2019年重庆市中考数学试题(含解析)

合集下载

2019年重庆市中考数学试卷及答案

2019年重庆市中考数学试卷及答案

2019年重庆市中考数学试卷及答案一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑.1.(4分)下列各数中,比﹣1小的数是()A.2 B.1 C.0 D.﹣22.(4分)如图是由4个相同的小正方体组成的一个立体图形,其主视图是()A.B.C.D.3.(4分)如图,△ABO∽△CDO,若BO=6,DO=3,CD=2,则AB的长是()A.2 B.3 C.4 D.54.(4分)如图,AB是⊙O的直径,AC是⊙O的切线,A为切点,BC与⊙O交于点D,连结OD.若∠C=50°,则∠AOD的度数为()A.40°B.50°C.80°D.100°5.(4分)下列命题正确的是()A.有一个角是直角的平行四边形是矩形B.四条边相等的四边形是矩形C.有一组邻边相等的平行四边形是矩形D.对角线相等的四边形是矩形6.(4分)估计(2+6)×的值应在()A.4和5之间B.5和6之间C.6和7之间D.7和8之间7.(4分)《九章算术》中有这样一个题:今有甲乙二人持钱不知其数.甲得乙半而钱五十,乙得甲太半而钱亦五十.问甲、乙持钱各几何?其意思为:今有甲乙二人,不如其钱包里有多少钱,若乙把其一半的钱给甲,则甲的数为50;而甲把其的钱给乙,则乙的钱数也为50,问甲、乙各有多少钱?设甲的钱数为x,乙的钱数为y,则可建立方程组为()A.B.C.D.8.(4分)按如图所示的运算程序,能使输出y值为1的是()A.m=1,n=1 B.m=1,n=0 C.m=1,n=2 D.m=2,n=1 9.(4分)如图,在平面直角坐标系中,矩形ABCD的顶点A,D分别在x轴、y轴上,对角线BD∥x轴,反比例函数y=(k>0,x>0)的图象经过矩形对角线的交点E.若点A (2,0),D(0,4),则k的值为()A.16 B.20 C.32 D.4010.(4分)为践行“绿水青山就是金山银山”的重要思想,某森林保护区开展了寻找古树活动.如图,在一个坡度(或坡比)i=1:2.4的山坡AB上发现有一棵古树CD.测得古树底端C到山脚点A的距离AC=26米,在距山脚点A水平距离6米的点E处,测得古树顶端D的仰角∠AED=48°(古树CD与山坡AB的剖面、点E在同一平面上,古树CD与直线AE垂直),则古树CD的高度约为()(参考数据:sin48°≈0.73,cos48°≈0.67,tan48°≈1.11)A.17.0米B.21.9米C.23.3米D.33.3米11.(4分)若关于x的一元一次不等式组的解集是x≤a,且关于y的分式方程﹣=1有非负整数解,则符合条件的所有整数a的和为()A.0 B.1 C.4 D.612.(4分)如图,在△ABC中,D是AC边上的中点,连结BD,把△BDC沿BD翻折,得到△BDC',DC′与AB交于点E,连结AC',若AD=AC′=2,BD=3,则点D到BC′的距离为()A.B.C.D.二、填空题:(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的横线上.13.(4分)计算:(π﹣3)0+()﹣1=.14.(4分)今年五一节期间,重庆市旅游持续火爆,全市共接待境内外游客超过25600000人次,请把数25600000用科学记数法表示为.15.(4分)一个不透明的布袋内装有除颜色外,其余完全相同的3个红球,2个白球,1个黄球,搅匀后,从中随机摸出一个球,记下颜色后放回搅匀,再从中随机摸出一个球,则两次都摸到红球的概率为.16.(4分)如图,在菱形ABCD中,对角线AC,BD交于点O,∠ABC=60°,AB=2,分别以点A、点C为圆心,以AO的长为半径画弧分别与菱形的边相交,则图中阴影部分的面积为.(结果保留π)17.(4分)某公司快递员甲匀速骑车前往某小区送物件,出发几分钟后,快递员乙发现甲的手机落在公司,无法联系,于是乙匀速骑车去追赶甲.乙刚出发2分钟时,甲也发现自己手机落在公司,立刻按原路原速骑车回公司,2分钟后甲遇到乙,乙把手机给甲后立即原路原速返回公司,甲继续原路原速赶往某小区送物件,甲乙两人相距的路程y(米)与甲出发的时间x(分钟)之间的关系如图所示(乙给甲手机的时间忽略不计).则乙回到公司时,甲距公司的路程是米.18.(4分)在精准扶贫的过程中,某驻村服务队结合当地高山地形,决定在该村种植中药材川香、贝母、黄连增加经济收入.经过一段时间,该村已种植的川香、贝母、黄连面积之比4:3:5,是根据中药材市场对川香、贝母、黄连的需求量,将在该村余下土地上继续种植这三种中药材,经测算需将余下土地面积的种植黄连,则黄连种植总面积将达到这三种中药材种植总面积的.为使川香种植总面积与贝母种植总面积之比达到3:4,则该村还需种植贝母的面积与该村种植这三种中药材的总面积之比是.三、解答题:(本大题7个小题,每小题10分,共70分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡中对应的位置上.19.(10分)计算:(1)(x+y)2﹣y(2x+y)(2)(a+)÷20.(10分)如图,在△ABC中,AB=AC,D是BC边上的中点,连结AD,BE平分∠ABC交AC于点E,过点E作EF∥BC交AB于点F.(1)若∠C=36°,求∠BAD的度数;(2)求证:FB=FE.21.(10分)每年夏季全国各地总有未成年人因溺水而丧失生命,令人痛心秩首.今年某校为确保学生安全,开展了“远离溺水•珍爱生命”的防溺水安全知识竞赛.现从该校七、八年级中各随机抽取10名学生的竞赛成绩(百分制)进行整理、描述和分析(成绩得分用x表示,共分成四组:A.80≤x<85,B.85≤x<90,C.90≤x<95,D.95≤x≤100),下面给出了部分信息:七年级10名学生的竞赛成绩是:99,80,99,86,99,96,90,100,89,82八年级10名学生的竞赛成绩在C组中的数据是:94,90,94七、八年级抽取的学生竞赛成绩统计表年级七年级八年级平均数92 92中位数93 b众数c100方差52 50.4根据以上信息,解答下列问题:(1)直接写出上述图表中a,b,c的值;(2)根据以上数据,你认为该校七、八年级中哪个年级学生掌握防溺水安全知识较好?请说明理由(一条理由即可);(3)该校七、八年级共730人参加了此次竞赛活动,估计参加此次竞赛活动成绩优秀(x ≥90)的学生人数是多少?22.(10分)《道德经》中的“道生一,一生二,二生三,三生万物”道出了自然数的特征.在数的学习过程中,我们会对其中一些具有某种特性的数进行研究,如学习自然数时,我们研究了奇数、偶数、质数、合数等.现在我们来研究另一种特珠的自然数﹣“纯数”.定义;对于自然数n,在计算n+(n+1)+(n+2)时,各数位都不产生进位,则称这个自然数n为“纯数”,例如:32是”纯数”,因为计算32+33+34时,各数位都不产生进位;23不是“纯数”,因为计算23+24+25时,个位产生了进位.(1)判断2019和2020是否是“纯数”?请说明理由;(2)求出不大于100的“纯数”的个数.23.(10分)在初中阶段的函数学习中,我们经历了“确定函数的表达式﹣﹣利用函数图象研究其性质一一运用函数解决问题“的学习过程.在画函数图象时,我们通过描点或平移的方法画出了所学的函数图象.同时,我们也学习了绝对值的意义|a|=.结合上面经历的学习过程,现在来解决下面的问题在函数y=|kx﹣3|+b中,当x=2时,y=﹣4;当x=0时,y=﹣1.(1)求这个函数的表达式;(2)在给出的平面直角坐标系中,请用你喜欢的方法面出这个函数的图象井写出这个函数的一条性质;(3)已知函y=x﹣3的图象如图所示,结合你所画的函数图象,直接写出不等式|kx﹣3|+b≤x﹣3的解集.24.(10分)某文明小区50平方米和80平方米两种户型的住宅,50平方米住宅套数是80平方米住宅套数的2倍.物管公司月底按每平方米2元收取当月物管费,该小区全部住宅都人住且每户均按时全额缴纳物管费.(1)该小区每月可收取物管费90000元,问该小区共有多少套80平方米的住宅?(2)为建设“资源节约型社会”,该小区物管公司5月初推出活动一:“垃圾分类送礼物”,50平方米和80平方米的住户分别有40%和20%参加了此次括动.为提离大家的积扱性,6月份准备把活动一升级为活动二:“拉圾分类抵扣物管费”,同时终止活动一.经调査与测算,参加活动一的住户会全部参加活动二,参加活动二的住户会大幅增加,这样,6月份参加活动的50平方米的总户数在5月份参加活动的同户型户数的基础上将增加2a%,每户物管费将会减少a%;6月份参加活动的80平方米的总户数在5月份参加活动的同户型户数的基础上将增加6a%,每户物管费将会减少a%.这样,参加活动的这部分住户6月份总共缴纳的物管费比他们按原方式共缴纳的物管费将减少a%,求a的值.25.(10分)如图,在平行四边形ABCD中,点E在边BC上,连结AE,EM⊥AE,垂足为E,交CD于点M,AF⊥BC,垂足为F,BH⊥AE,垂足为H,交AF于点N,点P是AD上一点,连接CP.(1)若DP=2AP=4,CP=,CD=5,求△ACD的面积.(2)若AE=BN,AN=CE,求证:AD=CM+2CE.四、解答题:(本大题1个小题,共8分)解答时必须给出必要的演算过程成或推理步骤,画出必要的图形(包括辅助线),请将解作过程书写在答题卡中对应的位置上.26.(8分)如图,在平面直角坐标系中,抛物线y=x2﹣2x﹣3与x轴交于点A,B(点A在点B的左侧),交y轴于点C,点D为抛物线的顶点,对称轴与x轴交于点E.(1)连结BD,点M是线段BD上一动点(点M不与端点B,D重合),过点M作MN⊥BD,交抛物线于点N(点N在对称轴的右侧),过点N作NH⊥x轴,垂足为H,交BD于点F,点P是线段OC上一动点,当MN取得最大值时,求HF+FP+PC的最小值;(2)在(1)中,当MN取得最大值,HF+FP+PC取得最小值时,把点P向上平移个单位得到点Q,连结AQ,把△AOQ绕点O顺时针旋转一定的角度α(0°<α<360°),得到△A′OQ′,其中边A′Q′交坐标轴于点G.在旋转过程中,是否存在一点G,使得∠Q'=∠Q'OG?若存在,请直接写出所有满足条件的点Q′的坐标;若不存在,请说明理由.2019年重庆市中考数学试卷(A卷)参考答案与试题解析一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑.1.(4分)下列各数中,比﹣1小的数是()A.2 B.1 C.0 D.﹣2【分析】根据两个负数比较大小,绝对值大的负数反而小,可得答案.【解答】解:∵﹣2<﹣1<0<2,∴比﹣1小的数是﹣2,故选:D.【点评】本题考查了有理数的大小比较,注意:正数都大于0,负数都小于0,两个负数比较大小,其绝对值大的反而小.2.(4分)如图是由4个相同的小正方体组成的一个立体图形,其主视图是()A.B.C.D.【分析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【解答】解:从正面看易得第一层有2个正方形,第二层左边有一个正方形,如图所示:.故选:A.【点评】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.3.(4分)如图,△ABO∽△CDO,若BO=6,DO=3,CD=2,则AB的长是()A.2 B.3 C.4 D.5【分析】直接利用相似三角形的性质得出对应边之间的关系进而得出答案.【解答】解:∵△ABO∽△CDO,∴=,∵BO=6,DO=3,CD=2,∴=,解得:AB=4.故选:C.【点评】此题主要考查了相似三角形的性质,正确得出对应边之间关系是解题关键.4.(4分)如图,AB是⊙O的直径,AC是⊙O的切线,A为切点,BC与⊙O交于点D,连结OD.若∠C=50°,则∠AOD的度数为()A.40°B.50°C.80°D.100°【分析】由切线的性质得出∠BAC=90°,求出∠ABC=40°,由等腰三角形的性质得出∠ODB=∠ABC=40°,再由三角形的外角性质即可得出结果.【解答】解:∵AC是⊙O的切线,∴AB⊥AC,∴∠BAC=90°,∵∠C=50°,∴∠ABC=40°,∵OD=OB,∴∠ODB=∠ABC=40°,∴∠AOD=∠ODB+∠ABC=80°;故选:C.【点评】本题考查了切线的性质,等腰三角形的性质、直角三角形两锐角互余、三角形的外角性质,熟练运用切线的性质是本题的关键.5.(4分)下列命题正确的是()A.有一个角是直角的平行四边形是矩形B.四条边相等的四边形是矩形C.有一组邻边相等的平行四边形是矩形D.对角线相等的四边形是矩形【分析】根据矩形的判定方法判断即可.【解答】解:A、有一个角是直角的平行四边形是矩形,是真命题;B、四条边相等的四边形是菱形,是假命题;C、有一组邻边相等的平行四边形是菱形,是假命题;D、对角线相等的平行四边形是矩形,是假命题;故选:A.【点评】本题主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题,本题熟练掌握矩形的判定方法是解题的关键.6.(4分)估计(2+6)×的值应在()A.4和5之间B.5和6之间C.6和7之间D.7和8之间【分析】先根据二次根式的乘法进行计算,再进行估算.【解答】解:(2+6)×,=2+6,=2+,=2+,∵4<5,∴6<2+<7,故选:C.【点评】本题考查了二次根式的乘法和无理数的估算,熟练掌握二次根式的计算法则是关键.7.(4分)《九章算术》中有这样一个题:今有甲乙二人持钱不知其数.甲得乙半而钱五十,乙得甲太半而钱亦五十.问甲、乙持钱各几何?其意思为:今有甲乙二人,不如其钱包里有多少钱,若乙把其一半的钱给甲,则甲的数为50;而甲把其的钱给乙,则乙的钱数也为50,问甲、乙各有多少钱?设甲的钱数为x,乙的钱数为y,则可建立方程组为()A.B.C.D.【分析】设甲的钱数为x,人数为y,根据“若乙把其一半的钱给甲,则甲的钱数为50;而甲把其的钱给乙,则乙的钱数也能为50”,即可得出关于x,y的二元一次方程组,此题得解.【解答】解:设甲的钱数为x,乙的钱数为y,依题意,得:.故选:A.【点评】本题考查了由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.8.(4分)按如图所示的运算程序,能使输出y值为1的是()A.m=1,n=1 B.m=1,n=0 C.m=1,n=2 D.m=2,n=1【分析】根据题意一一计算即可判断.【解答】解:当m=1,n=1时,y=2m+1=2+1=3,当m=1,n=0时,y=2n﹣1=﹣1,当m=1,n=2时,y=2m+1=3,当m=2,n=1时,y=2n﹣1=1,故选:D.【点评】本题考查代数式求值,有理数的混合运算等知识,解题的关键是理解题意,属于中考常考题型.9.(4分)如图,在平面直角坐标系中,矩形ABCD的顶点A,D分别在x轴、y轴上,对角线BD∥x轴,反比例函数y=(k>0,x>0)的图象经过矩形对角线的交点E.若点A (2,0),D(0,4),则k的值为()A.16 B.20 C.32 D.40【分析】根据平行于x轴的直线上任意两点纵坐标相同,可设B(x,4).利用矩形的性质得出E为BD中点,∠DAB=90°.根据线段中点坐标公式得出E(x,4).由勾股定理得出AD2+AB2=BD2,列出方程22+42+(x﹣2)2+42=x2,求出x,得到E点坐标,代入y=,利用待定系数法求出k.【解答】解:∵BD∥x轴,D(0,4),∴B、D两点纵坐标相同,都为4,∴可设B(x,4).∵矩形ABCD的对角线的交点为E,∴E为BD中点,∠DAB=90°.∴E(x,4).∵∠DAB=90°,∴AD2+AB2=BD2,∵A(2,0),D(0,4),B(x,4),∴22+42+(x﹣2)2+42=x2,解得x=10,∴E(5,4).∵反比例函数y=(k>0,x>0)的图象经过点E,∴k=5×4=20.故选:B.【点评】本题考查了矩形的性质,勾股定理,反比例函数图象上点的坐标特征,线段中点坐标公式等知识,求出E点坐标是解题的关键.10.(4分)为践行“绿水青山就是金山银山”的重要思想,某森林保护区开展了寻找古树活动.如图,在一个坡度(或坡比)i=1:2.4的山坡AB上发现有一棵古树CD.测得古树底端C到山脚点A的距离AC=26米,在距山脚点A水平距离6米的点E处,测得古树顶端D的仰角∠AED=48°(古树CD与山坡AB的剖面、点E在同一平面上,古树CD与直线AE垂直),则古树CD的高度约为()(参考数据:sin48°≈0.73,cos48°≈0.67,tan48°≈1.11)A.17.0米B.21.9米C.23.3米D.33.3米【分析】如图,根据已知条件得到=1:2.4=,设CF=5k,AF=12k,根据勾股定理得到AC==13k=26,求得AF=10,CF=24,得到EF=6+24=30,根据三角函数的定义即可得到结论.【解答】解:如图,∵=1:2.4=,∴设CF=5k,AF=12k,∴AC==13k=26,∴k=2,∴AF=10,CF=24,∵AE=6,∴EF=6+24=30,∵∠DEF=48°,∴tan48°===1.11,∴DF=33.3,∴CD=33.3﹣10=23.3,答:古树CD的高度约为23.3米,故选:C.【点评】本题考查解直角三角形的应用﹣仰角俯角问题,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.11.(4分)若关于x的一元一次不等式组的解集是x≤a,且关于y的分式方程﹣=1有非负整数解,则符合条件的所有整数a的和为()A.0 B.1 C.4 D.6【分析】先解关于x的一元一次不等式组,再根据其解集是x≤a,得a小于5;再解分式方程,根据其有非负整数解,同时考虑增根的情况,得出a的值,再求和即可.【解答】解:由不等式组得:∵解集是x≤a,∴a<5;由关于y的分式方程﹣=1得2y﹣a+y﹣4=y﹣1∴y=,∵有非负整数解,∴≥0,∴a≥﹣3,且a=﹣3,a=﹣1(舍,此时分式方程为增根),a=1,a=3它们的和为1.故选:B.【点评】本题综合考查了含参一元一次不等式,含参分式方程得问题,需要考虑的因素较多,属于易错题.12.(4分)如图,在△ABC中,D是AC边上的中点,连结BD,把△BDC沿BD翻折,得到△BDC',DC′与AB交于点E,连结AC',若AD=AC′=2,BD=3,则点D到BC′的距离为()A.B.C.D.【分析】连接CC',交BD于点M,过点D作DH⊥BC'于点H,由翻折知,△BDC≌△BDC',BD垂直平分CC',证△ADC'为等边三角形,利用解直角三角形求出DM=1,C'M=DM =,BM=2,在Rt△BMC'中,利用勾股定理求出BC'的长,在△BDC'中利用面积法求出DH的长.【解答】解:如图,连接CC',交BD于点M,过点D作DH⊥BC'于点H,∵AD=AC′=2,D是AC边上的中点,∴DC=AD=2,由翻折知,△BDC≌△BDC',BD垂直平分CC',∴DC=DC'=2,BC=BC',CM=C'M,∴AD=AC′=DC'=2,∴△ADC'为等边三角形,∴∠ADC'=∠AC'D=∠C'AC=60°,∵DC=DC',∴∠DCC'=∠DC'C=×60°=30°,在Rt△C'DM中,∠DC'C=30°,DC'=2,∴DM=1,C'M=DM=,∴BM=BD﹣DM=3﹣1=2,在Rt△BMC'中,BC'===,∵S△BDC'=BC'•DH=BD•CM,∴DH=3×,∴DH=,故选:B.【点评】本题考查了轴对称的性质,解直角三角形,勾股定理等,解题关键是会通过面积法求线段的长度.二、填空题:(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的横线上.13.(4分)计算:(π﹣3)0+()﹣1= 3 .【分析】根据零指数幂和负整数指数幂计算可得.【解答】解:原式=1+2=3,故答案为:3.【点评】本题主要考查零指数幂和负整数指数幂,解题的关键是掌握a﹣p=(a≠0,p为正整数)及a0=1(a≠0).14.(4分)今年五一节期间,重庆市旅游持续火爆,全市共接待境内外游客超过25600000人次,请把数25600000用科学记数法表示为 2.56×107.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值是易错点,由于25600000有8位,所以可以确定n=8﹣1=7.【解答】解:25600000=2.56×107.故答案为:2.56×107.【点评】此题考查科学记数法表示较大的数的方法,准确确定n值是关键.15.(4分)一个不透明的布袋内装有除颜色外,其余完全相同的3个红球,2个白球,1个黄球,搅匀后,从中随机摸出一个球,记下颜色后放回搅匀,再从中随机摸出一个球,则两次都摸到红球的概率为.【分析】先画树状图展示所有30种等可能的结果数,再找出两次都摸到红球的结果数,然后根据概率公式求解.【解答】解:画树状图为:共有30种等可能的结果数,其中两次都摸到红球的结果数为6,所以两次都摸到红球的概率为=.故答案为:.【点评】本题考查了列表法或树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.16.(4分)如图,在菱形ABCD中,对角线AC,BD交于点O,∠ABC=60°,AB=2,分别以点A、点C为圆心,以AO的长为半径画弧分别与菱形的边相交,则图中阴影部分的面积为2﹣π.(结果保留π)【分析】根据菱形的性质得到AC⊥BD,∠ABO=∠ABC=30°,∠BAD=∠BCD=120°,根据直角三角形的性质求出AC、BD,根据扇形面积公式、菱形面积公式计算即可.【解答】解:∵四边形ABCD是菱形,∴AC⊥BD,∠ABO=∠ABC=30°,∠BAD=∠BCD=120°,∴AO=AB=1,由勾股定理得,OB==,∴AC=2,BD=2,∴阴影部分的面积=×2×2﹣×2=2﹣π,故答案为:2﹣π.【点评】本题考查的是扇形面积计算、菱形的性质,掌握扇形面积公式是解题的关键.17.(4分)某公司快递员甲匀速骑车前往某小区送物件,出发几分钟后,快递员乙发现甲的手机落在公司,无法联系,于是乙匀速骑车去追赶甲.乙刚出发2分钟时,甲也发现自己手机落在公司,立刻按原路原速骑车回公司,2分钟后甲遇到乙,乙把手机给甲后立即原路原速返回公司,甲继续原路原速赶往某小区送物件,甲乙两人相距的路程y(米)与甲出发的时间x(分钟)之间的关系如图所示(乙给甲手机的时间忽略不计).则乙回到公司时,甲距公司的路程是6000 米.【分析】根据函数图象和题意可以分别求得甲乙的速度和乙从与甲相遇到返回公司用的时间,从而可以求得当乙回到公司时,甲距公司的路程.【解答】解:由题意可得,甲的速度为:4000÷(12﹣2﹣2)=500米/分,乙的速度为:=1000米/分,乙从与甲相遇到返回公司用的时间为4分钟,则乙回到公司时,甲距公司的路程是:500×(12﹣2)﹣500×2+500×4=6000(米),故答案为:6000.【点评】本题考查一次函数的应用,解答本题的关键是明确题意,利用数形结合的思想解答.18.(4分)在精准扶贫的过程中,某驻村服务队结合当地高山地形,决定在该村种植中药材川香、贝母、黄连增加经济收入.经过一段时间,该村已种植的川香、贝母、黄连面积之比4:3:5,是根据中药材市场对川香、贝母、黄连的需求量,将在该村余下土地上继续种植这三种中药材,经测算需将余下土地面积的种植黄连,则黄连种植总面积将达到这三种中药材种植总面积的.为使川香种植总面积与贝母种植总面积之比达到3:4,则该村还需种植贝母的面积与该村种植这三种中药材的总面积之比是3:20 .【分析】设该村已种药材面积x,余下土地面积为y,还需种植贝母的面积为z,则总面积为(x+y),川香已种植面积x、贝母已种植面积x,黄连已种植面积依题意列出方程组,用y的代数式分别表示x、y,然后进行计算即可.【解答】解:设该村已种药材面积x,余下土地面积为y,还需种植贝母的面积为z,则总面积为(x+y),川香已种植面积x、贝母已种植面积x,黄连已种植面积依题意可得,由①得x=③,将③代入②,z=y,∴贝母的面积与该村种植这三种中药材的总面积之比=,故答案为3:20.【点评】本题考查了三元一次方程组,正确找出等量关系并列出方程是解题的关键.三、解答题:(本大题7个小题,每小题10分,共70分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡中对应的位置上.19.(10分)计算:(1)(x+y)2﹣y(2x+y)(2)(a+)÷【分析】(1)根据完全平方公式、单项式乘多项式可以解答本题;(2)根据分式的加法和除法可以解答本题.【解答】解:(1)(x+y)2﹣y(2x+y)=x2+2xy+y2﹣2xy﹣y2=x2;(2)(a+)÷====.【点评】本题考查分式的混合运算、完全平方公式、单项式乘多项式,解答本题的关键是明确它们各自的计算方法.20.(10分)如图,在△ABC中,AB=AC,D是BC边上的中点,连结AD,BE平分∠ABC交AC于点E,过点E作EF∥BC交AB于点F.(1)若∠C=36°,求∠BAD的度数;(2)求证:FB=FE.【分析】(1)利用等腰三角形的三线合一的性质证明∠ADB=90°,再利用等腰三角形的性质求出∠ABC即可解决问题.(2)只要证明∠FBE=∠FEB即可解决问题.【解答】(1)解:∵AB=AC,∴∠C=∠ABC,∵∠C=36°,∴∠ABC=36°,∵BD=CD,AB=AC,∴AD⊥BC,∴∠ADB=90°,∴∠BAD=90°﹣36°=54°.(2)证明:∵BE平分∠ABC,∴∠ABE=∠CBE=∠ABC,∵EF∥BC,∴∠FEB=∠CBE,∴∠FBE=∠FEB,∴FB=FE.【点评】本题考查等腰三角形的性质,平行线的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.21.(10分)每年夏季全国各地总有未成年人因溺水而丧失生命,令人痛心秩首.今年某校为确保学生安全,开展了“远离溺水•珍爱生命”的防溺水安全知识竞赛.现从该校七、八年级中各随机抽取10名学生的竞赛成绩(百分制)进行整理、描述和分析(成绩得分用x表示,共分成四组:A.80≤x<85,B.85≤x<90,C.90≤x<95,D.95≤x≤100),下面给出了部分信息:七年级10名学生的竞赛成绩是:99,80,99,86,99,96,90,100,89,82八年级10名学生的竞赛成绩在C组中的数据是:94,90,94七、八年级抽取的学生竞赛成绩统计表年级七年级八年级平均数92 92中位数93 b众数c100方差52 50.4根据以上信息,解答下列问题:(1)直接写出上述图表中a,b,c的值;(2)根据以上数据,你认为该校七、八年级中哪个年级学生掌握防溺水安全知识较好?请说明理由(一条理由即可);(3)该校七、八年级共730人参加了此次竞赛活动,估计参加此次竞赛活动成绩优秀(x ≥90)的学生人数是多少?【分析】(1)根据中位数和众数的定义即可得到结论;(2)根据八年级的中位数和众数均高于七年级于是得到八年级学生掌握防溺水安全知识较好;(3)利用样本估计总体思想求解可得.【解答】解:(1)a=(1﹣20%﹣10%﹣)×100=40,∵八年级10名学生的竞赛成绩的中位数是第5和第6个数据的平方数,∴b==94;∵在七年级10名学生的竞赛成绩中99出现的次数最多,∴c=99;(2)八年级学生掌握防溺水安全知识较好,理由:虽然七、八年级的平均分均为92分,但八年级的中位数和众数均高于七年级.(3)参加此次竞赛活动成绩优秀(x≥90)的学生人数=720×=468人,答:参加此次竞赛活动成绩优秀(x≥90)的学生人数是468人.【点评】本题考查读扇形统计图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.22.(10分)《道德经》中的“道生一,一生二,二生三,三生万物”道出了自然数的特征.在数的学习过程中,我们会对其中一些具有某种特性的数进行研究,如学习自然数时,我们研究了奇数、偶数、质数、合数等.现在我们来研究另一种特珠的自然数﹣“纯数”.定义;对于自然数n,在计算n+(n+1)+(n+2)时,各数位都不产生进位,则称这个自然数n为“纯数”,例如:32是”纯数”,因为计算32+33+34时,各数位都不产生进位;23不是“纯数”,因为计算23+24+25时,个位产生了进位.(1)判断2019和2020是否是“纯数”?请说明理由;(2)求出不大于100的“纯数”的个数.【分析】(1)根据题目中的新定义可以解答本题,注意各数位都不产生进位的自然数才是“纯数”;(2)根据题意可以推出不大于100的“纯数”的个数,本题得以解决.【解答】解:(1)2019不是“纯数”,2020是“纯数”,理由:当n=2019时,n+1=2020,n+2=2021,∵个位是9+0+1=10,需要进位,∴2019不是“纯数”;当n=2020时,n+1=2021,n+2=2022,∵个位是0+1+2=3,不需要进位,十位是2+2+2=6,不需要进位,百位为0+0+0=0,不。

2019重庆市中考数学试卷(含答案和详细解析)

2019重庆市中考数学试卷(含答案和详细解析)

2019重庆市中考数学试卷(含答案和详细解析)重庆市中考数学试卷(A 卷)一、选择题(本大题共12小题,每小题4分共48分)5.(4分)(2019•重庆)2019年1月1日零点,北京、上海、宁夏的气温分别是﹣4℃、5℃、6℃、﹣8℃,当时这6.(4分)(2019•重庆)关于x 的方程=1的解是() 647.(4分)(2019•重庆)2019年8月26日,第二届青奥会将在南京举行,甲、乙、丙、丁四位跨栏运动员在为该运动会积极准备.在某天“110米跨栏”训练中,每人各跑5次,据统计,他们的平均成绩都是13.2秒,甲、乙、丙、8.(4分)(2019•重庆)如图,直线AB ∥CD ,直线EF 分别交直线AB 、CD 于点E 、F ,过点F 作FG ⊥FE ,交直线AB 于点G ,若∠1=42°,则∠2的大小是()9.(4分)(2019•重庆)如图,△ABC 的顶点A 、B 、C 均在⊙O 上,若∠ABC+∠AOC=90°,则∠AOC 的大小是()10.(4分)(2019•重庆)2019年5月10日上午,小华同学接到通知,她的作文通过了《我的中国梦》征文选拔,需尽快上交该作文的电子文稿.接到通知后,小华立即在电脑上打字录入这篇文稿,录入一段时间后因事暂停,过了一小会,小华继续录入并加快了录入速度,直至录入完成.设从录入文稿开始所经过的时间为x ,录入字数为y ,11.(4分)(2019•重庆)如图,下列图形都是由面积为1的正方形按一定的规律组成,其中,第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的正方形有5个,第(3)个图形中面积为1的正方形有9个,…,按此规律.则第(6)个图形中面积为1的正方形的个数为()12.(4分)(2019•重庆)如图,反比例函数y=﹣在第二象限的图象上有两点A 、B ,它们的横坐标分别为﹣1,﹣3,直线AB 与x 轴交于点C ,则△AOC 的面积为()二、填空题(本大题共6小题,每小题4分,共24分)13.(4分)(2019•重庆)方程组的解是14.(4分)(2019•重庆)据有关部分统计,截止到2019年5月1日,重庆市私家小轿车达到563000辆,将563000这个数用科学记数法表示为 _________ .15.(4分)(2019•重庆)如图,菱形ABCD 中,∠A=60°,BD=7,则菱形ABCD 的周长为16.(4分)(2019•重庆)如图,△OAB 中,OA=OB=4,∠A=30°,AB 与⊙O 相切于点C ,则图中阴影部分的面积为 _________ .(结果保留π)17.(4分)(2019•重庆)从﹣1,1,2这三个数字中,随机抽取一个数,记为a ,那么,使关于x 的一次函数y=2x+a的图象与x 轴、y 轴围成的三角形的面积为,且使关于x 的不等式组有解的概率为 _________ .18.(4分)(2019•重庆)如图,正方形ABCD 的边长为6,点O 是对角线AC 、BD 的交点,点E 在CD 上,且DE=2CE,过点C 作CF ⊥BE ,垂足为F ,连接OF ,则OF 的长为 _________ .三、解答题(本大题共2小题,每小题7分,共14分)19.(7分)(2019•重庆)计算:20.(7分)(2019•重庆)如图,△ABC 中,AD ⊥BC ,垂足是D ,若BC=14,AD=12,tan ∠BAD=,求sinC 的值.+(﹣3)﹣2019×|﹣4|+20.四、解答题(本大题共4小题,每小题10分,共40分)21.(10分)(2019•重庆)先化简,再求值:÷(﹣)+,其中x 的值为方程2x=5x ﹣1的解.22.(10分)(2019•重庆)为鼓励创业,市政府制定了小型企业的优惠政策,许多小型企业应运而生,某镇统计了该镇1﹣5月新注册小型企业的数量,并将结果绘制成如下两种不完整的统计图:(1)某镇今年1﹣5月新注册小型企业一共有 _________ 家.请将折线统计图补充完整;(2)该镇今年3月新注册的小型企业中,只有2家是餐饮企业,现从3月新注册的小型企业中随机抽取2家企业了解其经营状况,请用列表或画树状图的方法求出所抽取的2家企业恰好都是餐饮企业的概率.23.(10分)(2019•重庆)为丰富居民业余生活,某居民区组建筹委会,该筹委会动员居民自愿集资建立一个书刊阅览室.经预算,一共需要筹资30000元,其中一部分用于购买书桌、书架等设施,另一部分用于购买书刊.(1)筹委会计划,购买书刊的资金不少于购买书桌、书架等设施资金的3倍,问最多用多少资金购买书桌、书架等设施?(2)经初步统计,有200户居民自愿参与集资,那么平均每户需集资150元.镇政府了解情况后,赠送了一批阅览室设施和书籍,这样,只需参与户共集资20000元.经筹委会进一步宣传,自愿参与的户数在200户的基础上增加了a%(其中a >0).则每户平均集资的资金在150元的基础上减少了a%,求a 的值.24.(10分)(2019•重庆)如图,△ABC 中,∠BAC=90°,AB=AC,AD ⊥BC ,垂足是D ,AE 平分∠BAD ,交BC 于点E .在△ABC 外有一点F ,使FA ⊥AE ,FC ⊥BC .(1)求证:BE=CF;(2)在AB 上取一点M ,使BM=2DE,连接MC ,交AD 于点N ,连接ME .求证:①ME ⊥BC ;②DE=DN.五、解答题(本大题共2个小题,每小题12分,共24分)225.(12分)(2019•重庆)如图,抛物线y=﹣x ﹣2x+3 的图象与x 轴交于A 、B 两点(点A 在点B 的左边),与y轴交于点C ,点D 为抛物线的顶点.(1)求A 、B 、C 的坐标;(2)点M 为线段AB 上一点(点M 不与点A 、B 重合),过点M 作x 轴的垂线,与直线AC 交于点E ,与抛物线交于点P ,过点P 作PQ ∥AB 交抛物线于点Q ,过点Q 作QN ⊥x 轴于点N .若点P 在点Q 左边,当矩形PQMN 的周长最大时,求△AEM 的面积;(3)在(2)的条件下,当矩形PMNQ 的周长最大时,连接DQ .过抛物线上一点F作y 轴的平行线,与直线AC 交于点G (点G 在点F 的上方).若FG=2DQ ,求点F 的坐标.26.(12分)(2019•重庆)已知:如图①,在矩形ABCD 中,AB=5,AD=关于AB 的对称点,连接AF 、BF .,AE ⊥BD ,垂足是E .点F 是点E(1)求AE 和BE 的长;(2)若将△ABF 沿着射线BD 方向平移,设平移的距离为m (平移距离指点B 沿BD 方向所经过的线段长度).当点F 分别平移到线段AB 、AD 上时,直接写出相应的m 的值.(3)如图②,将△ABF 绕点B 顺时针旋转一个角α(0°<α<180°),记旋转中的△ABF 为△A ′BF ′,在旋转过程中,设A ′F ′所在的直线与直线AD 交于点P ,与直线BD 交于点Q .是否存在这样的P 、Q 两点,使△DPQ 为等腰三角形?若存在,求出此时DQ 的长;若不存在,请说明理由.2019年重庆市中考数学试卷(A 卷)参考答案与试题解析一、选择题(本大题共12小题,每小题4分共48分)5.(4分)(2019•重庆)2019年1月1日零点,北京、上海、宁夏的气温分别是﹣4℃、5℃、6℃、﹣8℃,当时 6.(4分)(2019•重庆)关于x 的方程=1的解是()该运动会积极准备.在某天“110米跨栏”训练中,每人各跑5次,据统计,他们的平均成绩都是13.2秒,甲、乙、直线AB 于点G ,若∠1=42°,则∠2的大小是()10.(4分)(2019•重庆)2019年5月10日上午,小华同学接到通知,她的作文通过了《我的中国梦》征文选拔,需尽快上交该作文的电子文稿.接到通知后,小华立即在电脑上打字录入这篇文稿,录入一段时间后因事暂停,过了一小会,小华继续录入并加快了录入速度,直至录入完成.设从录入文稿开始所经过的时间为x ,录入字数为y ,面积为1的正方形有2个,第(2)个图形中面积为1的正方形有5个,第(3)个图形中面积为1的正方形有9个,…,按此规律.则第(6)个图形中面积为1的正方形的个数为()12.(4分)(2019•重庆)如图,反比例函数y=﹣在第二象限的图象上有两点A 、B ,它们的横坐标分别为﹣1,﹣3,直线AB 与x 轴交于点C ,则△AOC 的面积为()13.(4分)(2019•重庆)方程组的解是.5积为 4﹣.(结果保留π)的图象与x 轴、y 轴围成的三角形的面积为,且使关于x 的不等式组有解的概率为. 11DE=2CE,过点C 作CF ⊥BE ,垂足为F ,连接OF ,则OF 的长为19.(7分)(2019•重庆)计算:12 +(﹣3)﹣2019×|﹣4|+20.20.(7分)(2019•重庆)如图,△ABC 中,AD ⊥BC ,垂足是D ,若BC=14,AD=12,tan ∠BAD=,求sinC 的值.21.(10分)(2019•重庆)先化简,再求值:÷(﹣)+,其中x 的值为方程2x=5x ﹣1的解.了该镇1﹣5月新注册小型企业的数量,并将结果绘制成如下两种不完整的统计图:13(1)某镇今年1﹣5月新注册小型企业一共有 16 家.请将折线统计图补充完整;(2)该镇今年3月新注册的小型企业中,只有2家是餐饮企业,现从3月新注册的小型企业中随机抽取2家企业了解其经营状况,请用列表或画树状图的方法求出所抽取的2家企业恰好都是餐饮企业的概率.1423.(10分)(2019•重庆)为丰富居民业余生活,某居民区组建筹委会,该筹委会动员居民自愿集资建立一个书刊阅览室.经预算,一共需要筹资30000元,其中一部分用于购买书桌、书架等设施,另一部分用于购买书刊.(1)筹委会计划,购买书刊的资金不少于购买书桌、书架等设施资金的3倍,问最多用多少资金购买书桌、书架等设施?(2)经初步统计,有200户居民自愿参与集资,那么平均每户需集资150元.镇政府了解情况后,赠送了一批阅览室设施和书籍,这样,只需参与户共集资20000元.经筹委会进一步宣传,自愿参与的户数在200户的基础上增加了a%(其中a >0).则每户平均集资的资金在150元的基础上减少了a%,求a 的值.BC 于点E .在△ABC 外有一点F ,使FA ⊥AE ,FC ⊥BC .(1)求证:BE=CF;(2)在AB 上取一点M ,使BM=2DE,连接MC ,交AD 于点N ,连接ME .求证:①ME ⊥BC ;②DE=DN.15225.(12分)(2019•重庆)如图,抛物线y=﹣x ﹣2x+3 的图象与x 轴交于A 、B 两点(点A 在点B 的左边),与y轴交于点C ,点D 为抛物线的顶点.(1)求A 、B 、C 的坐标;(2)点M 为线段AB 上一点(点M 不与点A 、B 重合),过点M 作x 轴的垂线,与直线AC 交于点E ,与抛物线交于点P ,过点P 作PQ ∥AB 交抛物线于点Q ,过点Q 作QN ⊥x 轴于点N .若点P 在点Q 左边,当矩形PQMN 的周长最大时,求△AEM 的面积;(3)在(2)的条件下,当矩形PMNQ 的周长最大时,连接DQ .过抛物线上一点F作y 轴的平行线,与直线AC 交于点G (点G 在点F 的上方).若FG=2DQ ,求点F 的坐标.1626.(12分)(2019•重庆)已知:如图①,在矩形ABCD 中,AB=5,AD=E 关于AB 的对称点,连接AF 、BF .,AE ⊥BD ,垂足是E .点F 是点(1)求AE 和BE 的长;(2)若将△ABF 沿着射线BD 方向平移,设平移的距离为m (平移距离指点B 沿BD 方向所经过的线段长度).当点F 分别平移到线段AB 、AD 上时,直接写出相应的m 的值.(3)如图②,将△ABF 绕点B 顺时针旋转一个角α(0°<α<180°),记旋转中的△ABF 为△A ′BF ′,在旋转过程中,设A ′F ′所在的直线与直线AD 交于点P ,与直线BD 交于点Q .是否存在这样的P 、Q 两点,使△DPQ 为等腰三角171819。

2019重庆市中考数学试题(A卷,含解答提示与评分标准)-中考

2019重庆市中考数学试题(A卷,含解答提示与评分标准)-中考

重庆市 2019 年初中学业水平暨高中招生考试数学试题( A 卷)(全卷共四个大题,满分 150 分,考试时间 120 分钟) 参考公式:抛物线 y=ax 2+bx+c (a ≠0) 的顶点坐标为 ( b , 4ac b ) ,对称轴公式为 2a 4a 一、选择题(本大题 12个小题,每小题 4 分,共 48分) 1.下列各数中,比 -1 小的数是( ) A 、 2 ; B 、1; C 、 0 ; D 、 -2. 提示:根据数的大小比较 . 答案 D. 2.如图是由 4 个相同的小正方体组成的一个立体图形,其主视图是(提示从:正根面据看主视图的意义A . 答案 A. B 3.如图,△ ABO ∽△ CDO ,若 BO=6, DO=3,D 、5. . 答案 C.AC 是⊙ O 的切线, A 为切点, BC 与⊙ O 交于点 D ,连结 OD .若 )少钱,若乙把其一半的钱给甲, 则甲的数为 50;而甲把其 32的钱给乙. 则乙的钱数也为 50,x 1 y 50 1 xy50 A 、 2 ;222x y 50 xy 50 33 问甲、乙各有多少钱?设甲的钱数为 提示:根据列二元一次方程组的思路 8.按如图所示的运算程序,能使输出 A 、 m=1,n=1; B 、 m=1, n=0; x ,乙的钱数为 , 则可建立方程组为( ) 11x y 50xy 50C 、 2D 、 222x y 50 xy5033. 答案 A.y 值为 1 的是( )C 、 n=2;D 、 m=2,b x= 2a CD=2,则 AB 的长是( )D4; 提示:根据相似三角形的性质4.如图, AB 是⊙ O 的直径,∠ C=50°,则∠ AOD 的度数为A 、 40°;B 、 50°;C 、 80°; 提示:根据圆的切线性质及圆周角和圆心角的关系性质 5.下列命题正确的是( )A 、有一个角是直角的平行四边形是矩形; C 、有一组邻边相等的平行四边形是矩形; 提示:根据矩形的判定 . 答案 C.B 、四条边相等的四边形是矩形; D 、对角线相等的四边形是矩形 6.估计 (2 3 6 2). 答案 A.13的值应在( 5和 6之间; C 、 A 、4 和 5 之间; B 、 提示:化简得 2 2 6 . 答案 C. 7.《九章算术》中有这样一个题:今有甲乙二人持钱不知其数.甲得乙半而钱五十,乙得 甲太半而钱亦五十.问甲、乙持钱各几何?其意思为:今有甲乙二人,不如其钱包里有多6和 7之间; D 、7和 8之间.B提示:用试验法 . 答案 D. 9.如图,在平面直角坐标系中,矩形 ABCD 的顶点 A ,D 分别在 x 轴、y 轴上,对角线 BD ∥ x 轴,反比例函数k(k 0,x 0) 的图象经过矩形对角线的交点 E .若点 A (2,0) ,D (0,4) , x 则 k 的值为( y A 、16; B 、 20;提示:易得△ DAB ∽△ AOD ,AD=2 5 ,则 AB=4 5 ,所以 DB=10, E (4,5). 答案 B. 10. 为践行“绿水青山就是金山银山”的重要思想,某森林保护区开展了寻找古树活动.如 图,在一个坡度(或坡比) i =1:2.4 的山坡 AB 上发现有一棵占树 CD .测得古树底端 C 到山 脚点 A 的距离 AC=26米,在距山脚点 AED=48°(古树 CD 与山坡 AB 的剖面、 树 CD 的高度约为( )(参考数据: A 水平距离 6 米的点 E 处,测得古树顶端 D 的仰角∠ 点 E 在同一平面上,古树 CD 与直线 AE 垂直),则古 sin48 ≈ 0.73 , cos8 °≈ 0.67 , tan48 °≈ 1.11 ) B23.3 米; D 、 A 、 17.0 米; 提示:延长 DC 交直线 AE 于 F. 在直角三角形 所以 DF=30× 1.11=33.3. 答案 C. 33.3 米 . ACF 中,易求得 CF=10,AF=24,则 EF=30. 11. 若关于 x 的一元一次不等式组 1(4a 43x 1 22)2y a y 41y B 、 1; 12的解集是 x ≤a ,且关于 y 的分式方程1 有非负整数解,则符合条件的所有整数 a 的和为( )y1 A 、0; 提示:由不等式组的条件得: 整数 a 为-3 ,1,3. 答案 12.如图,在△ ABC 中,DC / 与 AB 交于点 E ,连结、 3 3 2 C 、 7 ; 提示:过 D 作 DF ⊥BC /于 F ,连接 CC /交 BD 于 G. 易得 BD ⊥CC / , AC / =AD=CD=/CD=2, 则∠ ADC / =60°,∠ DC /G=30°,所以 DG=1,C / G= 3 ,A BG=BD-DG=,2BC /=C 7 .在△ BC /D 中利用面积可求出 DF.答案 B. 二、填空题(本大题 6 个小题,每小题 4 分,共 24 分) C 、 4; D 、6. a<5. 由分式方程的条件得: B. D 是 AC 边上的中点,连结 BD , AC /,若 AD=AC / =2, BD=3则点 D 到 BC /的距离为( a ≥-3 的奇数且 a ≠ -1. 综上所述: 把△ BDC / 沿 BD 翻折,得到△ BDC /, ) A 、 B 、 3 21 ; 7 D 、 13 .13. 计算: ( 3)0 (1) 1= .2 提示:根据零指数幂、负整数指数幂 . 答案 3.14. 今年五一节期间,重庆市旅游持续火爆,全市共接待境内外游客超过 25600000 人次,请把数 25600000 用科学记数法表示为 .提示:根据科学记数法的意义 . 答案 2.56 × 107. 15.一个不透明的布袋内装有除颜色外,其余完全相同的 3 个红球, 2 个白球, 1 个黄球, 搅匀后,从中随机摸出一个球,记下颜色后放回搅匀,再从中随机摸出一个球,则两次都 摸到红球的概率为 .提示:所有结果有 36种,符合条件的有 9种.答案 1 .416.如图,在菱形 ABCD 中,对角线 AC ,BD 交于点 O ,∠ ABC=60°, AB=2,分别以点 A 、点 C 为圆心,以 AO 的长为半径画弧分别与菱形的边相交,则图中阴影部分的面积为 .(结17.某公司快递员甲匀速骑车前往某小区送物件,出发几分钟后,快递员乙发现甲的手机 落在公司,无法联系,于是乙匀速骑车去追赶甲.乙刚出发 2 分钟时,甲也发现自己手机 落在公司,立刻按原路原速骑车回公司, 2 分钟后甲遇到乙,乙把手机给甲后立即原路原速 返回公司,甲继续原路原速赶往某小区送物件,甲乙两人相距的路程 y (米)与甲出发的时 间 x (分钟)之间的关系如图所示(乙给甲手机的时间忽略不计) .则乙回到公司时,甲距 公司的路程是 米.y/米 4000 4000提示:由图知甲的速度为 4000÷O (12-2-2)=50102 米/x/分分.乙的速度为 4000÷(2+2)=1000 米/分. 则乙回到公司时,用了 4 分钟,O 而此时甲前行12了 x 5/分00× 4=2000 米.答案 6000 米.18.在精准扶贫的过程中,某驻村服务队结合当地高山地形,决定在该村种植中药材川香、 贝母、 黄连增加经济收人, 经过一段时间, 该村已种植的川香、 贝母、黄连面积之比 4:3:5 , 根据中药材市场对川香、贝母、黄连的需求量,将在该村余下土地上继续种植这三种中药9材,经测算需将余下土地面积的 9 种植黄连,则黄连种植总面积将达到这三种中药材种植16总面积的 .为使川香种植总面积与贝母种植总面积之比达到 40 的面积与该村种植这三种中药材的总面积之比是 .提示:设已种植的川香面积为 4x ,贝母面积为 3x ,黄连面积9川香面积为 a ,贝母面积为 b ,黄连面积为 196y .由题意得:1解得 a= 1 x , b=3x. 所以该村还需种植贝母面积3x ,该村种植这三种中药材的总面积为24x+3x+5x+8x=20x. 答案 3︰ 20.三、解答题(本大题 7个小题,每小题 10 分,共 70 分) 19. 计算:2( 1) (x+y ) 2-y (2x+y )解:原式 =x 2+2xy+y 2-2xy-y 2 ⋯⋯( 3 分)3:4 ,则该村还需种植贝母5x. 余下面积为 y ,其中种植5x 16y19 9 940(12x y),解得 y=8x ,则 16y =2x,所以a b,又 4x a 3x b3=x25 分)13 20a3 a320.如图,在△ ABC 中, AB=AC , D 是 BC 边上的中点,连结 过点 E 作EF ∥ BC 交AB 于点 F . ( 2)求证: FB=FE . 解与证:(1)∵ AB=AC , D 是 BC 边上的中点 .∴∠ ADB=∠ADC=90°,∠ BAD=∠ CAD. ⋯⋯( 3 分) ∴∠ CAD=90°- ∠C=90°-36°=54°⋯⋯( 5分) 2)∵ BE 平分∠ ABC ,∴∠ EBF=∠ EBC∵EF ∥ BC ,∴∠ BEF=∠EBC. ∴∠ EBF=∠BEF. ⋯⋯( 9 分) ∴FB=FE.21.每年夏季全国各地总有未成年人因溺水而丧失生命,令人痛心疾首.今年某校为确保 学生安全,开展了“远离溺水·珍爱生命”的防溺水安全知识竞赛.现从该校七、八年级 中各随机抽取 10名学生的竞赛成绩 (百分制)进行整理、描述和分析 (成绩得分用 x 表示, 共分成四组: A .80≤x<85,B .85≤x<90,C .90≤x<95,D .95≤ x ≤100),下面给出了部 分信息: 七年级 10 名学生的竞赛成绩是: 99,80,99,86,99,96,90,100,89,82 八年级 10 名学生的竞赛成绩在 C 组中的数据是: 94, 90, 941)直接写出上述图表中 a ,b ,c 的值;2)根据以上数据,你认为该校七、八年级中哪个年级学生掌握防溺水安全知识较好?请说明理由(一条理由即可) ;( 3)该校七、八年级共 730 人参加了此次竞赛活动,估计参加此次竞赛活动成绩优秀( ≧90)的学生人数是多少? 解:( 1)a=40, b=94, c=99. ⋯⋯( 3 分)( 2)八年级学生掌握防溺水安全知识较好,理由如下(写出其中一条即可) :①七、八年级学生的竞赛成绩平均分相同,八年级学生成绩的中位数 94 高于七年级学生成 绩的中位数 93 ;②七、八年级学生的竞赛成绩平均分相同,八年级学生成绩的众数 100 高于七年级学生成 绩的众数 99. ⋯⋯( 6 分)(3)∵七年级 10名学生中,成绩在 C ,D 两组中有 6人,八年级 10 名学生中,成绩在 C , D 两组中有 7 人.720=468(人)2)(a解:原式 a 29a29 4a)9 4a )a 2)a 22a=(a 2 a 2(a 3) 2 ? a 2a 2 ?(a 3)(a 3)(a 3)(a 3)9 分) 10 分)1)若∠ C=36°,求∠ BAD 的度数.AD ,BE 平分∠ ABC 交 AC 于点 E , 年级 七年级 八年级 平均数 92 92 中位数 93 b 众数c 100 方差5250.4八年级抽取的学生竞赛成绩七、八年级抽取的学生竞赛成绩统计表-6 答:估计此次竞赛中,七、八年级成绩优秀的学生有 468人. ⋯⋯( 10分)22.《道德经》中的“道生一,一生二,二生三,三生万物”道出了自然数的特征.在数的 学习过程中,我们会对其中一些具有某种特性的数进行研究,如学习自然数时,我们研究 了奇数、偶数、质数、合数等.现在我们来研究另一种特珠的自然数——“纯数” . 定义;对于自然数 n ,在计算 n+(n+1)+(n+2) 时,各数位都不产生进位,则称这个自然数 n 为“纯数”, 例如: 32是”纯数”,因为计算 32+33+34 时,各数位都不产生进位;23不是“纯数” ,因为计算 23+24+ 25 时,个位产生了进位.( 1)判断 2019 和 2020 是否是“纯数”?请说明理由; ( 2)求出不大于 100 的“纯数”的个数.解:( 1)2019 不是“纯数” , 2020 是“纯数” . 理由如下:⋯⋯( 2 分) ∵在计算 2019+2020+2021 时,个位 9+0+1=10,产生了进位, ∴ 2019 不是“纯数” .∵在计算 2020+2021+2022 时,个位 0+1+2=3,十位 2+2++2=6,百位 0+0+0=0,千位 2+2++2=6, 它们都没有产生进位, ∴ 2020 是“纯数” . ⋯⋯( 4 分)( 2)由题意,当“纯数” n 为一位数时 n+(n+1)+(n+2)=3n+3<10 ∴n=0,1,2,即在一位数的自然数中, “纯数”有 3 个.当“纯数” n 为两位数时,个位不超过 2,十位不超过 3 时,符合“纯数”的定义 .∴两位数的自然数中“纯数”有: 10,11,12,20,21,22,30,31,32,33 共 9 个, 而 100 显然也是“纯数” .∴不大于 100 的“纯数”的个数共有: 3+9+1=13 个 . ⋯⋯( 10 分) 23.在初中阶段的函数学习中,我们经历了“确定函数的表达式——利用函数图象研究其 性质一一运用函数解决问题"的学习过程.在画函数图象时,我们通过描点或平移的方法 1y= 2x-3画出了所学的函数图象.同时,我们也学习了绝对值的意义结合上面经历的学习过程,现在来解决下面的问题:在 a (a a(ay=|kx-3|+b0).0) .中,当 x=2 时,y=-4 当 x=0 时, y= -1. (1)求这个函数的表达式; (2)在给出的平面直角坐标系中, 请用你喜欢的方法面出这个函数的 图象并写出这个函数的一条性质; 1 (3)已知函 y x 3 的图象如图2 所示,结合你所画的函数图象,直1 接写出不等式 kx 3 b 12x 3 的 解集. 解:(1) 分别代入将 x=2 时, y= -4 和 x=0 时, y=|kx-3|+b 中,得-8 -7 -6-5 -4y= -1. 2k 3 3b4b 4解得: b1∴这个函数的表达式是3x 3 2(2)函数图象如答图 函数的性质(写出其中一条即可)3 分)5 分) ①当 x<2 时, y 随 x 的增大而减小;y6 5 4 3 2 1-8 -7 -6-5 -4 3y=| 2 x-3|-4答图-3 -2-4-6y-1-1 -26 7 8 x1 y=2x-36-3-2-2-4O6 7 8 x当x>2 时,y 随x 的增大而增大.②当x=2 时,函数有最小值,最小值是-4. ⋯⋯(7 分)(3)不等式的解集是1≤x≤4⋯⋯(10 分)24.某文明小区有50 平方米和80 平方米两种户型的住宅,50平方米住宅套数是80 平方米住宅套数的 2 倍.物管公司月底按每平方米 2 元收取当月物管费,该小区全部住宅都入住且每户均按时全额缴纳物管费.(1)该小区每月可收取物管费90000 元,问该小区共有多少套80 平方米的住宅?(2)为建设“资源节约型社会” ,该小区物管公司 5 月初推出活动一:“垃圾分类送礼物” ,50 平方米和80 平方米的住户分别有40%和20%参加了此次括动.为提离大家的积扱性,6月份准备把活动一升级为活动二:“拉圾分类抵扣物管费” ,同时终止活动一.经调査与测算,参加活动一的住户会全部参加活动二,参加活动二的住户会大幅增加,这样, 6 月份参加活动的50 平方米的总户数在 5 月份参加活动的同户型户数的基础上将增加2a%,每户物3管费将会减少3 a% ; 6 月份参加活动的80 平方米的总户数在 5 月份参加活动的同户型户10数的基础上将增加6a%,每户物管费将会减少1a% .这样,参加活动的这部分住户 6 月份45 总共缴纳的物管费比他们按原方式共缴纳的物管费将减少5 a% ,求 a 的值.18 解:(1)设该小区共有x 套80 平方米的住宅,则有2x 套50 平方米的住宅. 由题意得:2× 80x+2× 50× 2x=90000. 解得x=250.答:该小区共有250套80平方米的住宅. ⋯⋯(4分)(2) 6 月份参加活动的50 平方米这部分住户将减少的物管费是:33500×40%(1+2a%)×50× 2× a% =20000(1+2a%)× a% (元),10 106 月份参加活动的80 平方米这部分住户将减少的物管费是:11250×20%(1+6a%)×80×2×1a%=8000(1+6a%)×1a% (元),446 月份参加活动的这部分住户将减少的物管费是:5[500 ×40%(1+2a%)×50×2+250×20%(1+6a%)×80×2] × a% (元)185即[20000(1+2a%)+8000(1+6a%)] × a% (元)18由题意得:3 1 520000(1+2a%)× 3a% +8000(1+6a%)× 1 a% =[20000(1+2a%)+8000(1+6a%)] × 5 a% .10 4 18⋯⋯(8 分)设a%=m,化简整理得:2m2-m=0,解得:m1=0(舍),m2=0.5.所以a=50.答: a 的值是50. ⋯⋯(10 分)25.如图,在平行四边形ABCD中,点E在边BC上,连结AE,EM⊥AE,垂足为E,交CD 于点M,AF⊥BC,垂足为F,BH⊥AE,垂足为H,交AF于点N,点P 是AD上一点,连接CP.(1)若DP=2AP=4,CP= 17 ,CD=5,求△ ACD的面积.(2)若AE=BN,AN=CE,求证:AD= 2 CM+2C.EF E C解与证:(1)作 CQ ⊥ AD ,垂足为 Q ,如图 ∵DP=2AP=4,∴ AP=2,AD=6.设 PQ=x ,则 DQ=4-x ,又 CP= 17 , CD=5 在直角三角形 CDQ 和直角三角形 根据勾股定理得:( 17)2 x 2 52 (4 x)2 解得 x=1,所以PQ=1 所以 CQ= CP 2 PQ 2 =41∴ S △ ACD = AD ?CQ21= 6 4=12. ⋯⋯( 4 分)(2)∵ BH ⊥AE ,AF ⊥BC , ∴∠ AHB=∠ AFC=90°, ∠ANH=90°- ∠EAF=∠AEF. ∴∠ ANB=∠CEA.∴∠ BAN=∠ ACE , AB=AC.∵∠ ACF+∠CAF=90°,∴∠ BAN+∠ CAF=90°,即∠ BAC=90° ∴△ ABC 为等腰直角三角形,∠ ABC=45°, AF=BF=CF. ∵AN=EC ,∴ NF=EF.连结 EN (如图),则△ NFE 为等腰直角三角形,∴ EF= 2 NE ,∠ ENF=45°.2 ∵四边形 ABCD 是平行四边形,且∠ABC=45°,∴∠ ECM=135° . ∵∠ ANE=180° - ∠ ENF=135°,∴∠ ANE=∠ ECM.∵EM ⊥AE ,∴∠ AEM=90°. ∴∠ EAN=90°-∠AEF=∠MEC. 又 AN=EC ,∴△ ANE ≌△ ECM ,∴ NE=CM. ⋯⋯( 8 分) ∵四边形 ABCD 是平行四边形,∴ AD=BC=2FC.22∵ FC=FE+EG= 2 NE+EC= 2 CM+EC.222 ∴AD=2FC=2( 2CM+EC )= 2 CM+2CE. ⋯⋯( 10 分). 2四、解答题: (本大题 1个小题,共 8分)26.如图,在平面在角坐标系中,抛物线 y=x 2-2x-3 与 x 轴交于点 A ,B (点 A 在点 B 的左 侧)交 y 轴于点 C ,点 D 为抛物线的顶点,对称轴与 x 轴交于点 E .( 1)连结 BD ,点 M 是线段 BD 上一动点(点 M 不与端点 B ,D 重合),过点 M 作 MN ⊥BD 交抛 物线于点 N (点 N 在对称轴的右侧) ,过点 N 作 NH ⊥x 轴,垂足为 H ,交 BD 于点 F ,点 P 是 线段 OC 上一动点,当 MN 取得最大值时,求 HF+FP+1 PC 的最小值;312 ( 2)在( 1)中,当 MN 取得最大值, HF+FP+1 PC 取得最小值时,把点 P 向上平移个 2单32 位得到点 Q ,连结 AQ ,把△ AOQ 绕点 O 顺时针旋转一定的角度α (0°<α<360°),得到△ A / OQ /, 其中边 A /Q / 交坐标轴于点 G ,在旋转过程中,是否存在一点 G ,使得∠ Q /=∠Q / OG ?若存在, 请直接写出所有满足条件的点 Q / 的坐标;若不存在,请说明理由.又 BN = AE ,AN=CE ,∴△ ANB ≌△ B CEA.F E C解:(1)∵点 A ,B 是抛物线 y=x 2-2x-3 与 x 轴的交点,点 D 是抛物线顶点, ∴点 A(-1,0) 、点 B(3,0) 、点 D(1,-4). ∴直线 BD 的表达式是 y=2x-6. ∵点 N 在抛物线 y=x 2-2x-3 上,可设点 N 的坐标为 (t,t 2-2t-3) ,则点 F 的坐标为 (t,2t-6). 22 ∴FN=(2t-6)-(t 2-2t-3)= -t 2+4t-3.根据已知条件,可得△ MNF ∽△ EBD ,∴ MN FNE D B B ,又 EB=2,DE=4,∴ DB=2 5 . DB ∴ MN= 5 FN= 5 (t 2) 25 5 5 ∴当 t=2 时, MN 取得最大值, 此时,点 F(2,-2) , HF=2. ⋯⋯ 1 如答图,以 CP 为斜边,以 1 CP 的长为直角边, 3 作 Rt △CRP ,当点 F ,P ,R 在一条直线上时, PF+1CP 取得最小值,此时, PF+1 CP=RF. 33 过点 F 作FS ⊥ y 轴,垂足为 S.点 F ,P ,R FP =3. SP 2 分) CP 在一条直线上,△ CPR ∽△ FPS.则 RP 在 Rt △SPF 中, SF=2,FP=3SP.∴SP= 2 ,FP=3 2. ∴CP=CS-PS=1 22 2 2 2 = 22 yE O A H S PC ND61∴ RP=1C3∴RF=RP+PF=2 2 +3 2 =1 4 2 ,∵ HF=2, 623 ∴HF+FP+1 PC 的最小值为 2+1 4 2 = 7 4 2 3 (2)满足条件的点 45 (5 25255), 3 Q /的坐标为: 2 5 4 5 ( 255 , 455), 4 分)4 5 2 5 ( 5 , 5 ), ( 2 5(545455 ).提示:如图,过 Q /作 x 轴的垂线,设垂足为 I. 在直角三角形 OIQ / 求解 45 5255) 同理(455,255)同理( 255, 4 5)同理( 255, 455)5)。

2019年重庆市中考数学试卷含答案

2019年重庆市中考数学试卷含答案
6.A
解析:A 【解析】 【分析】 作 BM⊥ED 交 ED 的延长线于 M,CN⊥DM 于 N.首先解直角三角形 Rt△CDN,求出
CN,DN,再根据 tan24°= AM ,构建方程即可解决问题. EM
【详解】 作 BM⊥ED 交 ED 的延长线于 M,CN⊥DM 于 N.
在 Rt△CDN 中,∵ CN 1 4 ,设 CN=4k,DN=3k, DN 0.75 3
=∠MAP+∠PAB,则 AP=_____.
20.等腰三角形一腰上的高与另一腰的夹角的度数为 20°,则顶角的度数是 .
三、解答题
21.如图,点 B、C、D 都在⊙O 上,过点 C 作 AC∥BD 交 OB 延长线于点 A,连接 CD,
且∠CDB=∠OBD=30°,DB= 6 3 cm.
(1)求证:AC 是⊙O 的切线; (2)求由弦 CD、BD 与弧 BC 所围成的阴影部分的面积.(结果保留 π)
3.B
解析:B 【解析】 【分析】 根据旋转中心的确认方法,作对应点连线的垂直平分线,再找到交点即可得到. 【详解】 解:∵△MNP 绕某点旋转一定的角度,得到△M1N1P1, ∴连接 PP1、NN1、MM1, 作 PP1 的垂直平分线过 B、D、C, 作 NN1 的垂直平分线过 B、A, 作 MM1 的垂直平分线过 B, ∴三条线段的垂直平分线正好都过 B, 即旋转中心是 B. 故选:B.
何体的侧面积是( )
A.12cm2
B. 12 πcm2
C. 6π cm2
D. 8π cm2
12.甲、乙二人做某种机械零件,已知每小时甲比乙少做 8 个,甲做 120 个所用的时间与
乙做 150 个所用的时间相等,设甲每小时做 x 个零件,下列方程正确的是( )

最新2019年重庆市中考数学试题(A卷)及参考答案(word解析版)

最新2019年重庆市中考数学试题(A卷)及参考答案(word解析版)
2019 年重庆市中考数学试题( A 卷)及参考答案与解析
(满分 150 分,考试时间 120 分钟)
参考公式:抛物线
y=ax
2
+bx+c

a≠
0
)的顶点坐标为
b 4ac b2
,Leabharlann ,对称轴为 x2a 4a
b

2a
一、选择题: (本大题 12 个小题,每小题 4 分,共 48 分)在每个小题的下面,都给出了代号为
25600000 人次,请把数
25600000 用科学记数法表示为

15.一个不透明的布袋内装有除颜色外,其余完全相同的
3 个红球, 2 个白球, 1 个黄球,搅匀后,
从中随机摸出一个球,记下颜色后放回搅匀,再从中随机摸出一个球,则两次都摸到红球的概率


16.如图,在菱形 ABCD 中,对角线 AC ,BD 交于点 O,∠ABC = 60°, AB = 2,分别以点 A、点 C 为圆心,以 AO 的长为半
径画弧 分别与 菱形的边相交,则图中阴影 部分 的面积

.(结果保留 π)
17.某公司快递员甲匀速骑车前往某小区送物件, 出发几分钟后, 快递员乙发现甲的手机落在公司, 无法联系, 于是乙匀速骑车去追赶甲. 乙刚出发 2 分钟
时,甲也发现自己手机落在公司, 立刻按原路原速骑车
回公司, 2 分钟后甲遇到乙,乙把手机给甲后立即原路
一半的钱给甲,则甲的数为 50;而甲把其 的钱给乙,则乙的钱数也为 50,问甲、乙各有多少
钱?设甲的钱数为 x,乙的钱数为 y,则可建立方程组为(

A.
B.
C.
D.
8.按如图所示的运算程序,能使输出 y 值为 1 的是(

2019重庆中考数学试题及答案

2019重庆中考数学试题及答案

2019重庆中考数学试题及答案数学试卷重庆市2019年初中毕业暨高中招生考试数学试题全卷共五个大题,满分150分,考试时间120分钟。

注意事项:1.试题的答案书写在答题卡(卷)上,不得在试卷上直接作答。

2.作答前认真阅读答题卡(卷)上的注意事项。

3.考试结束,由监考人员将试题和答题卡(卷)一并收回。

一、选择题:(本大题10个小题,每小题4分,共40分)在每个小题下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑(或将正确答案的代号填入答题卷中对应的表格内)。

1.在一3,一1,0,2这四个数中,最小的数是()A.一3B.一1C.0D.22.下列图形中,是轴对称图形的是()3.计算(ab)的结果是(。

)A.2abB.abC.abD.ab4.已知:如图,OA,OB是⊙O的两条半径,且OA⊥OB,点C在⊙O上则∠XXX的度数为()A.45°B.35°C.25°D.20°5.下列调查中,适宜采用全面调查(普查)方式的是()A.调查市场上老酸奶的质量情况B.调查某品牌圆珠笔芯的使用寿命C.调查乘坐飞机的旅客是否携带了危禁物品D.调查我市市民对伦敦奥运会吉祥物的知晓率6.已知:如图,BD平分∠ABC,点E在BC上,EF//AB。

若∠CEF=100°,则∠ABD的度数为()A.60°B.50°C.40°D.30°7.已知关于x的方程2x+a-9=0的解是x=2,则a的值为(。

)A.2B.3C.4D.58.2019年“国际攀岩比赛”在重庆举行。

XXX从家出发开车前去观看,途中发现忘了带门票,于是打电话让妈妈马上从家里送来,同时XXX也往回开,遇到妈妈后聊了一会儿,接着继续开车前往比赛现场。

设XXX从家出发后所用时间为t,XXX与比赛现场的距离为S。

下面能反映S与t的函数关系的大致图象是()9.下列图形都是由同样大小的五角星按一定的规律组成,其中第①个图形一共有2个五角星,第②个图形一共有8个五角星,第③个图形一共有18个五角星,…,则第⑥个图形中五角星的个数为(。

重庆市2019年中考数学试卷及解析

重庆市2019年中考数学试卷及解析

2019年重庆市中考数学试卷一.选择题(本大题10个小题,每小题4分,共40分)在每个小题的下面,都给出了代号为A .B .C .D 的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑(或将正确答案的代号填人答题卷中对应的表格内).1.(2019重庆)在﹣3,﹣1,0,2这四个数中,最小的数是( )A .﹣3B .﹣1C .0D .2考点:有理数大小比较。

解答:解:这四个数在数轴上的位置如图所示:由数轴的特点可知,这四个数中最小的数是﹣3.故选A .2.(2019重庆)下列图形中,是轴对称图形的是( )A .B .C .D .考点:轴对称图形。

解答:解:A 、不是轴对称图形,故本选项错误;B 、是轴对称图形,故本选项正确;C 、不是轴对称图形,故本选项错误;D 、不是轴对称图形,故本选项错误.故选B .3.(2019重庆)计算()2ab 的结果是( )A .2abB .b a 2C .22b aD .2ab考点:幂的乘方与积的乘方。

解答:解:原式=a 2b 2.故选C .4.(2019重庆)已知:如图,OA ,OB 是⊙O 的两条半径,且OA⊥OB,点C 在⊙O 上,则∠ACB 的度数为( )A .45°B .35°C .25°D .20°考点:圆周角定理。

解答:解:∵OA⊥OB,∴∠AOB=90°,∴∠ACB=45°.故选A .5.(2019重庆)下列调查中,适宜采用全面调查(普查)方式的是( )A .调查市场上老酸奶的质量情况B .调查某品牌圆珠笔芯的使用寿命C .调查乘坐飞机的旅客是否携带了危禁物品D .调查我市市民对伦敦奥运会吉祥物的知晓率考点:全面调查与抽样调查。

解答:解:A 、数量较大,普查的意义或价值不大时,应选择抽样调查;B 、数量较大,具有破坏性的调查,应选择抽样调查;C 、事关重大的调查往往选用普查;D 、数量较大,普查的意义或价值不大时,应选择抽样调查.故选C .6.(2019重庆)已知:如图,BD 平分∠ABC,点E 在BC 上,EF∥AB.若∠CEF=100°,则∠ABD 的度数为( )A .60°B .50°C .40°D .30°考点:平行线的性质;角平分线的定义。

2019年重庆市中考数学试题(A卷)含答案解析(word版)

2019年重庆市中考数学试题(A卷)含答案解析(word版)

重庆市2019年初中毕业暨高中招生考试数学试题(A 卷)(全卷共五个大题,满分150分,考试时间120分钟)参考公式:抛物线2(0)y ax bx c a =++≠的顶点坐标为24,)24b ac b a a --(,对称轴为2b x a =-. 一、选择题(本大题共12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,期中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑。

1.(2019•重庆A )在—4,0,—1,3这四个数中,最大的数是( )A. —4B. 0C. —1D. 3考点:有理数大小比较.分析:先计算| ﹣4|=4 ,| ﹣1|=1,根据负数的绝对值越大,这个数越小得﹣4 <﹣1,再根据正 数大于0,负数小于0 得到﹣4 <﹣1<0<3 .解答:解:∵| ﹣4|=4 ,| ﹣1|=1,∴﹣4 <﹣1,∴﹣4 ,0,﹣1,3 这四个数的大小关系为﹣4 <﹣1<0<3 .故选D .点评:本题考查了有理数大小比较:正数大于0,负数小于0 ;负数的绝对值越大,这个数 越小.2.(2019•重庆A )下列图形是轴对称图形的是( )A .B .C . D考点:轴对称图形.分析:根据轴对称图形的概念求解.解答:解:A 、是轴对称图形,故正确;B 、不是轴对称图形,故错误;C 、不是轴对称图形,故错误;D 、不是轴对称图形,故错误.故选A .点评:本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称 轴折叠后可重合.3.(2019•重庆A 12 )A. 43B. 23C. 32D. 6考点:二次根式的性质与化简.分析:直接利用二次根式的性质化简求出即可.解答:解:=2 .故选:B.点评:此题主要考查了二次根式的性质与化简,正确化简二次根式是解题关键.4.(2019•重庆A)计算()32a b的结果是()A. 63a b D. 6a ba b C. 53a b B. 23考点:幂的乘方与积的乘方.分析:根据幂的乘方和积的乘方的运算方法:①(a m)n =a mn(m ,n 是正整数);②(ab )n =a n b n(n 是正整数);求出()32a b的结果是多少即可.解答:解:()32a b= (a 2)3•b 3= 63a b即计算()32a b的结果是63a b.故选:A.点评:此题主要考查了幂的乘方和积的乘方,要熟练掌握,解答此题的关键是要明确:①(a m)n =a mn (m ,n 是正整数);②(ab )n=a n b n.5.(2019•重庆A)下列调查中,最适合用普查方式的是()A. 调查一批电视机的使用寿命情况B. 调查某中学九年级一班学生视力情况C. 调查重庆市初中学生锻炼所用的时间情况D. 调查重庆市初中学生利用网络媒体自主学习的情况考点:全面调查与抽样调查.分析:由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.解答:解:A、调查一批电视机的使用寿命情况,调查局有破坏性,适合抽样调查,故A 不符合题意;B、调查某中学九年级一班学生的视力情况,适合普查,故B 符合题意;C、调查重庆市初中学生每天锻炼所用的时间情况,调查范围广,适合抽样调查,故C 不符合题意;D 、调查重庆市初中学生利用网络媒体自主学习的情况,适合抽样调查,故D 不符合题意;故选:B.点评:本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.6.(2019•重庆A )如图,直线AB ∥CD ,直线EF 分别与直线AB,CD 相交于点G ,H 。

2019年重庆市中考数学试题(A卷,含解答提示与评分标准)

2019年重庆市中考数学试题(A卷,含解答提示与评分标准)

A B C DO D C B A O D C B A 重庆市2019年初中学业水平暨高中招生考试数学试题(A 卷)(全卷共四个大题,满分150分,考试时间120分钟)参考公式:抛物线y=ax 2+bx+c(a≠0)的顶点坐标为(a 2b -,a 4b ac 42-),对称轴公式为x=a 2b -. 一、选择题(本大题12个小题,每小题4分,共48分)1.下列各数中,比-1小的数是( )A 、2;B 、1;C 、0;D 、-2.提示:根据数的大小比较.答案D.2.如图是由4个相同的小正方体组成的一个立体图形,其主视图是( ) 提示:根据主视图的意义.答案A.3.如图,△ABO∽△CDO,若BO=6,DO=3,CD=2,则AB 的长是( )A 、2;B 、3;C 、4;D 、5.提示:根据相似三角形的性质.答案C.4.如图,AB 是⊙O 的直径,AC 是⊙O 的切线,A 为切点,BC 与⊙O 交于点D ,连结OD .若∠C=50°,则∠AOD 的度数为( )A 、40°;B 、50°;C 、80°;D 、100°.提示:根据圆的切线性质及圆周角和圆心角的关系性质.答案C.5.下列命题正确的是( )A 、有一个角是直角的平行四边形是矩形;B 、四条边相等的四边形是矩形;C 、有一组邻边相等的平行四边形是矩形;D 、对角线相等的四边形是矩形. 提示:根据矩形的判定.答案A.6.估计31)2632(⨯+的值应在( ) A 、4和5之间; B 、5和6之间; C 、6和7之间; D 、7和8之间. 提示:化简得622+.答案C.7.《九章算术》中有这样一个题:今有甲乙二人持钱不知其数.甲得乙半而钱五十,乙得甲太半而钱亦五十.问甲、乙持钱各几何?其意思为:今有甲乙二人,不如其钱包里有多少钱,若乙把其一半的钱给甲,则甲的数为50;而甲把其32的钱给乙.则乙的钱数也为50,问甲、乙各有多少钱?设甲的钱数为x ,乙的钱数为y ,则可建立方程组为( )BA 、⎪⎩⎪⎨⎧=+=+50y x 3250y 21x ;B 、⎪⎩⎪⎨⎧=+=+50y 32x 50y 21x ;C 、⎪⎩⎪⎨⎧=+=+50y x 3250y x 21;D 、⎪⎩⎪⎨⎧=+=+50y 32x 50y x 21. 提示:根据列二元一次方程组的思路.答案A.8.按如图所示的运算程序,能使输出y 值为1的是( )A 、m=1,n=1;B 、m=1,n=0;C 、m=1,n=2;D 、m=2,n=1.9.如图,在平面直角坐标系中,矩形ABCD 的顶点A ,D 分别在x 轴、y 轴上,对角线BD∥x 轴,反比例函数)0x ,0k (x k y >>=的图象经过矩形对角线的交点E .若点A(2,0),D(0,4),则k 的值为( )A 、16;B 、20;C 、32;D 、40. 提示:易得△DAB∽△AOD,AD=52,则AB=54,所以DB=10,E(4,5).答案B.10.为践行“绿水青山就是金山银山”的重要思想,某森林保护区开展了寻找古树活动.如图,在一个坡度(或坡比)i =1:2.4的山坡AB 上发现有一棵占树CD .测得古树底端C 到山脚点A 的距离AC=26米,在距山脚点A 水平距离6米的点E 处,测得古树顶端D 的仰角∠AED=48°(古树CD 与山坡AB 的剖面、点E 在同一平面上,古树CD 与直线AE 垂直),则古树CD 的高度约为( )(参考数据:sin48°≈0.73,cos8°≈0.67,tan48°≈1.11)A 、17.0米;B 、21.9米;C 、23.3米;D 、33.3米.提示:延长DC 交直线AE 于F.在直角三角形ACF 中,易求得CF=10,AF=24,则EF=30. 所以DF=30×1.11=33.3.答案C.11.若关于x 的一元一次不等式组⎪⎩⎪⎨⎧+<-≤--2x 21x 321)2a 4(41x 的解集是x≤a,且关于y 的分式方程1y14y 1y a y 2=-----有非负整数解,则符合条件的所有整数a 的和为( ) A 、0; B 、1; C 、4; D 、6.O D CBA y/提示:由不等式组的条件得:a<5.由分式方程的条件得:a≥-3的奇数且a≠-1.综上所述:整数a 为-3,1,3.答案B.12.如图,在△ABC 中,D 是AC 边上的中点,连结BD ,把△BDC /沿BD 翻折,得到△BDC /,DC /与AB 交于点E ,连结AC /,若AD=AC /=2,BD=3则点D 到BC /的距离为( )A 、233;B 、7213;C 、7;D 、13. 提示:过D 作DF⊥BC /于F ,连接CC /交BD 于G.易得BD⊥CC /,AC /=AD=CD=C /D=2,则∠ADC /=60°,∠DC /G=30°,所以DG=1,C /G=3,BG=BD-DG=2,BC /=7.在△BC /D 中利用面积可求出DF.答案B.二、填空题(本大题6个小题,每小题4分,共24分)13.计算:10)21()3(-+-π= .提示:根据零指数幂、负整数指数幂.答案3.14. 今年五一节期间,重庆市旅游持续火爆,全市共接待境内外游客超过25600000人次,请把数25600000用科学记数法表示为 .提示:根据科学记数法的意义.答案2.56×107.15.一个不透明的布袋内装有除颜色外,其余完全相同的3个红球,2个白球,1个黄球,搅匀后,从中随机摸出一个球,记下颜色后放回搅匀,再从中随机摸出一个球,则两次都摸到红球的概率为 .提示:所有结果有36种,符合条件的有9种.答案41. 16.如图,在菱形ABCD 中,对角线AC ,BD 交于点O ,∠ABC=60°,AB=2,分别以点A 、点C 为圆心,以AO 的长为半径画弧分别与菱形的边相交,则图中阴影部分的面积为 .(结果保留π)提示:菱形面积减去三分之二圆面积.答案π-3232. 17.某公司快递员甲匀速骑车前往某小区送物件,出发几分钟后,快递员乙发现甲的手机落在公司,无法联系,于是乙匀速骑车去追赶甲.乙刚出发2分钟时,甲也发现自己手机落在公司,立刻按原路原速骑车回公司,2分钟后甲遇到乙,乙把手机给甲后立即原路原速返回公司,甲继续原路原速赶往某小区送物件,甲乙两人相距的路程y (米)与甲出发的时间x .则乙回到公司时,甲距公司的路程是 米.提示:由图知甲的速度为4000÷(12-2-2)=500米/分.乙的速度为4000÷(2+2)=1000米/分. 则乙回到公司时,用了4分钟,而此时甲前行了500×4=2000米.答案6000米.F E D C B A 18.在精准扶贫的过程中,某驻村服务队结合当地高山地形,决定在该村种植中药材川香、贝母、黄连增加经济收人,经过一段时间,该村已种植的川香、贝母、黄连面积之比4:3:5,根据中药材市场对川香、贝母、黄连的需求量,将在该村余下土地上继续种植这三种中药材,经测算需将余下土地面积的169种植黄连,则黄连种植总面积将达到这三种中药材种植总面积的4019.为使川香种植总面积与贝母种植总面积之比达到3:4,则该村还需种植贝母的面积与该村种植这三种中药材的总面积之比是 .提示:设已种植的川香面积为4x ,贝母面积为3x ,黄连面积5x.余下面积为y ,其中种植川香面积为a ,贝母面积为b ,黄连面积为y 169.由题意得: )y x 12(4019y 169x 5+=+,解得y=8x ,则y 169=x 29,所以x 27b a =+,又43b x 3a x 4=++. 解得a=x 21,b=3x.所以该村还需种植贝母面积3x ,该村种植这三种中药材的总面积为4x+3x+5x+8x=20x.答案3︰20.三、解答题(本大题7个小题,每小题10分,共70分)19.计算:(1)(x+y)2-y(2x+y)解:原式=x 2+2xy+y 2-2xy-y 2 ……(3分)=x 2 ……(5分)(2)2a 9a )2a a 49a (2--÷--+ 解:原式=2a )3a )(3a ()2a a 492a a 2a (2-+-÷--+-- =)3a )(3a (2a 2a )3a (2+--∙-- ……(9分) =3a 3a +- ……(10分) 20.如图,在△ABC 中,AB=AC ,D 是BC 边上的中点,连结AD ,BE 平分∠ABC 交AC 于点E ,过点E 作EF∥BC 交AB 于点F . (1)若∠C=36°,求∠BAD 的度数. (2)求证:FB=FE .解与证:(1)∵AB=AC,D 是BC 边上的中点.∴∠ADB=∠ADC=90°,∠BAD=∠CAD. ……(3分)∴∠CAD=90°-∠C=90°-36°=54°……(5分)(2)∵BE 平分∠ABC,∴∠EBF=∠EBC∵EF∥BC,∴∠BEF=∠EBC.∴∠EBF=∠BEF. ……(9分)∴FB=FE.21.每年夏季全国各地总有未成年人因溺水而丧失生命,令人痛心疾首.今年某校为确保学生安全,开展了“远离溺水·珍爱生命”的防溺水安全知识竞赛.现从该校七、八年级中各随机抽取10名学生的竞赛成绩(百分制)进行整理、描述和分析(成绩得分用x 表示,共分成四组:A .80≤x<85,B .85≤x<90,C .90≤x<95,D .95≤x≤100),下面给出了部分。

2019年重庆市中考数学试卷(A卷)(word版,含答案解析)

2019年重庆市中考数学试卷(A卷)(word版,含答案解析)

2019年重庆市中考数学试卷(A卷)副标题题号一二三四总分得分一、选择题(本大题共12小题,共48.0分)1.下列各数中,比−1小的数是()A. 2B. 1C. 0D. −22.如图是由4个相同的小正方体组成的一个立体图形,其主视图是()A.B.C.D.3.如图,△ABO∽△CDO,若BO=6,DO=3,CD=2,则AB的长是()A. 2B. 3C. 4D. 54.如图,AB是⊙O的直径,AC是⊙O的切线,A为切点,BC与⊙O交于点D,连结OD.若∠C=50°,则∠AOD的度数为()A. 40°B. 50°C. 80°D. 100°5.下列命题正确的是()A. 有一个角是直角的平行四边形是矩形B. 四条边相等的四边形是矩形C. 有一组邻边相等的平行四边形是矩形D. 对角线相等的四边形是矩形6. 估计(2√3+6√2)×√13的值应在( )A. 4和5之间B. 5和6之间C. 6和7之间D. 7和8之间7. 《九章算术》中有这样一个题:今有甲乙二人持钱不知其数.甲得乙半而钱五十,乙得甲太半而钱亦五十.问甲、乙持钱各几何?其意思为:今有甲乙二人,不如其钱包里有多少钱,若乙把其一半的钱给甲,则甲的数为50;而甲把其23的钱给乙,则乙的钱数也为50,问甲、乙各有多少钱?设甲的钱数为x ,乙的钱数为y ,则可建立方程组为( ) A. {x +12y =5023x +y =50 B. {x +12y =50x +23y =50 C. {12x +y =5023x +y =50 D. {12x +y =50x +23y =508. 按如图所示的运算程序,能使输出y 值为1的是( )A. m =1,n =1B. m =1,n =0C. m =1,n =2D. m =2,n =19. 如图,在平面直角坐标系中,矩形ABCD 的顶点A ,D 分别在x 轴、y 轴上,对角线BD//x 轴,反比例函数y =kx (k >0,x >0)的图象经过矩形对角线的交点E.若点A(2,0),D(0,4),则k 的值为( )A. 16B. 20C. 32D. 4010. 为践行“绿水青山就是金山银山”的重要思想,某森林保护区开展了寻找古树活动.如图,在一个坡度(或坡比)i =1:2.4的山坡AB 上发现有一棵古树CD.测得古树底端C 到山脚点A 的距离AC =26米,在距山脚点A 水平距离6米的点E 处,测得古树顶端D 的仰角∠AED =48°(古树CD 与山坡AB 的剖面、点E 在同一平面上,古树CD 与直线AE 垂直),则古树CD 的高度约为( )(参考数据:sin48°≈0.73,cos48°≈0.67,tan48°≈1.11)A. 17.0米B. 21.9米C. 23.3米D. 33.3米11. 若关于x 的一元一次不等式组{x −14(4a −2)≤123x−12<x +2的解集是x ≤a ,且关于y 的分式方程2y−a y−1−y−41−y =1有非负整数解,则符合条件的所有整数a 的和为( )A. 0B. 1C. 4D. 612. 如图,在△ABC 中,D 是AC 边上的中点,连结BD ,把△BDC 沿BD 翻折,得到△BDC′,DC′与AB 交于点E ,连结AC′,若AD =AC′=2,BD =3,则点D 到BC′的距离为( )A. 3√32 B. 3√217C. √7D. √13二、填空题(本大题共6小题,共24.0分) 13. 计算:(π−3)0+(12)−1=______.14. 今年五一节期间,重庆市旅游持续火爆,全市共接待境内外游客超过25600000人次,请把数25600000用科学记数法表示为____________.15. 一个不透明的布袋内装有除颜色外,其余完全相同的3个红球,2个白球,1个黄球,搅匀后,从中随机摸出一个球,记下颜色后放回搅匀,再从中随机摸出一个球,则两次都摸到红球的概率为____.16. 如图,在菱形ABCD 中,对角线AC ,BD 交于点O ,∠ABC =60°,AB =2,分别以点A 、点C 为圆心,以AO 的长为半径画弧分别与菱形的边相交,则图中阴影部分的面积为____.(结果保留π)17. 某公司快递员甲匀速骑车前往某小区送物件,出发几分钟后,快递员乙发现甲的手机落在公司,无法联系,于是乙匀速骑车去追赶甲.乙刚出发2分钟时,甲也发现自己手机落在公司,立刻按原路原速骑车回公司,2分钟后甲遇到乙,乙把手机给甲后立即原路原速返回公司,甲继续原路原速赶往某小区送物件,甲乙两人相距的路程y(米)与甲出发的时间x(分钟)之间的关系如图所示(乙给甲手机的时间忽略不计).则乙回到公司时,甲距公司的路程是______米.18. 在精准扶贫的过程中,某驻村服务队结合当地高山地形,决定在该村种植中药材川香、贝母、黄连增加经济收入.经过一段时间,该村已种植的川香、贝母、黄连面积之比4:3:5,是根据中药材市场对川香、贝母、黄连的需求量,将在该村余下土地上继续种植这三种中药材,经测算需将余下土地面积的916种植黄连,则黄连种植总面积将达到这三种中药材种植总面积的1940.为使川香种植总面积与贝母种植总面积之比达到3:4,则该村还需种植贝母的面积与该村种植这三种中药材的总面积之比是______.三、计算题(本大题共1小题,共10.0分)19.计算:(1)(x+y)2−y(2x+y)(2)(a+9−4aa−2)÷a2−9a−2四、解答题(本大题共7小题,共68.0分)20.如图,在△ABC中,AB=AC,D是BC边上的中点,连结AD,BE平分∠ABC交AC于点E,过点E作EF//BC交AB于点F.(1)若∠C=36°,求∠BAD的度数;(2)求证:FB=FE.21.每年夏季全国各地总有未成年人因溺水而丧失生命,令人痛心疾首.今年某校为确保学生安全,开展了“远离溺水⋅珍爱生命”的防溺水安全知识竞赛.现从该校七、八年级中各随机抽取10名学生的竞赛成绩(百分制)进行整理、描述和分析(成绩得分用x表示,共分成四组:A.80≤x<85,B.85≤x<90,C.90≤x<95,D.95≤x≤100),下面给出了部分信息:七年级10名学生的竞赛成绩是:99,80,99,86,99,96,90,100,89,82八年级10名学生的竞赛成绩在C组中的数据是:94,90,94七、八年级抽取的学生竞赛成绩统计表年级七年级八年级平均数9292中位数93b众数c100方差5250.4根据以上信息,解答下列问题:(1)直接写出上述图表中a,b,c的值;(2)根据以上数据,你认为该校七、八年级中哪个年级学生掌握防溺水安全知识较好?请说明理由(一条理由即可);(3)该校七、八年级共730人参加了此次竞赛活动,估计参加此次竞赛活动成绩优秀(x≥90)的学生人数是多少?22.《道德经》中的“道生一,一生二,二生三,三生万物”道出了自然数的特征.在数的学习过程中,我们会对其中一些具有某种特性的数进行研究,如学习自然数时,我们研究了奇数、偶数、质数、合数等.现在我们来研究另一种特珠的自然数−“纯数”.定义;对于自然数n,在计算n+(n+1)+(n+2)时,各数位都不产生进位,则称这个自然数n为“纯数”,例如:32是”纯数”,因为计算32+33+34时,各数位都不产生进位;23不是“纯数”,因为计算23+24+25时,个位产生了进位.(1)判断2019和2020是否是“纯数”?请说明理由;(2)求出不大于100的“纯数”的个数.23. 在初中阶段的函数学习中,我们经历了“确定函数的表达式--利用函数图象研究其性质一一运用函数解决问题“的学习过程.在画函数图象时,我们通过描点或平移的方法画出了所学的函数图象.同时,我们也学习了绝对值的意义|a|={a(a ≥0)−a(a <0).结合上面经历的学习过程,现在来解决下面的问题在函数y =|kx −3|+b 中,当x =2时,y =−4;当x =0时,y =−1. (1)求这个函数的表达式;(2)在给出的平面直角坐标系中,请用你喜欢的方法面出这个函数的图象井写出这个函数的一条性质;(3)已知函y =12x −3的图象如图所示,结合你所画的函数图象,直接写出不等式|kx −3|+b ≤12x −3的解集.24. 某文明小区50平方米和80平方米两种户型的住宅,50平方米住宅套数是80平方米住宅套数的2倍.物管公司月底按每平方米2元收取当月物管费,该小区全部住宅都人住且每户均按时全额缴纳物管费.(1)该小区每月可收取物管费90000元,问该小区共有多少套80平方米的住宅? (2)为建设“资源节约型社会”,该小区物管公司5月初推出活动一:“垃圾分类送礼物”,50平方米和80平方米的住户分别有40%和20%参加了此次括动.为提离大家的积扱性,6月份准备把活动一升级为活动二:“拉圾分类抵扣物管费”,同时终止活动一.经调査与测算,参加活动一的住户会全部参加活动二,参加活动二的住户会大幅增加,这样,6月份参加活动的50平方米的总户数在5月份参加活动的同户型户数的基础上将增加2a%,每户物管费将会减少310a%;6月份参加活动的80平方米的总户数在5月份参加活动的同户型户数的基础上将增加6a%,每户物管费将会减少14a%.这样,参加活动的这部分住户6月份总共缴纳的物管费比他们按原方式共缴纳的物管费将减少518a%,求a的值.25.如图,在平行四边形ABCD中,点E在边BC上,连结AE,EM⊥AE,垂足为E,交CD于点M,AF⊥BC,垂足为F,BH⊥AE,垂足为H,交AF于点N,点P 是AD上一点,连接CP.(1)若DP=2AP=4,CP=√17,CD=5,求△ACD的面积.(2)若AE=BN,AN=CE,求证:AD=√2CM+2CE.26.如图,在平面直角坐标系中,抛物线y=x2−2x−3与x轴交于点A,B(点A在点B的左侧),交y轴于点C,点D为抛物线的顶点,对称轴与x轴交于点E.(1)连结BD,点M是线段BD上一动点(点M不与端点B,D重合),过点M作MN⊥BD,交抛物线于点N(点N在对称轴的右侧),过点N作NH⊥x轴,垂足为H,交BD于点F,点P是线段OC上一动点,当MN取得最大值时,求HF+FP+13PC的最小值;(2)在(1)中,当MN取得最大值,HF+FP+13PC取得最小值时,把点P向上平移√22个单位得到点Q,连结AQ,把△AOQ绕点O顺时针旋转一定的角度α(0°<α<360°),得到△A′OQ′,其中边A′Q′交坐标轴于点G.在旋转过程中,是否存在一点G,使得∠Q′=∠Q′OG?若存在,请直接写出所有满足条件的点Q′的坐标;若不存在,请说明理由.答案和解析1.【答案】D【解析】解:∵−2<−1<0<2,∴比−1小的数是−2,故选:D.根据两个负数比较大小,绝对值大的负数反而小,可得答案.本题考查了有理数的大小比较,注意:正数都大于0,负数都小于0,两个负数比较大小,其绝对值大的反而小.2.【答案】A【解析】解:从正面看易得第一层有2个正方形,第二层左边有一个正方形,如图所示:.故选:A.找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.本题考查了三视图的知识,主视图是从物体的正面看得到的视图.3.【答案】C【解析】解:∵△ABO∽△CDO,∴BODO =ABDC,∵BO=6,DO=3,CD=2,∴63=AB2,解得:AB=4.故选:C.直接利用相似三角形的性质得出对应边之间的关系进而得出答案.此题主要考查了相似三角形的性质,正确得出对应边之间关系是解题关键.4.【答案】C【解析】解:∵AC是⊙O的切线,∴AB⊥AC,∴∠BAC=90°,∵∠C=50°,∴∠ABC=40°,∵OD=OB,∴∠ODB=∠ABC=40°,∴∠AOD=∠ODB+∠ABC=80°;故选:C.由切线的性质得出∠BAC=90°,求出∠ABC=40°,由等腰三角形的性质得出∠ODB=∠ABC=40°,再由三角形的外角性质即可得出结果.本题考查了切线的性质,等腰三角形的性质、直角三角形两锐角互余、三角形的外角性质,熟练运用切线的性质是本题的关键.5.【答案】A【解析】解:A 、有一个角是直角的平行四边形是矩形,是真命题; B 、四条边相等的四边形是菱形,是假命题;C 、有一组邻边相等的平行四边形是菱形,是假命题;D 、对角线相等的平行四边形是矩形,是假命题; 故选:A .根据矩形的判定方法判断即可.本题主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题,本题熟练掌握矩形的判定方法是解题的关键. 6.【答案】C【解析】解:(2√3+6√2)×√13=(2√3+6√2)×√33=2√3×√33+6√2×√33=2+2√6∵2√6=√24,4<√24<5,∴6<2+√24<7,即6<2+2√6<7 故选C .先根据二次根式的乘法进行计算,再对二次根式进行估算,即可得出答案.本题考查了二次根式的运算和无理数的估算,能估算出2√6的取值范围是解本题的关键. 7.【答案】A【解析】【分析】本题考查了由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.设甲的钱数为x ,人数为y ,根据“若乙把其一半的钱给甲,则甲的钱数为50;而甲把其23的钱给乙,则乙的钱数也能为50”,即可得出关于x ,y 的二元一次方程组,此题得解. 【解答】解:设甲的钱数为x ,乙的钱数为y , 依题意,得:{x +12y =5023x +y =50.故选:A .8.【答案】D【解析】解:当m =1,n =1时,y =2m +1=2+1=3, 当m =1,n =0时,y =2n −1=−1, 当m =1,n =2时,y =2m +1=3, 当m =2,n =1时,y =2n −1=1, 故选:D .根据题意一一计算即可判断.本题考查代数式求值,有理数的混合运算等知识,解题的关键是理解题意,属于中考常考题型.9.【答案】B【解析】【分析】本题考查了矩形的性质,勾股定理,反比例函数图象上点的坐标特征,线段中点坐标公式等知识,求出E点坐标是解题的关键.根据平行于x轴的直线上任意两点纵坐标相同,可设B(x,4).利用矩形的性质得出E为BD中点,∠DAB=90°.根据线段中点坐标公式得出E(12x,4).由勾股定理得出AD2+AB2=BD2,列出方程22+42+(x−2)2+42=x2,求出x,得到E点坐标,代入y=kx,利用待定系数法求出k.【解答】解:∵BD//x轴,D(0,4),∴B、D两点纵坐标相同,都为4,∴可设B(x,4).∵矩形ABCD的对角线的交点为E,∴E为BD中点,∠DAB=90°.∴E(12x,4).∵∠DAB=90°,∴AD2+AB2=BD2,∵A(2,0),D(0,4),B(x,4),∴22+42+(x−2)2+42=x2,解得x=10,∴E(5,4).∵反比例函数y=kx(k>0,x>0)的图象经过点E,∴k=5×4=20.故选:B.10.【答案】C【解析】解:如图,∵CFAF =1:2.4=512,∴设CF=5k,AF=12k,∴AC=√CF2+AF2=13k=26,∴k=2,∴AF=24,CF=10,∵AE=6,∴EF=6+24=30,∵∠DEF=48°,∴tan48°=DFEF =DF30=1.11,∴DF=33.3,∴CD=33.3−10=23.3,答:古树CD的高度约为23.3米,故选:C.如图,根据已知条件得到CF AF =1:2.4=512,设CF =5k ,AF =12k ,根据勾股定理得到AC =√CF 2+AF 2=13k =26,求得AF =24,CF =10,得到EF =6+24=30,根据三角函数的定义即可得到结论.本题考查解直角三角形的应用−仰角俯角问题,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型. 11.【答案】B【解析】【分析】本题综合考查了含参一元一次不等式组的整数解,含参分式方程得问题,需要考虑的因素较多,属于易错题.先解关于x 的一元一次不等式组{x −14(4a −2)≤123x−12<x +2,再根据其解集是x ≤a ,得a 小于5;再解分式方程,根据其有非负整数解,同时考虑增根的情况,得出a 的值,再求和即可. 【解答】解:由不等式组{x −14(4a −2)≤123x−12<x +2得:{x ≤a x <5∵解集是x ≤a ,∴a <5;由关于y 的分式方程2y−ay−1−y−41−y =1得2y −a +y −4=y −1 ∴y =3+a 2,∵有非负整数解, ∴3+a 2≥0,∴a ≥−3,且a =−3,a =−1(舍,此时分式方程为增根),a =1,a =3 它们的和为1. 故选:B . 12.【答案】B【解析】解:如图,连接CC′,交BD 于点M ,过点D 作DH ⊥BC′于点H ,∵AD =AC′=2,D 是AC 边上的中点, ∴DC =AD =2,由翻折知,△BDC≌△BDC′,BD 垂直平分CC′, ∴DC =DC′=2,BC =BC′,CM =C′M , ∴AD =AC′=DC′=2, ∴△ADC′为等边三角形,∴∠ADC′=∠AC′D =∠C′AC =60°, ∵DC =DC′,∴∠DCC′=∠DC′C =12×60°=30°, 在Rt △C′DM 中,∠DC′C =30°,DC′=2,∴DM =1,C′M =√3DM =√3,∴BM=BD−DM=3−1=2,在Rt△BMC′中,BC′=√BM2+C′M2=√22+(√3)2=√7,∵S△BDC′=12BC′⋅DH=12BD⋅CM,∴√7DH=3×√3,∴DH=3√217,故选:B.连接CC′,交BD于点M,过点D作DH⊥BC′于点H,由翻折知,△BDC≌△BDC′,BD 垂直平分CC′,证△ADC′为等边三角形,利用解直角三角形求出DM=1,C′M=√3DM=√3,BM=2,在Rt△BMC′中,利用勾股定理求出BC′的长,在△BDC′中利用面积法求出DH的长.本题考查了轴对称的性质,解直角三角形,勾股定理等,解题关键是会通过面积法求线段的长度.13.【答案】3【解析】【分析】本题主要考查零指数幂和负整数指数幂,解题的关键是掌握a−p=1a p(a≠0,p为正整数)及a0=1(a≠0).根据零指数幂和负整数指数幂计算可得.【解答】解:原式=1+2=3,故答案为3.14.【答案】2.56×107【解析】解:25600000=2.56×107.故答案为:2.56×107.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于25600000有8位,所以可以确定n=8−1=7.此题考查科学记数法表示较大的数的方法,准确确定n值是关键.15.【答案】14【解析】【分析】本题考查了列表法或树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.先画树状图展示所有36种等可能的结果数,再找出两次都摸到红球的结果数,然后根据概率公式求解.【解答】解:画树状图为:共有36种等可能的结果数,其中两次都摸到红球的结果数为9,所以两次都摸到红球的概率为936=14.故答案为14.16.【答案】2√3−23π【解析】解:∵四边形ABCD是菱形,∴AC⊥BD,∠ABO=12∠ABC=30°,∠BAD=∠BCD=120°,∴AO=12AB=1,由勾股定理得,OB=√AB2−OA2=√3,∴AC=2,BD=2√3,∴阴影部分的面积=12×2×2√3−120π×12360×2=2√3−23π,故答案为:2√3−23π.根据菱形的性质得到AC⊥BD,∠ABO=12∠ABC=30°,∠BAD=∠BCD=120°,根据直角三角形的性质求出AC、BD,根据扇形面积公式、菱形面积公式计算即可.本题考查的是扇形面积计算、菱形的性质,掌握扇形面积公式是解题的关键.17.【答案】6000【解析】解:由题意可得,甲的速度为:4000÷(12−2−2)=500米/分,乙的速度为:4000+500×2−500×22+2=1000米/分,乙从与甲相遇到返回公司用的时间为4分钟,则乙回到公司时,甲距公司的路程是:500×(12−2)−500×2+500×4=6000(米),故答案为:6000.根据函数图象和题意可以分别求得甲乙的速度和乙从与甲相遇到返回公司用的时间,从而可以求得当乙回到公司时,甲距公司的路程.本题考查一次函数的应用,解答本题的关键是明确题意,利用数形结合的思想解答.18.【答案】3:20【解析】解:设该村已种药材面积x,余下土地面积为y,还需种植贝母的面积为z,则总面积为(x+y),川香已种植面积13x、贝母已种植面积14x,黄连已种植面积512x依题意可得,{512x+916y=1940(x+y)①[13x+(y−916y−z)]:(14x+z)=3:4②由①得x=32y③,将③代入②,z=38y,∴贝母的面积与该村种植这三种中药材的总面积之比=zx+y =38y32y+y=320,故答案为3:20.设该村已种药材面积x,余下土地面积为y,还需种植贝母的面积为z,则总面积为(x+y),川香已种植面积13x、贝母已种植面积14x,黄连已种植面积512x依题意列出方程组,用y的代数式分别表示x、y,然后进行计算即可.本题考查了三元一次方程组,正确找出等量关系并列出方程是解题的关键.19.【答案】解:(1)(x+y)2−y(2x+y)=x2+2xy+y2−2xy−y2=x2;(2)(a+9−4aa−2)÷a2−9a−2=a(a−2)+(9−4a)a−2⋅a−2(a+3)(a−3)=a2−2a+9−4a (a+3)(a−3)=(a−3)2 (a+3)(a−3)=a−3a+3.【解析】(1)根据完全平方公式、单项式乘多项式可以解答本题;(2)根据分式的加法和除法可以解答本题.本题考查分式的混合运算、完全平方公式、单项式乘多项式,解答本题的关键是明确它们各自的计算方法.20.【答案】(1)解:∵AB=AC,∴∠C=∠ABC,∵∠C=36°,∴∠ABC=36°,∵BD=CD,AB=AC,∴AD⊥BC,∴∠ADB=90°,∴∠BAD=90°−36°=54°.(2)证明:∵BE平分∠ABC,∴∠FBE=∠CBE=12∠ABC,∵EF//BC,∴∠CBE=∠FEB,∴∠FBE=∠FEB,∴FB=FE.【解析】(1)利用等腰三角形的三线合一的性质证明∠ADB=90°,再利用等腰三角形的性质求出∠ABC即可解决问题.(2)只要证明∠FBE=∠FEB即可解决问题.本题考查等腰三角形的性质,平行线的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.)×100=40,21.【答案】解:(1)a=(1−20%−10%−310∵八年级10名学生的竞赛成绩的中位数是第5和第6个数据的平均数,=94;∴b=94+942∵在七年级10名学生的竞赛成绩中99出现的次数最多,∴c=99;(2)八年级学生掌握防溺水安全知识较好,理由:虽然七、八年级的平均分均为92分,但八年级的中位数和众数均高于七年级.=468人,(3)参加此次竞赛活动成绩优秀(x≥90)的学生人数=720×1320答:参加此次竞赛活动成绩优秀(x≥90)的学生人数是468人.【解析】(1)根据扇形统计图、中位数和众数的定义即可得到结论;(2)根据八年级的中位数和众数均高于七年级于是得到八年级学生掌握防溺水安全知识较好;(3)利用样本估计总体思想求解可得.本题考查读扇形统计图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.22.【答案】解:(1)2019不是“纯数”,2020是“纯数”,理由:当n=2019时,n+1=2020,n+2=2021,∵个位是9+0+1=10,需要进位,∴2019不是“纯数”;当n=2020时,n+1=2021,n+2=2022,∵个位是0+1+2=3,不需要进位,十位是2+2+2=6,不需要进位,百位为0+0+ 0=0,不需要进位,千位为2+2+2=6,不需要进位,∴2020是“纯数”;(2)由题意可得,连续的三个自然数个位数字是0,1,2,其他位的数字为0,1,2,3时,不会产生进位,当这个数是一位自然数时,只能是0,1,2,共三个,当这个自然数是两位自然数时,十位数字是1,2,3,个位数是0,1,2,共九个,当这个数是三位自然数是,只能是100,由上可得,不大于100的“纯数”的个数为3+9+1=13,即不大于100的“纯数”的有13个.【解析】本题考查整式的加减、有理数的加法、新定义,解答本题的关键是明确题意,利用题目中的新定义解答.(1)根据题目中的新定义可以解答本题,注意各数位都不产生进位的自然数才是“纯数”;(2)根据题意可以推出不大于100的“纯数”的个数,本题得以解决.23.【答案】解:(1)∵在函数y =|kx −3|+b 中,当x =2时,y =−4;当x =0时,y =−1, ∴{|2k −3|+b =−4|−3|+b =−1,得{k =32b =−4, ∴这个函数的表达式是y =|32x −3|−4; (2)∵y =|32x −3|−4,∴y ={32x −7(x ≥2)−32x −1(x <2),∴函数y =32x −7过点(2,−4)和点(4,−1);函数y =−32x −1过点(0,−1)和点(−2,2); 该函数的图象如图所示,性质是当x >2时,y 随x 的增大而增大(答案不唯一);(3)由函数图象可得,不等式|kx −3|+b ≤12x −3的解集是1≤x ≤4.【解析】本题考查一次函数的应用、一元一次不等式与一次函数的关系,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.(1)根据在函数y =|kx −3|+b 中,当x =2时,y =−4;当x =0时,y =−1,可以求得该函数的表达式;(2)根据(1)中的表达式可以画出该函数的图象并写出它的一条性质; (3)根据图象可以直接写出所求不等式的解集.24.【答案】(1)解:设该小区有x 套80平方米住宅,则50平方米住宅有2x 套,由题意得:2(50×2x +80x)=90000, 解得x =250答:该小区共有250套80平方米的住宅. (2)参与活动一:50平方米住宅每户所交物管费为100元,有500×40%=200户参与活动一, 80平方米住宅每户所交物管费为160元,有250×20%=50户参与活动一; 参与活动二:50平方米住宅每户所交物管费为100(1−310a%)元,有200(1+2a%)户参与活动二; 80平方米住宅每户所交物管费为160(1−14a%)元,有50(1+6a%)户参与活动二.由题意得100(1−310a%)⋅200(1+2a%)+160(1−14a%)⋅50(1+6a%)=[200(1+2a%)×100+50(1+6a%)×160](1−518a%)令t=a%,化简得t(2t−1)=0∴t1=0(舍),t2=12,∴a=50.答:a的值为50.【解析】(1)设该小区有x套80平方米住宅,则50平方米住宅有2x套,根据物管费90000元,可列方程求解;(2)50平方米住宅有500×40%=200户参与活动一,80平方米住宅有250×20%=50户参与活动一;50平方米住宅每户所交物管费为100(1−310a%)元,有200(1+2a%)户参与活动二;80平方米住宅每户所交物管费为160(1−14a%)元,有50(1+6a%)户参与活动二.根据参加活动的这部分住户6月份总共缴纳的物管费比他们按原方式共缴纳的物管费将减少518a%,列出方程求解即可.本题是一元二次方程的综合应用题,数据较多,分析清楚题目中相关数据,根据等量关系列出方程是解题的关键.25.【答案】(1)解:作CG⊥AD于G,如图1所示:设PG=x,则DG=4−x,在Rt△PGC中,GC2=CP2−PG2=17−x,在Rt△DGC中,GC2=CD2−GD2=52−(4−x)2=9+8x−x2,∴17−x2=9+8x−x2,解得:x=1,即PG=1,∴GC=4,∵DP=2AP=4,∴AD=6,∴S△ACD=12×AD×CG=12×6×4=12;(2)证明:连接NE,如图2所示:∵BH⊥AE,AF⊥BC,AE⊥EM,∴∠AEB+∠NBF=∠AEB+∠EAF=∠AEB+∠MEC=90°,∴∠NBF=∠EAF=∠MEC,在△NBF和△EAF中,{∠NBF=∠EAF ∠BFN=∠EFA AE=BN,∴△NBF≌△EAF(AAS),∴BF=AF,NF=EF,∴∠ABC=45°,∠ENF=45°,FC=AF=BF,∴∠ANE =∠BCD =135°,AD =BC =2AF , 在△ANE 和△ECM 中,{∠MEC =∠EAFAN =EC ∠ANE =∠ECM ,∴△ANE≌△ECM(ASA), ∴CM =NE ,又∵NF =√22NE =√22MC ,∴AF =√22MC +EC ,∴AD =√2MC +2EC .【解析】(1)作CG ⊥AD 于G ,设PG =x ,则DG =4−x ,在Rt △PGC 和Rt △DGC 中,由勾股定理得出方程,解方程得出x =1,即PG =1,得出GC =4,求出AD =6,由三角形面积公式即可得出结果;(2)连接NE ,证明△NBF≌△EAF 得出BF =AF ,NF =EF ,再证明△ANE≌△ECM 得出CM =NE ,由NF =√22NE =√22MC ,得出AF =√22MC +EC ,即可得出结论.本题考查了平行四边形的性质、全等三角形的判定与性质、勾股定理、三角形面积公式等知识;熟练掌握平行四边形的性质,证明三角形全等是解题的关键. 26.【答案】解:(1)如图1∵抛物线y =x 2−2x −3与x 轴交于点A ,B(点A 在点B 的左侧),交y 轴于点C ∴令y =0解得:x 1=−1,x 2=3,令x =0,解得:y =−3, ∴A(−1,0),B(3,0),C(0,−3) ∵点D 为抛物线的顶点,且−b2 a =−−22=1,4ac−b 24a=4×1×(−3)−44×1=−4∴点D 的坐标为D(1,−4)∴直线BD 的解析式为:y =2x −6,由题意,可设点N(m,m 2−2m −3),则点F(m,2m −6)∴|NF|=(2m −6)−(m 2−2m −3)=−m 2+4m −3 ∴当m =−b2 a =2时,NF 取到最大值,此时MN 取到最大值,此时HF =2,此时,N(2,−3),F(2,−2),H(2,0)在x轴上找一点K(−3√24,0),连接CK,过点F作CK的垂线交CK于点J点,交y轴于点P,∴sin∠OCK=13,直线KC的解析式为:y=−2√2 x−3,且点F(2,−2),∴PJ=13PC,直线FJ的解析式为:y=√24x−4+√22∴点J(2−2√29,−19−4√29)∴FP+13PC的最小值即为FJ的长,且|FJ|=13+4√23∴|HF+FP+13PC|min=7+4√23;(2)由(1)知,点P(0,−4+√22),∵把点P向上平移√22个单位得到点Q∴点Q(0,−2)∴在Rt△AOQ中,∠AOG=90°,AQ=√5,取AQ的中点G,连接OG,则OG=GQ=1 2AQ=√52,此时,∠AQO=∠GOQ把△AOQ绕点O顺时针旋转一定的角度α(0°<α<360°),得到△A′OQ′,其中边A′Q′交坐标轴于点G①如图2G点落在y轴的负半轴,则G(0,−√52),过点Q′作Q′I⊥x轴交x轴于点I,且∠GOQ′=∠Q′则∠IOQ′=∠OA′Q′=∠OAQ,∵sin∠OAQ=OQAQ=√5=2√55∴sin∠IOQ′=IQ′OQ′=IQ′2=2√55,解得:|IO|=4√55∴在Rt△OIQ′中根据勾股定理可得|OI|=2√55∴点Q′的坐标为Q′(2√55,−4√55);②如图3,当G点落在x轴的正半轴上时,同理可得Q′(4√55,2√5 5)③如图4当G点落在y轴的正半轴上时,同理可得Q′(−2√55,4√5 5)④如图5当G点落在x轴的负半轴上时,同理可得Q′(−4√55,−2√55)综上所述,所有满足条件的点Q′的坐标为:(2√55,−4√55),(4√55,2√55),(−2√55,4√55),(−4√55,−2√55)【解析】(1)先确定点F的位置,可设点N(m,m2−2m−3),则点F(m,2m−6),可得|NF|=(2m−6)−(m2−2m−3)=−m2+4m−3,根据二次函数的性质得m=−b2 a=2时,NF取到最大值,此时MN取到最大值,此时HF=2,此时F(2,−2),在x轴上找一点K(−3√24,0),连接CK,过点F作CK的垂线交CK于点J点,交y轴于点P,sin∠OCK=13,直线KC的解析式为:y=−2√2 x−3,从而得到直线FJ的解析式为:y=√24x−4+√22联立解出点J(2−2√29,−19−4√29)得FP+13PC的最小值即为FJ的长,且|FJ|=1 3+4√23最后得出|HF+FP+13PC|min=7+4√23;(2)由题意可得出点Q(0,−2),AQ=√5,应用“直角三角形斜边上的中线等于斜边上的一半”取AQ的中点G,连接OG,则OG=GQ=12AQ=√52,此时,∠AQO=∠GOQ,把△AOQ绕点O顺时针旋转一定的角度α(0°<α<360°),得到△A′OQ′,其中边A′Q′交坐标轴于点G,则用OG=GQ′,分四种情况求解.本题主要考查了二次函数图象与坐标轴的交点求法和与几何图形结合的综合能力的培养及直角三角形的中线性质.要会利用数形结合的思想把代数和几何图形结合起来,利用通过求点的坐标来表示线段的长度,从而求出线段之间的关系.。

2019年重庆市中考数学试卷解析版(a卷)

2019年重庆市中考数学试卷解析版(a卷)

2019年重庆市中考数学试卷解析版(A卷)一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑.1.下列各数中,比﹣1小的数是()A.2B.1C.0D.﹣2解:∵﹣2<﹣1<0<2,∴比﹣1小的数是﹣2,故选:D.2.如图是由4个相同的小正方体组成的一个立体图形,其主视图是()A.B.C.D.解:从正面看易得第一层有2个正方形,第二层左边有一个正方形,如图所示:.故选:A.3.如图,△ABO∽△CDO,若BO=6,DO=3,CD=2,则AB的长是()A.2B.3C.4D.5解:∵△ABO∽△CDO,∴BODO =ABDC,∵BO=6,DO=3,CD=2,∴63=AB 2,解得:AB =4. 故选:C .4.如图,AB 是⊙O 的直径,AC 是⊙O 的切线,A 为切点,BC 与⊙O 交于点D ,连结OD .若∠C =50°,则∠AOD 的度数为( )A .40°B .50°C .80°D .100°解:∵AC 是⊙O 的切线, ∴AB ⊥AC , ∴∠BAC =90°, ∵∠C =50°, ∴∠ABC =40°, ∵OD =OB ,∴∠ODB =∠ABC =40°, ∴∠AOD =∠ODB +∠ABC =80°; 故选:C .5.下列命题正确的是( )A .有一个角是直角的平行四边形是矩形B .四条边相等的四边形是矩形C .有一组邻边相等的平行四边形是矩形D .对角线相等的四边形是矩形解:A 、有一个角是直角的平行四边形是矩形,是真命题; B 、四条边相等的四边形是菱形,是假命题;C 、有一组邻边相等的平行四边形是菱形,是假命题;D 、对角线相等的平行四边形是矩形,是假命题; 故选:A .6.估计(2√3+6√2)×√13的值应在( ) A .4和5之间B .5和6之间C .6和7之间D .7和8之间解:(2√3+6√2)×√13,=2+6√23,=2+√36×23, =2+√24, ∵4<√24<5, ∴6<2+√24<7, 故选:C .7.《九章算术》中有这样一个题:今有甲乙二人持钱不知其数.甲得乙半而钱五十,乙得甲太半而钱亦五十.问甲、乙持钱各几何?其意思为:今有甲乙二人,不知其钱包里有多少钱,若乙把其一半的钱给甲,则甲的数为50;而甲把其23的钱给乙,则乙的钱数也为50,问甲、乙各有多少钱?设甲的钱数为x ,乙的钱数为y ,则可建立方程组为( ) A .{x +12y =5023x +y =50B .{x +12y =50x +23y =50C .{12x +y =5023x +y =50 D .{12x +y =50x +23y =50解:设甲的钱数为x ,乙的钱数为y , 依题意,得:{x +12y =5023x +y =50. 故选:A .8.按如图所示的运算程序,能使输出y 值为1的是( )A .m =1,n =1B .m =1,n =0C .m =1,n =2D .m =2,n =1解:当m =1,n =1时,y =2m +1=2+1=3, 当m =1,n =0时,y =2n ﹣1=﹣1, 当m =1,n =2时,y =2m +1=3, 当m =2,n =1时,y =2n ﹣1=1, 故选:D .9.如图,在平面直角坐标系中,矩形ABCD 的顶点A ,D 分别在x 轴、y 轴上,对角线BD ∥x 轴,反比例函数y =kx(k >0,x >0)的图象经过矩形对角线的交点E .若点A (2,0),D (0,4),则k 的值为( )A .16B .20C .32D .40解:∵BD ∥x 轴,D (0,4), ∴B 、D 两点纵坐标相同,都为4, ∴可设B (x ,4).∵矩形ABCD 的对角线的交点为E , ∴E 为BD 中点,∠DAB =90°. ∴E (12x ,4).∵∠DAB =90°, ∴AD 2+AB 2=BD 2,∵A (2,0),D (0,4),B (x ,4), ∴22+42+(x ﹣2)2+42=x 2, 解得x =10, ∴E (5,4).∵反比例函数y =kx (k >0,x >0)的图象经过点E , ∴k =5×4=20.故选:B.10.为践行“绿水青山就是金山银山”的重要思想,某森林保护区开展了寻找古树活动.如图,在一个坡度(或坡比)i=1:2.4的山坡AB上发现有一棵古树CD.测得古树底端C 到山脚点A的距离AC=26米,在距山脚点A水平距离6米的点E处,测得古树顶端D 的仰角∠AED=48°(古树CD与山坡AB的剖面、点E在同一平面上,古树CD与直线AE垂直),则古树CD的高度约为()(参考数据:sin48°≈0.73,cos48°≈0.67,tan48°≈1.11)A.17.0米B.21.9米C.23.3米D.33.3米解:如图,设CD与EA交于F,∵CFAF=1:2.4=512,∴设CF=5k,AF=12k,∴AC=√CF2+AF2=13k=26,∴k=2,∴AF=24,CF=10,∵AE=6,∴EF=6+24=30,∵∠DEF=48°,∴tan48°=DFEF=DF30=1.11,∴DF=33.3,∴CD=33.3﹣10=23.3,答:古树CD的高度约为23.3米,故选:C.11.若关于x 的一元一次不等式组{x −14(4a −2)≤123x−12<x +2的解集是x ≤a ,且关于y 的分式方程2y−a y−1−y−41−y=1有非负整数解,则符合条件的所有整数a 的和为( )A .0B .1C .4D .6解:由不等式组{x −14(4a −2)≤123x−12<x +2得:{x ≤a x <5∵解集是x ≤a , ∴a <5;由关于y 的分式方程2y−a y−1−y−41−y=1得2y ﹣a +y ﹣4=y ﹣1∴y =3+a2, ∵有非负整数解, ∴3+a 2≥0,∴5>a ≥﹣3,且a =﹣3,a =﹣1(舍,此时分式方程为增根),a =1,a =3 它们的和为1. 故选:B .12.如图,在△ABC 中,D 是AC 边上的中点,连结BD ,把△BDC 沿BD 翻折,得到△BDC ',DC ′与AB 交于点E ,连结AC ',若AD =AC ′=2,BD =3,则点D 到BC ′的距离为( )A .3√32B .3√217C .√7D .√13解:如图,连接CC ',交BD 于点M ,过点D 作DH ⊥BC '于点H ,∵AD =AC ′=2,D 是AC 边上的中点, ∴DC =AD =2,由翻折知,△BDC ≌△BDC ',BD 垂直平分CC ', ∴DC =DC '=2,BC =BC ',CM =C 'M , ∴AD =AC ′=DC '=2, ∴△ADC '为等边三角形,∴∠ADC '=∠AC 'D =∠C 'AC =60°, ∵DC =DC ',∴∠DCC '=∠DC 'C =12×60°=30°, 在Rt △C 'DM 中, ∠DC 'C =30°,DC '=2, ∴DM =1,C 'M =√3DM =√3, ∴BM =BD ﹣DM =3﹣1=2, 在Rt △BMC '中,BC '=2+C′M 2=√22+(√3)2=√7, ∵S △BDC '=12BC '•DH =12BD •CM , ∴√7DH =3×√3, ∴DH =3√217, 故选:B .二、填空题:(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的横线上.13.计算:(π﹣3)0+(12)﹣1= 3 .解:原式=1+2=3,故答案为:3.14.今年五一节期间,重庆市旅游持续火爆,全市共接待境内外游客超过25600000人次,请把数25600000用科学记数法表示为 2.56×107 . 解:25600000=2.56×107. 故答案为:2.56×107.15.一个不透明的布袋内装有除颜色外,其余完全相同的3个红球,2个白球,1个黄球,搅匀后,从中随机摸出一个球,记下颜色后放回搅匀,再从中随机摸出一个球,则两次都摸到红球的概率为 14.解:画树状图为:共有36种等可能的结果数,其中两次都摸到红球的结果数为9, 所以两次都摸到红球的概率为936=14.故答案为:14.16.如图,在菱形ABCD 中,对角线AC ,BD 交于点O ,∠ABC =60°,AB =2,分别以点A 、点C 为圆心,以AO 的长为半径画弧分别与菱形的边相交,则图中阴影部分的面积为 2√3−23π .(结果保留π)解:∵四边形ABCD 是菱形,∴AC ⊥BD ,∠ABO =12∠ABC =30°,∠BAD =∠BCD =120°, ∴AO =12AB =1,由勾股定理得,OB =√AB 2−OA 2=√3, ∴AC =2,BD =2√3,∴阴影部分的面积=12×2×2√3−120π×12360×2=2√3−23π,故答案为:2√3−23π.17.某公司快递员甲匀速骑车前往某小区送物件,出发几分钟后,快递员乙发现甲的手机落在公司,无法联系,于是乙匀速骑车去追赶甲.乙刚出发2分钟时,甲也发现自己手机落在公司,立刻按原路原速骑车回公司,2分钟后甲遇到乙,乙把手机给甲后立即原路原速返回公司,甲继续原路原速赶往某小区送物件,甲乙两人相距的路程y (米)与甲出发的时间x (分钟)之间的关系如图所示(乙给甲手机的时间忽略不计).则乙回到公司时,甲距公司的路程是 6000 米.解:由题意可得,甲的速度为:4000÷(12﹣2﹣2)=500米/分, 乙的速度为:4000+500×2−500×22+2=1000米/分,乙从与甲相遇到返回公司用的时间为4分钟,则乙回到公司时,甲距公司的路程是:500×(12﹣2)﹣500×2+500×4=6000(米), 故答案为:6000.18.在精准扶贫的过程中,某驻村服务队结合当地高山地形,决定在该村种植中药材川香、贝母、黄连增加经济收入.经过一段时间,该村已种植的川香、贝母、黄连面积之比4:3:5,是根据中药材市场对川香、贝母、黄连的需求量,将在该村余下土地上继续种植这三种中药材,经测算需将余下土地面积的916种植黄连,则黄连种植总面积将达到这三种中药材种植总面积的1940.为使川香种植总面积与贝母种植总面积之比达到3:4,则该村还需种植贝母的面积与该村种植这三种中药材的总面积之比是 3:20 .解:设该村已种药材面积x ,余下土地面积为y ,还需种植贝母的面积为z ,则总面积为(x +y ),川香已种植面积13x 、贝母已种植面积14x ,黄连已种植面积512x依题意可得,{512x +916y =1940(x +y)①[13x +(y −916y −z)]:(14x +z)=3:4②由①得 x =32y③, 将③代入②,z =38y ,∴贝母的面积与该村种植这三种中药材的总面积之比=z x+y =38y 32y+y =320,故答案为3:20.三、解答题:(本大题7个小题,每小题10分,共70分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡中对应的位置上.19.(10分)计算: (1)(x +y )2﹣y (2x +y ) (2)(a +9−4aa−2)÷a 2−9a−2 解:(1)(x +y )2﹣y (2x +y ) =x 2+2xy +y 2﹣2xy ﹣y 2 =x 2; (2)(a +9−4a a−2)÷a 2−9a−2 =a(a−2)+(9−4a)a−2⋅a−2(a+3)(a−3) =a 2−2a+9−4a(a+3)(a−3)=(a−3)2(a+3)(a−3)=a−3a+3.20.(10分)如图,在△ABC 中,AB =AC ,D 是BC 边上的中点,连结AD ,BE 平分∠ABC 交AC 于点E ,过点E 作EF ∥BC 交AB 于点F . (1)若∠C =36°,求∠BAD 的度数; (2)求证:FB =FE .(1)解:∵AB=AC,∴∠C=∠ABC,∵∠C=36°,∴∠ABC=36°,∵BD=CD,AB=AC,∴AD⊥BC,∴∠ADB=90°,∴∠BAD=90°﹣36°=54°.(2)证明:∵BE平分∠ABC,∴∠ABE=∠CBE=12∠ABC,∵EF∥BC,∴∠FEB=∠CBE,∴∠FBE=∠FEB,∴FB=FE.21.(10分)每年夏季全国各地总有未成年人因溺水而丧失生命,令人痛心疾首.今年某校为确保学生安全,开展了“远离溺水•珍爱生命”的防溺水安全知识竞赛.现从该校七、八年级中各随机抽取10名学生的竞赛成绩(百分制)进行整理、描述和分析(成绩得分用x表示,共分成四组:A.80≤x<85,B.85≤x<90,C.90≤x<95,D.95≤x≤100),下面给出了部分信息:七年级10名学生的竞赛成绩是:99,80,99,86,99,96,90,100,89,82八年级10名学生的竞赛成绩在C组中的数据是:94,90,94七、八年级抽取的学生竞赛成绩统计表年级七年级八年级平均数9292中位数93b众数c100方差5250.4根据以上信息,解答下列问题:(1)直接写出上述图表中a,b,c的值;(2)根据以上数据,你认为该校七、八年级中哪个年级学生掌握防溺水安全知识较好?请说明理由(一条理由即可);(3)该校七、八年级共720人参加了此次竞赛活动,估计参加此次竞赛活动成绩优秀(x ≥90)的学生人数是多少?解:(1)a=(1﹣20%﹣10%−310)×100=40,∵八年级10名学生的竞赛成绩的中位数是第5和第6个数据的平均数,∴b=94+942=94;∵在七年级10名学生的竞赛成绩中99出现的次数最多,∴c=99;(2)八年级学生掌握防溺水安全知识较好,理由:虽然七、八年级的平均分均为92分,但八年级的中位数和众数均高于七年级.(3)参加此次竞赛活动成绩优秀(x≥90)的学生人数=720×1320=468(人),答:参加此次竞赛活动成绩优秀(x≥90)的学生人数是468人.22.(10分)《道德经》中的“道生一,一生二,二生三,三生万物”道出了自然数的特征.在数的学习过程中,我们会对其中一些具有某种特性的数进行研究,如学习自然数时,我们研究了奇数、偶数、质数、合数等.现在我们来研究另一种特殊的自然数﹣“纯数”.定义;对于自然数n,在计算n+(n+1)+(n+2)时,各数位都不产生进位,则称这个自然数n为“纯数”,例如:32是”纯数”,因为计算32+33+34时,各数位都不产生进位;23不是“纯数”,因为计算23+24+25时,个位产生了进位.(1)判断2019和2020是否是“纯数”?请说明理由;(2)求出不大于100的“纯数”的个数.解:(1)2019不是“纯数”,2020是“纯数”,理由:当n=2019时,n+1=2020,n+2=2021,∵个位是9+0+1=10,需要进位,∴2019不是“纯数”;当n=2020时,n+1=2021,n+2=2022,∵个位是0+1+2=3,不需要进位,十位是2+2+2=6,不需要进位,百位为0+0+0=0,不需要进位,千位为2+2+2=6,不需要进位,∴2020是“纯数”;(2)由题意可得,连续的三个自然数个位数字是0,1,2,其他位的数字为0,1,2,3时,不会产生进位,当这个数是一位自然数时,只能是0,1,2,共三个,当这个自然数是两位自然数时,十位数字是1,2,3,个位数是0,1,2,共九个,当这个数是三位自然数时,只能是100,由上可得,不大于100的“纯数”的个数为3+9+1=13,即不大于100的“纯数”的有13个.23.(10分)在初中阶段的函数学习中,我们经历了“确定函数的表达式﹣﹣利用函数图象研究其性质一一运用函数解决问题“的学习过程.在画函数图象时,我们通过描点或平移的方法画出了所学的函数图象.同时,我们也学习了绝对值的意义|a|={a(a≥0)−a(a<0).结合上面经历的学习过程,现在来解决下面的问题在函数y=|kx﹣3|+b中,当x=2时,y=﹣4;当x =0时,y =﹣1. (1)求这个函数的表达式;(2)在给出的平面直角坐标系中,请用你喜欢的方法画出这个函数的图象并写出这个函数的一条性质;(3)已知函y =12x ﹣3的图象如图所示,结合你所画的函数图象,直接写出不等式|kx ﹣3|+b ≤12x ﹣3的解集.解:(1)∵在函数y =|kx ﹣3|+b 中,当x =2时,y =﹣4;当x =0时,y =﹣1,∴{|2k −3|+b =−4|−3|+b =−1,得{k =32b =−4, ∴这个函数的表达式是y =|32x ﹣3|﹣4;(2)∵y =|32x ﹣3|﹣4,∴y ={32x −7(x ≥2)−32x −1(x <2),∴函数y =32x ﹣7过点(2,﹣4)和点(4,﹣1);函数y =−32x −1过点(0,﹣1)和点(﹣2,2);该函数的图象如右图所示,性质是当x >2时,y 随x 的增大而增大; (3)由函数图象可得,不等式|kx ﹣3|+b ≤12x ﹣3的解集是1≤x ≤4.24.(10分)某文明小区有50平方米和80平方米两种户型的住宅,50平方米住宅套数是80平方米住宅套数的2倍.物管公司月底按每平方米2元收取当月物管费,该小区全部住宅都人住且每户均按时全额缴纳物管费.(1)该小区每月可收取物管费90000元,问该小区共有多少套80平方米的住宅?(2)为建设“资源节约型社会”,该小区物管公司5月初推出活动一:“垃圾分类送礼物”,50平方米和80平方米的住户分别有40%和20%参加了此次括动.为提高大家的积极性,6月份准备把活动一升级为活动二:“垃圾分类抵扣物管费”,同时终止活动一.经调査与测算,参加活动一的住户会全部参加活动二,参加活动二的住户会大幅增加,这样,6月份参加活动的50平方米的总户数在5月份参加活动的同户型户数的基础上将增加2a%,每户物管费将会减少310a%;6月份参加活动的80平方米的总户数在5月份参加活动的同户型户数的基础上将增加6a%,每户物管费将会减少14a%.这样,参加活动的这部分住户6月份总共缴纳的物管费比他们按原方式共缴纳的物管费将减少518a%,求a的值.(1)解:设该小区有x套80平方米住宅,则50平方米住宅有2x套,由题意得:2(50×2x+80x)=90000,解得x=250答:该小区共有250套80平方米的住宅.(2)参与活动一:50平方米住宅每户所交物管费为100元,有500×40%=200户参与活动一,80平方米住宅每户所交物管费为160元,有250×20%=50户参与活动一;参与活动二:50平方米住宅每户所交物管费为100(1−310a%)元,有200(1+2a%)户参与活动二;80平方米住宅每户所交物管费为160(1−14a%)元,有50(1+6a%)户参与活动二.由题意得100(1−310a%)•200(1+2a%)+160(1−14a%)•50(1+6a%)=[200(1+2a%)×100+50(1+6a%)×160](1−518a%)令t=a%,化简得t(2t﹣1)=0∴t1=0(舍),t2=1 2,∴a=50.答:a的值为50.25.(10分)如图,在平行四边形ABCD中,点E在边BC上,连接AE,EM⊥AE,垂足为E,交CD于点M,AF⊥BC,垂足为F,BH⊥AE,垂足为H,交AF于点N,点P是AD 上一点,连接CP.(1)若DP=2AP=4,CP=√17,CD=5,求△ACD的面积.(2)若AE=BN,AN=CE,求证:AD=√2CM+2CE.(1)解:作CG⊥AD于G,如图1所示:设PG=x,则DG=4﹣x,在Rt△PGC中,GC2=CP2﹣PG2=17﹣x2,在Rt△DGC中,GC2=CD2﹣GD2=52﹣(4﹣x)2=9+8x﹣x2,∴17﹣x2=9+8x﹣x2,解得:x=1,即PG=1,∴GC=4,∵DP=2AP=4,∴AD=6,∴S△ACD=12×AD×CG=12×6×4=12;(2)证明:连接NE,如图2所示:∵BH⊥AE,AF⊥BC,AE⊥EM,∴∠AEB+∠NBF=∠AEB+∠EAF=∠AEB+∠MEC=90°,∴∠NBF=∠EAF=∠MEC,在△NBF和△EAF中,{∠NBF=∠EAF ∠BFN=∠EFA AE=BN,∴△NBF≌△EAF(AAS),∴BF=AF,NF=EF,∴∠ABC=45°,∠ENF=45°,∵∠ANB=90°+∠EAF,∠CEA=90°+∠MEC,∴∠ANB=∠CEA,在△ANB和△CEA中,{AN=CE∠ANB=∠CEA BN=AE,∴△ANB≌△CEA(SAS),∴∠CAE=∠ABN,∵∠NBF=∠EAF,∴∠ABF=∠F AC=45°∴FC=AF=BF,∴∠ANE=∠BCD=135°,AD=BC=2AF,在△ANE和△ECM中,{∠MEC=∠EAF AN=EC∠ANE=∠ECM,∴△ANE≌△ECM(ASA),∴CM=NE,又∵NF=√22NE=√22MC,∴AF=√22MC+EC,∴AD=√2MC+2EC.四、解答题:(本大题1个小题,共8分)解答时必须给出必要的演算过程成或推理步骤,画出必要的图形(包括辅助线),请将解作过程书写在答题卡中对应的位置上.26.(8分)如图,在平面直角坐标系中,抛物线y=x2﹣2x﹣3与x轴交于点A,B(点A 在点B的左侧),交y轴于点C,点D为抛物线的顶点,对称轴与x轴交于点E.(1)连结BD,点M是线段BD上一动点(点M不与端点B,D重合),过点M作MN ⊥BD,交抛物线于点N(点N在对称轴的右侧),过点N作NH⊥x轴,垂足为H,交BD于点F,点P是线段OC上一动点,当MN取得最大值时,求HF+FP+13PC的最小值;(2)在(1)中,当MN取得最大值,HF+FP+13PC取得最小值时,把点P向上平移√22个单位得到点Q,连结AQ,把△AOQ绕点O顺时针旋转一定的角度α(0°<α<360°),得到△A′OQ′,其中边A′Q′交坐标轴于点G.在旋转过程中,是否存在一点G,使得∠Q'=∠Q'OG?若存在,请直接写出所有满足条件的点Q′的坐标;若不存在,请说明理由.解:(1)如图1∵抛物线y =x 2﹣2x ﹣3与x 轴交于点A ,B (点A 在点B 的左侧),交y 轴于点C ∴令y =0解得:x 1=﹣1,x 2=3,令x =0,解得:y =﹣3, ∴A (﹣1,0),B (3,0),C (0,﹣3)∵点D 为抛物线的顶点,且−b 2a =−−22=1,4ac−b 24a =4×1×(−3)−44×1=−4∴点D 的坐标为D (1,﹣4) ∴直线BD 的解析式为:y =2x ﹣6,由题意,可设点N (m ,m 2﹣2m ﹣3),则点F (m ,2m ﹣6) ∴|NF |=(2m ﹣6)﹣(m 2﹣2m ﹣3)=﹣m 2+4m ﹣3 ∴当m =−b2a=2时,NF 取到最大值,此时MN 取到最大值,此时HF =2, 此时,N (2,﹣3),F (2,﹣2),H (2,0) 在x 轴上找一点K (−3√24,0),连接CK ,过点F 作CK 的垂线交CK 于点J 点,交y 轴于点P ,∴sin ∠OCK =13,直线KC 的解析式为:y =−2√2x −3,且点F (2,﹣2), ∴PJ =13PC ,直线FJ 的解析式为:y =√24x −4+√22∴点J (2−2√29,−19−4√29)∴FP +1PC 的最小值即为FJ 的长,且|FJ |=1+4√2∴|HF +FP +13PC |min =7+4√23; (2)由(1)知,点P (0,−4+√22), ∵把点P 向上平移√22个单位得到点Q ∴点Q (0,﹣2)∴在Rt △AOQ 中,∠AOG =90°,AQ =√5,取AQ 的中点G ,连接OG ,则OG =GQ =12AQ =√52,此时,∠AQO =∠GOQ 把△AOQ 绕点O 顺时针旋转一定的角度α(0°<α<360°),得到△A ′OQ ′,其中边A ′Q ′交坐标轴于点G ①如图2G 点落在y 轴的负半轴,则G (0,−√52),过点Q '作Q 'I ⊥x 轴交x 轴于点I ,且∠GOQ '=∠Q '则∠IOQ '=∠OA 'Q '=∠OAQ , ∵sin ∠OAQ =OQAQ =5=2√55 ∴sin ∠IOQ '=IQ′OQ′=IQ′2=2√55,解得:|IO |=4√55 ∴在Rt △OIQ '中根据勾股定理可得|OI |=2√55∴点Q '的坐标为Q '(2√55,−4√55);②如图3,当G点落在x轴的正半轴上时,同理可得Q'(4√55,2√55)③如图4当G点落在y轴的正半轴上时,同理可得Q'(−2√55,4√55)④如图5当G 点落在x 轴的负半轴上时,同理可得Q '(−4√55,−2√55). 综上所述,所有满足条件的点Q ′的坐标为:(2√55,−4√55),(4√55,2√55),(−2√55,4√55),(−4√55,−2√55).。

2019年重庆市中考数学试卷(解析版)

2019年重庆市中考数学试卷(解析版)

2019年重庆市中考数学试卷(解析版)一、选择题:(本大题12个小题,每小题4分,共48分)1.(4分)下列各数中,比﹣1小的数是()A.2B.1C.0D.﹣2【解答】解:∵﹣2<﹣1<0<2,∴比﹣1小的数是﹣2,故选:D.2.(4分)如图是由4个相同的小正方体组成的一个立体图形,其主视图是()A.B.C.D.【解答】解:从正面看易得第一层有2个正方形,第二层左边有一个正方形,如图所示:.故选:A.3.(4分)如图,△ABO∽△CDO,若BO=6,DO=3,CD=2,则AB的长是()A.2B.3C.4D.5【解答】解:∵△ABO∽△CDO,∴=,∵BO=6,DO=3,CD=2,∴=,解得:AB=4.故选:C.4.(4分)如图,AB是⊙O的直径,AC是⊙O的切线,A为切点,BC与⊙O交于点D,连结OD.若∠C =50°,则∠AOD的度数为()A.40°B.50°C.80°D.100°【解答】解:∵AC是⊙O的切线,∴AB⊥AC,∴∠BAC=90°,∵∠C=50°,∴∠ABC=40°,∵OD=OB,∴∠ODB=∠ABC=40°,∴∠AOD=∠ODB+∠ABC=80°;故选:C.5.(4分)下列命题正确的是()A.有一个角是直角的平行四边形是矩形B.四条边相等的四边形是矩形C.有一组邻边相等的平行四边形是矩形D.对角线相等的四边形是矩形【解答】解:A、有一个角是直角的平行四边形是矩形,是真命题;B、四条边相等的四边形是菱形,是假命题;C、有一组邻边相等的平行四边形是菱形,是假命题;D、对角线相等的平行四边形是矩形,是假命题;故选:A.6.(4分)估计(2+6)×的值应在()A.4和5之间B.5和6之间C.6和7之间D.7和8之间【解答】解:(2+6)×,=2+6,=2+,=2+,∵4<5,∴6<2+<7,故选:C.7.(4分)《九章算术》中有这样一个题:今有甲乙二人持钱不知其数.甲得乙半而钱五十,乙得甲太半而钱亦五十.问甲、乙持钱各几何?其意思为:今有甲乙二人,不如其钱包里有多少钱,若乙把其一半的钱给甲,则甲的数为50;而甲把其的钱给乙,则乙的钱数也为50,问甲、乙各有多少钱?设甲的钱数为x,乙的钱数为y,则可建立方程组为()A .B .C .D .【解答】解:设甲的钱数为x,乙的钱数为y,依题意,得:.故选:A.8.(4分)按如图所示的运算程序,能使输出y值为1的是()A.m=1,n=1B.m=1,n=0C.m=1,n=2D.m=2,n=1【解答】解:当m=1,n=1时,y=2m+1=2+1=3,当m=1,n=0时,y=2n﹣1=﹣1,当m=1,n=2时,y=2m+1=3,当m=2,n=1时,y=2n﹣1=1,故选:D.9.(4分)如图,在平面直角坐标系中,矩形ABCD的顶点A,D分别在x轴、y轴上,对角线BD∥x轴,反比例函数y=(k>0,x>0)的图象经过矩形对角线的交点E.若点A(2,0),D(0,4),则k的值为()A.16B.20C.32D.40【解答】解:∵BD∥x轴,D(0,4),∴B、D两点纵坐标相同,都为4,∴可设B(x,4).∵矩形ABCD的对角线的交点为E,∴E为BD中点,∠DAB=90°.∴E(x,4).∵∠DAB=90°,∴AD2+AB2=BD2,∵A(2,0),D(0,4),B(x,4),∴22+42+(x﹣2)2+42=x2,解得x=10,∴E(5,4).∵反比例函数y=(k>0,x>0)的图象经过点E,∴k=5×4=20.故选:B.10.(4分)为践行“绿水青山就是金山银山”的重要思想,某森林保护区开展了寻找古树活动.如图,在一个坡度(或坡比)i=1:2.4的山坡AB上发现有一棵古树CD.测得古树底端C到山脚点A的距离AC =26米,在距山脚点A水平距离6米的点E处,测得古树顶端D的仰角∠AED=48°(古树CD与山坡AB的剖面、点E在同一平面上,古树CD与直线AE垂直),则古树CD的高度约为()(参考数据:sin48°≈0.73,cos48°≈0.67,tan48°≈1.11)A.17.0米B.21.9米C.23.3米D.33.3米【解答】解:如图,∵=1:2.4=,∴设CF=5k,AF=12k,∴AC==13k=26,∴k=2,∴AF=10,CF=24,∵AE=6,∴EF=6+24=30,∵∠DEF=48°,∴tan48°===1.11,∴DF=33.3,∴CD=33.3﹣10=23.3,答:古树CD的高度约为23.3米,故选:C.11.(4分)若关于x的一元一次不等式组的解集是x≤a,且关于y的分式方程﹣=1有非负整数解,则符合条件的所有整数a的和为()A.0B.1C.4D.6【解答】解:由不等式组得:∵解集是x≤a,∴a<5;由关于y的分式方程﹣=1得2y﹣a+y﹣4=y﹣1∴y=,∵有非负整数解,∴≥0,∴a≥﹣3,且a=﹣3,a=﹣1(舍,此时分式方程为增根),a=1,a=3它们的和为1.故选:B.12.(4分)如图,在△ABC中,D是AC边上的中点,连结BD,把△BDC沿BD翻折,得到△BDC',DC′与AB交于点E,连结AC',若AD=AC′=2,BD=3,则点D到BC′的距离为()A.B.C.D.【解答】解:如图,连接CC',交BD于点M,过点D作DH⊥BC'于点H,∵AD=AC′=2,D是AC边上的中点,∴DC=AD=2,由翻折知,△BDC≌△BDC',BD垂直平分CC',∴DC=DC'=2,BC=BC',CM=C'M,∴AD=AC′=DC'=2,∴△ADC'为等边三角形,∴∠ADC'=∠AC'D=∠C'AC=60°,∵DC=DC',∴∠DCC'=∠DC'C=×60°=30°,在Rt△C'DM中,∠DC'C=30°,DC'=2,∴DM=1,C'M=DM=,∴BM=BD﹣DM=3﹣1=2,在Rt△BMC'中,BC'===,∵S△BDC'=BC'•DH=BD•CM,∴DH=3×,∴DH=,故选:B.二、填空题:(本大题6个小题,每小题4分,共24分)13.(4分)计算:(π﹣3)0+()﹣1=3.【解答】解:原式=1+2=3,故答案为:3.14.(4分)今年五一节期间,重庆市旅游持续火爆,全市共接待境内外游客超过25600000人次,请把数25600000用科学记数法表示为 2.56×107.【解答】解:25600000=2.56×107.故答案为:2.56×107.15.(4分)一个不透明的布袋内装有除颜色外,其余完全相同的3个红球,2个白球,1个黄球,搅匀后,从中随机摸出一个球,记下颜色后放回搅匀,再从中随机摸出一个球,则两次都摸到红球的概率为.【解答】解:画树状图为:共有30种等可能的结果数,其中两次都摸到红球的结果数为6,所以两次都摸到红球的概率为=.故答案为:.16.(4分)如图,在菱形ABCD中,对角线AC,BD交于点O,∠ABC=60°,AB=2,分别以点A、点C 为圆心,以AO的长为半径画弧分别与菱形的边相交,则图中阴影部分的面积为2﹣π.(结果保留π)【解答】解:∵四边形ABCD是菱形,∴AC⊥BD,∠ABO=∠ABC=30°,∠BAD=∠BCD=120°,∴AO=AB=1,由勾股定理得,OB==,∴AC=2,BD=2,∴阴影部分的面积=×2×2﹣×2=2﹣π,故答案为:2﹣π.17.(4分)某公司快递员甲匀速骑车前往某小区送物件,出发几分钟后,快递员乙发现甲的手机落在公司,无法联系,于是乙匀速骑车去追赶甲.乙刚出发2分钟时,甲也发现自己手机落在公司,立刻按原路原速骑车回公司,2分钟后甲遇到乙,乙把手机给甲后立即原路原速返回公司,甲继续原路原速赶往某小区送物件,甲乙两人相距的路程y(米)与甲出发的时间x(分钟)之间的关系如图所示(乙给甲手机的时间忽略不计).则乙回到公司时,甲距公司的路程是6000米.【解答】解:由题意可得,甲的速度为:4000÷(12﹣2﹣2)=500米/分,乙的速度为:=1000米/分,乙从与甲相遇到返回公司用的时间为4分钟,则乙回到公司时,甲距公司的路程是:500×(12﹣2)﹣500×2+500×4=6000(米),故答案为:6000.18.(4分)在精准扶贫的过程中,某驻村服务队结合当地高山地形,决定在该村种植中药材川香、贝母、黄连增加经济收入.经过一段时间,该村已种植的川香、贝母、黄连面积之比4:3:5,是根据中药材市场对川香、贝母、黄连的需求量,将在该村余下土地上继续种植这三种中药材,经测算需将余下土地面积的种植黄连,则黄连种植总面积将达到这三种中药材种植总面积的.为使川香种植总面积与贝母种植总面积之比达到3:4,则该村还需种植贝母的面积与该村种植这三种中药材的总面积之比是3:20.【解答】解:设该村已种药材面积x,余下土地面积为y,还需种植贝母的面积为z,则总面积为(x+y),川香已种植面积x、贝母已种植面积x,黄连已种植面积依题意可得,由①得x=③,将③代入②,z=y,∴贝母的面积与该村种植这三种中药材的总面积之比=,故答案为3:20.三、解答题:(本大题7个小题,每小题10分,共70分)19.(10分)计算:(1)(x+y)2﹣y(2x+y)(2)(a+)÷【分析】(1)根据完全平方公式、单项式乘多项式可以解答本题;(2)根据分式的加法和除法可以解答本题.【解答】解:(1)(x+y)2﹣y(2x+y)=x2+2xy+y2﹣2xy﹣y2=x2;(2)(a+)÷====.【点评】本题考查分式的混合运算、完全平方公式、单项式乘多项式,解答本题的关键是明确它们各自的计算方法.20.(10分)如图,在△ABC中,AB=AC,D是BC边上的中点,连结AD,BE平分∠ABC交AC于点E,过点E作EF∥BC交AB于点F.(1)若∠C=36°,求∠BAD的度数;(2)求证:FB=FE.【分析】(1)利用等腰三角形的三线合一的性质证明∠ADB=90°,再利用等腰三角形的性质求出∠ABC 即可解决问题.(2)只要证明∠FBE=∠FEB即可解决问题.【解答】(1)解:∵AB=AC,∴∠C=∠ABC,∵∠C=36°,∴∠ABC=36°,∵BD=CD,AB=AC,∴AD⊥BC,∴∠ADB=90°,∴∠BAD=90°﹣36°=54°.(2)证明:∵BE平分∠ABC,∴∠ABE=∠CBE=∠ABC,∵EF∥BC,∴∠FEB=∠CBE,∴∠FBE=∠FEB,∴FB=FE.【点评】本题考查等腰三角形的性质,平行线的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.21.(10分)每年夏季全国各地总有未成年人因溺水而丧失生命,令人痛心秩首.今年某校为确保学生安全,开展了“远离溺水•珍爱生命”的防溺水安全知识竞赛.现从该校七、八年级中各随机抽取10名学生的竞赛成绩(百分制)进行整理、描述和分析(成绩得分用x表示,共分成四组:A.80≤x<85,B.85≤x<90,C.90≤x<95,D.95≤x≤100),下面给出了部分信息:七年级10名学生的竞赛成绩是:99,80,99,86,99,96,90,100,89,82八年级10名学生的竞赛成绩在C组中的数据是:94,90,94七、八年级抽取的学生竞赛成绩统计表年级七年级八年级平均数9292中位数93b众数c100方差5250.4根据以上信息,解答下列问题:(1)直接写出上述图表中a,b,c的值;(2)根据以上数据,你认为该校七、八年级中哪个年级学生掌握防溺水安全知识较好?请说明理由(一条理由即可);(3)该校七、八年级共730人参加了此次竞赛活动,估计参加此次竞赛活动成绩优秀(x≥90)的学生人数是多少?【分析】(1)根据中位数和众数的定义即可得到结论;(2)根据八年级的中位数和众数均高于七年级于是得到八年级学生掌握防溺水安全知识较好;(3)利用样本估计总体思想求解可得.【解答】解:(1)a=(1﹣20%﹣10%﹣)×100=40,∵八年级10名学生的竞赛成绩的中位数是第5和第6个数据的平方数,∴b==94;∵在七年级10名学生的竞赛成绩中99出现的次数最多,∴c=99;(2)八年级学生掌握防溺水安全知识较好,理由:虽然七、八年级的平均分均为92分,但八年级的中位数和众数均高于七年级.(3)参加此次竞赛活动成绩优秀(x≥90)的学生人数=720×=468人,答:参加此次竞赛活动成绩优秀(x≥90)的学生人数是468人.【点评】本题考查读扇形统计图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.22.(10分)《道德经》中的“道生一,一生二,二生三,三生万物”道出了自然数的特征.在数的学习过程中,我们会对其中一些具有某种特性的数进行研究,如学习自然数时,我们研究了奇数、偶数、质数、合数等.现在我们来研究另一种特珠的自然数﹣“纯数”.定义;对于自然数n,在计算n+(n+1)+(n+2)时,各数位都不产生进位,则称这个自然数n为“纯数”,例如:32是”纯数”,因为计算32+33+34时,各数位都不产生进位;23不是“纯数”,因为计算23+24+25时,个位产生了进位.(1)判断2019和2020是否是“纯数”?请说明理由;(2)求出不大于100的“纯数”的个数.【分析】(1)根据题目中的新定义可以解答本题,注意各数位都不产生进位的自然数才是“纯数”;(2)根据题意可以推出不大于100的“纯数”的个数,本题得以解决.【解答】解:(1)2019不是“纯数”,2020是“纯数”,理由:当n=2019时,n+1=2020,n+2=2021,∵个位是9+0+1=10,需要进位,∴2019不是“纯数”;当n=2020时,n+1=2021,n+2=2022,∵个位是0+1+2=3,不需要进位,十位是2+2+2=6,不需要进位,百位为0+0+0=0,不需要进位,千位为2+2+2=6,不需要进位,∴2020是“纯数”;(2)由题意可得,连续的三个自然数个位数字是0,1,2,其他位的数字为0,1,2,3时,不会产生进位,当这个数是一位自然数时,只能是0,1,2,共三个,当这个自然数是两位自然数时,十位数字是1,2,3,个位数是0,1,2,共九个,当这个数是三位自然数是,只能是100,由上可得,不大于100的“纯数”的个数为3+9+1=13,即不大于100的“纯数”的有13个.【点评】本题考查整式的加减、有理数的加法、新定义,解答本题的关键是明确题意,利用题目中的新定义解答.23.(10分)在初中阶段的函数学习中,我们经历了“确定函数的表达式﹣﹣利用函数图象研究其性质一一运用函数解决问题“的学习过程.在画函数图象时,我们通过描点或平移的方法画出了所学的函数图象.同时,我们也学习了绝对值的意义|a|=.结合上面经历的学习过程,现在来解决下面的问题在函数y=|kx﹣3|+b中,当x=2时,y=﹣4;当x=0时,y=﹣1.(1)求这个函数的表达式;(2)在给出的平面直角坐标系中,请用你喜欢的方法面出这个函数的图象井写出这个函数的一条性质;(3)已知函y=x﹣3的图象如图所示,结合你所画的函数图象,直接写出不等式|kx﹣3|+b≤x﹣3的解集.【分析】(1)根据在函数y=|kx﹣3|+b中,当x=2时,y=﹣4;当x=0时,y=﹣1,可以求得该函数的表达式;(2)根据(1)中的表达式可以画出该函数的图象并写出它的一条性质;(3)根据图象可以直接写出所求不等式的解集.【解答】解:(1)∵在函数y=|kx﹣3|+b中,当x=2时,y=﹣4;当x=0时,y=﹣1,∴,得,∴这个函数的表达式是y=|x﹣3|﹣4;(2)∵y=|x﹣3|﹣4,∴y=,∴函数y=x﹣7过点(2,﹣4)和点(4,﹣1);函数y=﹣﹣1过点(0,﹣1)和点(﹣2,2);该函数的图象如右图所示,性质是当x>2时,y随x的增大而增大;(3)由函数图象可得,不等式|kx﹣3|+b≤x﹣3的解集是1≤x≤4.【点评】本题考查一次函数的应用、一元一次不等式与一次函数的关系,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.24.(10分)某文明小区50平方米和80平方米两种户型的住宅,50平方米住宅套数是80平方米住宅套数的2倍.物管公司月底按每平方米2元收取当月物管费,该小区全部住宅都人住且每户均按时全额缴纳物管费.(1)该小区每月可收取物管费90000元,问该小区共有多少套80平方米的住宅?(2)为建设“资源节约型社会”,该小区物管公司5月初推出活动一:“垃圾分类送礼物”,50平方米和80平方米的住户分别有40%和20%参加了此次括动.为提离大家的积扱性,6月份准备把活动一升级为活动二:“拉圾分类抵扣物管费”,同时终止活动一.经调査与测算,参加活动一的住户会全部参加活动二,参加活动二的住户会大幅增加,这样,6月份参加活动的50平方米的总户数在5月份参加活动的同户型户数的基础上将增加2a%,每户物管费将会减少a%;6月份参加活动的80平方米的总户数在5月份参加活动的同户型户数的基础上将增加6a%,每户物管费将会减少a%.这样,参加活动的这部分住户6月份总共缴纳的物管费比他们按原方式共缴纳的物管费将减少a%,求a的值.【分析】(1)设该小区有x套80平方米住宅,则50平方米住宅有2x套,根据物管费90000元,可列方程求解;(2)50平方米住宅有500×40%=200户参与活动一,80平方米住宅有250×20%=50户参与活动一;50平方米住宅每户所交物管费为100(1﹣%)元,有200(1+2a%)户参与活动二;80平方米住宅每户所交物管费为160(1﹣%)元,有50(1+6a%)户参与活动二.根据参加活动的这部分住户6月份总共缴纳的物管费比他们按原方式共缴纳的物管费将减少a%,列出方程求解即可.【解答】(1)解:设该小区有x套80平方米住宅,则50平方米住宅有2x套,由题意得:2(50×2x+80x)=90000,解得x=250答:该小区共有250套80平方米的住宅.(2)参与活动一:50平方米住宅每户所交物管费为100元,有500×40%=200户参与活动一,80平方米住宅每户所交物管费为160元,有250×20%=50户参与活动一;参与活动二:50平方米住宅每户所交物管费为100(1﹣%)元,有200(1+2a%)户参与活动二;80平方米住宅每户所交物管费为160(1﹣%)元,有50(1+6a%)户参与活动二.由题意得100(1﹣%)•200(1+2a%)+160(1﹣%)•50(1+6a%)=[200(1+2a%)×100+50(1+6a%)×160](1﹣a%)令t=a%,化简得t(2t﹣1)=0∴t1=0(舍),t2=,∴a=50.答:a的值为50.【点评】本题是一元二次方程的综合应用题,数据较多,分析清楚题目中相关数据,根据等量关系列出方程是解题的关键.25.(10分)如图,在平行四边形ABCD中,点E在边BC上,连结AE,EM⊥AE,垂足为E,交CD于点M,AF⊥BC,垂足为F,BH⊥AE,垂足为H,交AF于点N,点P是AD上一点,连接CP.(1)若DP=2AP=4,CP=,CD=5,求△ACD的面积.(2)若AE=BN,AN=CE,求证:AD=CM+2CE.【分析】(1)作CG⊥AD于G,设PG=x,则DG=4﹣x,在Rt△PGC和Rt△DGC中,由勾股定理得出方程,解方程得出x=1,即PG=1,得出GC=4,求出AD=6,由三角形面积公式即可得出结果;(2)连接NE,证明△NBF≌△EAF得出BF=AF,NF=EF,再证明△ANE≌△ECM得出CM=NE,由NF=NE=MC,得出AF=MC+EC,即可得出结论.【解答】(1)解:作CG⊥AD于G,如图1所示:设PG=x,则DG=4﹣x,在Rt△PGC中,GC2=CP2﹣PG2=17﹣x,在Rt△DGC中,GC2=CD2﹣GD2=52﹣(4﹣x)2=9+8x﹣x2,∴17﹣x2=9+8x﹣x2,解得:x=1,即PG=1,∴GC=4,∵DP=2AP=4,∴AD=6,∴S△ACD=×AD×CG=×6×4=12;(2)证明:连接NE,如图2所示:∵AH⊥AE,AF⊥BC,AE⊥EM,∴∠AEB+∠NBF=∠AEB+∠EAF=∠AEB+∠MEC=90°,∴∠NBF=∠EAF=∠MEC,在△NBF和△EAF中,,∴△NBF≌△EAF(AAS),∴BF=AF,NF=EF,∴∠ABC=45°,∠ENF=45°,FC=AF=BF,∴∠ANE=∠BCD=135°,AD=BC=2AF,在△ANE和△ECM中,,∴△ANE≌△ECM(ASA),∴CM=NE,又∵NF=NE=MC,∴AF=MC+EC,∴AD=MC+2EC.【点评】本题考查了平行四边形的性质、全等三角形的判定与性质、勾股定理、三角形面积公式等知识;熟练掌握平行四边形的性质,证明三角形全等是解题的关键.四、解答题:(本大题1个小题,共8分)解答时必须给出必要的演算过程成或推理步骤,画出必要的图形(包括辅助线),请将解作过程书写在答题卡中对应的位置上.26.(8分)如图,在平面直角坐标系中,抛物线y=x2﹣2x﹣3与x轴交于点A,B(点A在点B的左侧),交y轴于点C,点D为抛物线的顶点,对称轴与x轴交于点E.(1)连结BD,点M是线段BD上一动点(点M不与端点B,D重合),过点M作MN⊥BD,交抛物线于点N(点N在对称轴的右侧),过点N作NH⊥x轴,垂足为H,交BD于点F,点P是线段OC上一动点,当MN取得最大值时,求HF+FP+PC的最小值;(2)在(1)中,当MN取得最大值,HF+FP+PC取得最小值时,把点P向上平移个单位得到点Q,连结AQ,把△AOQ绕点O顺时针旋转一定的角度α(0°<α<360°),得到△A′OQ′,其中边A′Q′交坐标轴于点G.在旋转过程中,是否存在一点G,使得∠Q'=∠Q'OG?若存在,请直接写出所有满足条件的点Q′的坐标;若不存在,请说明理由.【分析】(1)先确定点F的位置,可设点N(m,m2﹣2m﹣3),则点F(m,2m﹣6),可得|NF|=(2m﹣6)﹣(m2﹣2m﹣3)=﹣m2+4m﹣3,根据二次函数的性质得m==2时,NF取到最大值,此时MN取到最大值,此时HF=2,此时F(2,﹣2),在x轴上找一点K(,0),连接CK,过点F作CK的垂线交CK于点J点,交y轴于点P,sin∠OCK=,直线KC的解析式为:y=,从而得到直线FJ的解析式为:y=联立解出点J(,)得FP+PC的最小值即为FJ的长,且|FJ|=最后得出|HF+FP+PC|min=;(2)由题意可得出点Q(0,﹣2),AQ=,应用“直角三角形斜边上的中线等于斜边上的一半”取AQ的中点G,连接OG,则OG=GQ=AQ=,此时,∠AQO=∠GOQ,把△AOQ绕点O顺时针旋转一定的角度α(0°<α<360°),得到△A′OQ′,其中边A′Q′交坐标轴于点G,则用OG=GQ',分四种情况求解.【解答】解:(1)如图1∵抛物线y=x2﹣2x﹣3与x轴交于点A,B(点A在点B的左侧),交y轴于点C∴令y=0解得:x1=﹣1,x2=3,令x=0,解得:y=﹣3,∴A(﹣1,0),B(3,0),C(0,﹣3)∵点D为抛物线的顶点,且==1,==﹣4∴点D的坐标为D(1,﹣4)∴直线BD的解析式为:y=2x﹣6,由题意,可设点N(m,m2﹣2m﹣3),则点F(m,2m﹣6)∴|NF|=(2m﹣6)﹣(m2﹣2m﹣3)=﹣m2+4m﹣3∴当m==2时,NF取到最大值,此时MN取到最大值,此时HF=2,此时,N(2,﹣3),F(2,﹣2),H(2,0)在x轴上找一点K(,0),连接CK,过点F作CK的垂线交CK于点J点,交y轴于点P,∴sin∠OCK=,直线KC的解析式为:y=,且点F(2,﹣2),∴PJ=PC,直线FJ的解析式为:y=∴点J(,)∴FP+PC的最小值即为FJ的长,且|FJ|=∴|HF+FP+PC|min=;(2)由(1)知,点P(0,),∵把点P向上平移个单位得到点Q∴点Q(0,﹣2)∴在Rt△AOQ中,∠AOG=90°,AQ=,取AQ的中点G,连接OG,则OG=GQ=AQ=,此时,∠AQO=∠GOQ把△AOQ绕点O顺时针旋转一定的角度α(0°<α<360°),得到△A′OQ′,其中边A′Q′交坐标轴于点G①如图2G点落在y轴的负半轴,则G(0,﹣),过点Q'作Q'I⊥x轴交x轴于点I,且∠GOQ'=∠Q'则∠IOQ'=∠OA'Q'=∠OAQ,∵sin∠OAQ===∴sin∠IOQ'===,解得:|IO|=∴在Rt△OIQ'中根据勾股定理可得|OI|=∴点Q'的坐标为Q'(,﹣);②如图3,当G点落在x轴的正半轴上时,同理可得Q'(,)③如图4当G点落在y轴的正半轴上时,同理可得Q'(﹣,)④如图5当G点落在x轴的负半轴上时,同理可得Q'(﹣,﹣)综上所述,所有满足条件的点Q′的坐标为:(,﹣),(,),(﹣,),(﹣,﹣)【点评】本题主要考查了二次函数图象与坐标轴的交点求法和与几何图形结合的综合能力的培养及直角三角形的中线性质.要会利用数形结合的思想把代数和几何图形结合起来,利用通过求点的坐标来表示线段的长度,从而求出线段之间的关系.。

2019重庆中考数学试卷(含答案)

2019重庆中考数学试卷(含答案)

重庆市2019年初中学业水平暨高中招生考试试卷数 学(全卷共四个大题,满分150分,考试时间120分钟)注意事项:1.认题的答案书写在答题卡上,不得在试题卷上直接作答; 2.作答前认真阅绪答题卡上的注意事项;3.作图(包括作辅助线)请一律用黑色签牛笔完成; 4.考试结束,由监考人员将试题卷和答题卡一并收回.参考公式:抛物线()02≠++=a c bx ax y 的顶点坐标为⎪⎪⎭⎫⎝⎛--a b ac a b 44,22,对称轴为a b 2x -= 一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为DC B A 、、、的四个答案,其中只有一个是正确的,请将答题卡...上题号右侧正确答案所对应的方框涂黑. 1.下列各数中,比1-小的数是( )A .2B .1C .0D .-22.如图是由4个相同的小正方体组成的一个立体图形,其主视图是( )A .B .C .D .3.如图,△ABO ∽△CDO ,若6=BO ,3=DO ,2=CD ,则AB 的长是( )A .2B .3C .4D .54.如图,AB 是⊙O 的直径,AC 是⊙O 的切线,A 为切点,BC 与⊙O 交于点D ,连结OD .若︒=∠50C ,则∠AOD 的度数为( ) A.︒40B .︒50C .︒80D .︒1005.下列命题正确的是( )A .有一个角是直角的平行四边形是矩形B .四条边相等的四边形是矩形3题图4题图2题图C.有一组邻边相等的平行四边形是矩形 D.对角线相等的四边形是矩形6.估计()123+623⨯的值应在()A.4和5之间B.5和6之间C.6和7之间D.7和8之间7.《九章算术》中有这样一个题:今有甲乙二人持钱不知其数.甲得乙半而钱五十,乙得甲太半而钱亦五十.问甲、乙持钱各几何?其意思为:今有甲乙二人,不如其钱包里有多少钱,若乙把其一半的钱给甲,则甲的数为50;而甲把其23的钱给乙.则乙的钱数也为50,问甲、乙各有多少钱?设甲的钱数为x,乙的钱数为y,则可建立方程组为()A.15022503x yx y⎧+=⎪⎪⎨⎪+=⎪⎩B.15022503x yx y⎧+=⎪⎪⎨⎪+=⎪⎩C.15022503x yx y⎧+=⎪⎪⎨⎪+=⎪⎩D.15022503x yx y⎧+=⎪⎪⎨⎪+=⎪⎩8.按如图所示的运算程序,能使输出y值为1的是()A.11m n==,B.10m n==,C.12m n==,D.21m n==,9.如图,在平面直角坐标系中,矩形ABCD的顶点A,D分别在x轴、y轴上,对角线BD∥x轴,反比例函数(0,0)ky k xx=>>的图象经过矩形对角线的交点E.若点A(2,0),D(0,4),则k的值为()A.16 B.20 C.32 D.409题图8题图10题图12题图10.为践行“绿水青山就是金山银山”的重要思想,某森林保护区开展了寻找古树活动.如图,在一个坡度(或坡比)i=1:24的山坡AB上发现有一棵占树CD.测得古树底端C到山脚点A的距离AC=26米,在距山脚点A水平距离6米的点E处,测得古树顶端D的仰角∠AED=48°(古树CD与山坡AB的剖面、点E在同一平面上,古树CD与直线AE垂直),则古树CD的高度约为()(参考数据:sin48°≈0.73,cos8°≈0.67,tan48°≈1.11)A.17.0米B.21.9米C.23.3米D.33.3米11.若关于x的一元一次不等式组11(42)42 3122x axx⎧--≤⎪⎪⎨-⎪<+⎪⎩的解集是x≤a,且关于y的分式方程24111y a yy y---=--有非负整数解,则符合条件的所有整数a的和为()A.0 B.1 C.4 D.612.如图,在△ABC中,D是AC边上的中点,连结BD,把△BDC′沿BD翻折,得到△BDC',DC与AB交于点E,连结AC',若AD=AC=2,BD=3则点D到BC的距离为()A.233B.7213C.7D.13二、填空题:(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡...中对应的横线上.13.计算:=+1-213-)()(π.14.今年五一节期间,重庆市旅游持续火爆,全市共接待境内外游客超过25600000人次,请把数25600000用科学记数法表示为.15.一个不透明的布袋内装有除颜色外,其余完全相同的3个红球,2个白球,1个黄球,搅匀后,从中随机摸出一个球,记下颜色后放回搅匀,再从中随机摸出一个球,则两次都摸到红球的概率为.16.如图,在菱形ABCD中,对角线AC,BD交于点O,∠ABC=60°,AB=2,分别以点A、点C为圆心,以AO的长为半径画弧分别与菱形的边相交,则图中阴影部分的面积为.(结果保留π)17.某公司快递员甲匀速骑车前往某小区送物件,出发几分钟后,快递员乙发现甲的手机落在公司,无法联系,于是乙匀速骑车去追赶甲.乙刚出发2分钟时,甲也发现自己手机落在公司,立刻按原路原速骑车回公司,2分钟后甲遇到乙,乙把手机给甲后立即原路原速返回公司,甲继续原路原速赶往某小区送物件,甲乙两人相距的路程y(米)与甲出发的时间x(分钟)之间的关系如图所示(乙给甲手机的时间忽略不计).则乙回到公司时,甲距公司的路程是米.16题图17题图20题图18.在精准扶贫的过程中,某驻村服务队结合当地高山地形,决定在该村种植中药材川香、贝母、黄连增加经济收人,经过一段时间,该村已种植的川香、贝母、黄连面积之比4:3:5,是根据中药材市场对川香、贝母、黄连的需求量,将在该村余下土地上继续种植这三种中药材,经测算需将余下土地面积的169种植黄连,则黄连种植总面积将达到这三种中药材种植总面积的4019.为使川香种植总面积与贝母种植总面积之比达到3:4,则该村还需种植贝母的面积与该村种植这三种中药材的总面积之比是 .三、解答题:(本大题7个小题,每小题10分,共70分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡中对应的位置上.19.计算:(1))2(2y x y y x +-+)( (2)292492--÷--+a a a a a )(20.如图,在△ABC 中,AB =AC ,D 是BC 边上的中点,连结AD ,BE 平分∠ABC 交AC 于点E ,过点E作EF ∥BC 交AB 于点F .(1)若∠C =36°,求∠BAD 的度数.(2)若点E 在边AB 上,EF //AC 叫AD 的延长线于点F .求证:FB =FE .21.每年夏季全国各地总有未成年人因溺水而丧失生命,令人痛心秩首.今年某校为确保学生安全,开展了“远离溺水·珍爱生命”的防溺水安全知识竞赛.现从该校七、八年级中各随机抽取10名学生的竞赛成绩(百分制)进行整理、描述和分析(成绩得分用x表示,共分成四组:A.80≤x≤85,B.85≤x≤90,C.90≤x≤95,D.95≤x≤100),下面给出了部分信息:七年级10名学生的竞赛成绩是:90,80,90,86,99,96,96,100,89,82八年级10名学生的竞赛成绩在C组中的数据是:94,90,94八年抽取的学生竞赛成绩扇形统计图七、八年级抽取的学生竞赛成绩统计表年级七年级八年级平均数92 92中位数93 b纵数c100方差52 50.421题图根据以上信息,解答下列问题:(1)直接写出上述图表中a,b,c的值;(2)根据以上数据,你认为该校七、八年级中哪个年级学生掌握防溺水安全知识较好?请说明理由(一条理由即可);(3)该校七、八年级共730人参加了此次竞赛活动,估计参加此次竞赛活动成绩优秀(x≧90)的学生人数是多少?22.《道德经》中的“道生一,一生二,二生三,三生万物”道出了自然数的特征.在数的学习过程中,我们会对其中一些具有某种特性的数进行研究,如学习自然数时,我们研究了奇数、偶数、质数、合数等.现在我们来研究另一种特珠的自然数—“纯数”.定义;对于自然数n,在计算n+(n+1)+(n+2)时,各数位都不产生进位,则称这个自然数n为“纯数”,例如:32是”纯数”,因为计算32+33+34时,各数位都不产生进位;23不是“纯数”,因为计算23+24+25时,个位产生了进位.(1)判断2019和2020是否是“纯数”?请说明理由;(2)求出不大于100的“纯数”的个数.321-=x y 23.在初中阶段的函数学习中,我们经历了“确定函数的表达式——利用函数图象研究其性质一一运用函数解决问题"的学习过程.在画函数图象时,我们通过描点或平移的方法画出了所学的函数图象.同时,我们也学习了绝对值的意义⎩⎨⎧-≥=)0()0(<a a a a a .结合上面经历的学习过程,现在来解决下面的问题在函数b kx y +-=3中,当2=x 时,;4-=y 当0=x 时,.1y -=(1)求这个函数的表达式;(2)在给出的平面直角坐标系中,请用你喜欢的方法面出这个函数的图象井写出这个函数的一条性质; (3)已知函321y -=x 的图象如图所示,结合你所画的函数图象,直接写出不等式3213-≤+-x b kx 的解集.24.某文明小区50平方米和80平方米两种户型的住宅,50平方米住宅套数是80平方米住宅套数的2倍.物管公司月底按每平方米2元收取当月物管费,该小区全部住宅都人住且每户均按时全额缴纳物管费. (1)该小区每月可收取物管费90 000元,问该小区共有多少套80平方米的住宅?(2)为建设“资源节约型社会”,该小区物管公司5月初推出活动一:“垃圾分类送礼物”,50平方米和80平方米的住户分别有40%和20%参加了此次括动.为提离大家的积扱性,6月份准备把活动一升级为活动二:“拉圾分类抵扣物管费”,同时终止活动一.经调査与测算,参加活动一的住户会全部参加活动二,参加活动二的住户会大幅增加,这样,6月份参加活动的50平方米的总户数在5月份参加活动的同户型户数的基础上将增加%2a ,每户物管费将会减少%103a ;6月份参加活动的80平方米的总户数在5月份参加活动的同户型户数的基础上将增加%6a ,每户物管费将会减少%41a .这样,参加活动的这部分住户6月份总共缴纳的物管费比他们按原方式共缴纳的物管费将减少%185a ,求a 的值.25.如图,在平行四边形ABCD 中,点E 在边BC 上,连结AE ,EM ⊥AE ,垂足为E ,交CD 于点M ,AF ⊥BC ,垂足为F ,BH ⊥AE ,垂足为H ,交AF 于点N ,点P 显AD 上一点,连接CP . (1)若DP =2AP =4,CP =17,CD =5,求△ACD 的面积. (2)若AE =BN ,AN =CE ,求证:AD =2CM +2CE .四、解答题:(本大题1个小题,共8分)解答时必须给出必要的演算过程成或推理步骤,画出必要的图形(包括辅助线),请将解作过程书写在答题卡中对应的位置上.26.如图,在平面在角坐标系中,抛物线y=x2-2x-3与x轴交与点A,B(点A在点B的左侧)交y轴于点C,点D为抛物线的顶点,对称轴与x轴交于点E.(1)连结BD,点M是线段BD上一动点(点M不与端点B,D重合),过点M作MN⊥BD交抛物线于点N(点N在对称轴的右侧),过点N作NH⊥x轴,垂足为H,交BD于点F,点P是线段OC上一动点,当MN取得最大值时,求HF+FP+13PC的最小值;(2)在(1)中,当MN取得最大值HF+FP+1/3PC取得小值时,把点P向上平移个22单位得到点Q,连结AQ,把△AOQ绕点O瓶时针旋转一定的角度α(0°<α<360°),得到△AOQ,其中边AQ交坐标轴于点C在旋转过程中,是否存在一点G使得OGQQ''∠=∠?若存在,请直接写出所有满足条件的点Q的坐标;若不存在,请说明理由.2。

2019年重庆市中考数学试卷(a卷)(含解析答案)

2019年重庆市中考数学试卷(a卷)(含解析答案)

2019年重庆市中考数学试卷(A卷)一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑.1.(4分)下列各数中,比﹣1小的数是()A.2 B.1 C.0 D.﹣22.(4分)如图是由4个相同的小正方体组成的一个立体图形,其主视图是()A.B.C.D.3.(4分)如图,△ABO∽△CDO,若BO=6,DO=3,CD=2,则AB的长是()A.2 B.3 C.4 D.54.(4分)如图,AB是⊙O的直径,AC是⊙O的切线,A为切点,BC与⊙O交于点D,连结OD.若∠C=50°,则∠AOD的度数为()A.40°B.50°C.80°D.100°5.(4分)下列命题正确的是()A.有一个角是直角的平行四边形是矩形B.四条边相等的四边形是矩形C.有一组邻边相等的平行四边形是矩形D .对角线相等的四边形是矩形6.(4分)估计(2√3+6√2)×√13的值应在( )A .4和5之间B .5和6之间C .6和7之间D .7和8之间 7.(4分)《九章算术》中有这样一个题:今有甲乙二人持钱不知其数.甲得乙半而钱五十,乙得甲太半而钱亦五十.问甲、乙持钱各几何?其意思为:今有甲乙二人,不如其钱包里有多少钱,若乙把其一半的钱给甲,则甲的数为50;而甲把其23的钱给乙,则乙的钱数也为50,问甲、乙各有多少钱?设甲的钱数为x ,乙的钱数为y ,则可建立方程组为( )A .{x +12y =5023x +y =50 B .{x +12y =50x +23y =50C .{12x +y =5023x +y =50D .{12x +y =50x +23y =50 8.(4分)按如图所示的运算程序,能使输出y 值为1的是( )A .m =1,n =1B .m =1,n =0C .m =1,n =2D .m =2,n =19.(4分)如图,在平面直角坐标系中,矩形ABCD 的顶点A ,D 分别在x 轴、y 轴上,对角线BD ∥x 轴,反比例函数y =k x (k >0,x >0)的图象经过矩形对角线的交点E .若点A (2,0),D (0,4),则k 的值为( )A .16B .20C .32D .4010.(4分)为践行“绿水青山就是金山银山”的重要思想,某森林保护区开展了寻找古树活动.如图,在一个坡度(或坡比)i =1:2.4的山坡AB 上发现有一棵古树CD .测得古树底端C 到山脚点A 的距离AC =26米,在距山脚点A 水平距离6米的点E 处,测得古树顶端D 的仰角∠AED =48°(古树CD 与山坡AB 的剖面、点E 在同一平面上,古树CD 与直线AE 垂直),则古树CD 的高度约为( )(参考数据:sin48°≈0.73,cos48°≈0.67,tan48°≈1.11)A .17.0米B .21.9米C .23.3米D .33.3米 11.(4分)若关于x 的一元一次不等式组{x −14(4a −2)≤123x−12<x +2的解集是x ≤a ,且关于y 的分式方程2y−a y−1−y−41−y =1有非负整数解,则符合条件的所有整数a 的和为( ) A .0 B .1C .4D .6 12.(4分)如图,在△ABC 中,D 是AC 边上的中点,连结BD ,把△BDC 沿BD 翻折,得到△BDC ',DC ′与AB 交于点E ,连结AC ',若AD =AC ′=2,BD =3,则点D 到BC ′的距离为( )A .3√32B .3√217C .√7D .√13二、填空题:(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的横线上.13.(4分)计算:(π﹣3)0+(12)﹣1= . 14.(4分)今年五一节期间,重庆市旅游持续火爆,全市共接待境内外游客超过25600000人次,请把数25600000用科学记数法表示为 .15.(4分)一个不透明的布袋内装有除颜色外,其余完全相同的3个红球,2个白球,1个黄球,搅匀后,从中随机摸出一个球,记下颜色后放回搅匀,再从中随机摸出一个球,则两次都摸到红球的概率为 .16.(4分)如图,在菱形ABCD中,对角线AC,BD交于点O,∠ABC=60°,AB=2,分别以点A、点C为圆心,以AO的长为半径画弧分别与菱形的边相交,则图中阴影部分的面积为.(结果保留π)17.(4分)某公司快递员甲匀速骑车前往某小区送物件,出发几分钟后,快递员乙发现甲的手机落在公司,无法联系,于是乙匀速骑车去追赶甲.乙刚出发2分钟时,甲也发现自己手机落在公司,立刻按原路原速骑车回公司,2分钟后甲遇到乙,乙把手机给甲后立即原路原速返回公司,甲继续原路原速赶往某小区送物件,甲乙两人相距的路程y(米)与甲出发的时间x(分钟)之间的关系如图所示(乙给甲手机的时间忽略不计).则乙回到公司时,甲距公司的路程是米.18.(4分)在精准扶贫的过程中,某驻村服务队结合当地高山地形,决定在该村种植中药材川香、贝母、黄连增加经济收入.经过一段时间,该村已种植的川香、贝母、黄连面积之比4:3:5,是根据中药材市场对川香、贝母、黄连的需求量,将在该村余下土地上继续种植这三种中药材,经测算需将余下土地面积的916种植黄连,则黄连种植总面积将达到这三种中药材种植总面积的1940.为使川香种植总面积与贝母种植总面积之比达到3:4,则该村还需种植贝母的面积与该村种植这三种中药材的总面积之比是.三、解答题:(本大题7个小题,每小题10分,共70分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡中对应的位置上.19.(10分)计算:(1)(x+y)2﹣y(2x+y)(2)(a+9−4aa−2)÷a2−9a−220.(10分)如图,在△ABC中,AB=AC,D是BC边上的中点,连结AD,BE平分∠ABC交AC于点E,过点E作EF∥BC交AB于点F.(1)若∠C=36°,求∠BAD的度数;(2)求证:FB=FE.21.(10分)每年夏季全国各地总有未成年人因溺水而丧失生命,令人痛心疾首.今年某校为确保学生安全,开展了“远离溺水•珍爱生命”的防溺水安全知识竞赛.现从该校七、八年级中各随机抽取10名学生的竞赛成绩(百分制)进行整理、描述和分析(成绩得分用x表示,共分成四组:A.80≤x<85,B.85≤x<90,C.90≤x<95,D.95≤x≤100),下面给出了部分信息:七年级10名学生的竞赛成绩是:99,80,99,86,99,96,90,100,89,82八年级10名学生的竞赛成绩在C组中的数据是:94,90,94七、八年级抽取的学生竞赛成绩统计表年级七年级八年级平均数92 92中位数93 b众数c100方差52 50.4根据以上信息,解答下列问题:(1)直接写出上述图表中a,b,c的值;(2)根据以上数据,你认为该校七、八年级中哪个年级学生掌握防溺水安全知识较好?请说明理由(一条理由即可);(3)该校七、八年级共720人参加了此次竞赛活动,估计参加此次竞赛活动成绩优秀(x ≥90)的学生人数是多少?22.(10分)《道德经》中的“道生一,一生二,二生三,三生万物”道出了自然数的特征.在数的学习过程中,我们会对其中一些具有某种特性的数进行研究,如学习自然数时,我们研究了奇数、偶数、质数、合数等.现在我们来研究另一种特珠的自然数﹣“纯数”. 定义;对于自然数n ,在计算n +(n +1)+(n +2)时,各数位都不产生进位,则称这个自然数n 为“纯数”,例如:32是”纯数”,因为计算32+33+34时,各数位都不产生进位;23不是“纯数”,因为计算23+24+25时,个位产生了进位.(1)判断2019和2020是否是“纯数”?请说明理由;(2)求出不大于100的“纯数”的个数.23.(10分)在初中阶段的函数学习中,我们经历了“确定函数的表达式﹣﹣利用函数图象研究其性质一一运用函数解决问题“的学习过程.在画函数图象时,我们通过描点或平移的方法画出了所学的函数图象.同时,我们也学习了绝对值的意义|a |={a(a ≥0)−a(a <0). 结合上面经历的学习过程,现在来解决下面的问题在函数y =|kx ﹣3|+b 中,当x =2时,y =﹣4;当x =0时,y =﹣1.(1)求这个函数的表达式;(2)在给出的平面直角坐标系中,请用你喜欢的方法面出这个函数的图象并写出这个函数的一条性质;(3)已知函y =12x ﹣3的图象如图所示,结合你所画的函数图象,直接写出不等式|kx ﹣3|+b ≤12x ﹣3的解集.24.(10分)某文明小区50平方米和80平方米两种户型的住宅,50平方米住宅套数是80平方米住宅套数的2倍.物管公司月底按每平方米2元收取当月物管费,该小区全部住宅都人住且每户均按时全额缴纳物管费.(1)该小区每月可收取物管费90000元,问该小区共有多少套80平方米的住宅?(2)为建设“资源节约型社会”,该小区物管公司5月初推出活动一:“垃圾分类送礼物”,50平方米和80平方米的住户分别有40%和20%参加了此次括动.为提离大家的积扱性,6月份准备把活动一升级为活动二:“拉圾分类抵扣物管费”,同时终止活动一.经调査与测算,参加活动一的住户会全部参加活动二,参加活动二的住户会大幅增加,这样,6月份参加活动的50平方米的总户数在5月份参加活动的同户型户数的基础上将增加2a %,每户物管费将会减少310a %;6月份参加活动的80平方米的总户数在5月份参加活动的同户型户数的基础上将增加6a %,每户物管费将会减少14a %.这样,参加活动的这部分住户6月份总共缴纳的物管费比他们按原方式共缴纳的物管费将减少518a %,求a 的值.25.(10分)如图,在平行四边形ABCD 中,点E 在边BC 上,连结AE ,EM ⊥AE ,垂足为E ,交CD 于点M ,AF ⊥BC ,垂足为F ,BH ⊥AE ,垂足为H ,交AF 于点N ,点P 是AD 上一点,连接CP .(1)若DP =2AP =4,CP =√17,CD =5,求△ACD 的面积.(2)若AE =BN ,AN =CE ,求证:AD =√2CM +2CE .四、解答题:(本大题1个小题,共8分)解答时必须给出必要的演算过程成或推理步骤,画出必要的图形(包括辅助线),请将解作过程书写在答题卡中对应的位置上.26.(8分)如图,在平面直角坐标系中,抛物线y=x2﹣2x﹣3与x轴交于点A,B(点A在点B的左侧),交y轴于点C,点D为抛物线的顶点,对称轴与x轴交于点E.(1)连结BD,点M是线段BD上一动点(点M不与端点B,D重合),过点M作MN⊥BD,交抛物线于点N(点N在对称轴的右侧),过点N作NH⊥x轴,垂足为H,交BD于点F,点P是线段OC上一动点,当MN取得最大值时,求HF+FP+13PC的最小值;(2)在(1)中,当MN取得最大值,HF+FP+13PC取得最小值时,把点P向上平移√22个单位得到点Q,连结AQ,把△AOQ绕点O顺时针旋转一定的角度α(0°<α<360°),得到△A′OQ′,其中边A′Q′交坐标轴于点G.在旋转过程中,是否存在一点G,使得∠Q'=∠Q'OG?若存在,请直接写出所有满足条件的点Q′的坐标;若不存在,请说明理由.2019年重庆市中考数学试卷(A卷)参考答案与试题解析一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑.1.(4分)下列各数中,比﹣1小的数是()A.2 B.1 C.0 D.﹣2【解答】解:∵﹣2<﹣1<0<2,∴比﹣1小的数是﹣2,故选:D.【点评】本题考查了有理数的大小比较,注意:正数都大于0,负数都小于0,两个负数比较大小,其绝对值大的反而小.2.(4分)如图是由4个相同的小正方体组成的一个立体图形,其主视图是()A.B.C.D.【解答】解:从正面看易得第一层有2个正方形,第二层左边有一个正方形,如图所示:.故选:A.【点评】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.3.(4分)如图,△ABO∽△CDO,若BO=6,DO=3,CD=2,则AB的长是()A .2B .3C .4D .5【解答】解:∵△ABO ∽△CDO ,∴BO DO =AB DC ,∵BO =6,DO =3,CD =2,∴63=AB 2,解得:AB =4.故选:C .【点评】此题主要考查了相似三角形的性质,正确得出对应边之间关系是解题关键.4.(4分)如图,AB 是⊙O 的直径,AC 是⊙O 的切线,A 为切点,BC 与⊙O 交于点D ,连结OD .若∠C =50°,则∠AOD 的度数为( )A .40°B .50°C .80°D .100°【解答】解:∵AC 是⊙O 的切线,∴AB ⊥AC ,∴∠BAC =90°,∵∠C =50°,∴∠ABC =40°,∵OD =OB ,∴∠ODB =∠ABC =40°,∴∠AOD =∠ODB +∠ABC =80°;故选:C .【点评】本题考查了切线的性质,等腰三角形的性质、直角三角形两锐角互余、三角形的外角性质,熟练运用切线的性质是本题的关键.5.(4分)下列命题正确的是( )A .有一个角是直角的平行四边形是矩形B .四条边相等的四边形是矩形C .有一组邻边相等的平行四边形是矩形D .对角线相等的四边形是矩形【解答】解:A 、有一个角是直角的平行四边形是矩形,是真命题;B 、四条边相等的四边形是菱形,是假命题;C 、有一组邻边相等的平行四边形是菱形,是假命题;D 、对角线相等的平行四边形是矩形,是假命题;故选:A .【点评】本题主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题,本题熟练掌握矩形的判定方法是解题的关键. 6.(4分)估计(2√3+6√2)×√13的值应在( ) A .4和5之间B .5和6之间C .6和7之间D .7和8之间【解答】解:(2√3+6√2)×√13,=2+6√23,=2+√36×23, =2+√24, ∵4<√24<5, ∴6<2+√24<7, 故选:C .【点评】本题考查了二次根式的乘法和无理数的估算,熟练掌握二次根式的计算法则是关键.7.(4分)《九章算术》中有这样一个题:今有甲乙二人持钱不知其数.甲得乙半而钱五十,乙得甲太半而钱亦五十.问甲、乙持钱各几何?其意思为:今有甲乙二人,不如其钱包里有多少钱,若乙把其一半的钱给甲,则甲的数为50;而甲把其23的钱给乙,则乙的钱数也为50,问甲、乙各有多少钱?设甲的钱数为x ,乙的钱数为y ,则可建立方程组为( ) A .{x +12y =5023x +y =50B .{x +12y =50x +23y =50C .{12x +y =5023x +y =50 D .{12x +y =50x +23y =50【解答】解:设甲的钱数为x ,乙的钱数为y , 依题意,得:{x +12y =5023x +y =50.故选:A .【点评】本题考查了由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.8.(4分)按如图所示的运算程序,能使输出y 值为1的是( )A .m =1,n =1B .m =1,n =0C .m =1,n =2D .m =2,n =1【解答】解:当m =1,n =1时,y =2m +1=2+1=3, 当m =1,n =0时,y =2n ﹣1=﹣1, 当m =1,n =2时,y =2m +1=3, 当m =2,n =1时,y =2n ﹣1=1, 故选:D .【点评】本题考查代数式求值,有理数的混合运算等知识,解题的关键是理解题意,属于中考常考题型.9.(4分)如图,在平面直角坐标系中,矩形ABCD 的顶点A ,D 分别在x 轴、y 轴上,对角线BD ∥x 轴,反比例函数y =kx (k >0,x >0)的图象经过矩形对角线的交点E .若点A (2,0),D (0,4),则k 的值为( )A .16B .20C .32D .40【解答】解:∵BD ∥x 轴,D (0,4), ∴B 、D 两点纵坐标相同,都为4, ∴可设B (x ,4).∵矩形ABCD 的对角线的交点为E , ∴E 为BD 中点,∠DAB =90°. ∴E (12x ,4).∵∠DAB =90°, ∴AD 2+AB 2=BD 2,∵A (2,0),D (0,4),B (x ,4), ∴22+42+(x ﹣2)2+42=x 2, 解得x =10, ∴E (5,4).∵反比例函数y =kx (k >0,x >0)的图象经过点E , ∴k =5×4=20. 故选:B .【点评】本题考查了矩形的性质,勾股定理,反比例函数图象上点的坐标特征,线段中点坐标公式等知识,求出E 点坐标是解题的关键.10.(4分)为践行“绿水青山就是金山银山”的重要思想,某森林保护区开展了寻找古树活动.如图,在一个坡度(或坡比)i =1:2.4的山坡AB 上发现有一棵古树CD .测得古树底端C 到山脚点A 的距离AC =26米,在距山脚点A 水平距离6米的点E 处,测得古树顶端D 的仰角∠AED =48°(古树CD 与山坡AB 的剖面、点E 在同一平面上,古树CD 与直线AE 垂直),则古树CD 的高度约为( )(参考数据:sin48°≈0.73,cos48°≈0.67,tan48°≈1.11)A .17.0米B .21.9米C .23.3米D .33.3米【解答】解:如图,∵CFAF=1:2.4=512, ∴设CF =5k ,AF =12k , ∴AC =√CF 2+AF 2=13k =26, ∴k =2,∴AF =10,CF =24, ∵AE =6, ∴EF =6+24=30, ∵∠DEF =48°, ∴tan48°=DF EF =DF30=1.11, ∴DF =33.3,∴CD =33.3﹣10=23.3, 答:古树CD 的高度约为23.3米, 故选:C .【点评】本题考查解直角三角形的应用﹣仰角俯角问题,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.11.(4分)若关于x 的一元一次不等式组{x −14(4a −2)≤123x−12<x +2的解集是x ≤a ,且关于y 的分式方程2y−a y−1−y−41−y=1有非负整数解,则符合条件的所有整数a 的和为( )A .0B .1C .4D .6【解答】解:由不等式组{x −14(4a −2)≤123x−12<x +2得:{x ≤ax <5∵解集是x ≤a , ∴a <5;由关于y 的分式方程2y−a y−1−y−41−y=1得2y ﹣a +y ﹣4=y ﹣1∴y =3+a2, ∵有非负整数解, ∴3+a 2≥0,∴a ≥﹣3,且a =﹣3,a =﹣1(舍,此时分式方程为增根),a =1,a =3 它们的和为1. 故选:B .【点评】本题综合考查了含参一元一次不等式,含参分式方程得问题,需要考虑的因素较多,属于易错题.12.(4分)如图,在△ABC 中,D 是AC 边上的中点,连结BD ,把△BDC 沿BD 翻折,得到△BDC ',DC ′与AB 交于点E ,连结AC ',若AD =AC ′=2,BD =3,则点D 到BC ′的距离为( )A .3√32B .3√217C .√7D .√13【解答】解:如图,连接CC ',交BD 于点M ,过点D 作DH ⊥BC '于点H , ∵AD =AC ′=2,D 是AC 边上的中点, ∴DC =AD =2,由翻折知,△BDC ≌△BDC ',BD 垂直平分CC ', ∴DC =DC '=2,BC =BC ',CM =C 'M , ∴AD =AC ′=DC '=2, ∴△ADC '为等边三角形,∴∠ADC '=∠AC 'D =∠C 'AC =60°, ∵DC =DC ',∴∠DCC '=∠DC 'C =12×60°=30°, 在Rt △C 'DM 中, ∠DC 'C =30°,DC '=2,∴DM =1,C 'M =√3DM =√3, ∴BM =BD ﹣DM =3﹣1=2, 在Rt △BMC '中,BC '=√BM 2+C′M 2=√22+(√3)2=√7,∵S △BDC '=12BC '•DH =12BD •CM , ∴√7DH =3×√3, ∴DH =3√217, 故选:B .【点评】本题考查了轴对称的性质,解直角三角形,勾股定理等,解题关键是会通过面积法求线段的长度.二、填空题:(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的横线上.13.(4分)计算:(π﹣3)0+(12)﹣1= 3 .【解答】解:原式=1+2=3, 故答案为:3.【点评】本题主要考查零指数幂和负整数指数幂,解题的关键是掌握a ﹣p=1a p (a ≠0,p 为正整数)及a 0=1(a ≠0).14.(4分)今年五一节期间,重庆市旅游持续火爆,全市共接待境内外游客超过25600000人次,请把数25600000用科学记数法表示为 2.56×107. 【解答】解:25600000=2.56×107. 故答案为:2.56×107.【点评】此题考查科学记数法表示较大的数的方法,准确确定n 值是关键.15.(4分)一个不透明的布袋内装有除颜色外,其余完全相同的3个红球,2个白球,1个黄球,搅匀后,从中随机摸出一个球,记下颜色后放回搅匀,再从中随机摸出一个球,则两次都摸到红球的概率为 14.【解答】解:画树状图为:共有36种等可能的结果数,其中两次都摸到红球的结果数为9, 所以两次都摸到红球的概率为936=14.故答案为:14.【点评】本题考查了列表法或树状图法:通过列表法或树状图法展示所有等可能的结果求出n ,再从中选出符合事件A 或B 的结果数目m ,然后根据概率公式求出事件A 或B 的概率.16.(4分)如图,在菱形ABCD 中,对角线AC ,BD 交于点O ,∠ABC =60°,AB =2,分别以点A 、点C 为圆心,以AO 的长为半径画弧分别与菱形的边相交,则图中阴影部分的面积为 2√3−23π .(结果保留π)【解答】解:∵四边形ABCD 是菱形,∴AC ⊥BD ,∠ABO =12∠ABC =30°,∠BAD =∠BCD =120°, ∴AO =12AB =1,由勾股定理得,OB =√AB 2−OA 2=√3, ∴AC =2,BD =2√3,∴阴影部分的面积=12×2×2√3−120π×12360×2=2√3−23π,故答案为:2√3−23π.【点评】本题考查的是扇形面积计算、菱形的性质,掌握扇形面积公式是解题的关键. 17.(4分)某公司快递员甲匀速骑车前往某小区送物件,出发几分钟后,快递员乙发现甲的手机落在公司,无法联系,于是乙匀速骑车去追赶甲.乙刚出发2分钟时,甲也发现自己手机落在公司,立刻按原路原速骑车回公司,2分钟后甲遇到乙,乙把手机给甲后立即原路原速返回公司,甲继续原路原速赶往某小区送物件,甲乙两人相距的路程y (米)与甲出发的时间x (分钟)之间的关系如图所示(乙给甲手机的时间忽略不计).则乙回到公司时,甲距公司的路程是 6000 米.【解答】解:由题意可得,甲的速度为:4000÷(12﹣2﹣2)=500米/分, 乙的速度为:4000+500×2−500×22+2=1000米/分,乙从与甲相遇到返回公司用的时间为4分钟,则乙回到公司时,甲距公司的路程是:500×(12﹣2)﹣500×2+500×4=6000(米), 故答案为:6000.【点评】本题考查一次函数的应用,解答本题的关键是明确题意,利用数形结合的思想解答.18.(4分)在精准扶贫的过程中,某驻村服务队结合当地高山地形,决定在该村种植中药材川香、贝母、黄连增加经济收入.经过一段时间,该村已种植的川香、贝母、黄连面积之比4:3:5,是根据中药材市场对川香、贝母、黄连的需求量,将在该村余下土地上继续种植这三种中药材,经测算需将余下土地面积的916种植黄连,则黄连种植总面积将达到这三种中药材种植总面积的1940.为使川香种植总面积与贝母种植总面积之比达到3:4,则该村还需种植贝母的面积与该村种植这三种中药材的总面积之比是 3:20 . 【解答】解:设该村已种药材面积x ,余下土地面积为y ,还需种植贝母的面积为z ,则总面积为(x +y ),川香已种植面积13x 、贝母已种植面积14x ,黄连已种植面积512x依题意可得,{512x +916y =1940(x +y)①[13x +(y −916y −z)]:(14x +z)=3:4②由①得 x =32y ③, 将③代入②,z =38y ,∴贝母的面积与该村种植这三种中药材的总面积之比=z x+y =38y 32y+y =320,故答案为3:20.【点评】本题考查了三元一次方程组,正确找出等量关系并列出方程是解题的关键. 三、解答题:(本大题7个小题,每小题10分,共70分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡中对应的位置上.19.(10分)计算: (1)(x +y )2﹣y (2x +y )(2)(a +9−4a a−2)÷a 2−9a−2【解答】解:(1)(x +y )2﹣y (2x +y ) =x 2+2xy +y 2﹣2xy ﹣y 2=x 2;(2)(a +9−4a a−2)÷a 2−9a−2=a(a−2)+(9−4a)a−2⋅a−2(a+3)(a−3) =a 2−2a+9−4a(a+3)(a−3)=(a−3)2(a+3)(a−3)=a−3a+3. 【点评】本题考查分式的混合运算、完全平方公式、单项式乘多项式,解答本题的关键是明确它们各自的计算方法.20.(10分)如图,在△ABC 中,AB =AC ,D 是BC 边上的中点,连结AD ,BE 平分∠ABC 交AC于点E,过点E作EF∥BC交AB于点F.(1)若∠C=36°,求∠BAD的度数;(2)求证:FB=FE.【解答】(1)解:∵AB=AC,∴∠C=∠ABC,∵∠C=36°,∴∠ABC=36°,∵BD=CD,AB=AC,∴AD⊥BC,∴∠ADB=90°,∴∠BAD=90°﹣36°=54°.(2)证明:∵BE平分∠ABC,∴∠ABE=∠CBE=12∠ABC,∵EF∥BC,∴∠FEB=∠CBE,∴∠FBE=∠FEB,∴FB=FE.【点评】本题考查等腰三角形的性质,平行线的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.21.(10分)每年夏季全国各地总有未成年人因溺水而丧失生命,令人痛心疾首.今年某校为确保学生安全,开展了“远离溺水•珍爱生命”的防溺水安全知识竞赛.现从该校七、八年级中各随机抽取10名学生的竞赛成绩(百分制)进行整理、描述和分析(成绩得分用x表示,共分成四组:A.80≤x<85,B.85≤x<90,C.90≤x<95,D.95≤x≤100),下面给出了部分信息:七年级10名学生的竞赛成绩是:99,80,99,86,99,96,90,100,89,82八年级10名学生的竞赛成绩在C组中的数据是:94,90,94七、八年级抽取的学生竞赛成绩统计表年级七年级八年级平均数92 92中位数93 b众数c100方差52 50.4根据以上信息,解答下列问题:(1)直接写出上述图表中a,b,c的值;(2)根据以上数据,你认为该校七、八年级中哪个年级学生掌握防溺水安全知识较好?请说明理由(一条理由即可);(3)该校七、八年级共720人参加了此次竞赛活动,估计参加此次竞赛活动成绩优秀(x ≥90)的学生人数是多少?【解答】解:(1)a=(1﹣20%﹣10%−310)×100=40,∵八年级10名学生的竞赛成绩的中位数是第5和第6个数据的平方数,∴b=94+942=94;∵在七年级10名学生的竞赛成绩中99出现的次数最多,∴c=99;(2)八年级学生掌握防溺水安全知识较好,理由:虽然七、八年级的平均分均为92分,但八年级的中位数和众数均高于七年级.(3)参加此次竞赛活动成绩优秀(x≥90)的学生人数=720×1320=468人,答:参加此次竞赛活动成绩优秀(x≥90)的学生人数是468人.【点评】本题考查读扇形统计图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.22.(10分)《道德经》中的“道生一,一生二,二生三,三生万物”道出了自然数的特征.在数的学习过程中,我们会对其中一些具有某种特性的数进行研究,如学习自然数时,我们研究了奇数、偶数、质数、合数等.现在我们来研究另一种特珠的自然数﹣“纯数”.定义;对于自然数n,在计算n+(n+1)+(n+2)时,各数位都不产生进位,则称这个自然数n为“纯数”,例如:32是”纯数”,因为计算32+33+34时,各数位都不产生进位;23不是“纯数”,因为计算23+24+25时,个位产生了进位.(1)判断2019和2020是否是“纯数”?请说明理由;(2)求出不大于100的“纯数”的个数.【解答】解:(1)2019不是“纯数”,2020是“纯数”,理由:当n=2019时,n+1=2020,n+2=2021,∵个位是9+0+1=10,需要进位,∴2019不是“纯数”;当n=2020时,n+1=2021,n+2=2022,∵个位是0+1+2=3,不需要进位,十位是2+2+2=6,不需要进位,百位为0+0+0=0,不需要进位,千位为2+2+2=6,不需要进位,∴2020是“纯数”;(2)由题意可得,连续的三个自然数个位数字是0,1,2,其他位的数字为0,1,2,3时,不会产生进位,当这个数是一位自然数时,只能是0,1,2,共三个,当这个自然数是两位自然数时,十位数字是1,2,3,个位数是0,1,2,共九个,当这个数是三位自然数是,只能是100,由上可得,不大于100的“纯数”的个数为3+9+1=13, 即不大于100的“纯数”的有13个.【点评】本题考查整式的加减、有理数的加法、新定义,解答本题的关键是明确题意,利用题目中的新定义解答.23.(10分)在初中阶段的函数学习中,我们经历了“确定函数的表达式﹣﹣利用函数图象研究其性质一一运用函数解决问题“的学习过程.在画函数图象时,我们通过描点或平移的方法画出了所学的函数图象.同时,我们也学习了绝对值的意义|a |={a(a ≥0)−a(a <0).结合上面经历的学习过程,现在来解决下面的问题在函数y =|kx ﹣3|+b 中,当x =2时,y =﹣4;当x =0时,y =﹣1.(1)求这个函数的表达式;(2)在给出的平面直角坐标系中,请用你喜欢的方法面出这个函数的图象并写出这个函数的一条性质;(3)已知函y =12x ﹣3的图象如图所示,结合你所画的函数图象,直接写出不等式|kx ﹣3|+b ≤12x ﹣3的解集.【解答】解:(1)∵在函数y =|kx ﹣3|+b 中,当x =2时,y =﹣4;当x =0时,y =﹣1,∴{|2k −3|+b =−4|−3|+b =−1,得{k =32b =−4, ∴这个函数的表达式是y =|32x ﹣3|﹣4;(2)∵y =|32x ﹣3|﹣4,∴y ={32x −7(x ≥2)−32x −1(x <2),∴函数y =32x ﹣7过点(2,﹣4)和点(4,﹣1);函数y =−32x −1过点(0,﹣1)和点(﹣2,2);该函数的图象如右图所示,性质是当x >2时,y 随x 的增大而增大; (3)由函数图象可得,不等式|kx ﹣3|+b ≤12x ﹣3的解集是1≤x ≤4.【点评】本题考查一次函数的应用、一元一次不等式与一次函数的关系,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.24.(10分)某文明小区50平方米和80平方米两种户型的住宅,50平方米住宅套数是80平方米住宅套数的2倍.物管公司月底按每平方米2元收取当月物管费,该小区全部住宅都人住且每户均按时全额缴纳物管费.(1)该小区每月可收取物管费90000元,问该小区共有多少套80平方米的住宅? (2)为建设“资源节约型社会”,该小区物管公司5月初推出活动一:“垃圾分类送礼物”,50平方米和80平方米的住户分别有40%和20%参加了此次括动.为提离大家的积扱性,6月份准备把活动一升级为活动二:“拉圾分类抵扣物管费”,同时终止活动一.经调査与测算,参加活动一的住户会全部参加活动二,参加活动二的住户会大幅增加,这样,6月份参加活动的50平方米的总户数在5月份参加活动的同户型户数的基础上将增加2a %,每户物管费将会减少310a %;6月份参加活动的80平方米的总户数在5月份参加活动的同户型户数的基础上将增加6a %,每户物管费将会减少14a %.这样,参加活动的这部分住户。

2019重庆市中考数学试题(A卷,含解答提示与评分标准)(真题)

2019重庆市中考数学试题(A卷,含解答提示与评分标准)(真题)

A B C D O D C BA O D CBA 重庆市2019年初中学业水平暨高中招生考试数学试题(A 卷)(全卷共四个大题,满分150分,考试时间120分钟)参考公式:抛物线y=ax 2+bx+c(a ≠0)的顶点坐标为(a 2b -,a 4b ac 42-),对称轴公式为x=a2b-.一、选择题(本大题12个小题,每小题4分,共48分)1.下列各数中,比-1小的数是( ) A 、2; B 、1; C 、0; D 、-2. 提示:根据数的大小比较.答案D.2.如图是由4个相同的小正方体组成的一个立体图形,其主视图是( ) .答案A.3.如图,△ABO ∽△CDO ,若BO=6,DO=3,CD=2,则AB 的长是( )A 、2;B 、3;C 、4;D 、5.提示:根据相似三角形的性质.答案C.4.如图,AB 是⊙O 的直径,AC 是⊙O 的切线,A 为切点,BC 与⊙O 交于点D ,连结OD .若∠C=50°,则∠AOD 的度数为( )A 、40°;B 、50°;C 、80°;D 、100°.提示:根据圆的切线性质及圆周角和圆心角的关系性质.答案C. 5.下列命题正确的是( )A 、有一个角是直角的平行四边形是矩形;B 、四条边相等的四边形是矩形;C 、有一组邻边相等的平行四边形是矩形;D 、对角线相等的四边形是矩形. 提示:根据矩形的判定.答案A.6.估计31)2632(⨯+的值应在( ) A 、4和5之间; B 、5和6之间; C 、6和7之间; D 、7和8之间.提示:化简得622+.答案C. 7.《九章算术》中有这样一个题:今有甲乙二人持钱不知其数.甲得乙半而钱五十,乙得甲太半而钱亦五十.问甲、乙持钱各几何?其意思为:今有甲乙二人,不如其钱包里有多少钱,若乙把其一半的钱给甲,则甲的数为50;而甲把其32的钱给乙.则乙的钱数也为50,问甲、乙各有多少钱?设甲的钱数为x ,乙的钱数为y ,则可建立方程组为( )A 、⎪⎩⎪⎨⎧=+=+50y x 3250y 21x ;B 、⎪⎩⎪⎨⎧=+=+50y 32x 50y 21x ;C 、⎪⎩⎪⎨⎧=+=+50y x 3250y x 21;D 、⎪⎩⎪⎨⎧=+=+50y 32x 50y x 21. 提示:根据列二元一次方程组的思路.答案A.8.按如图所示的运算程序,能使输出y 值为1的是( )A 、m=1,n=1;B 、m=1,n=0;C 、m=1,n=2;D 、m=2,n=1.BC提示:用试验法.答案D.9.如图,在平面直角坐标系中,矩形ABCD 的顶点A ,D 分别在x 轴、y 轴上,对角线BD ∥x 轴,反比例函数)0x ,0k (x ky >>=的图象经过矩形对角线的交点E .若点A(2,0),D(0,4),则k 的值为( )A 、16;B 、20;C 、32提示:易得△DAB ∽△AOD ,AD=52,则AB=54,所以DB=10,E(4,5).答案B.10.为践行“绿水青山就是金山银山”的重要思想,某森林保护区开展了寻找古树活动.如图,在一个坡度(或坡比)i =1:2.4的山坡AB 上发现有一棵占树CD .测得古树底端C 到山脚点A 的距离AC=26米,在距山脚点A 水平距离6米的点E 处,测得古树顶端D 的仰角∠AED=48°(古树CD 与山坡AB 的剖面、点E 在同一平面上,古树CD 与直线AE 垂直),则古树CD 的高度约为( )(参考数据:sin48°≈0.73,cos8°≈0.67,tan48°≈1.11)A 、17.0米;B 23.3米; D 、33.3米. 提示:延长DC 交直线AE 于F.在直角三角形ACF 中,易求得CF=10,AF=24,则EF=30. 所以DF=30×1.11=33.3.答案C.11.若关于x 的一元一次不等式组⎪⎩⎪⎨⎧+<-≤--2x 21x 321)2a 4(41x 的解集是x ≤a ,且关于y 的分式方程1y14y 1y a y 2=-----有非负整数解,则符合条件的所有整数a 的和为( ) A 、0; B 、1; C 、4; D 、6.提示:由不等式组的条件得:a<5.由分式方程的条件得:a ≥-3的奇数且a ≠-1.综上所述:整数a 为-3,1,3.答案B.12.如图,在△ABC 中,D 是AC 边上的中点,连结BD ,把△BDC /沿BD 翻折,得到△BDC /,DC /与AB 交于点E ,连结AC /,若AD=AC /=2,BD=3则点D 到BC /的距离为( ) A 、233; B 、7213; C 、7; D 、13.提示:过D 作DF ⊥BC /于F ,连接CC /交BD 于G.易得BD ⊥CC /,AC /=AD=CD=C /D=2,则∠ADC /=60°,∠DC /G=30°,所以DG=1,C /G=3,BG=BD-DG=2,BC /=7.在△BC /D 中利用面积可求出DF.答案B.二、填空题(本大题6个小题,每小题4分,共24分)O D C BA y/13.计算:10)21()3(-+-π= .提示:根据零指数幂、负整数指数幂.答案3.14. 今年五一节期间,重庆市旅游持续火爆,全市共接待境内外游客超过25600000人次,请把数25600000用科学记数法表示为 .提示:根据科学记数法的意义.答案2.56×107.15.一个不透明的布袋内装有除颜色外,其余完全相同的3个红球,2个白球,1个黄球,搅匀后,从中随机摸出一个球,记下颜色后放回搅匀,再从中随机摸出一个球,则两次都摸到红球的概率为 .提示:所有结果有36种,符合条件的有9种.答案41. 16.如图,在菱形ABCD 中,对角线AC ,BD 交于点O ,∠ABC=60°,AB=2,分别以点A 、点C 为圆心,以AO 的长为半径画弧分别与菱形的边相交,则图中阴影部分的面积为 .(结果保留π)提示:菱形面积减去三分之二圆面积.答案π-3232. 17.某公司快递员甲匀速骑车前往某小区送物件,出发几分钟后,快递员乙发现甲的手机落在公司,无法联系,于是乙匀速骑车去追赶甲.乙刚出发2分钟时,甲也发现自己手机落在公司,立刻按原路原速骑车回公司,2分钟后甲遇到乙,乙把手机给甲后立即原路原速返回公司,甲继续原路原速赶往某小区送物件,甲乙两人相距的路程y (米)与甲出发的时间x (分钟)之间的关系如图所示(乙给甲手机的时间忽略不计).则乙回到公司时,甲距公司的路程是 米.提示:由图知甲的速度为4000.乙的速度为4000÷(2+2)=1000米/分. 则乙回到公司时,用了4×4=2000米.答案6000米.18.在精准扶贫的过程中,某驻村服务队结合当地高山地形,决定在该村种植中药材川香、贝母、黄连增加经济收人,经过一段时间,该村已种植的川香、贝母、黄连面积之比4:3:5,根据中药材市场对川香、贝母、黄连的需求量,将在该村余下土地上继续种植这三种中药材,经测算需将余下土地面积的169种植黄连,则黄连种植总面积将达到这三种中药材种植总面积的4019.为使川香种植总面积与贝母种植总面积之比达到3:4,则该村还需种植贝母的面积与该村种植这三种中药材的总面积之比是 .提示:设已种植的川香面积为4x ,贝母面积为3x ,黄连面积5x.余下面积为y ,其中种植川香面积为a ,贝母面积为b ,黄连面积为y 169.由题意得: )y x 12(4019y 169x 5+=+,解得y=8x ,则y 169=x 29,所以x 27b a =+,又43b x 3a x 4=++.解得a=x 21,b=3x.所以该村还需种植贝母面积3x ,该村种植这三种中药材的总面积为4x+3x+5x+8x=20x.答案3︰20.三、解答题(本大题7个小题,每小题10分,共70分) 19.计算:(1)(x+y)2-y(2x+y)解:原式=x 2+2xy+y 2-2xy-y 2……(3分)F E D CB A七、八年级抽取的学生竞赛成绩统计表50.452100c b 939292八年级七年级方差众数中位数平均数年级八年级抽取的学生竞赛成绩 扇形统计图D C B A a%20%10% =x 2……(5分)(2)2a 9a )2a a 49a (2--÷--+ 解:原式=2a )3a )(3a ()2a a 492a a 2a (2-+-÷--+-- =)3a )(3a (2a 2a )3a (2+--•-- ……(9分) =3a 3a +- ……(10分) 20.如图,在△ABC 中,AB=AC ,D 是BC 边上的中点,连结AD ,BE 平分∠ABC 交AC 于点E ,过点E 作EF ∥BC 交AB 于点F .(1)若∠C=36°,求∠BAD 的度数.(2)求证:FB=FE .解与证:(1)∵AB=AC ,D 是BC 边上的中点.∴∠ADB=∠ADC=90°,∠BAD=∠CAD. ……(3分)∴∠CAD=90°-∠C=90°-36°=54°……(5分) (2)∵BE 平分∠ABC ,∴∠EBF=∠EBC ∵EF ∥BC ,∴∠BEF=∠EBC. ∴∠EBF=∠BEF. ……(9分) ∴FB=FE.21.每年夏季全国各地总有未成年人因溺水而丧失生命,令人痛心疾首.今年某校为确保学生安全,开展了“远离溺水·珍爱生命”的防溺水安全知识竞赛.现从该校七、八年级中各随机抽取10名学生的竞赛成绩(百分制)进行整理、描述和分析(成绩得分用x 表示,共分成四组:A .80≤x<85,B .85≤x<90,C .90≤x<95,D .95≤x ≤100),下面给出了部分信息:七年级10名学生的竞赛成绩是:99,80,99,86,99,96,90,100,89,82 八年级10名学生的竞赛成绩在C 组中的数据是:94,90,94根据以上信息,解答下列问题:(1)直接写出上述图表中a ,b ,c 的值;(2)根据以上数据,你认为该校七、八年级中哪个年级学生掌握防溺水安全知识较好?请说明理由(一条理由即可);(3)该校七、八年级共730人参加了此次竞赛活动,估计参加此次竞赛活动成绩优秀(x ≧90)的学生人数是多少? 解:(1)a=40,b=94,c=99. ……(3分)(2)八年级学生掌握防溺水安全知识较好,理由如下(写出其中一条即可):①七、八年级学生的竞赛成绩平均分相同,八年级学生成绩的中位数94高于七年级学生成绩的中位数93;②七、八年级学生的竞赛成绩平均分相同,八年级学生成绩的众数100高于七年级学生成绩的众数99. ……(6分)(3)∵七年级10名学生中,成绩在C ,D 两组中有6人,八年级10名学生中,成绩在C ,D 两组中有7人. ∴7202013⨯=468(人)答图y=2x-3答:估计此次竞赛中,七、八年级成绩优秀的学生有468人. ……(10分) 22.《道德经》中的“道生一,一生二,二生三,三生万物”道出了自然数的特征.在数的学习过程中,我们会对其中一些具有某种特性的数进行研究,如学习自然数时,我们研究了奇数、偶数、质数、合数等.现在我们来研究另一种特珠的自然数——“纯数”.定义;对于自然数n ,在计算n+(n+1)+(n+2)时,各数位都不产生进位,则称这个自然数n 为“纯数”,例如:32是”纯数”,因为计算32+33+34时,各数位都不产生进位;23不是“纯数”,因为计算23+24+25时,个位产生了进位. (1)判断2019和2020是否是“纯数”?请说明理由; (2)求出不大于100的“纯数”的个数. 解:(1)2019不是“纯数”,2020是“纯数”.理由如下:……(2分) ∵在计算2019+2020+2021时,个位9+0+1=10,产生了进位, ∴2019不是“纯数”.∵在计算2020+2021+2022时,个位0+1+2=3,十位2+2++2=6,百位0+0+0=0,千位2+2++2=6,它们都没有产生进位,∴2020是“纯数”. ……(4分)(2)由题意,当“纯数”n 为一位数时n+(n+1)+(n+2)=3n+3<10 ∴n=0,1,2,即在一位数的自然数中,“纯数”有3个.当“纯数”n 为两位数时,个位不超过2,十位不超过3时,符合“纯数”的定义.∴两位数的自然数中“纯数”有:10,11,12,20,21,22,30,31,32,33共9个, 而100显然也是“纯数”.∴不大于100的“纯数”的个数共有:3+9+1=13个. ……(10分)23.在初中阶段的函数学习中,我们经历了“确定函数的表达式——利用函数图象研究其性质一一运用函数解决问题"的学习过程.在画函数图象时,我们通过描点或平移的方法画出了所学的函数图象.同时,我们也学习了绝对值的意义⎩⎨⎧<-≥=)0a (a )0a (a a .结合上面经历的学习过程,现在来解决下面的问题:在函数y=|kx-3|+b 中,当x=2时,y=-4当x=0时,y= -1.(1)求这个函数的表达式;(2(3)已知函3x 21y -=接写出不等式3x 21b 3kx -≤+-解集. 解:(1)将x=2时,y= -4和x=0分别代入y=|kx-3|+b 中,得 ⎪⎩⎪⎨⎧-=+--=+-1b 34b 3k 2解得:⎪⎩⎪⎨⎧-==4b 23k ∴这个函数的表达式是43x 23y --= ……(3分) (2)函数图象如答图……(5①当x<2时,y 随xP H FENMDCBA 当x>2时,y 随x 的增大而增大. ②当x=2时,函数有最小值,最小 值是-4. ……(7分)(3)不等式的解集是1≤x ≤4……(10分)24.某文明小区有50平方米和80平方米两种户型的住宅,50平方米住宅套数是80平方米住宅套数的2倍.物管公司月底按每平方米2元收取当月物管费,该小区全部住宅都入住且每户均按时全额缴纳物管费.(1)该小区每月可收取物管费90000元,问该小区共有多少套80平方米的住宅? (2)为建设“资源节约型社会”,该小区物管公司5月初推出活动一:“垃圾分类送礼物”,50平方米和80平方米的住户分别有40%和20%参加了此次括动.为提离大家的积扱性,6月份准备把活动一升级为活动二:“拉圾分类抵扣物管费”,同时终止活动一.经调査与测算,参加活动一的住户会全部参加活动二,参加活动二的住户会大幅增加,这样,6月份参加活动的50平方米的总户数在5月份参加活动的同户型户数的基础上将增加2a%,每户物管费将会减少%a 103;6月份参加活动的80平方米的总户数在5月份参加活动的同户型户数的基础上将增加6a%,每户物管费将会减少%a 41.这样,参加活动的这部分住户6月份总共缴纳的物管费比他们按原方式共缴纳的物管费将减少%a 185,求a 的值.解:(1)设该小区共有x 套80平方米的住宅,则有2x 套50平方米的住宅.由题意得: 2×80x+2×50×2x=90000.解得x=250.答:该小区共有250套80平方米的住宅. ……(4分)(2)6月份参加活动的50平方米这部分住户将减少的物管费是: 500×40%(1+2a%)×50×2×%a 103=20000(1+2a%)×%a 103(元), 6月份参加活动的80平方米这部分住户将减少的物管费是: 250×20%(1+6a%)×80×2×%a 41=8000(1+6a%)×%a 41(元), 6月份参加活动的这部分住户将减少的物管费是: [500×40%(1+2a%)×50×2+250×20%(1+6a%)×80×2]×%a 185(元) 即[20000(1+2a%)+8000(1+6a%)]×%a 185(元) 由题意得: 20000(1+2a%)×%a 103+8000(1+6a%)×%a 41=[20000(1+2a%)+8000(1+6a%)]×%a 185. ……(8分)设a%=m ,化简整理得:2m 2-m=0,解得:m 1=0(舍),m 2=0.5. 所以a=50.答:a 的值是50. ……(10分)25.如图,在平行四边形ABCD 中,点E 在边BC 上,连结AE ,EM ⊥AE ,垂足为E ,交CD 于点M ,AF ⊥BC ,垂足为F ,BH ⊥AE ,垂足为H ,交AF 于点N ,点P 是AD 上一点,连接CP . (1)若DP=2AP=4,CP=17,CD=5,求△ACD 的面积. (2)若AE=BN ,AN=CE ,求证:AD=2CM+2CE .Q P HF ENMDCBA PH F ENMDCBA解与证:(1)作CQ ⊥AD ,垂足为Q ,如图 ∵DP=2AP=4,∴AP=2,AD=6.设PQ=x ,则DQ=4-x ,又CP=17,CD=5 在直角三角形CDQ 和直角三角形CPQ 中, 根据勾股定理得:2222)x 4(5x )17(--=-解得x=1,所以PQ=1 所以CQ=22PQ CP -=4 ∴S △ACD =CQ AD 21•=4621⨯⨯=12. ……(4分)(2)∵BH ⊥AE ,AF ⊥BC , ∴∠AHB=∠AFC=90°, ∠ANH=90°-∠EAF=∠AEF. ∴∠ANB=∠CEA.又BN = AE ,AN=CE ,∴△ANB ≌△CEA. ∴∠BAN=∠ACE ,AB=AC.∵∠ACF+∠CAF=90°,∴∠BAN+∠CAF=90°,即∠BAC=90° ∴△ABC 为等腰直角三角形,∠ABC=45°,AF=BF=CF. ∵AN=EC ,∴NF=EF.连结EN (如图),则△NFE 为等腰直角三角形,∴EF=22NE ,∠ENF=45°. ∵四边形ABCD 是平行四边形,且∠ABC=45°,∴∠ECM=135°. ∵∠ANE=180°-∠ENF=135°,∴∠ANE=∠ECM.∵EM ⊥AE ,∴∠AEM=90°. ∴∠EAN=90°-∠AEF=∠MEC. 又AN=EC ,∴△ANE ≌△ECM ,∴NE=CM. ……(8分) ∵四边形ABCD 是平行四边形,∴AD=BC=2FC.∵FC=FE+EG=22NE+EC=22CM+EC. ∴AD=2FC=2(22CM+EC)=2CM+2CE. ……(10分).四、解答题:(本大题1个小题,共8分)26.如图,在平面在角坐标系中,抛物线y=x 2-2x-3与x 轴交于点A ,B (点A 在点B 的左侧)交y 轴于点C ,点D 为抛物线的顶点,对称轴与x 轴交于点E . (1)连结BD ,点M 是线段BD 上一动点(点M 不与端点B ,D 重合),过点M 作MN ⊥BD 交抛物线于点N (点N 在对称轴的右侧),过点N 作NH ⊥x 轴,垂足为H ,交BD 于点F ,点P 是线段OC 上一动点,当MN 取得最大值时,求HF+FP+31PC 的最小值;(2)在(1)中,当MN 取得最大值,HF+FP+31PC 取得最小值时,把点P 向上平移个22单位得到点Q ,连结AQ ,把△AOQ 绕点O 顺时针旋转一定的角度α(0°<α<360°),得到△A /OQ /,其中边A /Q /交坐标轴于点G ,在旋转过程中,是否存在一点G ,使得∠Q /=∠Q /OG ?若存在,请直接写出所有满足条件的点Q /的坐标;若不存在,请说明理由.解:(1)∵点A ,B 是抛物线y=x 2-2x-3与x 轴的交点,点D 是抛物线顶点, ∴点A(-1,0)、点B(3,0)、点D(1,-4). ∴直线BD 的表达式是y=2x-6.∵点N 在抛物线y=x 2-2x-3上,可设点N 的坐标为(t,t 2-2t-3),则点F 的坐标为(t,2t-6).∴FN=(2t-6)-(t 2-2t-3)= -t 2+4t-3. 根据已知条件,可得△MNF ∽△EBD ,∴DBE BFN MN =,又EB=2,DE=4,∴DB=52. ∴MN=55FN=55)2t (552+--. ∴当t=2时,MN 取得最大值,此时,点F(2,-2),HF=2. ……(2分)如答图,以CP 为斜边,以31CP 作Rt △CRP ,当点F ,P ,R PF+31CP 取得最小值,此时,PF+31CP=RF.过点F 作FS ⊥y 轴,垂足为S.点F ,P ,R在一条直线上,△CPR ∽△FPS.则SPFPRP CP =在Rt △SPF 中,SF=2,FP=3SP.∴SP=22,FP=223. ∴CP=CS-PS=221-∴RF=RP+PF=622-+223=3241+,∵HF=2,∴HF+FP+31PC 的最小值为2+3241+=3247+.……(4分)(2)满足条件的点Q /的坐标为:(554-,552-),(552-,554),(554,552),(552,554-).提示:如图,过Q /作x 轴的垂线,设垂足为I.在直角三角形OIQ /求解 (554-,552-) 同理(554,552)同理(552-,554) 同理(552,554-)。

2019重庆市数学中考B卷解析

2019重庆市数学中考B卷解析

2019年重庆市初中毕业、升学考试数学(B 卷)(满分150分,考试时间120分钟)一、选择题:本大题共12小题,每小题4分,共48分.不需写出解答过程,请把最后结果填在题后括号内.1.(2019重庆市B 卷,1,4)5的绝对值是( )B.-5C.51D.15- 【答案】A【解析】正数的绝对值是它本身,0的绝对值是0,负数的绝对值是它的相反数.所以5的绝对值是5.故选A.【知识点】绝对值2.(2019重庆市B 卷,2,4)如图是一个由5个相同正方体组成的立体图形,它的主视图是( )【答案】D 【解析】三视图分为主视图,俯视图和左视图.三视图是观测者从上面、左面、正面三个不同角度观察同一个空间几何体而画出的图形.从正面看,有5个正方体表面组成,故选D.【知识点】三视图3.(2019重庆市B 卷,3,4)下列命题是真命题的是( )A.如果两个三角形相似,相似比为4:9,那么这两个三角形的周长比为2:3B.如果两个三角形相似,相似比为4:9,那么这两个三角形的周长比为4:9C.如果两个三角形相似,相似比为4:9,那么这两个全角形的面积比为2:3D.如果两个三角形相似,相似比为4:9,那么这两个三角形的面积比为4:9【答案】B【解析】如果两个三角形相似,那么这两个三角形的周长比等于相似比,面积比是相似比的平方.即如果两个三角形相似,相似比为4:9,那么这两个三角形的周长比为4:9;面积比是相似比的平方,即16:81. 故选B.【知识点】真命题,假命题,相似比4.(2019重庆市B 卷,4,4)如图,AB 是⊙O 的直径,AC 是⊙O 的切线,A 为切点,若∠C=40°则∠B 的度数为( )°°°°【答案】B【解析】圆的切线垂直于经过切点的半径,因为AC 是⊙O 的切线,A 为切点,所以∠BAC =90°,根据三角形内角和定理,若∠C =40°则∠B 的度数为50°. 故选B.【知识点】切线定义,三角形内角和 .5.(2019重庆市B 卷,5,4)物线y =263-2++x x 的对称轴是( )A.直线 2=xB.直线 2-=xC.直线 1=xD.直线 1-=x【答案】C【解析】设二次函数的解析式是y=c bx ax ++2, 则二次函数的对称轴为直线y =263-2++x x 的对称轴是直线 1=x .故选C. 【知识点】二次函数对称轴6.(2019重庆市B 卷,6,4)某次知识竞赛共有20题,答对一题得10分,答错或不答扣5分,小华得分超过120分,他至少要答对的题的个数为( )A.13B.14C.15D.16【答案】C【解析】设小华答对的题的个数为x 题,则答错或不答的习题为(20-x )题,可列不等式10x -5(20-5x )≥120,解得x≥3214,即他至少要答对的题的个数为15题. 故选C. 【知识点】一次不等式的应用 7.(2019重庆市B 卷,7,4) 估计1025⨯+的值应在 【答案】B【解析】本题考查了二次根式的乘法、合并同类二次根式,以及估算 ∵535251025=+=⨯+,∴36<45<49,∴6<49<7故选B .【知识点】二次根式的乘法、合并同类二次根式.8.(2019重庆市B 卷,8,4) 根据如图所示的程序计算函数y 的值,若输入x 的值是7,则输出y 的值是-2,若输入的x 值是-8,则输出y 的值是【答案】C【思路分析】本题主要考查的是程序运算和一次函数解析式的确定,解题关键是确定一次函数解析式中字母的值.【解题过程】解:将x=7,y=-2 分别代入2b x y +-=得,b =3.所以一次函数解析式为23+-=x y .把x =-8代入32+-=x y ,y =19.故选C .【知识点】程序运算;一次函数解析式的确定9.(2019重庆市B 卷,9,4)如图,在平面直角坐标系中,菱形OABC 的边OA 在x 轴上,点A (10,0),sin ∠COA =45.若反比例函数y =k x(k ﹥0,x ﹥0)经过点C ,则k 的值等于( ) 【答案】C【思路分析】根据菱形的性质得出OC=OA =10.过点C 作CD ⊥OA .由sin ∠COA =45可得 OD =6,CD =8 ∴C (6,8) 根据发反比例函数图像过点C ,求出k =48【解题过程】解:过C 作CD ⊥OA 交x 轴于D∵OABC 为菱形,A (10,0)∴OC=OA =10.∵sin ∠COA =45 ∴CD OC =45即10CD =45 ∴CD =8, ∴OC =6, ∴C (6,8) ∵反比例函数y =k x (k ﹥0,x ﹥0)经过点C , k =6×8=48. 故选C. 【知识点作】反比例函数图像上点的特征;菱形的性质;锐角三角函\数10.(2019重庆市B 卷,10,4)如图,AB 是垂直于水平面的建筑物,为测量AB 的高度,小红从建筑物底端B 出发,沿水平方向行走了52米到达点C ,然后沿斜坡CD 前进,到达坡顶D 点处,DC=BC.在点D 处放置测角仪,测角仪支架DE 高度为,在E 点处测得建筑物顶端A 点的仰角∠AEF 为27°(点A ,B ,C ,D 在同一平面内).斜坡CD 的坡度(或坡比)i=1:那么建筑物AB 的高度约为 ( )【答案】B【思路分析】作EN ⊥AB 于N ,EM ⊥BC 交BC 的延长线于M .先解直角三角形Rt △ECM ,求出EM,CM ,再根据tan 27°=AN EN,求出AN ,∴AB=AN +BN 【解题过程】解:作EN ⊥AB 于N,EM ⊥BC 交BC 的延长线于M .∵斜坡CD 的坡度(或坡比)i=1:DC=BC =52米,设DM =x 米,则CMx 米,在Rt △ECM 中,∵2DM + 2CM =2DC ,∴2x +()22.4x =252 解得 x =20 ∴CM =48米,EM 米,BM =ED +DM =52+48=100米∵EN ⊥AB,EM ⊥BC ,AB ⊥BC ∴四边形ENBM 是矩形. ∴EN=BM=100米,BN=EM =米.在Rt △AEN 中,∵∠AEF =27°∴AN=EN ﹒tan51米∴AB=AN +BN 米. 故选B .【知识点】解直角三角形的应用—坡度坡角问题;解直角三角形的应用—仰角俯角问题11.(2019重庆市B 卷,11,4)若数a 使关于x 的不等式组()()⎪⎩⎪⎨⎧->≤x 15a 2-x 67-x 412-3x 有且仅有三个整数解,且使关于y 的分式方程31121-=----ya y y 的解为正数,则所有满足条件的整数a 的值之和是 A .-3 B .-2 C .-1 D .1【答案】A【解析】第一部分:根据解一元一次不等式组的基本步骤解()()⎪⎩⎪⎨⎧->≤②15a 2-x 6① 7-x 412-3x x 可得. 解:解不等式①,得:x ≤3,解不等式②,得:x >11a 25+ 因为有且仅有3个整数解,所以三个整数解分别为:3,2,1. 所以11a 25+的大致范围为111a 250<+<; 特别的,当11a 25+=0的时候,不等式组的整数解仍是3,2,1,所以11a 25+=0也成立 所以111a 250<+≤ 化简为35.2<≤-a 第二部分:求分式方程31121-=----ya y y 的解,得 a y -=2 根据分式方程的解为正数和分式方程的分母不能为零,得⎩⎨⎧≠>10y y 即:⎩⎨⎧≠->-1202a a 解得:a <2且a ≠1第三部分:根据第一部分a 的范围和第二部分a 的范围,找出a 的公共范围:25.2<≤-a 且a ≠1所以满足条件的整数a 为-2,-1,0.它们的和为:-2-1+0=-3.故选A .【知识点】解一元一次不等式组,由整数解构建不等量关系,解分式方程,分式方程的解考虑分母不为零。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019年重庆市中考数学试卷(B卷)一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A,B,C,D的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑。

1.(4分)5的绝对值是()A.5B.﹣5C.D.﹣2.(4分)如图是一个由5个相同正方体组成的立体图形,它的主视图是()A.B.C.D.3.(4分)下列命题是真命题的是()A.如果两个三角形相似,相似比为4:9,那么这两个三角形的周长比为2:3B.如果两个三角形相似,相似比为4:9,那么这两个三角形的周长比为4:9C.如果两个三角形相似,相似比为4:9,那么这两个三角形的面积比为2:3D.如果两个三角形相似,相似比为4:9,那么这两个三角形的面积比为4:94.(4分)如图,AB是⊙O的直径,AC是⊙O的切线,A为切点,若∠C=40°,则∠B 的度数为()A.60°B.50°C.40°D.30°5.(4分)抛物线y=﹣3x2+6x+2的对称轴是()A.直线x=2B.直线x=﹣2C.直线x=1D.直线x=﹣1 6.(4分)某次知识竞赛共有20题,答对一题得10分,答错或不答扣5分,小华得分要超过120分,他至少要答对的题的个数为()A.13B.14C.15D.167.(4分)估计的值应在()A.5和6之间B.6和7之间C.7和8之间D.8和9之间8.(4分)根据如图所示的程序计算函数y的值,若输入x的值是7,则输出y的值是﹣2,若输入x的值是﹣8,则输出y的值是()A.5B.10C.19D.219.(4分)如图,在平面直角坐标系中,菱形OABC的边OA在x轴上,点A(10,0),sin ∠COA=.若反比例函数y=(k>0,x>0)经过点C,则k的值等于()A.10B.24C.48D.5010.(4分)如图,AB是垂直于水平面的建筑物.为测量AB的高度,小红从建筑物底端B 点出发,沿水平方向行走了52米到达点C,然后沿斜坡CD前进,到达坡顶D点处,DC =BC.在点D处放置测角仪,测角仪支架DE高度为0.8米,在E点处测得建筑物顶端A点的仰角∠AEF为27°(点A,B,C,D,E在同一平面内).斜坡CD的坡度(或坡比)i=1:2.4,那么建筑物AB的高度约为()(参考数据sin27°≈0.45,cos27°≈0.89,tan27°≈0.51)A.65.8米B.71.8米C.73.8米D.119.8米11.(4分)若数a使关于x的不等式组有且仅有三个整数解,且使关于y的分式方程﹣=﹣3的解为正数,则所有满足条件的整数a的值之和是()A.﹣3B.﹣2C.﹣1D.112.(4分)如图,在△ABC中,∠ABC=45°,AB=3,AD⊥BC于点D,BE⊥AC于点E,AE=1.连接DE,将△AED沿直线AE翻折至△ABC所在的平面内,得△AEF,连接DF.过点D作DG⊥DE交BE于点G.则四边形DFEG的周长为()A.8B.4C.2+4D.3+2二、填空题:(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的横线上。

13.(4分)计算:(﹣1)0+()﹣1=.14.(4分)2019年1月1日,“学习强国”平台全国上线,截至2019年3月17日止,重庆市党员“学习强国”APP注册人数约1180000,参学覆盖率达71%,稳居全国前列.将数据1180000用科学记数法表示为.15.(4分)一枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数.连续掷两次骰子,在骰子向上的一面上,第二次出现的点数是第一次出现的点数的2倍的概率是.16.(4分)如图,四边形ABCD是矩形,AB=4,AD=2,以点A为圆心,AB长为半径画弧,交CD于点E,交AD的延长线于点F,则图中阴影部分的面积是.17.(4分)一天,小明从家出发匀速步行去学校上学.几分钟后,在家休假的爸爸发现小明忘带数学书,于是爸爸立即匀速跑步去追小明,爸爸追上小明后以原速原路跑回家.小明拿到书后以原速的快步赶往学校,并在从家出发后23分钟到校(小明被爸爸追上时交流时间忽略不计).两人之间相距的路程y(米)与小明从家出发到学校的步行时间x (分钟)之间的函数关系如图所示,则小明家到学校的路程为米.18.(4分)某磨具厂共有六个生产车间,第一、二、三、四车间毎天生产相同数量的产品,第五、六车间每天生产的产品数量分別是第一车间每天生产的产品数量的和.甲、乙两组检验员进驻该厂进行产品检验,在同时开始检验产品时,每个车间原有成品一样多,检验期间各车间继续生产.甲组用了6天时间将第一、二、三车间所有成品同时检验完;乙组先用2天将第四、五车间的所有成品同时检验完后,再用了4天检验完第六车间的所有成品(所有成品指原有的和检验期间生产的成品).如果每个检验员的检验速度一样,则甲、乙两组检验员的人数之比是.三、解答题:(本大题7个小题,每小题10分,共70分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡中对应的位置上。

19.(10分)计算:(1)(a+b)2+a(a﹣2b);(2)m﹣1++.20.(10分)如图,在△ABC中,AB=AC,AD⊥BC于点D.(1)若∠C=42°,求∠BAD的度数;(2)若点E在边AB上,EF∥AC交AD的延长线于点F.求证:AE=FE.21.(10分)为落实视力保护工作,某校组织七年级学生开展了视力保健活动.活动前随机测查了30名学生的视力,活动后再次测查这部分学生的视力.两次相关数据记录如下:活动前被测查学生视力数据:4.0 4.1 4.1 4.2 4.2 4.3 4.3 4.4 4.4 4.4 4.5 4.5 4.6 4.6 4.64.7 4.7 4.7 4.7 4.8 4.8 4.8 4.8 4.8 4.9 4.9 4.95.0 5.0 5.1活动后被测查学生视力数据:4.0 4.2 4.3 4.4 4.4 4.5 4.5 4.6 4.6 4.6 4.7 4.7 4.7 4.7 4.84.8 4.8 4.8 4.8 4.8 4.8 4.9 4.9 4.9 4.9 4.95.0 5.0 5.1 5.1活动后被测查学生视力频数分布表分组频数4.0≤x<4.214.2≤x<4.424.4≤x<4.6b4.6≤x<4.874.8≤x<5.0125.0≤x<5.24根据以上信息回答下列问题:(1)填空:a=,b=,活动前被测查学生视力样本数据的中位数是,活动后被测查学生视力样本数据的众数是;(2)若视力在4.8及以上为达标,估计七年级600名学生活动后视力达标的人数有多少?(3)分析活动前后相关数据,从一个方面评价学校开展视力保健活动的效果.22.(10分)在数的学习过程中,我们总会对其中一些具有某种特性的数进行研究,如学习自然数时,我们研究了偶数、奇数、合数、质数等.现在我们来研究一种特殊的自然数﹣“纯数”.定义:对于自然数n,在通过列竖式进行n+(n+1)+(n+2)的运算时各位都不产生进位现象,则称这个自然数n为“纯数”.例如:32是“纯数”,因为32+33+34在列竖式计算时各位都不产生进位现象;23不是“纯数”,因为23+24+25在列竖式计算时个位产生了进位.(1)请直接写出1949到2019之间的“纯数”;(2)求出不大于100的“纯数”的个数,并说明理由.23.(10分)函数图象在探索函数的性质中有非常重要的作用,下面我们就一类特殊的函数展开探索.画函数y=﹣2|x|的图象,经历分析解析式、列表、描点、连线过程得到函数图象如图所示;经历同样的过程画函数y=﹣2|x|+2和y=﹣2|x+2|的图象如图所示.x…﹣3﹣2﹣10123…y…﹣6﹣4﹣20﹣2﹣4﹣6…(1)观察发现:三个函数的图象都是由两条射线组成的轴对称图形;三个函数解折式中绝对值前面的系数相同,则图象的开口方向和形状完全相同,只有最高点和对称轴发生了变化.写出点A,B的坐标和函数y=﹣2|x+2|的对称轴.(2)探索思考:平移函数y=﹣2|x|的图象可以得到函数y=﹣2|x|+2和y=﹣2|x+2|的图象,分别写出平移的方向和距离.(3)拓展应用:在所给的平面直角坐标系内画出函数y=﹣2|x﹣3|+1的图象.若点(x1,y1)和(x2,y2)在该函数图象上,且x2>x1>3,比较y1,y2的大小.24.(10分)某菜市场有2.5平方米和4平方米两种摊位,2.5平方米的摊位数是4平方米摊位数的2倍.管理单位每月底按每平方米20元收取当月管理费,该菜市场全部摊位都有商户经营且各摊位均按时全额缴纳管理费.(1)菜市场毎月可收取管理费4500元,求该菜市场共有多少个4平方米的摊位?(2)为推进环保袋的使用,管理单位在5月份推出活动一:“使用环保袋送礼物”,2.5平方米和4平方米两种摊位的商户分别有40%和20%参加了此项活动.为提高大家使用环保袋的积极性,6月份准备把活动一升级为活动二:“使用环保袋抵扣管理费”,同时终止活动一.经调査与测算,参加活动一的商户会全部参加活动二,参加活动二的商户会显著增加,这样,6月份参加活动二的2.5平方米摊位的总个数将在5月份参加活动一的同面积个数的基础上增加2a%,毎个摊位的管理费将会减少a%;6月份参加活动二的4平方米摊位的总个数将在5月份参加活动一的同面积个数的基础上增加6a%,每个摊位的管理费将会减少a%.这样,参加活动二的这部分商户6月份总共缴纳的管理费比他们按原方式共缴纳的管理费将减少a%,求a的值.25.(10分)在▱ABCD中,BE平分∠ABC交AD于点E.(1)如图1,若∠D=30°,AB=,求△ABE的面积;(2)如图2,过点A作AF⊥DC,交DC的延长线于点F,分别交BE,BC于点G,H,且AB=AF.求证:ED﹣AG=FC.四、解答题:(本大题1个小题,共8分)解答时必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡中对应的位置上。

26.(8分)在平面直角坐标系中,抛物线y=﹣x2+x+2与x轴交于A,B两点(点A在点B左侧),与y轴交于点C,顶点为D,对称轴与x轴交于点Q.(1)如图1,连接AC,BC.若点P为直线BC上方抛物线上一动点,过点P作PE∥y 轴交BC于点E,作PF⊥BC于点F,过点B作BG∥AC交y轴于点G.点H,K分别在对称轴和y轴上运动,连接PH,HK.当△PEF的周长最大时,求PH+HK+KG的最小值及点H的坐标.(2)如图2,将抛物线沿射线AC方向平移,当抛物线经过原点O时停止平移,此时抛物线顶点记为D′,N为直线DQ上一点,连接点D′,C,N,△D′CN能否构成等腰三角形?若能,直接写出满足条件的点N的坐标;若不能,请说明理由.2019年重庆市中考数学试卷(B卷)参考答案与试题解析一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A,B,C,D的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑。

相关文档
最新文档