数字电路实验二实验报告

合集下载

东南大学信息工程数字电路与系统第2次实验报告

东南大学信息工程数字电路与系统第2次实验报告

数字逻辑电路实验
第2次实验报告
实验题目四舍五入
实验日期2017.11.8
实验1-4
一、实验题目
实现以下数值判别电路的设计:设计一个组合逻辑电路,它接收一位8421BCD码“B3B2B1B0”的输入,进行四舍五入的判断,输出判断结果。

大于等于五的时候输出1,其他情况下输出为0。

二、实验原理
实验目的:接收8431BCD码的输入,进行判断,如果大于等于5则输出1,其他情况输出0。

设计思路:先根据真值表及卡诺图得到最小项表达式,化简为由与非门组成的表达式。

使用7404非门以及7420与非门实现电路。

三、设计过程
真值表
卡诺图
F==
采用74HC04非门以及74HC00与非门实现电路用Multisim仿真如下
实现电路
四、测试方法及测试结果
电路如图所示,从右往左的开关分别代表B3,B2,B1,B0。

控制开关,使它们分别与高电平1(面包板上面一条),低电平0(面包板下面一条相连)。

下面测试过程分别为0000(灭),0001(灭),0010(灭),0011(灭),0100(灭),0101(亮),0110(亮),0111(亮),1000(亮),1001(亮).
五、实验结论
1、实验实现了8421BCD码的四舍五入,大于等于5输出1,二极管亮,其它值二极管灭。

2、经验总结:使用CMOS器件时,断开与高电平的开关不代表接入了低电平,此时输入不确定,要将此时的输入端接地才能实现输入低电平。

六、参考资料
《数字电路与系统》作者:李文渊。

数字电路实验二实验报告

数字电路实验二实验报告

实验二门电路逻辑变换一.实验目的1 学会门电路逻辑变换的基本方法。

2 掌握虚拟实验逻辑转换器的使用方法。

二.实验设备安装有Multsim10软件的个人电脑。

三.实验原理图2 1是门电路逻辑变换实验原理图。

3个与非门和1个与门按图中的连接,表达为同或门的逻辑功能。

图2—1四.实验步骤1 打开电脑Multsim10操作平台。

从元件库中取出与非门3个、与门1个,以及双刀开关两个、电阻器、电源等,连接组成图2 -2的实验电路。

2 打开工作开关,电路工作正常后,依次拨动开关J1与J2,观察探针的变化。

开关J1与J2转接电源端为H_接地端为L;探针发亮为H_熄灭为L,将观察结果填入表2- 1。

表2-1J1 J2 探针L L HL H LH L LH H H图2—21)J1接电源,J2接地2)J1接地,J2接电源3)J1接地,J2接地4)J1接电源,J2接电源3将表2- 1变换为如下表2-2的真值表。

开关J1为A,J2为B,H为“1”,L为“0”;探针x1为F发亮为“1”,熄灭为“0”。

表2-2A B F0 0 10 1 01 0 01 1 14 按上述图2-2写出逻辑表达式为BAF,根据真值表及=BA∙+∙逻辑表达式判断,它是一个同或门电路。

5 逻辑转换器的使用重新设置Multisim仿真工作界面,运用逻辑转换器,转换出逻辑表达式为BF+=的门电路逻辑图,然后配置开关、探针等,并将电ABA路仿真运转验证,列出实验验证结果(例如上述表2-1)。

应注意,在逻辑转换器中,逻辑表达式有不同,要用“’”表示求反,例如用A’来表示A的求反即A,其它类似。

1)点击simulate-----instruments------logic converter,打开逻辑转换仪。

2)设计出逻辑函数表达式为:B=,如图1所示。

F+ABA3)点击右边第五个图标,把逻辑表达式转换为与,或非门电路,如图2所示。

4)点击右边第六个图标,把逻辑表达式转换为与非门电路,如图3所示。

数字电路实验二--译码器实验报告深圳大学--郭治民

数字电路实验二--译码器实验报告深圳大学--郭治民

深圳大学实验报告实验课程名称:数字电路与逻辑设计实验项目名称:译码器学院:计算机与软件学院专业:计算机科学与技术报告人:郭治民学号: 2011150117 班级: 3 同组人:姜峰指导教师:李琰实验时间: 2012-10-23实验报告提交时间: 2012-11-05教务处制实验报告包含内容一、实验目的与要求1.了解和正确使用MSI组合逻辑部件;2.掌握一般组合逻辑电路的特点及分析、设计方法;3. 学会对所设计的电路进行静态功能测试的方法;4. 观察组合逻辑电路的竞争冒险现象。

二、实验说明译码器是组合逻辑电路的一部分。

所谓译码就是不代码的特定含义“翻译”出来的过程,而实现译码操作的电路称为译码器。

译码器分成三类:1.二进制译码器:把二进制代码的各种状态,按照其原意翻译成对应输出信号的电路。

如中规模2线—4线译码器74LS139,3线—8线译码器74LS138等。

2.二—十进制译码器:把输入BCC码的十个代码译成十个高、低电平信号。

3.字符显示译码器:把数字、文字和符号的二进制编码翻译成人们习惯的形式并直观地显示出来的电路,如共阴极数码管译码驱动的74LS48(74LS248),共阳极数码管译码驱动的74LS49(74LS249)等。

3、实验设备1. RXB-1B数字电路实验箱2.器件74LS00 四2输入与非门74LS20 双4输入与非门74LS138 3线—8线译码器四、任务与步骤任务一:测试3线—8线译码器74LS138逻辑功能将一片3线—8线译码器74LS138插入RXB-1B数字电路实验箱的IC空插座中,按图3-15接线。

A0、A1、A2、STA、STB、STC端是输入端,分别接至数字电路实验箱的任意6个电平开关。

Y7、Y6、Y5、Y4、Y3、Y2、Y1、Y0输出端,分别接至数字电路实验箱的电平显示器的任意8个发光二极管的插孔8号引脚地接至RXB—IB型数字电路实验箱的电源“”,16号引脚+5V接至RXB-1B数字电路实验箱的电源“+5V”。

数字电路实验报告实验二

数字电路实验报告实验二

2、利用六反相器CD4069测量逻辑门电路的时 利用六反相器CD4069 CD4069测量逻辑门电路的时
延参数。 CD4069中的六个非门依次串联连接, 延参数。将CD4069中的六个非门依次串联连接, 中的六个非门依次串联连接 在输入端输入250KHz TTL信号 250KHz的 信号, 在输入端输入250KHz的TTL信号,用双踪示波器 测总的延时, 测总的延时,计算每个门的平均传输延迟时间 的值。 的tpd的值。
&
&
&
&
74LS03(集电极开路门)引脚图
数字逻辑箱
三、实验内容
1、对CD4070的逻辑功能的测试 (1)用逻辑箱观测4070的逻辑功能并完成下表 逻辑开关 输 入 引脚 引脚 ( )( ) 0 0 1 1 0 1 0 1 指示灯 输 出 引脚 ( )
(2)、对CD4069的逻辑功能的测试 、 的逻辑功能的测试 用逻辑箱观测4069的逻辑功能并完成下表 用逻辑箱观测 的逻辑功能并完成下表 逻辑开关 输 入 0 1 指示灯 输 出
二、实验原理
1. CMOS常用门电路 常用门电路
≥1
≥1
≥1
≥1
≥1
CD4001(四2输入或非门)引脚图
&
&
&
&
CD4011(四2输入与非门)引脚图
1
1
1
1
1
1
CD4069(六反相器)引脚图
=1 1=
1=
1=
CD4070(四异或门)引脚图
1
1 ▽
EN EN
1 ▽
EN EN
1 ▽

74LS125(三态门)引脚图

数字电路实验报告 实验2

数字电路实验报告 实验2

实验二 译码器及其应用一、 实验目的1、掌握译码器的测试方法。

2、了解中规模集成译码器的管脚分布,掌握其逻辑功能。

3、掌握用译码器构成组合电路的方法。

4、学习译码器的扩展。

二、 实验设备及器件1、数字逻辑电路实验板1块 2、74HC(LS)20(二四输入与非门) 1片 3、74HC(LS)138(3-8译码器)2片三、 实验原理74HC(LS)138是集成3线-8线译码器,在数字系统中应用比较广泛。

下图是其引脚排列,其中A 2、A 1、A 0为地址输入端,Y ̅0~Y ̅7为译码输出端,S 1、S ̅2、S ̅3为使能端。

下表为74HC(LS)138功能表。

74HC(LS)138工作原理为:当S 1=1,S ̅2+S ̅3=0时,电路完成译码功能,输出低电平有效。

其中:Y ̅0=A ̅2A ̅1A ̅0̅̅̅̅̅̅̅̅̅̅ Y ̅4=A 2A ̅1A ̅0̅̅̅̅̅̅̅̅̅̅ Y ̅1=A ̅2A ̅1A 0̅̅̅̅̅̅̅̅̅̅ Y ̅5=A 2A ̅1A 0̅̅̅̅̅̅̅̅̅̅ Y ̅2=A ̅2A 1A ̅0̅̅̅̅̅̅̅̅̅̅ Y ̅6=A 2A 1A ̅0̅̅̅̅̅̅̅̅̅̅ Y ̅3=A ̅2A 1A 0̅̅̅̅̅̅̅̅̅̅Y ̅7=A 2A 1A 0̅̅̅̅̅̅̅̅̅̅因为74HC(LS)138的输出包括了三变量数字信号的全部八种组合,每一个输出端表示一个最小项(的非),因此可以利用八条输出线组合构成三变量的任意组合电路。

实验用器件管脚介绍:1、74HC(LS)20(二四输入与非门)管脚如下图所示。

2、74HC(LS)138(3-8译码器)管脚如下图所示。

四、实验内容与步骤(四学时)1、逻辑功能测试(基本命题)m。

验证74HC(LS)138的逻辑功能,说明其输出确为最小项i注:将Y̅0~Y̅7输出端接到LED指示灯上,因低电平有效,所以当输入为000时,Y̅0所接的LED指示灯亮,其他同理。

数字电路实验报告二

数字电路实验报告二

实验二一、实验目的1.进一步学习multisim仿真软件的操作2.学会使用multisim对时序逻辑电路进行仿真分析二、实验内容1.验证JK触发器的逻辑功能2.利用74LS160N的置数方式设计九进制计数器三、实验步骤1. JK触发器仿真测试(1) Jk触发器触发器有两个基本特性:一是它有两个稳定的状态,可分别用来表示二进制数码0和1;二是在输入信号作用下,触发器的两个稳定状态可相互转换,输入信号消失后,已转换的稳定状态可长期保持下来,这使得触发器能够记忆二进制信息。

74LS112D是一个带有预置和清零输入,且下降沿触发的JK触发器,具有置0、置1、保持和翻转的功能,其芯片引脚如图1所示。

图1 74LS112D芯片引脚图PR为异步置1端。

CLR为异步置0端。

CLK为时钟脉冲输入端。

J、K为输入端。

Q、~Q为输出端。

表1 74LS112D的功能表其中Q n表示原态,Q n+1表示次态。

(2) 器件选取电源和地:选择Sources组下的POWER_SOURCES,选取元器件列表下的VCC电源和DGND地。

时钟信号:Sources->DIGITAL_SOURCES->DIGITAL_CLOCK。

逻辑探头:在Indicators->PROBE。

JK触发器:Place TTL->74LS,选取74LS112D。

逻辑开关:在Basic->SWITCH,选取SPDT和PB_DPST开关。

逻辑分析仪XLA1。

(3) 仿真分析放置器件进行如图2所示电路连接,利用时钟信号和按键式开关PB_DPST 串联实现手动式式脉冲,按一次按键,提供一个时钟信号,用SPDT开关给J、K提供输入信号。

将置位端CLR和PR设置为高电平状态下,按照功能表验证JK 触发器的功能。

图2 JK触发器仿真电路图将按键式开关PB_DPST去掉,把时钟信号连接在CLK上,置J、K为高电平,使用逻辑分析仪连接时钟信号和输出端,将逻辑分析仪设置合理的时钟频率,对波形进行采集分析,如图3。

数字电路实验报告——数据选择器

数字电路实验报告——数据选择器

数电实验二姓名:李可 / 徐军 学号:pb9210132 / pb09210134 组别:5实验题目:数据选择器实验目的:了解数据选择器的工作原理;熟悉数据选择器的引脚及其作用;熟悉数据选择器的工作过程以及学习简单的数据选择器的应用。

实验内容:1:利用两片八选一的数据选择器设计一个十六选一的数据选择器; 实现Y1=m(1,2,4,5) Y2=(9,10,12)2:利用十六选一数据选择器设计一个选择器使得输出Y=Y1+Y2=m(6,7,8,11,13) 3:利用八选一数据选择器设计一个红绿灯指示灯,区别红绿灯是否正常。

实验原理:在数字信号的传输过程中,又是需要从一组输入数据中选出某一个来,这时候就需要用到一种称为数据选择器或多路开关的逻辑电路。

以双四选一数据选择器74HC153为例说明它的工作原理: 当A0 和A1的状态确定以后,D10~D13 当中只有一个可以通过两级导通的传输门 到达输出端。

输出地逻辑式可以写为: Y=(D10(A1’A0’)+D10(A1’A0)+ D12(A1A0’)+D13(A1A0))*S1同时,上式也表明S ’=0时数据选择器工作,S ‘=1时数据选择器被禁止工作,输出被封锁为低电平。

S1 A1 A0 D10D11 Y D12 D1374HC153其它的数据选择器的工作原理与上述类似。

由简单的数据选择器可以设计多输入的数据选择器。

实验内容:(1):十六选一数据选择器的简单验证: 实验简单的电路图: A3 +5V Y1A2 A1 A0 S1 D0 D1D2 Y D3 D4 D5 D6 D7D8 D9 D10 D11 D12 D13 D14 D15Y2A0 A1 A2实验所得数据:A3 A2 A1 A1 Y2 Y10 0 0 0 0 00 0 0 1 0 10 0 1 0 0 10 0 1 1 0 00 1 0 0 0 10 1 0 1 0 10 1 1 0 0 00 1 1 1 0 01 0 0 0 0 01 0 0 1 1 01 0 1 0 1 01 0 1 1 0 01 1 0 0 1 01 1 0 1 0 01 1 1 0 0 01 1 1 1 0 0由以上真值表可以得知:Y1=m(1,2,4,5)Y2=(9,10,12)实验总结:本实验由两个八选一数据选择器构成一个十六选一数据选择器;原理为:当A3为0时第一片导通,第二片截止,输出数据为前八位;当A3为1时第一片截止,第二片导通,输出数据为后八位。

数字电路实验二

数字电路实验二
2 设计实现交通灯控制电路:
(1) 根据设计要求和要点提示,设计出东西方向和南北方向绿、 黄、红灯的逻辑表达式;
东西方向:绿:EWG= 黄:EWY= 红:EWR= 南北方向:绿:NSG= 黄:NSY= 红:NSR= (2) 根据控制信号灯表达式画出实现电路图,即完善电路图5; (3)用74LS164、74LS08和74LS00在实验箱上连接出电路; (4) 列表记录电路的输入与输出结果。
0 0 000 0 0 0 QA QB QC QD QE QF QG QH 1 QA QB QC QD QE QF QG 0 QA QB QC QD QE QF QG 0 QA QB QC QD QE QF QG

图4 74164时序图
4. 设计任务
由东西方向和南北方向道路的汇合点形成十字交叉路口,为确保车辆 安全通行,在交叉路口的每个入口处设置了红、黄、绿三色交通信号灯, 红灯亮禁止通行,绿灯亮允许通行,黄灯亮则给行驶中的车辆有时间停靠 在禁止线之外。
1 (黄灯亮)
(3) 调节CP周期为4秒,南北方向亮6个CP周期时,东西方向绿灯亮5 个CP周期时长,接着黄灯亮1个CP周期时长。反之亦然。即实现了两个 方向红、黄、绿灯交替点亮 24、4、5秒的要求。
5. 实验内容
1. 设计实现一个模12的扭环计数器。
(1)用74LS164在实验箱上连接出电路; (2)列表记录电路的输出结果(用LED显示)。
(1) 四二输入与门 74LS08 逻辑功能简介
Vcc 4B 4A 4Y 3B 3A 3Y
14 13 12 11 10 9
8
&
&
&
&
1
2
3
4
5

数电实验报告:实验2-组合逻辑电路138

数电实验报告:实验2-组合逻辑电路138

GDOU-B-11-112广东海洋大学学生实验报告书(学生用表)实验名称课程名称课程号学院(系) 专业班级学生姓名学号实验地点实验日期实验2 组合逻辑电路——138芯片一、实验目的1、掌握中规模集成译码器的逻辑功能和使用方法2、熟悉数码管的使用二、实验原理译码器是一个多输入、多输出的组合逻辑电路。

它的作用是把给定的代码进行“翻译”,变成相应的状态,使输出通道中相应的一路有信号输出。

译码器在数字系统中有广泛的用途,不仅用于代码的转换、终端的数字显示,还用于数据分配,存贮器寻址和组合控制信号等。

不同的功能可选用不同种类的译码器。

译码器可分为通用译码器和显示译码器两大类。

前者又分为变量译码器和代码变换译码器。

1、变量译码器(又称二进制译码器),用以表示输入变量的状态,如2线-4线、3线-8线和4线-16线译码器。

若有n个输入变量,则有2n个不同的组合状态,就有2n个输出端供其使用。

而每一个输出所代表的函数对应于n个输入变量的最小项。

以3线-8线译码器74LS138为例进行分析,图6-1(a)、(b)分别为其逻辑图及引脚排列。

其中 A2、A1、A0为地址输入端,0Y~7Y为译码输出端,S1、2S、3S为使能端。

表6-1为74LS138功能表当S1=1,2S+3S=0时,器件使能,地址码所指定的输出端有信号(为0)输出,其它所有输出端均无信号(全为1)输出。

当S1=0,2S+3S=X时,或 S1=X,2S+3S=1时,译码器被禁止,所有输出同时为1。

(a) (b)图6-1 3-8线译码器74LS138逻辑图及引脚排列表6-1件就成为一个数据分配器(又称多路分配器),如图6-2所示。

若在S1输入端输入数据信息,2S=3S=0,地址码所对应的输出是S1数据信息的反码;若从2S端输入数据信息,令S1=1、3S=0,地址码所对应的输出就是2S端数据信息的原码。

若数据信息是时钟脉冲,则数据分配器便成为时钟脉冲分配器。

数字电路实验报告_北邮

数字电路实验报告_北邮

一、实验目的本次实验旨在通过实践操作,加深对数字电路基本原理和设计方法的理解,掌握数字电路实验的基本步骤和实验方法。

通过本次实验,培养学生的动手能力、实验技能和团队合作精神。

二、实验内容1. 实验一:TTL输入与非门74LS00逻辑功能分析(1)实验原理TTL输入与非门74LS00是一种常用的数字逻辑门,具有高抗干扰性和低功耗的特点。

本实验通过对74LS00的逻辑功能进行分析,了解其工作原理和性能指标。

(2)实验步骤① 使用实验箱和实验器材搭建74LS00与非门的实验电路。

② 通过实验箱提供的逻辑开关和指示灯,验证74LS00与非门的逻辑功能。

③ 分析实验结果,总结74LS00与非门的工作原理。

2. 实验二:数字钟设计(1)实验原理数字钟是一种典型的数字电路应用,由组合逻辑电路和时序电路组成。

本实验通过设计一个24小时数字钟,使学生掌握数字电路的基本设计方法。

(2)实验步骤① 分析数字钟的构成,包括分频器电路、时间计数器电路、振荡器电路和数字时钟的计数显示电路。

② 设计分频器电路,实现1Hz的输出信号。

③ 设计时间计数器电路,实现时、分、秒的计数。

④ 设计振荡器电路,产生稳定的时钟信号。

⑤ 设计数字时钟的计数显示电路,实现时、分、秒的显示。

⑥ 组装实验电路,测试数字钟的功能。

3. 实验三:全加器设计(1)实验原理全加器是一种数字电路,用于实现二进制数的加法运算。

本实验通过设计全加器,使学生掌握全加器的工作原理和设计方法。

(2)实验步骤① 分析全加器的逻辑功能,确定输入和输出关系。

② 使用实验箱和实验器材搭建全加器的实验电路。

③ 通过实验箱提供的逻辑开关和指示灯,验证全加器的逻辑功能。

④ 分析实验结果,总结全加器的工作原理。

三、实验结果与分析1. 实验一:TTL输入与非门74LS00逻辑功能分析实验结果表明,74LS00与非门的逻辑功能符合预期,具有良好的抗干扰性和低功耗特点。

2. 实验二:数字钟设计实验结果表明,设计的数字钟能够实现24小时计时,时、分、秒的显示准确,满足实验要求。

最新数字电路实验二实验报告

最新数字电路实验二实验报告

最新数字电路实验二实验报告实验目的:1. 理解并掌握数字电路的基本组成原理和工作原理。

2. 学习使用数字逻辑分析仪进行电路测试和故障诊断。

3. 通过实验加深对组合逻辑和时序逻辑电路设计的理解。

实验内容:1. 设计并搭建一个4位二进制加法器电路。

2. 实现一个简单的数字时钟电路,能够显示时、分、秒。

3. 使用数字逻辑分析仪检测电路的功能和时序。

实验设备:1. 数字逻辑分析仪2. 示波器3. 集成电路芯片(如74LS系列)4. 面包板5. 跳线实验步骤:1. 根据实验指导书,选择合适的逻辑门芯片,设计4位二进制加法器电路。

2. 在面包板上搭建电路,并使用跳线连接逻辑门。

3. 利用数字逻辑分析仪检查电路的输入输出情况,确保电路正确实现二进制加法功能。

4. 设计数字时钟电路,包括计数器、分频器和显示模块。

5. 同样在面包板上搭建数字时钟电路,并进行测试,调整电路以确保时间显示准确无误。

6. 再次使用数字逻辑分析仪,观察时钟电路的时序关系和稳定性。

实验结果:1. 成功搭建了4位二进制加法器电路,并通过测试,验证了其加法功能。

2. 数字时钟电路运行正常,能够准确显示时间,并通过逻辑分析仪确认了其稳定的时序关系。

实验分析:1. 在实验过程中,发现加法器电路在处理进位时存在延迟,通过优化电路布局和选择合适的逻辑门芯片,成功解决了问题。

2. 数字时钟电路的分频部分需要精确的电阻和电容值,实验中通过调整这些元件的参数,确保了时钟的准确性。

实验结论:通过本次实验,加深了对数字电路设计和测试的理解,特别是在组合逻辑和时序逻辑方面的应用。

同时,也提高了使用数字逻辑分析仪进行电路分析和问题诊断的能力。

东南大学数字电路实验报告(二)

东南大学数字电路实验报告(二)
选取 。
设计图如右图所示
接线图如下
2静态验证:控制输入和数据输入端加高低电平,用电压表测量输出高低电平的电压值,注意测量A2A1A0=000时的输出值。
Ec=5.1V
A2
A1
A0
D2
D1
D0
输出Y
电压/V
0
0
1
X
X
0
0
0.195
0
0
1
X
X
1
1
5.017
0
1
0
X
0
X
0
0.194
0
1
0
X
1
X
1
5.013
2将A2A1A0设为“000”,D2D1D0设为“111”,此时输出端为高阻状态,测量输出端电压值,总结如何用万用表判断高阻态。
用三态门实现三路信号分时传送的总线结构电路图如下图所示。
实验接线图如下
真值表如下:
A2
A1
A0
D2
D1
D0
Y
电压/V
0
0
1
X
X
0
0
0.012
0
0
1
X
X
1
1
4.845
0
1
0
X
输出波形
100.0
5.04
4.98
-0.06
波形图如下:
2(1)2.10节实验:SSI组合逻辑设计及竞争-冒险现象
内容1.数值判别电路
1设计一个组合逻辑电路,它接收8421BCD码B3B2B1B0,仅当2<B3B2B1B0<7时,输出Y才为1。
B3
B2

数字集成电路实验报告2

数字集成电路实验报告2

1.1表决电路:设有三人对一事进行表决,多数(二人以上)赞成即通过;否则不通过。

1.2若三人中的A有否决权,即A不赞成,就不能通过,又应如何实现呢?
2、交通信号灯监测电路:设一组信号灯由红(R)、黄(A)、绿(G)三盏灯组成。

正常情况下,点亮的状态只能是红、绿或黄加绿当中的一种。

当出现其它五种状态时,是信号灯发生故障,要求监测电路发出故障报警信号。

3. 故障报警:某实验室有红、黄两个故障指示灯,用来指示三台设备的工作情况。

当只有一台设备有故障时,黄灯亮;有两台设备有故障时,红灯亮;只有当三台设备都发生故障时,才会使红、黄两个故障指示灯同时点亮。

数字电路与逻辑设计实验报告二

数字电路与逻辑设计实验报告二

实验二常用电子仪器的使用
一、实验目的
掌握常用的电子仪器(示波器、函数信号发生器、直流稳压电源、数字万用表等)的主要技术指标、性能及正确使用方法。

二、实验条件,设备,器材
示波器、函数信号发生器、直流稳压电源、数字万用表。

三、实验原理
输入的电信号通过一个ADC(通常采用8bits 或者256个量化电平)数字化,输出的数据存储在示波器的存储器中。

数字化速率和放大器频宽决定所能精确地取样和显示的最快信号。

四、实验内容
1、示波器探头校正
2、测量并记录实验箱5M、1M、500K、100K连续脉冲源;
3、使用信号发生器产生50M、1M、1K正弦波、方波等信号。

五、实验步骤及数据记录
1.示波器探头校正
将示波器探头接【Probe Comp】; 使用【Auto Scale】; 测量、记录相关数据并保存波形图像。

2.测量并记录实验箱连续脉冲源
测量、记录相关数据并保存波形图像。

3.使用信号发生器产生相关信号并测量
使用信号发生器产生50M、1M、10K、1K正弦波、方波等信号
六、实验分析,结论,体会
通过本次实验,初步掌握了常用的电子仪器(示波器、函数信号发生器、直流稳压电源、数字万用表等)的主要技术指标、性能及正确使用方法。

数字系统电路实验报告(3篇)

数字系统电路实验报告(3篇)

第1篇一、实验目的1. 理解数字系统电路的基本原理和组成。

2. 掌握数字电路的基本实验方法和步骤。

3. 通过实验加深对数字电路知识的理解和应用。

4. 培养学生的动手能力和团队合作精神。

二、实验原理数字系统电路是由数字逻辑电路构成的,它按照一定的逻辑关系对输入信号进行处理,产生相应的输出信号。

数字系统电路主要包括逻辑门电路、触发器、计数器、寄存器等基本单元电路。

三、实验仪器与设备1. 数字电路实验箱2. 数字万用表3. 示波器4. 逻辑分析仪5. 编程器四、实验内容1. 逻辑门电路实验(1)实验目的:熟悉TTL、CMOS逻辑门电路的逻辑功能和测试方法。

(2)实验步骤:1)搭建TTL与非门电路,测试其逻辑功能;2)搭建CMOS与非门电路,测试其逻辑功能;3)测试TTL与门、或门、非门等基本逻辑门电路的逻辑功能。

2. 触发器实验(1)实验目的:掌握触发器的逻辑功能、工作原理和应用。

(2)实验步骤:1)搭建D触发器电路,测试其逻辑功能;2)搭建JK触发器电路,测试其逻辑功能;3)搭建计数器电路,实现计数功能。

3. 计数器实验(1)实验目的:掌握计数器的逻辑功能、工作原理和应用。

(2)实验步骤:1)搭建同步计数器电路,实现加法计数功能;2)搭建异步计数器电路,实现加法计数功能;3)搭建计数器电路,实现定时功能。

4. 寄存器实验(1)实验目的:掌握寄存器的逻辑功能、工作原理和应用。

(2)实验步骤:1)搭建4位并行加法器电路,实现加法运算功能;2)搭建4位并行乘法器电路,实现乘法运算功能;3)搭建移位寄存器电路,实现数据移位功能。

五、实验结果与分析1. 逻辑门电路实验通过搭建TTL与非门电路和CMOS与非门电路,测试了它们的逻辑功能,验证了实验原理的正确性。

2. 触发器实验通过搭建D触发器和JK触发器电路,测试了它们的逻辑功能,实现了计数器电路,验证了实验原理的正确性。

3. 计数器实验通过搭建同步计数器和异步计数器电路,实现了加法计数和定时功能,验证了实验原理的正确性。

数字电路实验二--译码器实验报告

数字电路实验二--译码器实验报告

数字电路实验二--译码器实验报告
译码器实验是数字电路实验课程的重要组成部分。

本次实验旨在介绍译码的基本原理,并取得实际的实验效果。

本次实验使用的译码器类型是双向双回路译码器。

它可以将2位二进制输入转换为4
位二进制数字代码输出。

它是由基础译码单元(BCD)和其它外部电路组成的,可以根据
二进制输入状态产生正确的十进制输出。

此外,本次实验使用了按钮、LED、模拟电路、
小灯丝等部件来实现所涉及的功能。

实验分为以下几步:首先需要将所有的组成部件组装在原理图的对应接口中;其次根
据原理图上的接口,安装电源组件;然后根据电路要求,按钮和灯丝等部件的位置应该有
所区别;紧接着,根据原理图的线路图,将按钮和LED的铜丝焊接到对应接口处。

最后,
根据实验要求,连接模拟电路,测试结果是否符合实验要求。

在实验过程中,本实验室使用了一台OMRON译码器,根据二进制输入状态,它可以产
生4位十进制输出状态。

实验结果显示,在每种二进制输入状态下,OMRON译码器都可以
成功实现预期的输出,从而证明了译码器的良好性能及高精度。

总的来说,本次实验的主要任务是译码的基本介绍,以及掌握OMRON译码器的使用方法。

实验过程既充满乐趣,也有所收获。

让我们有机会贴近电子工程实践,掌握各种技术,扩充知识。

这次实验是一次有趣又有意义的学习体验。

数字电路实验的实验报告(3篇)

数字电路实验的实验报告(3篇)

第1篇一、实验目的1. 理解和掌握数字电路的基本原理和组成。

2. 熟悉数字电路实验设备和仪器的基本操作。

3. 培养实际动手能力和解决问题的能力。

4. 提高对数字电路设计和调试的实践能力。

二、实验器材1. 数字电路实验箱一台2. 74LS00若干3. 74LS74若干4. 74LS138若干5. 74LS20若干6. 74LS32若干7. 电阻、电容、二极管等元器件若干8. 万用表、示波器等实验仪器三、实验内容1. 基本门电路实验(1)验证与非门、或非门、异或门等基本逻辑门的功能。

(2)设计简单的组合逻辑电路,如全加器、译码器等。

2. 触发器实验(1)验证D触发器、JK触发器、T触发器等基本触发器的功能。

(2)设计简单的时序逻辑电路,如计数器、分频器等。

3. 组合逻辑电路实验(1)设计一个简单的组合逻辑电路,如4位二进制加法器。

(2)分析电路的输入输出关系,验证电路的正确性。

4. 时序逻辑电路实验(1)设计一个简单的时序逻辑电路,如3位二进制计数器。

(2)分析电路的输入输出关系,验证电路的正确性。

5. 数字电路仿真实验(1)利用Multisim等仿真软件,设计并仿真上述实验电路。

(2)对比实际实验结果和仿真结果,分析误差原因。

四、实验步骤1. 实验前准备(1)熟悉实验内容和要求。

(2)了解实验器材的性能和操作方法。

(3)准备好实验报告所需的表格和图纸。

2. 基本门电路实验(1)搭建与非门、或非门、异或门等基本逻辑电路。

(2)使用万用表测试电路的输入输出关系,验证电路的功能。

(3)记录实验数据,分析实验结果。

3. 触发器实验(1)搭建D触发器、JK触发器、T触发器等基本触发电路。

(2)使用示波器观察触发器的输出波形,验证电路的功能。

(3)记录实验数据,分析实验结果。

4. 组合逻辑电路实验(1)设计4位二进制加法器电路。

(2)搭建电路,使用万用表测试电路的输入输出关系,验证电路的正确性。

(3)记录实验数据,分析实验结果。

数字电路实验报告(完整版)

数字电路实验报告(完整版)

数字电子技术实验报告2021 -2021学年第一学期XX:陶瑜学号:2021111990班级:计算机科学与技术三班座位号:31实验时间:周四下午第二讲实验指导教师:龙文杰实验2原理图:实验3代码:module ty_2021111990_3(codeout,indec);input[3:0] indec;output [6:0] codeout;reg[6:0]codeout;always(indec)begincase(indec)4'd0:codeout=7'b1111110;4'd1:codeout=7'b0110000;4'd2:codeout=7'b1101101;4'd3:codeout=7'b1110001;4'd4:codeout=7'b0110011;4'd5:codeout=7'b1011011;4'd6:codeout=7'b1011111;4'd7:codeout=7'b1110000;4'd8:codeout=7'b1111111;4'd9:codeout=7'b1111011;default: codeout=7'bx;endcaseendendmodule实验4原理图和波形图:实验5原理图和波形图:实验6原理图和波形图:实验6代码:1:计数器module jishuqi(d,clk,clr,load,ud,q,cout); parameter n=4;input[n-1:0] d;input clk,clr,load,ud;output reg[n-1:0] q;output cout;assign cout=(ud&(q==9))|(~ud&(q==0)); always (posedge clk,negedge clr)if(!clr)q<=0;else if(load)q<=d;else if(ud)if(q<9) q<=q+1;else q<=0;elseif(q>0) q<=q-1;else q<=9;endmodule2:7段译码器:module decode4_7(a,b,c,d,e,f,g,q);input[3:0]q;output a,b,c,d,e,f,g;reg[6:0]codeout;always (q)begincase(q)4'd0:codeout=7'b1111110;4'd1:codeout=7'b0110000;4'd2:codeout=7'b1101101;4'd3:codeout=7'b1110001;4'd4:codeout=7'b0110011;4'd5:codeout=7'b1011011;4'd6:codeout=7'b1011111;4'd7:codeout=7'b1110000;4'd8:codeout=7'b1111111;4'd9:codeout=7'b1111011;default: codeout=7'bx;endcaseendassign {a,b,c,d,e,f,g} = codeout[6:0]; endmodule实验7原理图和波形图:实验7代码:1.分频器module divfreq(clk,out); input clk;output reg out;reg [12:0] q5000;always (posedge clk)beginif(q5000<=2499)beginout<=1;q5000<=q5000+1;endelse if (q5000<4999)beginout<=0;q5000<=q5000+1;endelseq5000<=0;endendmodule2.计数器module counter100(set,out,out2,q100); output reg out2;input out;input [6:0] set; output reg [7:0] q100; always (posedge out) beginif (q100<set) beginout2<=1;q100<=q100+1; endelse if (q100<99) beginout2<=0;q100<=q100+1; endelse q100<=0; endendmodule。

数字电路实验报告 2023年数字电路实训报告(精彩7篇)

数字电路实验报告 2023年数字电路实训报告(精彩7篇)

数字电路实验报告2023年数字电路实训报告(精彩7篇)用数字信号完成对数字量进行算术运算和逻辑运算的电路称为数字电路,或数字系统。

由于它具有逻辑运算和逻辑处理功能,所以又称数字逻辑电路。

下面是作者给大家整理的7篇2023年数字电路实训报告,希望可以启发您对于数字电路实验报告的写作思路。

数字电路实训报告篇一一、实训时间__二、实训地点__电工电子实习基地三、指导老师__四、实训目的1、熟悉电工工具的使用方法。

2、了解安全用电的有关知识及触电的急救方法。

3、掌握电工基本操作技能。

4、熟悉电动机控制电路的调试及故障排除方法。

5、熟悉电动机板前配线的工艺流程及安装方法。

6、了解电动机正转反转电路设计的一般步骤,并掌握电路图的绘制方法。

7、熟悉常用电器元件的性能、结构、型号、规格及使用范围。

五、实训资料(一)常用低压电器介绍1、螺旋式熔断器螺旋式熔断器电路中较简单的短路保护装置,使用中,由于电流超过容许值产生的热量使串联于主电路中的熔体熔化而切断电路,防止电器设备短路或严重过载。

它由熔体、熔管、盖板、指示灯和触刀组成。

选取熔断器时不仅仅要满足熔断器的形式贴合线路和安装要求,且务必满足熔断器额定电压小于线路工作电压,熔断器额定电流小于线路工作电流。

2、热继电器热继电器是用来保护电动机使之免受长期过载的危害。

但是由于热继电器的热惯性,它只能做过载保护。

它由热元件、触头系统、动作机构、复位按钮、整定电流装置、升温补偿元件组成。

其工作原理为:热元件串接在电动机定子绕组仲,电动机绕组电流即为流动热元件的电流。

电动机正常运行时热元件产生热量虽能使双金属片弯曲还不足以使继电器动作。

电动机过载时,经过热元件电流增大,热元件热量增加,使双金属片弯曲增大,经过一段时光后,双金属片推动导板使继电器出头动作,从而切断电动机控制电路。

3、按钮开关按钮开关是用来接通或断开控制电路的,电流比较小。

按钮由动触点和静触点组成。

其工作原理为:按下按钮时,动触点就把下边的静触点接通而断开上边的静触点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验二门电路逻辑变换
一.实验目地
1 学会门电路逻辑变换地基本方法.
2 掌握虚拟实验逻辑转换器地使用方法.
二.实验设备
安装有Multsim10软件地个人电脑.
三.实验原理
图2 1是门电路逻辑变换实验原理图.3个与非门和1个与门按图中地连接,表达为同或门地逻辑功能.
图2—1
四.实验步骤
1 打开电脑Multsim10操作平台.从元件库中取出与非门3个、与门1个,以及双刀开关两个、电阻器、电源等,连接组成图
2 -2地实验电路.
2 打开工作开关,电路工作正常后,依次拨动开关J1与J2,观察探针地变化.开关J1与J2转接电源端为H_接地端为L;探针发亮为H_
熄灭为L,将观察结果填入表2- 1.
表2-1
J1 J2 探针
L L H
L H L
H L L
H H H
图2—2
1)J1接电源,J2接地
2)J1接地,J2接电源3)J1接地,J2接地
4)J1接电源,J2接电源
3将表2- 1变换为如下表2-2地真值表.开关J1为A,J2为B,H为“1”,L为“0”;探针x1为F
发亮为“1”,熄灭为“0”.
表2-2
A B F
4 按上述图2-2写出逻辑表达式为B
F,根据真值表及
=B
A
+
A•

逻辑表达式判断,它是一个同或门电路.
5 逻辑转换器地使用
重新设置Multisim仿真工作界面,运用逻辑转换器,转换出逻辑表达式为B
A
=地门电路逻辑图,然后配置开关、探针等,并将电
F+
B
A
路仿真运转验证,列出实验验证结果(例如上述表2-1).应注意,在逻辑转换器中,逻辑表达式有不同,要用“’”表示求反,例如用A’来表示A地求反即A,其它类似.
点击simulate-----instruments------logic converter,打开逻辑转换仪.
2)设计出逻辑函数表达式为:B
=,如图1所示.
F+
A
B
A
3)点击右边第五个图标,把逻辑表达式转换为与,或非门电路,如图2所示.
4)点击右边第六个图标,把逻辑表达式转换为与非门电路,如图3所示.
图1 图2
图3
5)为图3配置开关、探针等,组成验证电路如下图所示:
6)打开工作开关,对该电路进行验证.电路工作正常后,依次拨动开关J3与J4,观察探针地变化.开关J3与J4转接电源端为H,接地端为L;探针发亮为H,熄灭为L,将观察结果填入表2- 3.
J3,J4都接电源.
J3接地,J4接电源.
J3接电源,J4接地. J3,J4都接地.
表2-3
J3 J4 探针
L L L
L H H
H L H
H H L
7)将表2- 3变换为如下表2-4地真值表.开关J3为A,J4为B,H为“1”,L为“0”;探针x1为F
发亮为“1”,熄灭为“0”.
表2-4
根据真值表及逻辑表达式判断,它是一个异或门电路.
五.分析思考
1 门电路逻辑变换在电路设计中有什么作用?
答:这个一般是在只有某种功能地门器件时使用,所有地或逻辑可以转化为与逻辑和非逻辑地组合,同样与逻辑也可以转化为或逻辑和非逻辑地组合,因此在只有与门器件地时候或只有或门地器件时就可以变换逻辑表达式从而实现需要地功能
2如何使用逻辑转换器将一逻辑表达式实现门电路逻辑变换?
答:打开逻辑转换仪,点击转换方式选择区第五个图标,即逻辑表达式转换成逻辑电路图标,可得到与,或,非门组成地逻辑电路.点击转换方式选择区第六个图标,即逻辑表达式转换为与非门电路图标,可得到完全由与非门构成地电路.
版权申明
本文部分内容,包括文字、图片、以及设计等在网上搜集整理.
版权为个人所有
This article includes some parts, including text, pictures, and design. Copyright is personal ownership.
用户可将本文地内容或服务用于个人学习、研究或欣赏,以及其他非商业性或非盈利性用途,但同时应遵守著作权法及其他相关法律地规定,不得侵犯本网站及相关权利人地合法权利.除此以外,将本
文任何内容或服务用于其他用途时,须征得本人及相关权利人地书面许可,并支付报酬.
Users may use the contents or services of this article for personal study, research or appreciation, and other
non-commercial or non-profit purposes, but at the same time, they shall abide by the provisions of copyright law and other relevant laws, and shall not infringe upon the legitimate rights of this website and its relevant obligees. In addition, when any content or service of this article is used for other purposes, written permission and remuneration shall be obtained from the person concerned and the relevant obligee.
转载或引用本文内容必须是以新闻性或资料性公共免费信息为
使用目地地合理、善意引用,不得对本文内容原意进行曲解、修改,并自负版权等法律责任.
Reproduction or quotation of the content of this article must be reasonable and good-faith citation for the use of news or informative public free information. It shall not misinterpret or modify the original intention of the content of this article, and shall bear legal liability such as copyright.。

相关文档
最新文档