x =-. 所以原方程组的解是9,41.2x y ⎧=-⎪⎪⎨⎪=-⎪⎩. 【点睛】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.23.(1)解方程组:21035x yx y+=⎧⎨-=⎩;(2)解不等式组:2(1)35423xxx+-<⎧⎪-⎨-≥⎪⎩.解析:(1)81xy=⎧⎨=⎩;(2) 13x≤<.【分析】(1)利用加减消元法,先消去x,求得y,后代入求得x,从而得到方程组的解;(2)分别求得不等式组中每一个不等式的解集,再确定出公共部分即可.【详解】(1)由21035x yx y+=⎧⎨-=⎩①②,①-②,得5y=5,解得y=1;把y=1代入①,解得x=8,所以原方程组的解为=81 xy⎧⎨=⎩.(2)由2(1)35423xxx+-<⎧⎪⎨--≥⎪⎩①②,解不等式①得 x<3;解不等式②得x≥1;所以原不等式组的解集为1≤x<3.【点睛】(1)考查了二元一次方程组的解法,熟练掌握加减消元法是解题的关键;(2)考查了一元一次不等式组的解法,熟练求解,利用数形结合思想,灵活确定解集是解题的关键.24.萱萱家为方便她上学,在黄冈小河中学旁边购买了一套经济适用房.她家准备将地面铺上地砖,地面结构如图所示.根据图中的数据(单位:m),解答下列问题:(1)写出用含x、y的整式表示地面总面积;(2)已知客厅面积是厨房面积的4倍,且地面总面积是卫生间面积的15倍,铺1m2地砖的平均费用为80元,求铺地砖的总费用为多少元?解析:(1)6218x y ++;(2)3600元【分析】(1)根据长方形的面积=长×宽,表示各部分的面积,于是可表示出总面积.(2)根据已知客厅面积是厨房面积的4倍,且地面总面积是卫生间面积的15倍,列出方程组求解,可求出总面积,再根据单价可求出铺地砖的总费用.【详解】解:(1)卧室的长=2+2=4,厨房的长=6-3=3,∴地面的总面积为:3×4+2y+2×3+6x=6x+2y+18.(2)由题意得64236218152x x y y =⨯⨯⎧⎨++=⨯⎩解得:41.5x y =⎧⎨=⎩∴地面总面积为:S=6x+2y+18=45(m 2),∴铺地砖的总费用为:45×80=3600(元).答:那么铺地砖的总费用为3600元.【点睛】本题考查二元一次方程组的应用,关键是能根据等量关系列出方程组.25.若在一个两位正整数 N 的个位数字与十位数字之间添上数字 2 ,组成一个新的三位数,我们称这个三位数为 N 的“诚勤数”,如 34 的“诚勤数”为 324 ;若将一个两位正整数 M 加 2 后得到一个新数,我们称这个新数为 M 的“立达数”,如 34 的“立达数”为 36. (1)求证:对任意一个两位正整数 A ,其“诚勤数”与“立达数”之差能被 6 整除;(2)若一个两位正整数 B 的“立达数”的各位数字之和是 B 的各位数字之和的一半,求 B 的值.解析:(1)见解析;(2) B 的值为68或59.【分析】(1)设A 的十位数字为a ,个位数字为b ,其“诚勤数”为100a+20+b 、“立达数”为10a+b+2,作差整理即可得;(2)设B=10a+b ,1≤a≤9,0≤b≤9(B 加上2后各数字之和变小,说明个位发生了进位),根据““立达数”的各位数字之和是B 的各位数字之和的一半”列出关于a 、b 的方程,求解可得.【详解】解:(1)设A的十位数字为a,个位数字为b,则A=10a+b,它的“诚勤数”为100a+20+b,它的“立达数”为10a+b+2,∴100a+20+b-(10a+b+2)=90a+18=6(15a+3),∵a为整数,∴15a+3是整数,则“诚勤数”与“立达数”之差能被6整除;(2)设B=10m+n,1≤m≤9,0≤n≤9(B加上2后各数字之和变小,说明个位发生了进位),∴B+2=10m+n+2,则B的“立达数”为10(m+1)+(n+2-10),∴m+1+n+2﹣10=12(m+n),整理,得m+n=14,∵1≤m≤9,0≤n≤9,∴m8n6=⎧⎨=⎩、m6n8=⎧⎨=⎩、m9n5=⎧⎨=⎩、m5n9=⎧⎨=⎩、m7n7=⎧⎨=⎩,经检验:77、86和95不符合题意,舍去,∴所求两位数为68或59.【点睛】本题主要考查了数字问题,根据题意表示出A、B两数的“立达数”、“诚勤数”及其变化是解题的关键.26.列方程解应用题:为让同学们幸福成长,年级准备组织师生秋游.关于租车问题:若只租45座的客车若干辆,则刚好坐满;若只租60座的客车,则可少租4辆,且余30个座位.(1)若只租45座的客车,求需要多少辆车?(2)已知一辆45座的客车租金每天2500元,一辆60座的客车租金每天3000元,若可以同时租用这两种类型的客车,则两种客车分别租多少辆最省钱?解析:(1) 18辆;(2) 租45座的客车2辆,租60座客车最省钱.【分析】(1)设单租45座客车x辆,则参加春游的师生总人数为45x人,根据人数与客车的数量关系建立方程求出其解即可;(2)等量关系为:45座客车能坐的人数+60座客车能坐的人数=秋游的师生总人数,选取正整数解,比较即可.【详解】解:(1)设单租45座客车x辆,则参加春游的师生总人数为45x人.根据题意,得45x=60(x−4)−30,解得:x=18.答:只租45座的客车,需要18辆车;(2)解:45×18=810(人)设租45座客车x 辆,60座客车y 辆.根据题意得:45x +60y =810.∵x ,y 均为正整数,∴x =2,y =12;或x=6,y=9;或x=10,y=6;或 x=14,y=3.2500×2+3000×12=41000(元)2500×6+3000×9=42000(元)2500×10+3000×6=43000(元)2500×14+3000×3=44000(元)∵41000﹤42000﹤43000﹤44000∴租45座的客车2辆,租60座客车12辆最省钱.【点睛】本题主要考查了用一元一次方程及二元一次方程解决实际问题,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系.27.解方程组:(1)379x y x y +=⎧⎨=-⎩; (2)5217345x y x y -=⎧⎨+=⎩. 解析:(1)54x y =-⎧⎨=⎩;(2)31x y =⎧⎨=-⎩【分析】(1)利用代入消元法即可解方程求解;(2)利用加减消元法①×2+②得出x 的值,进而代入②求出y 的值即可.【详解】解:()3719x y x y +=⎧⎨=-⎩,①,② 把②代入①,得937y y -+=,解得4y =,把4y =代入②,得495x =-=-,所以方程组的解为54.x y =-⎧⎨=⎩, ()52172345x y x y -=⎧⎨+=⎩,①,② ①2⨯+②,得103345x x +=+,解得3x =,把3x =代入②,得945y +=,解得1y =-,所以方程组的解为31.x y =⎧⎨=-⎩, 【点睛】本题考查解二元一次方程组,熟练掌握代入消元法和加减消元法解二元一次方程组是解题的关键.28.把y ax b =+(其中a 、b 是常数,x 、y 是未知数)这样的方程称为“雅系二元一次方程”当y x =时,“雅系二元一次方程y ax b =+”中x 的值称为“雅系二元一次方程”的“完美值”.例如:当y x =时,雅系二元一次方程”34y x =-化为34x x =-,其“完美值”为2x =.(1)求“雅系二元一次方程”56y x =-+的“完美值”;(2)3x =是“雅系二元一次方程”3y x m =+的“完美值”,求m 的值;(3)“雅系二元一次方程”1y kx =+(0k ≠,k 是常数)存在“完美值”吗?若存在,请求出其“完美值”,若不存在,请说明理由.解析:(1)x =1;(2)m =﹣6;(3)当k =1时,不存在“完美值”,当k≠1,k≠0时,存在“完美值”x =11k - 【分析】(1)由已知得到式子x=-5x+6,求出x 即可;(2)由已知可得x=3x+m ,将x=3代入即可求m ;(3)假设存在,得到x=kx+1,所以(1-k )x=1,当k=1时,不存在“完美值”,当k≠1,k≠0时,存在“完美值”x=11k -. 【详解】(1)由已知可得,x =-5x+6,解得x =1,∴“雅系二元一次方程”y =-5x+6的“完美值”为x =1;(2)由已知可得x =3x+m ,x =3,∴m =﹣6;(3)若“雅系二元一次方程”y =kx+1(k≠0,k 是常数)存在“完美值”,则有x =kx+1,∴(1﹣k )x =1,当k =1时,不存在“完美值”,当k≠1,k≠0时,存在“完美值”x =11k-. 【点睛】本题考查新定义,能够理解题意,将所求问题转化为一元一次方程求解是关键.。
七年级下册数学二元一次方程组练习题
七年级下册数学二元一次方程组练习题一、选择题1. 若一个二元一次方程组的两个方程相加,结果为3x+y=7,方程相减,结果为5x-y=1,则该二元一次方程组的解是:A. (x,y) = (2,1)B. (x,y) = (1,2)C. (x,y) = (3,1)D. (x,y) = (1,3)2. 解方程组:2x+y=5x-y=7的解为:A. (x,y) = (4,-3)B. (x,y) = (1,2)C. (x,y) = (3,4)D. (x,y) = (2,1)3. 解方程组:x+y=62x-3y=7的解为:A. (x,y) = (-1,7)B. (x,y) = (2,4)C. (x,y) = (3,3)D. (x,y) = (4,2)二、填空题4. 解方程组:3x+y=8x-2y=7的解为:(x,y) = ( , )5. 若一个二元一次方程组的两个方程相加,结果为4x-y=12,方程相减,结果为3x+y=0,则该二元一次方程组的解是:(x,y) = ( , )6. 解方程组:x+y=102x+5y=35的解为:(x,y) = ( , )三、解答题7. 解方程组:2x+y=11x+3y=13的解。
8. 解方程组:3x-2y=16x+7y=29的解。
9. 解方程组:x+y=73x-4y=10的解。
10. 解方程组:2x+y=53x-y=2的解。
四、应用题11. 小明与小红两人的年龄之和是27岁,小明的年龄是小红年龄的2倍。
求解小明和小红的年龄。
12. 有一辆公交车从A地出发,到B地需要2小时,全程120公里。
如果公交车的速度再快10km/h,则只需要1小时50分钟到达B 地。
求解公交车的速度。
13. 甲、乙两人贷款共计5000元,甲先借了3000元,之后每个月还款200元;乙先借了2000元,之后每个月还款300元。
假设没有利息,求多少个月后两人的贷款还清。
14. 一件商品原价200元,现在进行打折促销,降价20%出售。
七年级下册数学二元一次方程计算题
七年级下册数学二元一次方程计算题一、基础计算类。
1. 解方程组:x + y = 5 2x - y = 1- 解析:- 对于这个方程组,我们可以采用加减消元法。
将两个方程相加,就可以消去y。
- 方程x + y = 5加上方程2x - y = 1,得到(x + y)+(2x - y)=5 + 1,即x+2x+y - y=6,3x = 6,解得x = 2。
- 把x = 2代入x + y = 5,得2+y = 5,解得y = 3。
- 所以方程组的解为x = 2 y = 3。
2. 解方程组:2x+3y = 8 3x - 2y=-1 - 解析:- 这里我们使用加减消元法。
先给第一个方程乘以2,第二个方程乘以3。
- 得到4x + 6y = 16 9x-6y=-3。
- 然后将这两个新方程相加,(4x + 6y)+(9x - 6y)=16+( - 3),即4x+9x+6y -6y = 13,13x = 13,解得x = 1。
- 把x = 1代入2x+3y = 8,得2 + 3y = 8,3y = 6,解得y = 2。
- 所以方程组的解为x = 1 y = 2。
3. 解方程组:3x + y = 7 x - 2y = - 3 -解析: - 我们给第一个方程乘以2,得到6x+2y = 14 x - 2y=-3。
- 然后将这两个方程相加,(6x + 2y)+(x - 2y)=14+( - 3),即6x+x+2y - 2y = 11,7x = 11,解得x=(11)/(7)。
- 把x=(11)/(7)代入3x + y = 7,得3×(11)/(7)+y = 7,y = 7-(33)/(7)=(49 - 33)/(7)=(16)/(7)。
- 所以方程组的解为x=(11)/(7) y=(16)/(7)。
4. 解方程组:4x - 3y = 11 2x + y = 13 - 解析: - 由方程2x + y = 13可得y = 13 - 2x。
七年级数学下册 专题 解二元一次方程组(计算题50题)(解析版)
七年级下册数学《第八章二元一次方程组》专题解二元一次方程组(计算题50题)1.用代入法解下列方程组:(1)−=4,3+=16;(2)−=2,3+5=14.【分析】(1)−=4①3+=16②,由①得:x=y+4,代入②得:3(y+4)+y=16,即可求出y的值,则x的值也就迎刃而解了;(2)−=4①3+5=14②,由①得:y=x﹣2,代入②得:3x+5(x﹣2)=14,即可求出x的值,则y的值也就可以求出了.【解答】解:(1)−=4①3+=16②,由①得:x=y+4,代入②得:3(y+4)+y=16,解得y=1.将y=1代入x=y+4中得x=5,故方程组的解为:=5=1;(2)−=4①3+5=14②,由①得:y=x﹣2,代入②得:3x+5(x﹣2)=14,解得x=3.将x=3代入y=x﹣2,得y=1.故方程组的解为:=3=1.【点评】本题主要考查了二元一次方程组的解法,解题的关键是掌握代入法解方程.2.用代入法解下列方程组:(1)2−=33+2=8;(2)+=103−2=5.【分析】两方程组利用代入消元法求出解即可.【解答】解:(1)2−=3①3+2=8②,由①得:y=2x﹣3③,把③代入②得:3x+2(2x﹣3)=8,解得:x=2,把x=2代入③得:y=4﹣3=1,则方程组的解为=2=1;(2)+=10①3−2=5②,由①得:u=10﹣v③,把③代入②得:3(10﹣v)﹣2v=5,解得:v=5,把v=5代入①得:5+u=10,解得:u=5,则方程组的解为=5=5.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.3.用代入法解下列方程组:(1)3−=2,9+8=17;(2)3−4=10+3=12.【分析】(1)由①得出y =3x ﹣2③,把③代入②得出9x +8(3x ﹣2)=17,求出x ,再把x =1代入③求出y 即可;(2)由②得出x =12﹣3y ③,把③代入①得出3(12﹣3y )﹣4y =10,求出y ,再把y =2代入③求出x 即可.【解答】解:(1)3−=2①9+8=17②,由①,得y =3x ﹣2③,把③代入②,得9x +8(3x ﹣2)=17,解得:x =1,把x =1代入③,得y =3×1﹣2,即y =1,所以原方程组的解是=1=1;(2)3−4=10①+3=12②,由②,得x =12﹣3y ③,把③代入①,得3(12﹣3y )﹣4y =10,解得:y =2,把y =2代入③,得x =12﹣3×2,即x =6,所以原方程组的解是=6=2.【点评】本题考查了解二元一次方程组,能把二元一次方程组转化成一元一次方程是解此题的关键.4.用代入法解下列方程组.(1)+2=4=2−3;(2)−=44+2=−2.【分析】(1)方程组利用代入消元法求出解即可;(2)方程组利用加减消元法求出解即可.【解答】解:(1)+2=4①=2−3②,把②代入①得:x +2(2x ﹣3)=4,解得:x =2,把x =2代入②得:y =4﹣3=1,则方程组的解为=2=1;(2)方程组整理得:−=4①2+=−1②,①+②得:3x =3,解得:x =1,把x =1代入①得:1﹣y =4,解得:y =﹣3,则方程组的解为=1=−3.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.5.用代入法解下列方程组:(1)5+4=−1.52−3=4(2)4−3−10=03−2=0【分析】(1)方程组利用代入消元法求出解即可;(2)方程组利用代入消元法求出解即可.【解答】解:(1)5+4=−1.5①2−3=4②,由②得:x =3r42③,把③代入①得:15r202+4y =﹣1.5,去分母得:15y +20+8y =﹣3,移项合并得:23y =﹣23,解得:y =﹣1,把y =﹣1代入③得:x =12,则方程组的解为=12=−1;(2)方程组整理得:4−3−10=0①=23t ,把②代入①得:83y ﹣3y ﹣10=0,去分母得:8y ﹣9y ﹣30=0,解得:y=﹣30,把y=﹣30代入②得:x=﹣20,则方程组的解为=−20=−30.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.6.用代入法解下列方程组:(1)−=42+=5;(2)3−=29+8=17;(3)3+2=−86−3=−9.【分析】各方程组利用代入消元法求出解即可.【解答】解:(1)−=4①2+=5②,由①得:x=y+4③,把③代入②得:2(y+4)+y=5,解得:y=﹣1,把y=﹣1代入③得:x=﹣1+4=3,则方程组的解为=3=−1;(2)3−=2①9+8=17②,由①得:y=3x﹣2③,把③代入②得:9x+8(3x﹣2)=17,解得:33x=33,解得:x=1,把x=1代入③得:y=3﹣2=1,则方程组的解为=1=1;(3)3+2=−8①2−=−3②,由②得:y=2x+3③,把③代入①得:3x+2(2x+3)=﹣8,解得:x=﹣2,把x=﹣2代入②得:﹣4﹣y=﹣3,解得:y=﹣1,则方程组的解为=−2=−1.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.7.用代入法解下列方程组:(1)3+2=11,①=+3,②(2)4−3=36,①+5=7,②(3)2−3=1,①3+2=8,②【分析】(1)将方程②代入方程①进行求解;(2)将方程②变形为y=﹣5x+7,再代入方程①进行求解;(3)将方程①变形为y=2K13,再代入方程②进行求解.【解答】解:(1)将方程②代入方程①得,3(y+3)+2y=11,解得y=25,把y=25代入②得,x=175,∴该方程组的解为=175=25;(2)将方程②变形为y=﹣5x+7③,把③代入①得,4x﹣3(﹣5x+7)=36,解得x=3,将x=3代入③得,y=﹣5×3+7,解得y=﹣8,∴该方程组的解为=3=−8;(3)将方程①变形为y=2K13③,把③代入②得,3x+2×2K13=8,解得x=2,将x =2代入③得,y =2×2−13,解得y =1,∴该方程组的解为=2=1.【点评】此题考查了利用代入法解二元一次方程组的能力,关键是能直接或将某方程变式后进行代入消元求解.8.用代入法解下列方程组:(1)5+2=15①8+3=−1②;(2)3(−2)=−172(−1)=5−8.【分析】(1)用代入消元法解二元一次方程组即可;(2)用代入消元法解二元一次方程组即可.【解答】解:(1)5+2=15①8+3=−1②,由①得,y =15−52③,将③代入②得,8x +15−52×3=﹣1,解得,x =﹣47,将x =﹣47代入①得,y =125,∴方程组的解为=−47=125;(2)3(−2)=−172(−1)=5−8,整理得,3−=−11①2−5=−6②,由①得,x =3y +11③,将③代入②得,y =﹣28,将y =﹣28代入①得,x =﹣73,∴方程组的解为=−73=−28.【点评】本题考查二元一次方程组的解,熟练掌握代入消元法和加减消元法解二元一次方程组是解题的关键.9.用代入法解下列方程组:(1)=6−53−6=4(2)5+2=15+=6(3)3+4=22−=5(4)2+3=73−5=1【分析】(1)用代入消元法解方程组即可.(2)用代入消元法解方程组即可.(3)用代入消元法解方程组即可.(4)用代入消元法解方程组即可.【解答】解:(1)=6−5s3−6=4②,把①代入②得3(6﹣5y)﹣6y=4,解得y=23,∴x=6−5×23=83,所以方程组的解为=83=23;(2)5+2=15①+=6②,由②得x=6﹣y③,把③代入①,得y=5,∴x=6﹣5=1,所以原方程组的解为=1=5;(3)3+4=2①2−=5②,由②得y=2x﹣5③,把③代入①得,解得x=2,∴y=2×2﹣5=﹣1,所以原方程组的解为=2=−1;(4)2+3=7①3−5=1②,由①得x=7−32③,把③代入②得解得y=1,∴x=7−3×12=2,所以原方程组的解为=2=1.【点评】本题考查二元一次方程组的解法,解题关键是熟知代入消元法解方程组的步骤.10.用代入法解下列方程组:(1)2+=3+2=−6;(2)+5=43−6=5;(3)2−=63+2=2;(4)5+2=113−=−9;【分析】(1)用代入消元法解方程组即可.(2)用代入消元法解方程组即可.(3)用代入消元法解方程组即可.(4)用代入消元法解方程组即可.【解答】解:(1)2+=3①+2=−6②,由①得y=3﹣2x,把y=3﹣2x代入②得x+2(3﹣2x)=﹣6,解得x=4,∴y=3﹣2×4=﹣5.∴方程组的解为=4=−5.(2)+5=4①3−6=5②,由①得x=4﹣5y,把x=4﹣5y代入②得3(4﹣5y)﹣6y=5,解得y=13,∴x=4﹣5×13=73.∴方程组的解为=73=13.(3)2−=6①3+2=2②,由①得y=2x﹣6,把y=2x﹣6代入②得3x+2(2x﹣6)=2,解得x=2,∴y=2x﹣6=2×2﹣6=﹣2.方程组的解为=2=−2.(4)5+2=11①3−=−9②,由②得x=3y+9,把x=3y+9代入①得5(3y+9)+2y=11,解得y=﹣2,∴x=3×(﹣2)+9=3.∴方程组的解为=3=−2.【点评】本题考查二元一次方程组的解法,解题关键是熟知代入消元法解方程组的步骤.1.用加减法解下列方程组:(1)4−=143+=7(2−2=7−3=−8【分析】(1)方程组利用加减消元法求出解即可;(2)方程组利用加减消元法求出解即可.【解答】解:(1)4−=14①3+=7②,①+②得:7x=21,解得:x=3,把x=3代入②得:y=﹣2,则方程组的解为=3=−2;(2−2=7①−3=−8②,①﹣②得:y=15,把y=15代入①得:x=74,则方程组的解为=74=15.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.2.用加减法解下列方程组:(1)2+7=53+=−2(2)5=123=−2(37=127=13【分析】(1)由②得出n=﹣2﹣3m③,把③代入①得出2m+7(﹣2﹣3m)=5,求出m,把m=﹣1代入③求出n即可;(2)②﹣①×2得出13v=﹣26,求出v,把v=﹣2代入①求出u即可;(3)整理后①+②得出28x=35,求出x,②﹣①求出y即可.【解答】解:(1)2+7=5①3+=−2②由②得:n=﹣2﹣3m③,把③代入①得:2m+7(﹣2﹣3m)=5,解得:m=﹣1,把m=﹣1代入③得:n=1,所以原方程组的解是:=−1=1;(2)2−5=12①4+3=−2②②﹣①×2得:13v=﹣26,解得:v=﹣2,把v=﹣2代入①得:2u+10=12,解得:u=1,所以原方程组的解是:=1=−2;(3)整理得:14−6=21①14+6=14②,①+②得:28x=35,解得:x=54,②﹣①得:12y=﹣7,解得:y=−712,所以原方程组的解是:=54=−712.【点评】本题考查了解二元一次方程组,能把二元一次方程组转化成一元一次方程是解此题的关键.3.用加减法解下列方程组:(1)−=53+4=−1.2+=4;(2)−2=3【分析】(1)方程组利用加减消元法求出解即可;(2)方程组利用加减消元法求出解即可.【解答】解:(1)−=5①2+=4②,①+②得:3x =9,解得:x =3,把x =3代入①得:3﹣y =5,解得:y =﹣2,则方程组的解为=3=−2;(2)−2=3①3+4=−1②,①×2+②得:5x =5,解得:x =1,把x =1代入①得:1﹣2y =3,解得:y =﹣1,则方程组的解为=1=−1.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.4.用加减法解下列方程组:(1)4−3=11,2+=13;(2)−=3,2+3(−p =11【分析】(1)方程组利用加减消元法求出解即可;(2)方程组整理后,利用加减消元法求出解即可.【解答】解:(1)4−3=11①2+=13②,①+②×3得:10x =50,解得:x =5,把x =5代入①得:20﹣3y =11,解得:y =3,所以方程组的解为=5=3;(2)方程组整理得:−=3①3−=11②,②﹣①得:2x =8,解得:x =4,把x=4代入①得:4﹣y=3,解得:y=1,所以方程组的解为=4=1.【点评】此题考查了解二元一次方程组,解方程组利用了消元的思想,消元的方法有:代入消元法与加减消元法.5.用加减法解下列方程组:(1)3+2=76−2=11(2)2+=33+=4.【分析】各个方程组利用加减消元法求出解即可.【解答】解:(1)3+2=7①6−2=11②,①+②得:9μ=18,即μ=2,把μ=2代入①得:6+2t=7,解得:t=12,则方程组的解为=2=12;(2)2+=3①3+=4②,②﹣①得:a=1,把a=1代入①得:2+b=3,解得:b=1,则方程组的解为=1=1.【点评】此题考查了解二元一次方程组,熟练掌握运算法则是解本题的关键.6.(2023•市北区校级开学)用加减法解下列方程组:(1)3−4=04+=8;(2+=3−32=−1.【分析】(1)方程组利用加减消元法求出解即可;(2)方程组整理后,利用加减消元法求出解即可.【解答】解:(1)3−4=0①4+=8②,①+②得:4y=8,解得:y=2,把y=2代入②得:4x+2=8,解得:x=32,则方程组的解为=32=2;(2)方程组整理得:2+=3①−3=−2②,①×3+②得:7x=7,解得:x=1,把x=1代入①得:2+y=3,解得:y=1,则方程组的解为=1=1.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法是代入消元法与加减消元法.7.(2022秋•陕西期末)用加减法解下列方程组:(1)−=33−8=14;(2+2=10=1+r13.【分析】(1)根据加减消元法解二元一次方程组即可求解;(2)将第二个方程去分母化简,然后根据加减消元法解二元一次方程组即可求解.【解答】解:(1)−=3①3−8=14②,①×3﹣②得:﹣3y+8y=9﹣14,解得:y=﹣1,将y=﹣1代入①得:x+1=3,解得:x=2,∴原方程组的解为:=2=−1;(2+2=10①=1+r13②,由②得3x=6+2(y+1),即3x﹣2y③,①﹣③得:4y=2,解得:=12,①+③得:6x=18,解得:x=3,∴原方程组的解为:=3=12.【点评】本题考查了加减消元法解二元一次方程组,掌握解二元一次方程组的方法是解题的关键.8.用加减法解下列方程组:(1)+3=,2(+1)−=6;(2)+=2800,96%+64%=2800×92%.【分析】(1)先用第二个方程减去第一个方程即可得到x 的值,然后将x 的值代入任意一个方程,解方程即可得到y 的值;(2)先对方程组进行化简可得+=2800①3+2=8050②,易得两个方程中y 的系数存在2倍关系,故只需用方程②减去方程①乘2的积即可得到关于x 的方程,解方程即可.【解答】解:(1)+3=,①2(+1)−=6.②②﹣①,得x ﹣1=6,∴x =7,x =7代入①得y =10,所以原方程组的解为=7=10.(2)原方程化简得+=2800,①3+2=8050.②②﹣①×2,得﹣x =﹣2450,∴x =2450,将x =2450代入①得:y =350,∴原方程组的解为:=2450=350.【点评】本题考查二元一次方程组的解法,利用正确的方法求解是本题的关键.9.用加减法解下列方程组:(1)−=5,①2+=4;②(2)−2=1,①+3=6;②(3)2−=5,①−1=12(2−1).②【分析】(1)利用加减消元法解答即可;(2)利用加减消元法解答即可;(3)利用加减消元法解答即可.【解答】解:(1)−=5①2+=4②,①+②得:3x=9,解得:x=3,把x=3代入①得:3﹣y=5,解得:y=﹣2,所以方程组的解为:=3=−2;(2)−2=1①+3=6②,②﹣①得:5y=5,解得:y=1,把y=1代入①得:x﹣2=1,解得:x=3,所以方程组的解为:=3=1;(3)2−=5①−1=12(2−1)②,由②得:2x﹣2y=1③,①﹣③得:y=4,把y=4代入①得:2x﹣4=5,解得:x=92,所以方程组的解为:=92=4.【点评】此题考查了解二元一次方程组,以及解一元一次方程,熟练掌握运算法则是解本题的关键.10.用加减法解下列方程组:(1)+3=62−3=3(2)7+8=−57−=4(3)−1=3(−2)+4=2(+1)(4+4=1−3=−1.【分析】各方程组整理后,利用加减消元法求出解即可.【解答】解:(1)+3=6①2−3=3②,①+②得:3x=9,即x=3,把x=3代入①得:y=1,则方程组的解为=3=1;(2)7+8=−5①7−=4②,①﹣②得:9y=﹣9,即y=﹣1,把y=﹣1代入①得:x=37,则方程组的解为=37=−1;(3)方程组整理得:3−=5①2−=2②,①﹣②得:x=3,把x=3代入①得:y=4,则方程组的解为=3=4;(4)方程组整理得:4+3=12①3−2=−6②,①×2+②×3得:17x=6,即x=617,①×3﹣②×4得:17y=60,即y=6017,则方程组的解为=617=6017.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.1.(2022春•新田县期中)用指定的方法解下列方程组:(1)2−5=14①3+5=16②(加减法).=−t(代入法);(2)2+3=9①【分析】(1)方程组利用代入消元法求出解即可;(2)方程组利用加减消元法求出解即可.【解答】解:(1)把②代入①得:2x+5x=14,解得:x=2,把x=2代入②,得:y=﹣2,则原方程组的解是=2=−2;(2)①×3得:6x+9y=27③,②×2得:6x+10y=32④,④﹣③得:y=5,把y=5代入①得:2x+15=9,解得:x=﹣3,则原方程组的解是=−3=5.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.2.(2022春•安岳县校级月考)解下列方程组:(1)3−=75+2=8(用代入法);(23=104=5(用加减法).【分析】(1)方程组利用代入消元法求出解即可;(2)方程组利用加减消元法求出解即可.【解答】解:(1)3−=7①5+2=8②,由①得:y=3x﹣7③,把③代入②得:5x+2(3x﹣7)=22,解得:x=2,把x=2代入①得:6﹣y=7,解得:y=﹣1,则方程组的解为=2=−1;(2)方程组整理得:3+4=120①4−3=60②,①×3+②×4得:25m=600,解得:m=24,把m=24代入①得:72+4n=120,解得:n=12,则方程组的解为=24=12.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.3.(2022春•大连期中)用指定的方法解下列方程组:(1)−3=42+=13(代入法);(2)5+2=4+4=−6(加减法).【分析】(1)利用代入法解方程组;(2)利用加减消元法解方程组.【解答】解:(1)−3=4①2+=13②,由①得x =3y +4③,把③代入②,得2(3y +4)+y =13,解得y =57,∴x =3×57+4=617,∴方程组的解为=617=57;(2)5+2=4①+4=−6②,①×2﹣②,得9x =14,解得x =149,把x =149代入②,得149+4y =﹣6,解得y =−179.∴方程组的解为=149=−179.【点评】本题考查了解二元一次方程组,做题的关键是掌握加减消元法,和代入消元法解二元一次方程组.4.(2022春•宁远县月考)请用指定的方法解下列方程组(1)5−=113+=7(代入消元法);(2)2−5=245+2=31(加减消元法).【分析】(1)由方程①,得b =5a ﹣11,再代入方程②求出未知数a ,进而得出未知数b ;(2)用方程①×2﹣②×5,可消去未知数y ,求出未知数x ,进而得出y 的值.【解答】解:(1)5−=11①3+=7②,由①,得b =5a ﹣11③,把③代入②,得3a +5a ﹣11=7,解得a =94,把a=94代入③,得b=14,故方程组的解为=94=14;(2)2−5=24①5+2=31②,①×2﹣②×5,得29x=203,解得x=7,把x=7代入①,得y=﹣2,故方程组的解为=7=−2.【点评】本题考查了解二元一次方程组,掌握加减消元法和代入消元法是解答本题的关键.5.(2021秋•蒲城县期末)请用指定的方法解下列方程组:(1)2+3=11①=+3②(代入消元法);(2)3−2=2①4+=10②(加减消元法).【分析】(1)利用代入消元法进行求解即可;(2)利用加减消元法进行求解即可.【解答】解:(1)2+3=11①=+3②,把②代入①得:2(y+3)+3y=11,解得y=1,把y=1代入②得:x=1+3=4,故原方程组的解是:=4=1;(2)3−2=2①4+=10②,②×2得:8x+2y=20③,①+③得:11x=22,解得x=2,把x=2代入②得:8+y=10,解得y=2,故原方程组的解是:=2=2.【点评】本题主要考查解二元一次方程组,解答的关键是对解二元一次方程组的方法的掌握.6.(2022秋•历下区期中)请用指定的方法解下列方程组:(1)−2=22+3=12(代入法);(2)6−5=36+=−15(加减法).【分析】(1)整理后由①得出n =2m ﹣4③,把③代入②得出2m +3(2m ﹣4)=12,求出m ,再把m =3代入③求出n 即可;(2)②﹣①得出6t =﹣18,求出t ,再把t =﹣3代入①求出s 即可.【解答】解:(1)整理得:2−=4①2+3=12②,由①,得n =2m ﹣4③,把③代入②,得2m +3(2m ﹣4)=12,解得:m =3,把m =3代入③,得n =2×3﹣4=6﹣4=2,所以原方程组的解是=3=2;(2)6−5=3①6+=−15②,②﹣①,得6t =﹣18,解得:t =﹣3,把t =﹣3代入①,得6s +15=3,解得:s =﹣2,所以原方程组的解是=−2=−3.【点评】本题考查了解二元一次方程组,能把二元一次方程组转化成一元一次方程是解此题的关键,解二元一次方程组的方法有代入消元法和加减消元法两种.7.(2022春•泰安期中)用指定的方法解下列方程组(1)3+4=19−=4(代入消元法);(2)2+3=−53−2=12(加减消元法);(3−9)=6(−2)r13=2.【分析】(1)方程组利用代入消元法求出解即可;(2)方程组利用加减消元法求出解即可;(3)方程组整理后,利用加减消元法求出解即可.【解答】解:(1)3+4=19①−=4②,由②得:x =y +4③,把③代入①得:3(y +4)+4y =19,解得:y=1,把y=1代入③得:x=1+4=5,则方程组的解为=5=1;(2)2+3=−5①3−2=12②,①×2+②×3得:13x=26,解得:x=2,把x=2代入①得:4+3y=﹣5,解得:y=﹣3,则方程组的解为=2=−3;(3)方程组整理得:5−6=33①3−4=28②,①×2﹣②×3得:x=﹣18,把x=﹣18代入①得:﹣90﹣6y=33,解得:y=−412,则方程组的解为=−18=−412.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.8.(2021秋•历下区期中)请用指定的方法解下列方程组:(1)3+2=143+4=17.(加减法)=+3;(代入法)(2)2+3=12【分析】(1)用代入消元法解方程组即可;(2)用加减消元法解方程组即可.【解答】解:(1)3+2=14①=+3②,将②代入①,得3y+9+2y=14,解得y=1,将y=1代入②得x=4,∴方程组的解为=4=1;(2)2+3=12①3+4=17②,①×3得,6x+9y=36③,②×2得,6x+8y=34④,③﹣④,得y=2,将y=2代入①得,x=3,∴方程组的解为=3=2.【点评】本题考查二元一次方程组的解,熟练掌握代入消元法和加减消元法解二元一次方程组的方法是解题的关键.9.(2021春•沙河口区期末)用指定的方法解下列方程组:(1)=2−33+2=8(代入法);(2)3+4=165−6=33(加减法).【分析】(1)把①代入②得出x的值,再把x的值代入①求出y的值,从而得出方程组的解;(2)①×3+②×2得出19x=114,求出x,把x=6代入①求出y即可.【解答】解:(1)=2−3①3+2=8②,把①代入②得:3x+2(2x﹣3)=8,解得:x=2,把x=2代入①得:y=1,则原方程组的解是:=2=1.(2)3+4=16①5−6=33②,①×3+②×2得:19x=114,解得:x=6,把x=6代入①得:18+4y=16,解得:y=−12,所以方程组的解=6=−12.【点评】本题考查了解二元一次方程组,能把二元一次方程组转化成一元一次方程是解此题的关键.10.用指定的方法解下列方程组:(1)3+4=19−=4(代入法);(2)2+3=−53−2=12(加减法).【分析】(1)由②得出x=4+y③,把③代入①得出3(4+y)+4y=19,求出y,把y =1代入③求出x即可;(2)①×2+②×3得出13x=26,求出x,把x=2代入①求出y即可.【解答】解:(1)3+4=19①−=4②,由②得:x=4+y③,把③代入①得:3(4+y)+4y=19,解得:y=1,把y=1代入③得:x=4+1=5,所以方程组的解是=5=1;(2)2+3=−5①3−2=12②,①×2+②×3得:13x=26,解得:x=2,把x=2代入①得:4+3y=﹣5,解得:y=﹣3,所以方程组的解=2=−3.【点评】本题考查了解二元一次方程组,能把二元一次方程组转化成一元一次方程是解此题的关键.1.(2022•苏州模拟)用适当的方法解下列方程组.(1)+2=9−3=1;(2−34=1−p−(−4p=4.【分析】(1)利用加减消元法,方程组可化为:7y=28,解得:y=4,将y=4代入①得:x=1;(2)先将方程组化为:8−9=12①8−5=4②,利用加减消元法解得:y=﹣2,将y=﹣2代入①得:=−34.【解答】解:(1)+2=9①−3=1②①×3+②得:7y=28,解得:y=4,将y=4代入①得:x=1,即方程的解为:=1=4;(2)原方程组可化为:8−9=12①8−5=4②,①﹣②得:﹣4y=8,解得:y=﹣2,将y=﹣2代入①得:=−34,即方程的解为:=−34=−2.【点评】本题主要考查的是二元一次方程组的解法,利用合适的方法解方程组即可.2.(2022秋•锦江区校级期末)用适当的方法解下列方程组.(1)=2−14+3=7;(2)3+2=22+3=28,.【分析】(1)方程组利用代入消元法求解即可;(2)用方程①×3﹣②×2,可消去未知数y,求出未知数x,进而得出y的值.【解答】解:(1)=2−1①4+3=7②,把①代入②,得4(2y﹣1)+3y=7,解得y=1,把y=1代入①,得x=1,故原方程组的解为=1=1;(2)3+2=2①2+3=28②,①×3﹣②×2,得5x=﹣50,解得x=﹣10,把x=﹣10代入①,得y=16,故原方程组的解为=−10=16.【点评】本题考查了解二元一次方程组,掌握加减消元法和代入消元法是解答本题的关键.3.用适当的方法解下列方程组:(1)+2=0,3+4=6;(2=21)−=11(3)+0.4=40,0.5+0.7=35;(4K4=−14,5(r1)12=2.【分析】(1)由x+2y=0可用y表示x,利用代入消元法求第一个方程组的解.同理解(2)(3)利用加减消元法求方程组的解.(4)对于关于m、n的方程,将其化为整系数方程时,给第一个方程两边同时乘12,给第二个方程两边同时乘12.利用加减消元法求方程组的解.【解答】解:(1)+2=0,①3+4=6;②由①,得x=﹣2y,③把③代入②,得﹣6y+4y=6,解得y=﹣3,把y=﹣3代入①,得x=6.∴原方程组的解为=6=−3;(2=2s1)−=11②由①,得x+1=6y,③把③代入②,得12y﹣y=11,解得y=1.把y=1代入③,得x+1=6,解得x=5.∴原方程组的解为=5=1;(3)+0.4=40,①0.5+0.7=35;②②×2,得x+1.4y=70,③③﹣①,得y=30.把y=30代入①,得x+0.4×30=40,解得x=28.∴原方程组的解为=28=30;(4K4=−14,5(r1)12=2,原方程组化为:+7=−3,①2−5=13,②,①×2﹣②,得19n=﹣19,解得n=﹣1.把n=﹣1代入①,得m﹣7=﹣3,解得m=4.∴原方程组的解为=4=−1.【点评】此题主要考查了解二元一次方程组的方法,灵活运用代入消元法和加减消元法是解题的关键.4.(2022•天津模拟)用适当的方法解下列方程组:(1)+=52−=4;(2=r24−K33=112.【分析】(1)应用代入消元法,求出方程组的解即可.(2)应用加减消元法,求出方程组的解即可.【解答】解:(1)+=5①2−=4②,由①,可得:x=5﹣y③,③代入②,可得:2(5﹣y)﹣y=4,解得y=2,把y=2代入③,可得:x=5﹣2=3,∴原方程组的解是=3=2.(2=r24①−K33=112②,由①,可得:4x﹣3y=2③,由②,可得:3x﹣4y=﹣2④,③×4﹣④×3,可得7x=14,解得x=2,把x=2代入③,可得:4×2﹣3y=2,解得y=2,∴原方程组的解是=2=2.【点评】此题主要考查了解二元一次方程组的方法,注意代入消元法和加减消元法的应用.5.(2021•越城区校级开学)用适当的方法解下列方程组:(1)2−3=7−3=7.(2)0.3+0.4=40.2+2=0.9.【分析】(1)利用加减法消元法解二元一次方程组即可;(2)先整理方程,再利用加减消元法解二元一次方程组即可.【解答】解:(1)2−3=7①−3=7②,①﹣②得x =0,把x =0代入②得0﹣3y =7,解得y =−73,∴方程组的解为=0=−73;(2)整理原方程组得3+4=40①2−9=−20②,①×2﹣②×3得35q =140,q =4,把q =4代入②得2p ﹣36=﹣20,解得p =8,∴方程组的解为=8=4.【点评】本题考查了解二元一次方程组,做题关键是掌握加减消元法和代入消元法解二元一次方程组.6.(2022春•东城区校级月考)用适当的方法解下列方程组(1)+=52+=8;(2)2+3=73−2=4.【分析】(1)应用代入消元法,求出方程组的解是多少即可.(2)应用加减消元法,求出方程组的解是多少即可.【解答】解:(1)+=5①2+=8②,由①,可得:x =5﹣y ③,③代入②,可得:2(5﹣y )+y =8,解得y =2,把y =2代入③,解得x =3,∴原方程组的解是=3=2.(2)2+3=7①3−2=4②,①×2+②×3,可得13x=26,解得x=2,把x=2代入①,解得y=1,∴原方程组的解是=2=1.【点评】此题主要考查了解二元一次方程组的方法,注意代入消元法和加减消元法的应用.7.(2021春•哈尔滨期末)用适当的方法解下列方程组(1)+2=93−2=−1(2)2−=53+4=2【分析】(1)利用加减消元法进行求解即可;(2)利用加减消元法进行求解即可.【解答】解:(1)+2=9①3−2=−1②,①+②得:4x=8,解得:x=2,把x=2代入①得:2+2y=9,解得:y=72,故原方程组的解是:=2=72;(2)2−=5①3+4=2②,①×4得:8x﹣4y=20③,②+③得:11x=22,解得:x=2,把x=2代入①得:4﹣y=5,解得:y=﹣1,故原方程组的解是:=2=−1.【点评】本题主要考查解二元一次方程组,解答的关键是熟练掌握解二元一次方程组的方法.8.(2022春•椒江区校级期中)用适当的方法解下列方程组:(1)2+3=16①+4=13②;(2)2r3=3K28=3.【分析】(1)②×2﹣①得出5y=10,求出y,再把y=2代入②求出x即可;(2)整理后得出得2+=9①3−2=24②,①×2+②得出7s=42,求出s,再把s=6代入①求出t即可.【解答】解:(1)2+3=16①+4=13②,②×2﹣①,得5y=10,解得:y=2,把y=2代入②,得x+8=13,解得:x=5,所以方程组的解为=5=2;(2)整理方程组,得2+=9①3−2=24②,①×2+②,得7s=42,解得:s=6,把s=6代入①,得12+t=9,解得:t=﹣3,所以方程组的解为=6=−3.【点评】本题考查了解二元一次方程组,能把二元一次方程组转化成一元一次方程是解此题的关键.9.(2022春•诸暨市期中)用适当的方法解下列方程组:(1)=2−1+2=−7(2+3=7+2=8【分析】(1)用代入消元解二元一次方程组即可;(2)用加减消元解二元一次方程组即可;【解答】解:(1)=2−1①+2=−7②,把①代入②得,x+2(2x﹣1)=﹣7,解得x=﹣1,将x=﹣1代入①得y=﹣3,∴方程组的解为=−1=−3.(2)整理得3+4=84①2+3=48②,①×2﹣②×3得,﹣y=24,解得y=﹣24,将y=﹣24代入②得x=60,∴方程组的解为=60=−24.【点评】本题考查二元一次方程组的解,熟练掌握加减消元法和代入消元法解二元一次方程组是解题的关键.10.(2021春•南湖区校级期中)用适当的方法解下列方程组:(1)3+2=9−=8;(2=r25=7.【分析】(1)由②可得x=8+y③,再把③代入①,可得y的值,然后把y的值代入③求出x的值即可;(2)方程组整理后可得+5=0①2−5=7②,利用①+②可得x的值,然后把x的值代入①求出y的值即可.【解答】解:(1)3+2=9①−=8②,由②得,x=8+y③,将③代入①得,3(8+y)+2y=9,解得,y=﹣3,把y=﹣3代入③得,x=5,则方程组的解为=5=−3;(2)方程组整理得:+5=0①2−5=7②,①+②得:3x=7,解得:x=73,把x=73代入①得:y=−715,则方程组的解为=73=−715.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.1.先阅读材料,然后解方程组:材料:解方程组+=4①3(+p+=14②在本题中,先将x+y看作一个整体,将①整体代入②,得3×4+y=14,解得y=2.把y=2代入①得x=2,所以=2=2这种解法称为“整体代入法”,你若留心观察,有很多方程组可采用此法解答,请用这种方法解方程组−−1=0①4(−p−=5②.【分析】根据阅读材料中的方法求出方程组的解即可.【解答】解:由①得:x﹣y=1③,把③代入②得:4﹣y=5,即y=﹣1,把y=﹣1代入③得:x=0,则方程组的解为=0=−1.【点评】此题考查了解二元一次方程组,熟练掌握运算法则是解本题的关键.2.(2021秋•乐平市期末)解方程组3−2=8⋯⋯⋯①3(3−2p+4=20⋯.②时,可把①代入②得:3×8+4y=20,求得y=﹣1,从而进一步求得=2=−1这种解法为“整体代入法“,请用这样的方法解下列方程组2−3=123(2−3p+5=26.【分析】利用整体代入法的求解方法进行解答即可.【解答】解:2−3=12①3(2−3p+5=26②,把①代入②得:3×12+5y=26,解得y=﹣2,把y=﹣2代入①得:2x+6=12,解得x =3,故原方程组的解是:=3=−2.【点评】本题主要考查解二元一次方程组,解答的关键是对解二元一次方程组的方法的掌握与运用.3.先阅读,然后解方程组.解方程组−−1=0①4(−p −=5②时,可由①得x ﹣y =1.③,然后再将③代入②得4×1﹣y =5,求得y =﹣1,从而进一步求得=0=−1这种方法被称为“整体代入法”,请用这5=0=2+1.【分析】利用整体代入法解方程组即可.5=0①=2+1②,由①得,2x ﹣3y =﹣5,③,把③代入②得,10+37=2y +1,解得,y =37,把y =37代入③得,x =−137,则方程组的解为:=−137=37.【点评】本题考查的是二元一次方程组的解法,掌握整体代入法解方程组的一般步骤是解题的关键.4.(2022春•太和县期末)先阅读,然后解方程组.解方程组−−1=0①4(−p −=5②时,可由①得x ﹣y =1,③然后再将③代入②得4×1﹣y =5,求得y =﹣1,从而进一步求得=0①=−1②这种方法被称为“整体代入法”,2=02=9.【分析】仿照所给的题例先把①变形,再代入②中求出y 的值,进一步求出方程组的解即可.2=0①+2=9②,由①得,2x﹣3y=2③,代入②得2+57+2y=9,解得y=4,把y=4代入③得,2x﹣3×4=2,解得x=7.故原方程组的解为=7=4.【点评】本题考查的是在解二元一次方程组时整体思想的应用,利用整体思想可简化计算.5.先阅读,然后解方程组.解方程组−−1=0①4(−p−=5②时,可由①得x﹣y=1③,然后再将③代入②得4×1﹣y=5,求得y=﹣1,从而进一步求得x这种方法被称为“整体代入法”,请用这样的方法解下列方程组:2−3−2=03(2−3p+=7.【分析】把2x﹣3y看作一个整体,代入第二个方程求出y的值,进而求出x的值即可.【解答】解:2−3−2=0①3(2−3p+=7②,把①变形得:2x﹣3y=2③,③代入②得:6+y=7,即y=1,把y=1代入③得:x=2.5,则方程组的解为=2.5=1.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元方法与加减消元法.1.用换元法解下列方程组+2=12−1=34【分析】方程组利用换元法求出解即可.【解答】解:设1=a,1=b,方程组变形为2+2=12①5−=34②,①+②×2得:12a=2,解得:a=16,把a=16代入②得:b=112,则方程组的解为=16=112,即=6=12.【点评】此题考查了解二元一次方程组,熟练掌握运算法则是解本题的关键.2.用换元法解下列方程组:(1)3(p+2(−p=36(−4(−p=−16(2+r53=2−(+5p=5.【分析】(1)令x+y=m、x﹣y=n得关于m、n的方程组,解得m、n的值,从而可得关于x、y的方程组,求解可得;(2)令x﹣4y=a、x+5y=b得关于a、b的方程组,解该方程组可得a、b的值,从而可得关于x、y的方程组,求解可得.【解答】解:(1)令x+y=m,x﹣y=n,则原方程组可化为:3+2=36−4=−16,解得:=8=6,即+=8−=6,解得:=7=1;(2)令x﹣4y=a,x+5y=b,+3=2−=5,解得:=6=−3,即:−4=6+5=−3,解得:=2=−1.【点评】本题主要考查换元法解方程组的能力,熟练而准确地解方程组是基础,正确找到共同的整体加以换元是关键.3.(2022春•云阳县期中)阅读探索:解方程组(−1)+2(+2)=62(−1)+(+2)=6解:设a﹣1=x,b+2=y原方程组可以化为+2=62+=6,解得=2=2,即:−1=2+2=2∴=3=0,此种解方程组的方法叫换元法.(1)拓展提高运用上述方法解下列方程组(4−1)+2(5+2)=102(4−1)+(5+2)=11;(2)能力运用已知关于x,y的方程组1+1=12+2=2的解为=6=7,求关于m、n的方程组1(−2)+1(+3)=12(−2)+2(+3)=2的解.【分析】(1)仿照“阅读探索“的思路,利用换元法进行计算即可解答;(2)仿照“阅读探索“的思路,利用换元法进行计算即可解答.【解答】解:(1)设4−1=x,5+2=y,∴原方程组可变为:+2=102+=11,解这个方程组得:=4=3,−1=45+2=3,所以:=20=5;(2)设−2=+3=,可得:−2=6+3=7,解得:=8=4.【点评】本题考查了解二元一次方程组,二元一次方程组的解,理解并掌握例题的换元法是解题的关键.4.在学过了二元一次方程组的解法后,+K10=3①−K10=−1②,你会解这个方程组吗?小明、小刚、小芳争论了一会儿,他们分别写出了一种方法:小明:把原方程组整理得8+2=90③2+8=−30④④×4﹣③得30y=﹣210,所以y=﹣7把y=﹣7代入③得8x=104,所以x=13,即=13=−7小刚:设r6=m,K10=n,则+=3③−=−1④③+④得m=1,③﹣④得m=2,=1=2,所以+=6−=20,所以=13=−7.小芳:①+②得2(rp6=2,即x+y=6.③①﹣②得2(Kp10=4,即x﹣y=20.④③④组成方程组得x=13③﹣④得y=﹣7,即=13=−7.老师看过后,非常高兴,特别是小刚的方法独特,像小刚的这种方法叫做换元法,你能用换元法解下列方程组吗?+2r37=1−2r37=5.【分析】设3K26=m,2r37=n,方程组整理后求出m与n的值,即可确定出x与y 的值.【解答】解:设3K26=m,2r37=n,方程组整理得:+=1①−=5②,①+②得:2m=6,即m=3,①﹣②得:2n=﹣4,即n=﹣2,=32r3=−2,整理得:3−2=182+3=−14,解得:=2=−6.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.5.(2022春•卧龙区校级月考)阅读探索(1)知识积累解方程组(−1)+2(+2)=62(−1)+(+2)=6.解:设a﹣1=x,b+2=y.原方程组可变为+2=62+=6,解这个方程组得=2=2,即−1=2+2=2,所以=3=0,这种解方程组的方法叫换元法.(2)拓展提高运用上述方法解下列方程组:(3−1)+2(5+2)=43(3−1)−(5+2)=5.(3)能力运用已知关于x,y的方程组1+1=12+2=2的解为=3=4,请直接写出关于m、n的方程组1(+2)−1=12(+2)−2=2的解是.【分析】(2)仿照(1)的思路,利用换元法进行计算即可解答;(3)仿照前两个题的思路,利用换元法进行计算即可解答.【解答】解:(2)设3−1=x,5+2=y,∴原方程组可变为:+2=43−=5,解这个方程组得:=2=1,−1=25+2=1,所以:=9=−5;(3)设+2=−=,可得:+2=3−=4,解得:=1=−4.。
七年级下册数学二元一次方程组的实际运用练习题 含答案
再探实际问题与二元一次方程组(一)学习要求:能对所研究的问题抽象出基本的数量关系,通过列二元一次方程组解实际问题,培养分析问题和解决问题的能力. 一、填空题:1.若载重3吨的卡车有x 辆,载重5吨的卡车比它多4辆,它们一共运货y 吨,用含x 的式子表示y 为______.2.小强有x 张10分邮票,y 张50分邮票,则小强这两种邮票的总面值为______. 3.已知两数和为25,两数差为15,则这两个数为______.4.一个长方形周长是44cm ,长比宽的3倍少10cm ,则这个长方形的面积是______. 二、选择题:5.用4700张纸装订成两种挂历500本,其中甲种每本7张纸,乙种每本13张纸.若甲种挂历有x 本,乙种挂历有y 本,则下面所列方程组正确的是( ).(A)⎩⎨⎧=+=+.4700713,500y x y x(B)⎩⎨⎧=+=+.4700137,500y x y x(C)⎩⎨⎧=-=+.4700713,500y x y x(D)⎩⎨⎧=-=+.4700137,500y x y x6.甲、乙两数和为42,甲数的3倍等于乙数的4倍,求甲、乙两数.设甲数为x ,乙数为y ,则下列方程组正确的是( ).(A)⎩⎨⎧⋅==+y x y x 34,42(B)⎩⎨⎧⋅==+y x y x 43,42(C)⎩⎨⎧==+.43,4234y x y x(D)⎩⎨⎧==+.34,4243y x y x三、列方程组解应用题:7.某单位组织了200人到甲、乙两地旅游,到甲地的人数是到乙地的人数的2倍少10人.到两地参加旅游的人数各是多少?8.一种口服液有大小盒两种包装,3大盒4小盒共108瓶;2大盒3小盒共76瓶,大盒、小盒每盒各装多少瓶?.9.某车间工人举行茶话会,如果每桌12人,还有一桌空着,如果每桌10人,则还差两个桌子,此车间共有工人多少名?(二)综合运用诊断一、填空题:10.式子y =kx +b ,当x =2时,y =11;当x =-2时,y =-17;则k =______,b =______.11.在公式2021at t v s +=中,当t =1时,s =13;当t =2时,s =42.则v 0=______,a =______,并且当t =3时,s =______. 二、选择题:12.出境旅游者问某童:你有几个兄弟、几个姐妹,答:“有几个兄弟就有几个姐妹。
七年级数学下册二元一次方程组应用题
七年级数学下册二元一次方程组应用题二元一次方程组解应用题列方程解应用题的基本关系量:(1)行程问题:速度×时间=路程(2)顺水速度=静水速度—水流速度逆水速度=静水速度—水流速度(3)工程问题:工作效率×工作时间=工作量(4)浓度问题:溶液×浓度=溶质(5)银行利率问题:免税利息=本金×利率×时间二元一次方程组解决实际问题的基本步骤:1、审题,搞清已知量和待求量,分析数量关系.(审题,寻找等量关系)2、考虑如何根据等量关系设元,列出方程组.(设未知数,列方程组)3、列出方程组并求解,得到答案.(解方程组)4、检查和反思解题过程,检验答案的正确性以及是否符合题意.(检验,答)列方程组解应用题的常见题型:(1)和差倍总分问题:较大量=较小量+多余量,总量=倍数×倍量(2)产品配套问题:加工总量成比例(3)速度题目:速度×时间=旅程(4)航速问题:此类问题分为水中航速和风中航速两类1.顺流(风):航速=静水(无风)中的速度+水(风)速2.逆流(风):航速=静水(无风)中的速度--水(风)速(5)工程问题:工作量=工作效率×工作时间一般分为两种,一种是一般的工程问题;另一种是工作总量是单位一的工程问题(6)增长率问题:原量×(1+增长率)=增长后的量,原量×(1+减少率)=减少后的量(7)浓度问题:溶液×浓度=溶质(8)银行利率问题:免税利息=本金×利率×时间,税后利息=本金×利率×时间—本金×利率×时间×税率(9)利润题目:利润=售价—进价,利润率=(售价—进价)÷进价×100%(10)盈亏问题:关键从盈(过剩)、亏(不足)两个角度把握事物的总量(11)数字题目:第一要正确掌握自然数、奇数偶数等有关的概念、特性及其表示(12)几何题目:必须掌握几何图形的性子、周长、面积等计算公式(13)年龄题目:捉住人与人的年龄是同时增加的(分配调运问题)1、某校师生到甲、乙两个工厂参加劳动,假如从甲厂抽9人到乙厂,则两厂的人数相同;如果从乙厂抽5人到甲厂,则甲厂的人数是乙厂的2倍,到两个工厂的人数各是多少?(金融分配题目)XXX买了10分与20分的邮票共16枚,花了2元5角,问10分与20分的邮票各买了多小?(做工分配题目)XXX在玩具工厂劳动,做4个小狗、7个小汽车用去3小时42分,做5个小狗、6个小汽车用去3小时37分,平均做1个小狗、1个小汽车各用多少时间?(行程问题)甲、乙二人相距6km,二人同向而行,甲3小时可追上乙;相向而行,1小时相遇。
七年级下册数学列二元一次方程组解应用题专项训练
第八章列二元一次方程组解应用题专项训练1、一名学生问老师:“您今年多大”老师风趣地说:“我像您这样大时,您才出生;您到我这么大时,我已经37岁了;”请问老师、学生今年多大年龄了呢2、某长方形的周长是44cm,若宽的3倍比长多6cm,则该长方形的长和宽各是多少3、已知梯形的高是7,面积是56cm2,又它的上底比下底的三分之一还多4cm,求该梯形的上底和下底的长度是多少4、某校初一年级一班、二班共104人到博物馆参观,一班人数不足50人,二班人数超过50人,已知博物馆门票规定如下:1~50人购票,票价为每人13元;51~100人购票为每人11元,100人以上购票为每人9元1若分班购票,则共应付1240元,求两班各有多少名学生2请您计算一下,若两班合起来购票,能节省多少元钱3若两班人数均等,您认为是分班购票合算还是集体购票合算5、某中学组织初一学生春游,原计划租用45座汽车若干辆,但有15人没有座位:若租用同样数量的60座汽车,则多出一辆,且其余客车恰好坐满;已知45座客车每日租金每辆220元,60座客车每日租金为每辆300元;1初一年级人数是多少原计划租用45座汽车多少辆2若租用同一种车,要使每个学生都有座位,怎样租用更合算6、某酒店的客房有三人间和两人间两种,三人间每人每天25元,两人间每人每天 35元,一个50人的旅游团到了该酒店住宿,租了若干间客房,且每间客房恰好住满,一天共花去1510元,求两种客房各租了多少间7、某中学新建了一栋4层的教学大楼,每层楼有8间教室,进出这栋大楼共有4道门,其中两道正门大小相同,两道侧门大小相同,安全检查中,对4道门进行了测试:当同时开启正门和两道侧门时,2分钟可以通过560名学生,当同时开启一道正门和一道侧门时,4分钟可以通过800名学生;1求平均每分钟一道正门和一道侧门各可以通过多少名学生2检查中发现,紧急情况下时因学生拥挤,出门的效率将降低20%,安全检查规定,在紧急情况下全大楼的学生应在5分钟内通过这4道门安全撤离,假设这栋教学大楼每间教室最多有45名学生,问通过的这4道门是否符合安全规定请说明理由;8、现有190张铁皮做盒子,每张铁皮做8个盒身或做22个盒底,一个盒身与两个盒底配成一个完整盒子,问用多少张铁皮制成盒身,多少张铁皮制成盒底,可以正好制成一批完整的盒子9、一条船顺水行驶36千米和逆水行驶24千米的时间都是3小时,求船在静水中的速度与水流的速度;10、已知一铁路桥长1000米,现有一列火车从桥上通过,测得火车从开始上桥到车身过完桥共用1分钟,整列火车完全在桥上的时间为40秒,求火车的速度及火车的长度;11、为了保护生态环境,我省某山区县响应国家“退耕还林”号召,将该县某地一部分耕地改为林地,改变后,林地面积和耕地面积共有180平方千米,耕地面积是林地面积的25%,求改变后林地面积和耕地各为多少平方千米12、王大伯承包了25亩土地,今年春季改种茄子和西红柿两种大棚蔬菜,用去了44000元,其中种茄子每亩用去了1700元,获纯利2600元;种西红柿每亩用去了1800元,获纯利2600元,问王大伯一共获纯利多少元13、某蔬菜公司收购到某种蔬菜140吨,准备加工后上市销售,该公司的加工能力是:每天精加工6吨或者粗加工16吨,现计划用15天完成加工任务,该公司应安排几天粗加工,几天精加工,才能按期完成任务如果每吨蔬菜粗加工后的利润为1000元,精加工后为2000元,那么该公司出售这些加工后的蔬菜共可获利多少元14、在一次足球选拔赛中,有12支球队参加选拔,每一队都要与另外的球队比赛一次,记分规则为胜一场记3分,平一场记1分,负一场记0分;比赛结束时,某球队所胜场数是所负的场数的2倍,共得20分,问这支球队胜、负各几场15、某个体户向银行申请了甲、乙两种贷款,共计136万元,每一年需付利息16.84万元,甲种贷款的年利率是12%,乙种贷款的年利率是13%,问这两种贷款的数额各是多少16、李明以两种形式分别储蓄了2000元各1000元,一年后全部取出,扣除利息所得税可得利息43.92,已知两种储蓄年利率的和为3.24%,问这两种储蓄的年利率各是百分之几注:公民应交利息所得税=利息金额×20%;17、已知甲、乙两种商品的原单价和为100元,因市场变化,甲商品降价10%,乙商品提价5%,调价后,甲、乙两种商品的单价和比原单价和提高了2%,求甲、乙两种商品的原单价各是多少元18、“五一”期间,某商场搞优惠促销,决定由顾客抽奖确定折扣,某顾客购买甲、乙两种商品,分别抽到七折按售价的70%销售和九折按售价的90%销售,共付款386元,这两种商品原售价之和为500元,问这两种商品的原销售价分别为多少元19、某市场购进甲、乙两种商品共50件,甲种商品进价每件35元,利润率是20%,乙种商品进价每件20元,利润率是15%,共获利278元,问甲、乙两种商品各购进了多少件20、某商场按定价销售某种电器时,每台可获利48元 ,按定价的九折销售该电器6台与将定价降低30元销售该电器9台所获得的利润相等;求该电器每台的进价、定价各是多少元21、甲、乙两件服装的成本共500元,商店老板为获取利润,决定将甲服装按50﹪的利润定价,乙服装按40﹪的利润定价;在实际出售时,应顾客要求,两件服装均按9折出售,这样商店共获利157元,求甲、乙两件服装的成本各是多少元22、某工厂去年的利润总产值——总支出为200万元,今年总产值比去年增加了20%,总支出比去年减少了10%,今年的利润为780万元,问去年的总产值、总支出各是多少万元小红家去年结余5000元,估计今年可结余9500元,并且今年收入比去年高15%,支出比去年低10%,求去年的收入和支出各是多少23、某校2004年秋季初一年级和高一年级招生总数为500人,计划2005年秋季期初一年级招生数增加20%;高一年级招生数增加15%,这样2005年秋季初一、高一年级招生总数比2004年将增加18%,求2005年秋季初一年级、高一年级的计划招生数是多少24、在社会实践活动中,某校甲、乙、丙三位同学一同调查了高峰时段北京的二环路、三环路、四环路的车流量每小时通过观测点的汽车车辆数,三位同学汇报高峰时段的车量情况下如下:甲同学说:“二环路车流量为每小时1000辆”;乙同学说:“四环路比三环路车流量每小时多2000辆”;丙同学说:“三环路车流量的3倍与四环路车流量的差是二环路车流量的2倍”;请您根据他们所提供的信息,求出高峰时段三环路、四环路的车流量各是多少25、初三2班的一个综合实践活动小组去A,B两个超市调查去年和今年“五一节”期间的销售情况,下图是调查后小敏与其他两位同学交流的情况.根据他们的对话,请你分别求出A,B两个超市今年“五一节”期间的销售额.26、根据下图给出的信息,求每件T恤衫和每瓶矿泉水的价格;27、某同学在A、B两家超市发现他看中的随身听的单价相同,书包单价也相同,随身听和书包单价之和是452元,且随身听的单价比书包单价的4倍少8元;1求该同学看中的随身听和书包单价各是多少元2某一天该同学上街,恰好赶上商家促销,超市A所有商品打八折销售,超市B全场购物满100元返购物券30元销售不足100元不返券,购物券全场通用,但他只带了400元钱,如果他只在一家超市购买看中的这两样物品,你能说明他可以选择哪一家购买吗若两家都可以选择,在哪一家购买更省钱28、“利海”通讯器材商场,计划用60000元从厂家购进若干部新型手机,以满足市场需求,已知该厂家生产三种不同型号的手机,出厂价分别为甲种型号手机每部1800元,乙种型号手机每部600元,丙种型号手机每部1200元.1若商场同时购进其中两种不同型号的手机共40部,并将60000元恰好用完.请你帮助商场计算一下如何购买.2若商场同时购进三种不同型号的手机共40部,并将60000元恰好用完,并且要求乙种型号手机的购买数量不少于6部且不多于8部,请你求出商场每种型号手机的购买数量.29、 列一段文字,然后解答问题.修建润扬大桥,途经镇江某地,需搬迁一批农户,为了节约土地资源和保护环境,政府决定统一规划建房小区,并且投资一部分资金用于小区建设和补偿到政府规划小区建房的搬迁农户.建房小区除建房占地外,其余部分政府每平方米投资100元进行小区建设;搬迁农户在建房小区建房,每户占地100 平方米,政府每户补偿4万元,此项政策,吸引了搬迁农户到政府规划小区建房,这时建房占地面积占政府规划小区总面积的20%.政府又鼓励非搬迁户到规划小区建房,每户建房占地120平方米,但每户需向政府交纳土地使用费2.8万元,这样又有20户非搬迁户申请加入.此项政策,政府不但可以收取土地使用费,同时还可以增加小区建房占地面积,从而减少小区建设的投资费用.若这20户非搬迁户到政府规划小区建房后,此时建房占地面积占政府规划规划小区总面积的40%. 1设到政府规划小区建房的搬迁农户为x 户,政府规划小区总面积为y 平方米. 可得方程组解得 2在20户非搬迁户加入建房前,请测算政府共需投资 __________万元;在20户非搬迁户加入建房后,请测算政府将收取的土地使用费投入后,还需投资__________万元.3设非搬迁户申请加入建房并被政府批准的有z 户,政府将收取的土地使用费投入后,还需投资p 万元.①用含z 的代数式表示p ;②当p 不高于140万元,而又使建房占地面积不超过规划小区总面积的35%时,那么政府可以批准多少户非搬迁户加入建房29、某山区有23名中、小学生因贫困失学需要捐助.资助一名中学生的学习费用需要a , , x =y =元,一名小学生的学习费用需要b元.某校学生积极捐助,初中各年级学生捐款数额与用其恰好捐助贫困中学生和小学生人数的部分情况如下表:1 求a、b的值;2 初三年级学生的捐款解决了其余..贫困中小学生的学习费用,请将初三学生年级学生可捐助的贫困中、小学生人数直接填入表中.不需写出计算过程30、某玩具工厂广告称:“本厂工人工作时间:每天工作8小时,每月工作25天;待遇:熟练工人按计件付工资,多劳多得,计件工资不少于800元,每月另加福利工资100元,按月结算;……”该厂只生产两种玩具:小狗和小汽车;熟练工人晓云元月份领工资900多元,她记录了如下表的一些数据:元月份作小狗和小汽车的数目没有限制,从二月分开始,厂方从销售方面考虑逐月调整为:k 月份每个工人每月生产的小狗的个数不少于生产的小汽车的个数的k 倍k =2,3,4,……,12,假设晓云的工作效率不变,且服从工厂的安排,请运用所学数学知识说明厂家广告是否有欺诈行为参考答案:12.解:21. 解:设甲服装的成本是x 元,乙服装的成本是y 元,依题意得;⎩⎨⎧+=+++=+157500%90]%)401(%)501[(500y x y x 解得x=300,y=200 答:甲、乙两件服装的成本分别为300元、200元25.解: 设去年A 超市销售额为x 万元,B 超市销售额为y 万元,由题意得()()⎩⎨⎧=+++=+,170%101%151,150y x y x 解得⎩⎨⎧==.50,100y x 1001+15%=115万元,501+10%=55万元.答:A,B 两个超市今年“五一节” 期间的销售额分别为115万元,27. 解:1解法一:设书包的单价为x 元,则随身听的单价为()48x -元根据题意,得48452x x-+=解这个方程,得答:该同学看中的随身听单价为360元,书包单价为92元; 解法二:设书包的单价为x元,随身听的单价为y元根据题意,得x yy x+==-⎧⎨⎩45248解这个方程组,得xy==⎧⎨⎩92360答:该同学看中的随身听单价为360元,书包单价为92元;2在超市A购买随身听与书包各一件需花费现金:45280%3616⨯=.元因为3616400.<,所以可以选择超市A购买;在超市B可先花费现金360元购买随身听,再利用得到的90元返券,加上2元现金购买书包,总计共花费现金:3602362+=元因为362400<,所以也可以选择在超市B购买; ……4分因为3623616>.,所以在超市A购买更省钱; ……5分30.解: 设制作一个小狗用时间t1分钟,可得工资x元,制作一辆小汽车用时间t2分钟,可得工资y 元;依题意得解得:4.175.0 20t 1521===y x t ,,=,就二月份来讲,设二月份生产汽车玩具a 件,则生产小狗2a 件,此时可得工资: M =a a a 9.2100100275.04.1+=+⨯+又因为工人每月工作8×25×60=12000分钟,所以二月份可生产玩具汽车 20a +15×2a =12000 解得 a =240件;故二月份可领工资796元,小于计件工资的最低额,所以说厂家的广告有欺诈行为;。
部编数学七年级下册专题22二元一次方程组的实际应用之销售利润问题(解析版)含答案
专题22 二元一次方程组的实际应用之销售利润问题【例题讲解】某超市第一次用3800元购进了甲、乙两种商品,其中甲种商品40件,乙种商品160件.已知乙种商品每件进价比甲种商品每件进价贵5元.甲种商品售价为20元/件,乙种商品售价为25元/件.(1)甲、乙两种商品每件进价各多少元?(2)该超市第二次又购进同样数量的甲、乙两种商品.其中甲种商品每件的进价不变,乙种商品进价每件少3元;甲种商品按原售价提价a%销售,乙种商品按原售价降价a%销售,如果第二次两种商品都销售完以后获得的总利润比第一次售完获得的总利润多160元,那么a的值是多少?(1)解:设甲种商品每件进价x元,乙种商品每件进价y元,由题意可得:5401603800y xx y-=ìí+=î,解得:1520xy=ìí=î,答:甲种商品每件进价15元,乙种商品每件进价20元;(2)解:由题意()()() 40201%15160251%203a a´+-+´---éùéùëûëû,()()4020151602520160=´-+´-+,解得10a=.答:a的值是10.【综合解答】1.某商场销售A,B两种品牌的教学设备,这两种教学设备的进价和售价如表所示:该商场计划购进两种教学设备若干套,共需66万元,全部销售后可获毛利润9万元.[毛利润=(售价﹣进价)×销售量]A B进价(万元/套) 1.5 1.2售价(万元/套 1.65 1.4(1)该商场计划购进A,B两种品牌的教学设备各多少套?(2)现商场决定再用30万同时购进A,B两种设备,共有哪几种进货方案?【答案】(1)购进A品牌的教学设备20套,购进B品牌的教学设备30套(2)有4种方案,方案见解析【分析】(1)根据题意设购进A 品牌的教学设备x 套,购进B 品牌的教学设备y 套,再根据总进价为66万元,毛利润为9万元,列出二元一次方程组,解出答案即可;(2)根据题意设再用30万购进A 品牌的教学设备a 套,购进B 品牌的教学设备b 套,根据题意列出二元一次方程,由于a , b 均为正整数,即可得出方程的解,即可得出有4种进货方案.【详解】(1)解:设购进A 品牌的教学设备x 套,购进B 品牌的教学设备y 套,得,()()1.5 1.2661.65 1.5 1.4 1.29x y x y +=ìí-+-=î,解得,2030x y =ìí=î,经检验,2030x y =ìí=î符合题意,答:购进A 品牌的教学设备20套,购进B 品牌的教学设备30套;(2)设再用30万购进A 品牌的教学设备a 套,购进B 品牌的教学设备b 套,由题意得,1.5 1.230a b +=,∵a , b 均为正整数,∴此方程的解为:420a b =ìí=î,或815a b =ìí=î,或1210a b =ìí=î,或165a b =ìí=î,综上所述,有4种方案:①购进A 品牌的教学设备4套,购进B 品牌的教学设备20套;②购进A 品牌的教学设备8套,购进B 品牌的教学设备15套;③购进A 品牌的教学设备12套,购进B 品牌的教学设备10套;④购进A 品牌的教学设备16套,购进B 品牌的教学设备5套.【点睛】本题考查了二元一次方程(组)的应用,找出等量关系列出方程和方程组是本题的关键.2.2022年北京冬奥会、冬残奥会的纪念品得到广大民众的喜爱,某校想要购买A 型、B 型两种纪念品.已知购买2件A 型纪念品和1件B 型纪念品共需150元;购买3件A 型纪念品和2件B 型纪念品共需245元.(1)求A 型纪念品和B 型纪念品的单价;(2)学校现需一次性购买A 型纪念品和B 型纪念品共100个,要求购买的总费用不超过5000元,则最多可以购买多少个A 型纪念品?【答案】(1)A 型纪念品和B 型纪念品的单价分别是55元和40元3.为了丰富学生的课余生活,某校计划购买足球和篮球给同学们活动使用,若购买1个足球和2个篮球需用220元;若购买2个足球和1个篮球需用230元;(1)求购买一个足球和一个篮球各多少元;(2)如果购买足球和篮球共75个,且购买足球的数量不低于篮球数量的1.4倍,求最多可购买多少个篮球?(3)学校根据实际情况,在(2)的前提下,要求购买的总费用不超过5700元,请问有哪几种购买方案?哪种方案最省钱?【答案】(1)购买一个足球需80元,一个篮球需70元;(2)最多可购买31个篮球;(3)有两种购买方案:①购买篮球30个,购买足球45个;②购买篮球31个,购买足球44个.其中方案②购买篮球31个,购买足球44个最省钱.∴购买篮球31个,购买足球44个最省钱.【点睛】本题考查一元一次不等式组的应用、二元一次方程组的应用,解答本题的关键是明确题意,列出相应的方程组和不等式,利用方程的思想和不等式的性质解答.4.下表是某店某天销售A,B两种小商品的账目记录.销售数量/件总销售金额/元A B第一天2010560第二天1515540(1)求A,B两种商品的售价;(2)若A的进价为14元/件,B的进价为12元/件,某天共卖出两种商品40件,且两者总利润不低于210元,则至少销售A商品多少件?(3)在(2)的条件下,如果将A商品打9折销售,那么A商品的利润率是多少(结果精确到0.1%)?5.商场正在销售帐篷和棉被两种防寒商品,已知购买1顶帐篷和2床棉被共需300元,购买2顶帐篷和3床棉被共需510元.(1)求1顶帐篷和1床棉被的价格各是多少元;(2)某学校准备购买这两种防寒商品共80件送给灾区,要求每种商品都要购买,且帐篷的数量多于棉被的数量,但因为学校资金不足,购买总金额不能超过8500元,请问学校共有哪几种购买方案?【答案】(1)帐篷120元,棉被90元(2)3种购买方案:帐篷41顶,棉被39床;帐篷42顶,棉被38床;帐篷43顶,棉被37床【分析】(1)根据1顶帐篷的钱数+2床棉被的钱数=300元,2顶帐篷的钱数+3床棉被的钱数=510元,可得出方程组,解出即可;(2)设帐篷a顶,则棉被(80-a)床,再由购买总金额不能超过8500元,可得出不等式组,解出即可.(1)解:设一顶帐篷x元,一床棉被y元,则2300 23510x yx y+=ìí+=î,解得:12090xy=ìí=î.答:1顶帐篷120元,1床棉被90元;(2)6.我市正在创建“全国文明城市”,某校拟举办“创文知识”抢答赛,欲购买A、B两种奖品以鼓励抢答者.如果购买A种20件,B种15件,共需380元;如果购买A种15件,B种10件,共需280元.(1)A、B两种奖品每件各多少元?(2)现要购买A、B两种奖品共100件,总费用不超过900元,那么A种奖品最多购买多少件?∴a≤41,答:A 种奖品最多购买41件.【点睛】本题考查了一元一次不等式的应用以及二元一次方程组的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据不等关系,正确列出不等式.7.某电器商城准备销售每台进价分别为200元、150元的A 、B 两种型号的电风扇,下表是近两周的销售情况:(进价、售价均保持不变,利润=销售收入-进货成本)销售数量销售时段A 种型号B 种型号销售收入第一个月3台5台2300元第二个月4台10台4000元(1)求A 、B 两种型号的电风扇的销售单价;(2)若超市准备用不多于5500元的金额再采购这两种型号的电风扇共30台,求A 种型号的电风扇最多能采购多少台?(3)在(2)的条件下,超市销售完这30台电风扇能否实现利润为2100元的目标?若能,请给出相应的采购方案;若不能,请说明理由.【答案】(1)A 、B 两种型号电风扇的销售单价分别为300元、280元(2)超市最多采购A 种型号电风扇20台时,采购金额不多于5500元(3)超市不能实现利润2100元的目标,理由见解析【分析】(1)设A 种型号的电风扇的销售单价为x 元,B 种型号的电风扇的销售单价为y 元,根据总价=单价×数量结合近两月的销售情况统计表,即可得出关于x ,y 的二元一次方程组,解之即可得出结论;(2)设A 种型号的电风扇采购a 台,则B 种型号的电风扇采购()30a - 台,根据进货总价=进货单价×进货数量结合超市准备用不多于5500元的金额采购两种型号的电风扇共30台,即可得出关于a 的一元一次不等式,解之取其中的最大值即可得出结论;(3)先求出超市销售利润为2100元时的A 种型号电风扇采购台数a ,再判断即可.(1)解:设A 、B 两种型号电风扇的销售单价分别为x 元、y 元,依题意得:3523004104000x y x y +=ìí+=î,解得:300280x y =ìí=î,答:A 、B 两种型号电风扇的销售单价分别为300元、280元;(2)解:设采购A 种型号电风扇a 台,则采购B 种型号电风扇()30a -台.依题意得:()200150305500a a +-£,解得:20a £.答:超市最多采购A 种型号电风扇20台时,采购金额不多于5500元;(3)解:依题意有:()()()300200280150302100-+--=a a ,解得:60a =,∵20a £,∴在(2)的条件下超市不能实现利润2100元的目标.答:超市不能实现利润2100元的目标.【点睛】本题主要考查解二元一次方程组、一元一次方程与一元一次不等式,解题的关键是根据条件列出相应的方程或者不等式.8.注意:为了使同学们更好地解答本题,我们提供了一种解题思路,你可以依照这个思路按下面的要求填空,完成本题的解答.也可以选用其他的解题方案,此时不必填空,只需按照解答题的一般要求进行解答.“冰墩墩”和“雪容融”分别是北京2022年冬奥会和冬残奥会的吉祥物.某冬奥官方特许商品零售店购进了一批同一型号的“冰墩墩”和“雪容融”玩具,连续两个月的销售情况如下表:销售量/件月份冰墩墩雪容融销售额/元第1个月1204017160第2个月1506022200求此款“冰墩墩”和“雪容融”玩具的零售价格.解题方案:设此款“冰墩墩”玩具的零售价格为x 元,“雪容融”玩具的零售价格为y 元,(Ⅰ)根据题意,列出方程组______,______.ìíî(Ⅱ)解这个方程组,得______,______.x y =ìí=î答:此款“冰墩墩”玩具的零售价格为______元,“雪容融”玩具的零售价格为______元.【答案】1204017160,1506022200,118,75,x y x y +=+=118, 75.【分析】设此款“冰墩墩”玩具的零售价格为x 元,“雪容融”玩具的零售价格为y 元,再根据表格信息可得两种情况下的销售额,再列方程组,解方程组即可.【详解】解:设此款“冰墩墩”玩具的零售价格为x 元,“雪容融”玩具的零售价格为y 元,(Ⅰ)根据题意,列出方程组1204017160150+60,22200x y x y +==ìíî(Ⅱ)解这个方程组,得118,75x y =ìí=î答:此款“冰墩墩”玩具的零售价格为118元,“雪容融”玩具的零售价格为75元.【点睛】本题考查的是二元一次方程组的应用,确定相等关系是解本题的关键.9.某商店准备销售甲、乙两种商品共80件,已知甲商品进货价为每件70元,乙商品进货价为每件35元,在定价销售时,1件甲商品比1件乙商品售价多30元,3件甲商品比2件乙商品售价多150元.(1)每件甲商品与每件乙商品的售价分别是多少元?(2)若甲、乙两种商品的进货总投入不超过4200元,则至多进货甲商品多少件?【答案】(1)每件甲商品售价为90元,每件乙商品售价为60元(2)至多进货甲商品40件【分析】(1)设每件甲商品与每件乙商品的售价分别是x 元、y 元,根据“1件甲商品比1件乙商品售价多30元,3件甲商品比2件乙商品售价多150元”列出二元一次方程组求解即可;(2)设进货甲商品a 件,则乙商品(80)a -件,根据题意列出一元一次不等式求解即可.(1)设每件甲商品与每件乙商品的售价分别是x 元、y 元,得3032150x y x y -=ìí-=î 解得:9060x y =ìí=î答:每件甲商品售价为90元,每件乙商品售价为60元.(2)设进货甲商品a 件,则乙商品(80)a -件,依题意得:()7035804200a a+-£,解得40a£因此,至多进货甲商品40件.【点睛】本题考查了一元一次不等式及二元一次方程组的应用,解决本题的关键是读懂题意,找到符合题意的不等关系式及所求量的等量关系.10.我县某小区积极响应国家号召,落实“垃圾分类回收,科学处理”的政策,准备购买A、B两种型号的垃圾分类回收箱共20只,放在小区各个合适位置,以方便进行垃圾分类投放.小区物业共支付费用4240元,A、B型号价格信息如表:型号价格A型200元/只B型240元/只(1)请问小区物业购买A型和B型垃圾回收箱各是多少只?(2)因受到居民欢迎,物业准备再次购进A、B两种型号的垃圾分类回收箱共40只,总费用不超过9000元,那么物业至少购进A型号回收箱多少只?【答案】(1)购买A型垃圾回收箱14只,购买B型垃圾回收箱6只;(2)15只【分析】(1)设学校购买A型垃圾回收箱x只,购买B型垃圾回收箱y只,根据学校购买两种型号的垃圾回收箱共20只且共花费4240元,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)根据节省的总费用=每只节省的费用×购买B型垃圾回收箱的数量,即可求出结论.【详解】解:(1)设购买A型垃圾回收箱x只,购买B型垃圾回收箱y只.依题意得:20 2002404240x yx y+ìí+î==.解得:146xyìíî==.答:购买A型垃圾回收箱14只,购买B型垃圾回收箱6只.(2)设再次购买A型垃圾回收箱m只,则购买B型垃圾回收箱(40﹣m)只,依题意得:200m+240(40﹣m)≤9000,解得:m≥15.答:至少购买A型垃圾回收箱15只.【点睛】本题考查了二元一次方程组的应用以及一元一次不等式的应用,解题的关键是:找准等量关系,正确列出二元一次方程组;根据各数量之间的关系,正确列出一元一次不等式.11.某景点的门票价格如表:购票人数/人1~5051~100100以上每人门票价/元12108某校七年级(1)、(2)两班计划去游览该景点,其中(1)班人数少于50人,(2)班人数多于50人且少于100人,如果两班都以班为单位单独购票,则一共支付1118元;如果两班联合起来作为一个团体购票,则只需花费816元.(1)两个班各有多少名学生?(2)团体购票与单独购票相比较,两个班各节约了多少钱?【答案】(1)七年级(1)班有49人、七年级(2)班有53人;(2)七年级(1)班节省的费用为:(12﹣8)×49=196元,七年级(2)班节省的费用为:(10﹣8)×53=106元.【详解】试题分析:(1)设七年级(1)班有x 人、七年级(2)班有y 人,根据如果两班都以班为单位单独购票,则一共支付1118元;如果两班联合起来作为一个团体购票,则只需花费816元建立方程组求出其解即可;(2)用一张票节省的费用×该班人数即可求解.试题解析:(1)设七年级(1)班有x 人、七年级(2)班有y 人,由题意,得12101118{8()816x y x y +=+=,解得:49{53x y ==.答:七年级(1)班有49人、七年级(2)班有53人;(2)七年级(1)班节省的费用为:(12-8)×49=196元,七年级(2)班节省的费用为:(10-8)×53=106元.考点:二元一次方程组的应用.12.在“6·18”活动中,某电商上架200个A 商品和150个B 商品进行销售,已知购买3个A 商品和6个B 商品共需780元,购买1个A 商品和5个B 商品共需500元.(1)求A 商品和B 商品的售价分别是多少元?(2)在A商品售出35,B商品售出23后,为了尽快回笼资金,店主决定对剩余的A商品每个打a折销售,对剩余的B商品每个降价2a元销售,很快全部售完.若要保证本月销售总额不低于29250元,求a的最小值.13.江津区开展“一卷诗书,万千世界”读书节活动,初一年级倡导书目确定为《我们仨》和《围城》.已知购买3本《我们仨》和4本《围城》共需160元.购进2本《我们仨》和1本《围城》共需65元.(1)购买一本《我们仨》和一本《围城》各需多少钱?(2)针对此次活动,学校图书馆为方便学生借阅,计划购进两种书籍共100本,且总费用不超过2345元,预计购进《我们仨》的数量不超过《围城》数量的12,有哪几种购买方案?【答案】(1)购买一本《我们仨》需20元,购买一本《围城》需25元(2)有3种购买方案:①购买《我们仨》31本,购买《围城》69本;②购买《我们仨》32本,购买《围城》68本;③购买《我们仨》33本,购买《围城》67本.14.今年神舟十四号成功发射,某航天博物馆顺势推出了“我要做太空人”系列航天纪念品,提供“漫步星河”、“梦想远航”两种不同的纪念品套餐供游客选择.已知购买2份“漫步星河”与5份“梦想远航”共需付款160元,购买2份“漫步星河”比购买1份“梦想远航”多付款40元.(1)请问每份“漫步星河”多少元?每份“梦想远航”多少元?(2)近期越来越多的学校选择来该博物馆进行研学之旅,于是该博物馆决定对纪念品推出两种优惠活动,如表所示:“漫步星河”纪念品“梦想远航”纪念品活动一每份为原价的56每份5折活动二每购买一份“漫步星河”纪念品,就赠送一份“梦想远航”纪念品若某中学某年级决定购买“漫步星河”、“梦想远航”两种纪念品套餐共100份(其中“漫步星河”纪念品不超过50份),则购买“漫步星河”纪念品套餐多少份时,选择优惠一和优惠二购买所需的费用相同?依题意得:151000102000m m +=-+,解得:40m =答:购买“漫步星河”纪念品套餐40份时,选择优惠一和优惠二购买所需的费用相同.【点睛】本题考查了二元一次方程组的应用以及一元一次方程的应用.解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)找准等量关系,正确列出一元一次方程.15.某忠州腐乳销售店的麻辣味和红油味最畅销,今年1月麻辣味卖出55罐,红油味卖出40罐,共收入5300元:2月麻辣味卖出80罐,红油味卖出60罐,共收入7800元.并且今年1月和2月两种罐装风味豆腐乳的销售价不变.(1)求今年1月麻辣味和红油味的销售价(单位:元/罐);(2)为回馈顾客,在今年3月,麻辣味销售价降10%,销售量在2月的基础上增加了25m 罐,红油味销售价降12m 元,销售量在2月的基础上增加了40%.若今年3月的总销售额比今年1月至少增加2812元,求m 的最大值.【点睛】本题考查了二元一次方程组的应用和一元一次不等式组的应用,解题的关键在于找准等量关系和数量关系.16.某街道为了绿化一块闲置空地,购买了甲、乙两种树木共72棵种植在这个空地上,购买时,已知甲种树木的单价是乙种树木的单价的98,乙种树木的单价是每棵80元,购买甲、乙两种树木的总费用是6160元.(1)甲、乙两种树木各购买了多少棵?(2)经过一段时间后,种植的这批树木成活率高,绿化效果好,该街道决定再次购买这两种树木来绿化另一块闲置空地,购买时,发现甲种树木的单价比第一次购买时的单价下降了50a ,乙种树木的单价比第一次购买时的单价下降了110,于是,该街道购买甲种树木的数量比第一次多了15,购买乙种树的数量比第一次多了50a ,且购买甲、乙两种树木的总费用比第一次多了2125a ,请求出a 的值.解得∶a=5,答∶a的值为5.【点睛】本题考查了二元一次方程组的应用的应用以及一元一次方程的应用,解题的关键是∶(1)找准等量关系,正确列出二元一次方程组;(2)找准等量关系,正确列出一元一次方程.17.某零食店销售牛轧糖、雪花酥2种糖果,如果用800元可购买5千克牛轧糖和4千克雪花酥,用760元可购买7千克牛轧糖和2千克雪花酥.(1)求牛轧糖、雪花酥每千克的价格分别为多少元?(2)已知该零食店在12月共售出牛轧糖50千克、雪花酥30千克.春节将近,1月份超市将牛轧糖每千克的售价提升43m元,雪花酥的价格不变,结果与12月相比,牛轧糖只销售了45千克,雪花酥销量上升1m5千克,销售总额超过了12月份销售总额;求m的取值范围.程和不等式并正确计算.18.某一天,蔬菜经营户老李用了145元从蔬菜批发市场批发一些黄瓜和茄子,到菜市场去卖,黄瓜和茄子当天的批发价与零售价如下表所示:品名黄瓜茄子批发价(元/千克)34零售价(元/千克)47(1)当天他卖完这些黄瓜和茄子共赚了90元,这天他批发的黄瓜和茄子分别是多少千克?(2)当天他卖完这些黄瓜和茄子后,又花了50元去批发了m 千克黄瓜和n 千克茄子(m 、n 为整数),求m n 、的值.【答案】(1)这天他批发的黄瓜和茄子分别是15千克和25千克(2)211m n =ìí=î或68m n =ìí=î或105m n =ìí=î或142m n =ìí=î【分析】(1)设这天他批发的黄瓜和茄子分别是x 千克和y 千克,根据题意即可列出二元一次方程组,解方程组即可求得;(2)根据题意即可列出二元一次方程,再根据m n 、为整数,即可求得(1)解:设这天他批发的黄瓜和茄子分别是x 千克和y 千克,根据题意得()()34145437490x y x y +=ìí-+-=î 整理得:34145390x y x y +=ìí+=î①②由3´-②①得,5y =125,解得y =25,把y =25代入②得,x +75=90,解得x =15,故这天他批发的黄瓜和茄子分别是15千克和25千克;(2)19.某水果店以4元/千克的价格购进一批水果,由于销售状况良好,该店再次购进同一种水果,第二次进货价格比第一次每千克便宜了0.5元,所购水果重量恰好是第一次购进水果重量的2倍,这样该水果店两次购进水果共花去了2200元.(1)该水果店两次分别购买了多少元的水果?(2)在销售中,由于第二次购进水果的量比较大,水果店决定降价销售,第二次购进的水果按第一次的售价降价1元卖出,若第一次购进的水果有3%的损耗,第二次购进的水果有5%的损耗,该水果店希望售完这些水果获利不低于864元,则该水果店第二次购进的水果每千克售价至少为多少元?解:第一次所购该水果的重量为8004200¸=(千克).第二次所购该水果的重量为2002400´=(千克).设该水果店第一次购进的水果每千克售价为a 元,根据题意得()()()20013%40015%180********a a -+----³,解得6a ³,则15a -=,即该水果店第二次购进的水果每千克售价至少为5元.答:该水果店第二次购进的水果每千克售价至少为5元.【点睛】本题考查了二元一次方程组的应用和一元一次不等式的应用.解决问题的关键是读懂题意,找到关键描述语,找到所求的量的等量关系.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解二元一次方程组
(1)、代入消元法:由二元一次方程组中的一个方程,将一个未知数用含另一未知数的式子表示出来,再代入另一方程,实现消元,进而求得这个二元一次方程组的解,这种方法叫做代入消元法,简称代入法。
(2)、加减消元法:两个二元一次方程中同一未知数前的系数相反或相等(或利用等式的性质可变为相反或相等)时,将两个方程的左右两边分别相加或相减,就能消去这个未知数,得到一个一元一次方程,进而求得这个二元一次方程组的解,这种方法叫加减消元法,简称加减法。
二、典型例题
例1:解下列方程组
分析:①去分母,去括号,移项,合并,化系数为1即可;
②由①得x=3-2y,代入②,利用代入消元法解方程组.
解答:解:①去分母,得6x-2(2x-1)=3(x+3),
去括号,得6x-4x+2=3x+9,
移项,得6x-4x-3x=9-2,
合并,得-x=7,
化系数为1,得x=-7;
②{x+2y=3 (1)
{2x+3y=-7 (2)
由(1)得x=3-2y (3)
将(3)代入(2),得2(3-2y)+3y=-7,
解得y=13,
将y=13代入(3)得x=-23,
∴方程组的解为 {x=-23 ,{y=13
例2:(2012•南京)解方程组 { x+3y=-13
{ x-2y=8
分析:先由①表示出x,然后将x的值代入②,可得出y的值,再代入①可得出x的值,继而得出了方程组的解.
解答:解:{x+3y=-1①
{3x-2y=8②
由①得x=-3y-1③,
将③代入②,得3(-3y-1)-2y=8,
解得:y=-1.
将y=-1代入③,得x=2.
故原方程组的解是{ x=2 y=-1
例3:(2011•永州)解方程组:{ 4x-3y=11
{ 2x+y=13
分析:两个方程中,x或y的系数既不相等也不互为相反数,需要先求出x或y的系数的最小公倍数,即将方程中某个未知数的系数变成其最小公倍数之后,再进行加减.
解答:解:{ 4x-3y=11 ①
{ 2x+y=13 ②
②×2-①得:
5y=15,
y=3,
把y=3代入②得:
x=5,
∴方程组的解为{x=5 y=3 .
例4:(2011•曲靖)方程2x-y=1和2x+y=7的公共解是()
A. x=0,y=-1 B.x=0,y=7
C. x=1,y=5 D. x=2,y=3
分析:此题要求公共解,实质上是解二元一次方程组{2x-y=1,{2x+y=7
解答:解:{2x-y=1 ①
{2x+y=7 ② ,
①+②得:
4x=8,
x=2,
把x=2代入②得:y=3,
∴ x=2 y=3 .
故选:D .
例5:若232m m n a b +与8
ab 是同类项,则m 、n 值分别为( ) A .1,2 B .2,1 C .1,1 D .1,3
分析:本题考查同类项的定义,所含字母相同且相同字母的指数也相同的项是同类项,同类项与字母的顺序无关.由同类项的定义可求得m 和n 的值.
解答:∵232m m n a b +与8
ab 是同类项, ∴m=1,2m+3n=8,
解得:m=1,n=2.
故选A .
例6:下列方程组中,与方程组 {3x-2y=5;{4x+3y=1 的解不同的方程组是( )
分析:将方程组{ 3x-2y=5;{4x+3y=1 的解代入各选项中进行比对,看方程组中的两个方程是否成立,就可找出答案.
解答:解:方程组{ 3x-2y=5;{4x+3y=1 的解为 x=1; y=-1,将此解分别代入四个方程组:
A 、代入后方程成立,故正确;
B 、代入后方程成立,故正确;
C、代入后方程(1)成立,方程(2)不成立,故错误;
D、代入后方程成立,故正确.
故选C.。