第一章电磁场理论基础
第一章 电磁理论基本方程-公式

电磁理论基本方程一、电磁理论基本方程1麦克斯韦方程:d d l S t ⎛⎫∂⋅=+⋅ ⎪ ⎪∂⎝⎭⎰⎰⎰D H l J S (1-1) d d l St ∂⋅=-⋅∂⎰⎰⎰B E l S (1-2) d d SVV ⋅=⎰⎰⎰⎰⎰ρD S (1-3) d 0S⋅=⎰⎰B S (1-4) 式中:E ——电场强度(/V m )H——磁场强度(/A m )D ——电位移矢量或电通密度(2/C m ) B ——磁感应强度或磁通密度(2/Wb m )J ——电流密度(2/A m )ρ——电荷密度(3/C m )式(1-1)全电流安培环路定律,它表示传导电流和位移电流(即变化的电场)都可以产生磁场式(1-2)为法拉第电磁感应定律,它表示变化的磁场产生电场。
式(1-3)为电场高斯定理,它表示电荷可以产生电场; 式(1-4)为磁场高斯定理,也称为磁通连续原理。
t∂∇⨯=+∂DH J (1-5) t∂∇⨯=-∂BE (1-6) 0∇⋅=B (1-7)∇⋅=ρD (1-8)t∂∇⋅=-∂ ρJ (1-9)式(1-5)表示传导电流密度和位移电流是磁场的旋度源; 式(1-6)表示变化的磁场是电场的旋度源; 式(1-7)表示磁场是无散场;式(1-8)表示电荷密度是电场的散度源。
微分形式的麦克斯韦方程描述了空间的任一点上场与场源的时空变化关系。
由于含有对场量的微分,它只适用于媒质物理性质不发生突变的区域。
式(1-5)、(1-6)、(1-9)是相互独立的。
2广义麦克斯韦方程阐述了电型源和磁型源的麦克斯韦方程的对称性即两组方程是对偶的。
但目前电型源电流和电荷是自然界的实际场,而尚未发现自然界有磁荷和磁流。
3时谐麦克斯韦方程电磁场量,,,,E D H B 是空间和时间的函数,在随时间变化的电磁场中最有用而又最重要的是随时间按正弦或余弦变化的场 ——时谐电磁场。
二物质的电磁特性1电磁场对物质的作用对于均匀、各项同性、线型煤质,在电磁场作用下,其物质内部电荷运动导致煤质的极化、磁化、和传导。
大一电磁学知识点第一章

大一电磁学知识点第一章第一章电磁学基础知识电磁学是物理学的一个分支,研究电荷与电流所产生的电场和磁场现象以及它们之间的相互作用。
在大一的学习中,我们首先需要了解一些电磁学的基础知识。
本文将为大家介绍第一章中的几个关键知识点。
一、电荷与电场电荷是物质所具有的基本属性之一,分为正电荷和负电荷。
同性电荷相互排斥,异性电荷相互吸引。
电场是电荷周围的一种物理场,具有方向和强度的特点。
我们可以通过电场线来描述电场的性质,电场线由正电荷沿着电场方向指向负电荷。
二、库仑定律库仑定律是描述静电相互作用力的数学关系,它表明两个点电荷之间的力与它们之间的距离成反比,与它们之间的电荷量平方成正比。
库仑定律的公式为:F = k * (|q1| * |q2|) / r^2其中,F代表两个电荷之间的力,k是比例常数,q1和q2分别代表两个电荷的电荷量,r是两个电荷之间的距离。
三、电场强度电场强度是电场对单位正电荷的作用力大小,用E表示。
在电场中,可以通过电场强度来计算电荷所受的力。
电场强度的计算公式为:E =F / q其中,E表示电场强度,F表示电荷所受的力,q表示电荷量。
四、高斯定理高斯定理是描述电场的一个重要定律,它通过电场线的通量来描述电荷的分布情况。
高斯定理的公式为:∮E·dA = Q / ε0其中,∮E·dA表示电场线在闭合曲面上的通量,Q表示闭合曲面内的电荷量,ε0是真空介电常数。
五、电势差在电磁学中,电势差是描述电场能量转化的一个重要概念。
电势差是指电场中从一点移到另一点所需的功,单位为伏特(V)。
电势差的计算公式为:ΔV = W / q其中,ΔV表示电势差,W表示电场对电荷所做的功,q表示电荷量。
六、电容和电容器电容是描述电路元件存储电荷能力的物理量,单位为法拉(F)。
电容器是一种用于存储电荷的装置,由两个导体之间的绝缘介质隔开。
电容的计算公式为:C = Q / ΔV其中,C表示电容,Q表示存储的电荷量,ΔV表示电势差。
第1章电磁场理论基础

定义:标量场是空间位置的函数,没有方向,只有大小
物理意义:标量场描述了空间中某物理量的分布情况,如温度、压力等
数学描述:标量场可以用一个或多个标量函数来表示,这些函数描述了空间中该 物理量的值
磁场波动行为
的数学模型
波动方程由麦 克斯韦方程组
推导而来
领域。
电磁兼容:电磁 场在电磁兼容领 域中用于研究设 备或系统之间的 相互干扰问题, 以确保电子设备
的正常运行。
电磁辐射防护: 电磁场在电磁辐 射防护领域中用 于研究如何减少 电磁辐射对人体 的危害,以保障
公众的健康。
输电线路:利用电磁场传输电能, 减少能量损失
电机:利用电磁场产生旋转或直线 运动
环保技术对电 磁场的影响
未来发展趋势 与展望
上
电场:电荷静止时产生的 电场
磁场:电流产生磁场
电磁感应:变化的磁场产 生电场
电磁波:电场和磁场交替 变化产生电磁波
定义:矢量场是由空间位置和方向的矢量构成的场 性质:矢量场具有方向性和大小,可以描述电磁场的强度和方向
运算:矢量场可以进行加、减、点乘、叉乘等运算,以描述不同位置的电磁场分布
梯度、散度和旋度:这三个概念可以用来描述矢量场的性质和行为,是电磁场理论中的重要概念
波动方程描述 了电磁场的振 幅、频率和传 播速度等参数
通过求解波动 方程,可以研 究电磁场的传 播、反射、折
射等现象
静电感应:电荷在电场中受到力的作用,使电荷发生移动 极化:电介质中的正负电荷发生相对位移,形成电偶极子 静电屏蔽:用金属屏蔽体将电荷隔离,防止外界电场对其影响 电致伸缩:电介质在电场中发生形变,产生机械能
磁场的定义和性质
磁场对电流和磁性物质的作用
电磁场理论知识点总结

电磁场理论知识点总结电磁场与电磁波总结第1章场论初步⼀、⽮量代数A ?B =AB cos θA B ?=AB e AB sin θA ?(B ?C ) = B ?(C ?A ) = C ?(A ?B ) A ? (B ?C ) = B (A ?C ) – C ?(A ?B ) ⼆、三种正交坐标系 1. 直⾓坐标系⽮量线元 x y z =++l e e e d x y z⽮量⾯元 =++S e e e x y z d dxdy dzdx dxdy 体积元 d V = dx dy dz单位⽮量的关系 ?=e e e x y z ?=e e e y z x ?=e e e z x y 2. 圆柱形坐标系⽮量线元 =++l e e e z d d d dz ρ?ρρ?l ⽮量⾯元 =+e e z dS d dz d d ρρ?ρρ? 体积元 dV = ρ d ρ d ? d z 单位⽮量的关系 ?=?? =e e e e e =e e e e zz z ρ??ρρ?3. 球坐标系⽮量线元 d l = e r d r + e θ r d θ + e ? r sin θ d ? ⽮量⾯元 d S = e r r 2sin θ d θ d ? 体积元 dv = r 2sin θ d r d θ d ? 单位⽮量的关系 ?=??=e e e e e =e e e e r r r θ?θ??θcos sin 0sin cos 0 001x r y z z A A A A A A ??=-sin cos sin sin cos cos cos cos sin sin sin cos 0x r y z A A A A A A=--θ?θ?θ?θθ?θ?θ??sin 0cos cos 0sin 010r r z A A A A A A=-θ??θθθθ三、⽮量场的散度和旋度1. 通量与散度=??A S Sd Φ 0lim→?=??=??A S A A Sv d div v2. 环流量与旋度=??A l ?ld Γ maxnrot =lim→A l A e ?lS d S3. 计算公式=++A y x zA A A x y z11()=++A zA A A z ?ρρρρρ? 22111()(sin )sin sin =++A r A r A A r r r r ?θθθθθ?x y z ?=e e e A x y z x y z A A A=?e e e A z z z A A A ρ?ρρρ?ρ sin sin=?e e e A r r zr r r A r A r A ρθθθ?θ 4. ⽮量场的⾼斯定理与斯托克斯定理=A S A SVd dV ?=A l A S ?l四、标量场的梯度 1. ⽅向导数与梯度00()()lim→-?=??l P u M u M u llcos cos cos =++P uu u ulx y zαβγ cos ??=?e l u u θ grad = =+e e e +e n x y zu u u uu n x y z2. 计算公式=++???e e e xy zu u uu x y z1=++???e e e z u u u u z ρρρ? 11sin =++???e e e r u u u u r r r zθ?θθ五、⽆散场与⽆旋场1. ⽆散场 ()0=A =??F A2. ⽆旋场 ()0=u =?F u六、拉普拉斯运算算⼦ 1. 直⾓坐标系222222222222222222222222222222=++?=?+?+??=++?=++?=++A e e e x x y y z zy y y x x x z z z x y zu u u u A A A x y zA A A A A A A A A A A A x y z x y z x y z,,2. 圆柱坐标系22222222222222111212=++ =?--+?-++? ? ??????A e e e z z u u uu zA A A A A A A ?ρρρρρρρρρ?ρρ?ρρ?3. 球坐标系22222222111sin sin sin =++ ? ??????????u u uu r r r r r r θθθ?θ? ???+-??+?+???--??+?+???----=θθθ?θ?θθθθ?θθθθθθθ?θθA r A r A r A A r A r A r A A r A r A r A r A r r r r r 2 22222222222222222sin cos 2sin 1sin 2sin cos 2sin 12sin 22cot 22e e e A 七、亥姆霍兹定理如果⽮量场F 在⽆限区域中处处是单值的,且其导数连续有界,则当⽮量场的散度、旋度和边界条件(即⽮量场在有限区域V ’边界上的分布)给定后,该⽮量场F 唯⼀确定为()()()=-?+??F r r A r φ其中 1()()4''??'='-?F r r r r V dV φπ1()()4''??'='-?F r A r r r V dV π第2章电磁学基本规律⼀、麦克斯韦⽅程组 1. 静电场基本规律真空中⽅程: 0d ?=SE S ?qεd 0?=?lE l ? 0=E ρε 0??=E 场位关系:3''()(')'4'-=-?r r E r r r r V q dV ρπε =-?E φ 01()()d 4π''='-?r r |r r |V V ρφε介质中⽅程: d ?=?D S ?S qd 0?=?lE l ? ??=D ρ 0??=E极化:0=+D E P ε e 00(1)=+==D E E E r χεεεε极化电荷:==?P e PS n n P ρ =-??P P ρ 2. 恒定电场基本规律电荷守恒定律:0+=?J tρ传导电流: =J E σ与运流电流:ρ=J v恒定电场⽅程: d 0?=?J S ?Sd 0l=E l 0=J 0E =3. 恒定磁场基本规律真空中⽅程:0 d ?=?B l ?lI µd 0?=?SB S ? 0=B J µ 0=B场位关系:03()( )()d 4π ''?-'='-?J r r r B r r r VV µ =??B A 0 ()()d 4π'''='-?J r A r r r V V µ 介质中⽅程:d ?=?H l ?l Id 0?=?SB S ? ??=H J 0??=B磁化:0=-BH M µ m 00(1)=+B H =H =H r χµµµµ 磁化电流:m =??J M ms n =?J M e4. 电磁感应定律d d ?=-SE l B S ?lddt =-BE t5. 全电流定律和位移电流全电流定律:d ()d ??=+D H l J S ?lSt =+DH J t位移电流: d =DJ d dt6. Maxwell Equationsd ()d d d d d 0=+?=-??==D H J S B E S D S B Sl S l S SV S l t l t V d ρ 0=+???=-?==?D H J B E D B t t ρ ()() ()()0=+???=-?==?E H E H E E H t t εσµερµ ⼆、电与磁的对偶性e m e m e m e e m m e e m mm e 00=-??==+??=--?=?=?????=?=??B D E H D B H J E J D B D B t t &t t ρρ m e e m ??=--?=+==B E J D H J D B tt ρρ三、边界条件 1. ⼀般形式12121212()0()()()0-=-=-=-=e E E e H H J e D D e B B n n S n Sn ρ2. 理想导体界⾯和理想介质界⾯111100?=??===e E e H J e D e B n n Sn S n ρ 12121212()0()0()0()0-=-=-=-=e E E e H H e D D e B B n n n n 第3章静态场分析⼀、静电场分析1. 位函数⽅程与边界条件位函数⽅程: 220?=-电位的边界条件:121212=??-=-?s nn φφφφεερ 111=??=-?s const nφφερ(媒质2为导体) 2. 电容定义:=qC φ两导体间的电容:=C q /U任意双导体系统电容求解⽅法:2211===D SE S E lE l蜒SS d d q C U d d ε3. 静电场的能量N 个导体: 112==∑ne i i i W q φ连续分布: 12=?e V W dV φρ电场能量密度:12D E ω=?e⼆、恒定电场分析1. 位函数微分⽅程与边界条件位函数微分⽅程:20?=φ边界条件:121212=??=?nn φφφφεε 12()0?-=e J J n 1212[]0?-=J J e n σσ 2. 欧姆定律与焦⽿定律欧姆定律的微分形式: =J E σ焦⽿定律的微分形式: =??E J V3. 任意电阻的计算2211d d 1??====E l E l J SE SSSUR G Id d σ(L R =σS )4. 静电⽐拟法:C —— G ,ε —— σ2211===D SE S E lE l蜒SS d d q C U d d ε 2211d d d ??===J S E SE lE lS S d I G Uσ三、恒定磁场分析1. 位函数微分⽅程与边界条件⽮量位:2?=-A J µ 12121211A A e A A J n s µµ()=?-=标量位:20m φ?= 211221??==??m m m m n nφφφφµµ 2. 电感定义:d d ??===??B S A l ?SlL IIIψ=+i L L L3. 恒定磁场的能量 N 个线圈:112==∑Nm j j j W I ψ连续分布:m 1d 2A J =??V W V 磁场能量密度:m 12H B ω=? 第4章静电场边值问题的解⼀、边值问题的类型●狄利克利问题:给定整个场域边界上的位函数值()=f s φ●纽曼问题:给定待求位函数在边界上的法向导数值()?=?f s nφ●混合问题:给定边界上的位函数及其向导数的线性组合:2112()()?==?f s f s nφφ●⾃然边界:lim r r φ→∞=有限值⼆、唯⼀性定理静电场的惟⼀性定理:在给定边界条件(边界上的电位或边界上的法向导数或导体表⾯电荷分布)下,空间静电场被唯⼀确定。
第一章 电磁场理论基础

' j ''
' j ''
r e 1 Em 2 2 m (0 ) j
理论模型
d2 r dr 2 m 2 0 r eE dt dt
p er 0 e Em
P Np D 0E P
D(r , t ) E (r,t) H (r,t) B(r , t ) E (r,t) H (r,t)
双各向同性介质:上述情况下,介电常数和磁导率均为标量。
例如手征介质,自然界中大量存在于有机体和生物体中,特别是生命 的基本组成中,如L-氨基酸、D-糖、DNA。最早研究起源于1920年左 右。20世纪90年代前后,人工制作的手征介质的特性及工程应用前景 引起微波工程的的研究兴趣。
D E ( j ) 0 0 H
B H ( j ) 0 0 E
手征介质具有广阔的应用前景。例如,利用手征介质可以开发新型的吸 波材料,用于隐形体表面的涂覆材料。对于手征平板波导、圆波导、椭 圆波导、手征光纤的研究表明,手征波导具有许多新颖独特的性质,如 模式分叉、模式耦合等。利用这些特性,手征波导有望在集成光学元件 及毫米波元件等领域得到应用。 由于手征介质可以改变电磁波的传播、散射特性,因此在军事、民用上 有很大的潜在应用价值。自八十年代以来,许多学者对手征介质中电磁 波的传输特性、手征微波器件及手征特性的物理机制等做了大量工作。 随着隐身技术的不断发展,手征介质的电磁散射特性越来越受到重视。
积 分 形 式
E dl B dS (1) l t S B dl J dS 0 0 E dS (2) 0 l S S t E dS 1 dV (3) S 0 V B dS 0 ( 4) S
高等电磁场理论习题解答(作业)

⾼等电磁场理论习题解答(作业)第⼀章基本电磁理论1-1 利⽤Fourier 变换, 由时域形式的Maxwell ⽅程导出其频域形式。
(作1-2—1-3)解:付⽒变换和付⽒逆变换分别为:dt e t f F t j ?∞∞-=ωω)()(ωωπωd e F t f tj ?∞∞--=)(21)( 麦⽒⽅程:t D J H ??+=??ρρρtB E ??-=??ρρ0=??B ρρ=??D ρ对第⼀个⽅程进⾏付⽒变换:),(),(),ωωωr H dt e t r H dt e t r H t j tj ρρρρρρ??=??=??=∞∞-∞∞-(左端),(),(),(),(]),(),[ωωωωωωωr D j r J dte t r D j r J dt e t t r D t r J t j tj ρρρρρρρρρρρρ+=+=??+=??∞∞-∞∞-(右端(时谐电磁场) =??∴),(ωr H ρρ),(),(ωωωr D j r J ρρρρ+同理可得:()()ωωω,,r B j r H ??ρρ-=??()0,=??ωr B ρ()()ωρω,,r r D ?ρ?=??上⾯四式即为麦式⽅程的频域形式。
1-2 设各向异性介质的介电常数为=300420270εε当外加电场强度为 (1) 01E x e E =;(2)02E y e E =;(3) 03E z e E =;(4) )2(04y x E e e E +=;(5))2(05y x E e e E +=求出产⽣的电通密度。
(作1-6)解:()),(,t r E t r D ?Θ?=ε=333231232221131211εεεεεεεεεz y x D D D 即z y x E E E 将E 分别代⼊,得:=??=??????????027003000420270000111E E D D D z y x εε )?2?7(001y x E D +=ε?=??=??????????042003000420270000322E E D D D z y x εε )?4?2(002y x E D +=ε? ????=??=??????????300003000420270000333E E D D D z y x εε z E D ?3003ε=? ??==010110230004202700000444E E E D D D z y x εε )?10?11(004y x E D +=ε? ==08160230004202700000555E E E D D D z y x εε )?8?16(005y x E D +=ε? 1-3 设各向异性介质的介电常数为=4222422240εε试求:(1) 当外加电场强度)(0z y x E e e e E ++=时,产⽣的电通密度D ;(2) 若要求产⽣的电通密度004E x εe D =,需要的外加电场强度E 。
第一章电磁场理论基础讲解

1.1.2 矢量的代数运算
例1-1-1 三角形的3个顶点为A(0,0,0)、B(4,6,-2)
和C(-2,4,8 )。
(1)求B点和C点的位置矢量B和C之间的夹角;
(2)求B点到C点的距离矢量R及R的方向;
(3)判断ABC是否为一直角三角形,并求三角形的面积。
解: (1)
B ex 4 ey6 ez 2
• 在直角坐标系中
A B Ax Bx Ay By Az Bz
A
A B A cos
B
• 满足交换律和分配律
B 图1-1-5 矢量的标积
注:A B 0
AB
1.1.2 矢量的代数运算
A B
(2)矢量的矢积 (叉积 ):为矢量。
A B n A B sin
n
A
– 在直角坐标系中
的线积分,即
Γ A dl C
如果矢量场的任意闭合回路的环流恒为零,称该矢量场为无
旋场,又称为保守场。
如果矢量场对于任何闭合曲线的环量不为零,称该矢量场为 有旋矢量场,能够激发有旋矢量场的源称为旋涡源。电流是 磁场的旋涡源。
1.1.4 矢量场的旋度
3. 环量面密度
过点M 作一微小曲面S ,它的边界曲线记为C,曲面的法
ez cos
z
Az
O
Ax
A Ay y
Az
A
O
Ay
y
Ax
x
x
图1-1-1 矢量A分解为直角坐标分量
1.1.1 矢量和矢量场
(3)位置矢量
– 定义:从坐标原点指向空间位置点的矢量,记
为 r。
– 直角坐标系中,空间任一点Px, y, z 的位置矢量
电磁场与电磁波基础知识总结

电磁场与电磁波总结第一章一、矢量代数 A ∙B =AB cos θA B ⨯=AB e AB sin θA ∙(B ⨯C ) = B ∙(C ⨯A ) = C ∙(A ⨯B )()()()C A C C A B C B A ⋅-⋅=⨯⨯二、三种正交坐标系 1. 直角坐标系 矢量线元x y z =++le e e d x y z矢量面元=++Se e e x y z d dxdy dzdx dxdy体积元d V = dx dy dz 单位矢量的关系⨯=e e e x y z ⨯=e e e y z x ⨯=e e e z x y2. 圆柱形坐标系 矢量线元=++l e e e z d d d dz ρϕρρϕl 矢量面元=+e e z dS d dz d d ρρϕρρϕ体积元dz d d dVϕρρ=单位矢量的关系⨯=⨯⨯=e e e e e =e e e e zz z ρϕϕρρϕ3. 球坐标系 矢量线元d l = e r d r e θr d θ+e ϕr sin θd ϕ矢量面元d S = e r r 2sin θd θd ϕ体积元ϕθθd drd r dVsin 2=单位矢量的关系⨯=⨯⨯=e e e e e =e e e e r r r θϕθϕϕθ三、矢量场的散度和旋度 1. 通量与散度=⋅⎰A SSd Φ0lim∆→⋅=∇⋅=∆⎰A S A A Sv d div v2. 环流量与旋度=⋅⎰A l ld Γmaxn 0rot =lim∆→⋅∆⎰A lA e lS d S3. 计算公式∂∂∂∇=++∂∂∂⋅A y x z A A A x y z11()z A A A z ϕρρρρρϕ∂∂∂∇=++∂∂∂⋅A 22111()(sin )sin sin ∂∂∂∇=++∂∂∂⋅A r A r A A r r r r ϕθθθθθϕxy z∂∂∂∇⨯=∂∂∂e e e A x y z x y zA A A 1zzzA A A ρϕρϕρρϕρ∂∂∂∇⨯=∂∂∂e e e A 21sin sin r r zr r A r A r A ρϕθθθϕθ∂∂∂∇⨯=∂∂∂e e e A4. 矢量场的高斯定理与斯托克斯定理⋅=∇⋅⎰⎰A S A SVd dV⋅=∇⨯⋅⎰⎰A l A S lSd d四、标量场的梯度 1. 方向导数与梯度00()()lim∆→-∂=∂∆l P u M u M u ll 0cos cos cos ∂∂∂∂=++∂∂∂∂P u u u ulx y zαβγcos ∇⋅=∇e l u u θgrad ∂∂∂∂==+∂∂∂∂e e e +e n x y zu u u uu n x y z2. 计算公式∂∂∂∇=++∂∂∂e e e xy z u u u u x y z 1∂∂∂∇=++∂∂∂e e e z u u u u z ρϕρρϕ11sin ∂∂∂∇=++∂∂∂e e e r u u uu r r r zθϕθθ 五、无散场与无旋场1. 无散场()0∇⋅∇⨯=A =∇⨯F A2. 无旋场()0∇⨯∇=u -u =∇F 六、拉普拉斯运算算子 1. 直角坐标系22222222222222222222222222222222∂∂∂∇=++∇=∇+∇+∇∂∂∂∂∂∂∂∂∂∂∂∂∇=++∇=++∇=++∂∂∂∂∂∂∂∂∂A e e e x x y y z zyyyx x x z z z x y zu u uu A A A x y zA A A A A A A A A A A A x y z x y z x y z,,2. 圆柱坐标系22222222222222111212⎛⎫∂∂∂∂∇=++ ⎪∂∂∂∂⎝⎭∂∂⎛⎫⎛⎫∇=∇--+∇-++∇ ⎪ ⎪∂∂⎝⎭⎝⎭A e e e z z u u uu zA A A A A A A ϕρρρρϕϕϕρρρρρϕρρϕρρϕ3. 球坐标系22222222111sin sin sin ⎛⎫∂∂∂∂∂⎛⎫∇=++ ⎪ ⎪∂∂∂∂∂⎝⎭⎝⎭u u uu r r r r r r θθθϕθϕ ⎪⎪⎭⎫⎝⎛∂∂+-∂∂+∇+⎪⎪⎭⎫⎝⎛∂∂--∂∂+∇+⎪⎪⎭⎫ ⎝⎛∂∂-∂∂---∇=∇ϕθθθϕθϕθθθθϕθθθθϕϕϕϕθθθϕθθA r A r A r A A r A r A r A A r A r A r A r A r r r r r 222222222222222222sin cos 2sin 1sin 2sin cos 2sin 12sin 22cot 22e e e A 七、亥姆霍兹定理如果矢量场F 在无限区域中处处是单值的,且其导数连续有界,则当矢量场的散度、旋度和边界条件(即矢量场在有限区域V’边界上的分布)给定后,该矢量场F 唯一确定为()()()=-∇+∇⨯F r r A r φ其中1()()4''∇⋅'='-⎰F r r r r V dV φπ1()()4''∇⨯'='-⎰F r A r r r V dV π第二章一、麦克斯韦方程组 1. 静电场 真空中:001d ==VqdV ρεε⋅⎰⎰SE S (高斯定理) d 0⋅=⎰l E l 0∇⋅=E ρε0∇⨯=E 场与位:3'1'()(')'4'V dV ρπε-=-⎰r r E r r r r ϕ=-∇E 01()()d 4πV V ρϕε''='-⎰r r |r r |介质中:d ⋅=⎰D S Sqd 0⋅=⎰lE l ∇⋅=D ρ0∇⨯=E极化:0=+D E P εe 00(1)=+==D E E E r χεεεε==⋅P e PS n n P ρ=-∇⋅P P ρ2. 恒定电场 电荷守恒定律:⎰⎰-=-=⋅Vsdv dtd dt dq ds J ρ0∂∇⋅+=∂J tρ传导电流与运流电流:=J E σρ=J v恒定电场方程:d 0⋅=⎰J S Sd 0⋅=⎰J l l 0∇⋅=J 0∇⨯J =3. 恒定磁场 真空中:0 d ⋅=⎰B l lI μ(安培环路定理) d 0⋅=⎰SB S 0∇⨯=B J μ0∇⋅=B场与位:03()( )()d 4π ''⨯-'='-⎰J r r r B r r r VV μ=∇⨯B A 0 ()()d 4π'''='-⎰J r A r r r V V μ 介质中:d ⋅=⎰H l lId 0⋅=⎰SB S ∇⨯=H J 0∇⋅=B磁化:0=-BH M μm 00(1)=+B H =H =H r χμμμμm =∇⨯J M ms n =⨯J M e4. 电磁感应定律() d d in lC dv B dl dt ⋅=-⋅⨯⋅⎰⎰⎰SE l B S +)(法拉第电磁感应定律∂∇⨯=-∂B E t5. 全电流定律和位移电流全电流定律: d ()d ∂⋅=+⋅∂⎰⎰D H l J S lSt∂∇⨯=+∂DH J t 位移电流:d=DJ d dt6. Maxwell Equationsd ()d d d d d 0∂⎧⋅=+⋅⎪∂⎪∂⎪⋅=-⋅⎪∂⎨⎪⋅=⎪⎪⋅=⎪⎩⎰⎰⎰⎰⎰⎰⎰D H J S B E S D S B S lS l SS V Sl tl t V d ρ 0∂⎧∇⨯=+⎪∂⎪∂⎪∇⨯=-⎨∂⎪∇⋅=⎪⎪∇⋅=⎩D H J BE D B t t ρ()()()()0∂⎧∇⨯=+⎪∂⎪∂⎪∇⨯=-⎨∂⎪∇⋅=⎪⎪∇⋅=⎩E H E H E E H t t εσμερμ 二、电与磁的对偶性e m e m eme e m m e e m mm e 00∂∂⎫⎧∇⨯=-∇⨯=⎪⎪∂∂⎪⎪∂∂⎪⎪∇⨯=+∇⨯=--⎬⎨∂∂⎪⎪∇=∇=⎪⎪⎪⎪∇=∇=⎩⎭⋅⋅⋅⋅B D E H DB H J E J D B D B t t&tt ρρm e e m ∂⎧∇⨯=--⎪∂⎪∂⎪∇⨯=+⇒⎨∂⎪∇=⎪⎪∇=⎩⋅⋅B E J D H J D B t t ρρ 三、边界条件1. 一般形式12121212()0()()()0n n S n Sn σρ⨯-=⨯-=→∞⋅-=⋅-=()e E E e H H J e D D e B B2. 理想导体界面和理想介质界面111100⨯=⎧⎪⨯=⎪⎨⋅=⎪⎪⋅=⎩e E e H J e D e B n n S n S n ρ12121212()0()0()0()0⨯-=⎧⎪⨯-=⎪⎨⋅-=⎪⎪⋅-=⎩e E E e H H e D D e B B n n n n 第三章一、静电场分析 1. 位函数方程与边界条件 位函数方程:220∇=-∇=ρφφε电位的边界条件:121212=⎧⎪⎨∂∂-=-⎪∂∂⎩s nn φφφφεερ111=⎧⎪⎨∂=-⎪∂⎩s const nφφερ(媒质2为导体) 2. 电容定义:=qCφ两导体间的电容:=C q /U 任意双导体系统电容求解方法:3. 静电场的能量N 个导体:112ne i i i W q φ==∑连续分布:12e VW dV φρ=⎰电场能量密度:12ω=⋅D E e二、恒定电场分析1.位函数微分方程与边界条件位函数微分方程:20∇=φ边界条件:121212=⎧⎪⎨∂∂=⎪∂∂⎩nn φφφφεε12()0⋅-=e J J n 1212[]0⨯-=J J e n σσ 2. 欧姆定律与焦耳定律欧姆定律的微分形式: =J E σ 焦耳定律的微分形式: =⋅⎰E J VP dV3. 任意电阻的计算2211d d 1⋅⋅====⋅⋅⎰⎰⎰⎰E lE l J S E SSSU R G I d d σ(L R =σS ) 4.静电比拟法:G C —,σε—2211⋅⋅===⋅⋅⎰⎰⎰⎰D S E S E lE lS S d d qC Ud d ε2211d d d ⋅⋅===⋅⋅⎰⎰⎰⎰J S E SE lE lS S d I G Uσ三、恒定磁场分析 2211⋅⋅===⋅⋅⎰⎰⎰⎰D S E S E lE lS S d d qC Ud d ε1. 位函数微分方程与边界条件矢量位:2∇=-A J μ12121211⨯⨯⨯A A e A A J n s μμ()=∇-∇=标量位:20m φ∇=211221∂∂==∂∂m m m m n nφφφφμμ 2. 电感定义:d d ⋅⋅===⎰⎰B S A lSlL IIIψ0=+i L L L3. 恒定磁场的能量N 个线圈:112==∑Nmj j j W I ψ连续分布:m 1d 2=⋅⎰A J V W V 磁场能量密度:m 12ω=⋅H B第四章一、边值问题的类型(1)狄利克利问题:给定整个场域边界上的位函数值()=f s φ (2)纽曼问题:给定待求位函数在边界上的法向导数值()∂=∂f s nφ(3)混合问题:给定边界上的位函数及其向导数的线性组合:2112()()∂==∂f s f s nφφ (4)自然边界:lim r r φ→∞=有限值二、唯一性定理静电场的惟一性定理:在给定边界条件(边界上的电位或边界上的法向导数或导体表面电荷分布)下,空间静电场被唯一确定。
第一章光的电磁理论基础详解

卷积的规则
g*h = h*g f *(g *h) = ( f * g)*h f *(g + h) = f * g + f *h
时间信号的傅立叶分析 一个一维时间函数的傅立叶变换定义为
∫ F(ν ) = F.T.{ f (t)} = ∞ f (t) exp(−i2πν t)dt −∞
逆变换
∫ f (t) = F.T.−1{F(ν )} = ∞ F(ν ) exp(i2πν t)dν −∞
平面波可以表示为
U (x, y, z) = Aexp(ik ir ) = Aexp[ik(x cosα + y cos β + z cosγ )]
= Aexp[i2π ( fx x + fy y + fz z)]
fx
=
cosα λ
fy
=
cos β λ
fz
=
cos γ λ
等相位面
k ir −ωt = constant
=
0
⎨
⎪⎪⎩∇2 B
−
1 c2
∂2B ∂t 2
=
0
无源波动方程
介质中波动方程
⎧ ⎪⎪∇2 E ⎨
− με
∂2E ∂t 2
=
0
⎪⎩⎪∇2 H
− με
∂2H ∂t 2
=0
或写成
⎧ ⎪⎪∇2 E ⎨
−
1 v2
∂2E ∂t 2
=
0
⎪⎪⎩∇2 H
−
1 v2
∂2H ∂t 2
=0
在无限大均匀介质中没有自由电荷和传导电流,场矢量的每一个 分量都满足齐次波动方程
dreeeerrrrrr5强场作用下的非线性介质边界条件在两种介质界面上电场强度矢量的切向分量连续21rtrtee210neer磁感应矢量的法向分量在界面上连续2r1nnbbr210nbbrg边界条件界面上磁场强度切向分量21ttshhjr21snhhjrr界面上电位移矢量的法向分量21nnrsdrgd21snddrsj自由电流线密度s自由电荷面密度边界条件21nnbdebde21nn21tt21tthh在无损介质的界面上0s0sj无源波动方程22002r2200200eertbbtrr介质中的麦克斯韦方程组0btedthrrjdbrrrrrgg真空中无自由电荷及传导电流00e00dbjehrrrrrr真空中波动方程2222r22221c01c0eertbbtrr或写成无源波动方程22222200eeththrrrr介质中波动方程或写成222222221v01v0eeththrrrr在无限大均匀介质中没有自由电荷和传导电流场矢量的每一个分量都满足齐次波动方程222222221v01v0iiiiethteixyzhixyz这个方程可以有多种形式的解其中最常见的是在直角坐标系中的平面波解在球坐标下的球面波解及在柱坐标系中的高斯光束解
第1章电磁场理论基础

第1章 电磁场理论基础
1.1.3 矢量场的散度
1. 通量
– 元通量 dΨ:场矢量 F 穿过面元dS 的通量。
dΨ F •dS F cos dS
– 通量 Ψ :场矢量 F 穿过任意曲面 S 的通量。
Ψ SF •dS S F cos dS
– 穿过闭合面的通量 :Ψ F •dS F cos dS
为电荷体密度。试证明: • D。
证明 由高斯定理可得
D • dS • DdV dV
S
V
V
• D dV 0
V
•D
第1章 电磁场理论基础
1.1.3 矢量场的散度
• 散度定理:矢量场通过任意闭合面向外的 总通量等于矢量场的散度在闭合曲面所包 围的体积内的积分。体积分面积分
• 散度含义
物理意义明确:
S
S
若 Ψ 0,体积内存在着流体的源;
若 Ψ 0,体积内存在流体的汇(负源);
若 Ψ 0,体积内正负源的总和为零。
第1章 电磁场理论基础
1.1.3 矢量场的散度
2. 散度
(1)散度的定义
divF lim SF • dS V 0 V (2)散度的运算
• 在直角坐标系中
divF Fx Fy Fz
2. 环量面密度
lim CF • dl
S0 S
n
M S
C 图1-1-7 环量面密度定义用图
第1章 电磁场理论基础
1.1.4 矢量场的旋度
3. 旋度
(1)旋度的定义:若在点M处场矢量F在某 方向的环量面密度值最大,并记此最大环 量面密度值为R,定义旋度为
curlF R
• 在直角坐标系中 A • B A B cos
A
第一章电磁场理论基础

1.6无线电波的辐射
• 均匀理想媒质
媒质在任一点的性质都相同,即电介质常数和磁导率为常 数,电导率为0,均与时间和空间无关;媒质各点的电荷密 度和电流密度为0。
• 均匀媒质中的麦克斯韦方程组
1.6无线电波的辐射
• 辐射的形成
1.7均匀平面波
1.7均匀平面波
1.7均匀平面波
• 导体和介质 传导电流代表了能量的损耗机理和位移电 流代表了能量的存储,他们的比值为衡量材 料损耗特性的尺度,其绝对值为接触损耗, 远大于1时为良导体,远小于1时为纯介质。 • 趋肤深度 在有耗媒质中传播的波,电磁波在媒质中穿 透一定距离后,能量衰减为原来的37%,这 个距离称为趋肤深度,和频率成反比。
1.4麦克斯韦方程组求解
• 可以推导出赫芝矢量的非齐次波动方程:
J ∇ ∏ +k ∏ = − jwε
2 2
• 可见求出一波源的赫芝矢量就可以由其求出波源 的电场和磁场,这样计算会简单很多。但要注意, 满足麦克斯韦方程组的解一定满足波动方程,但 满足波动方程的解不一定满足麦克斯韦方程组, 因此有波动方程求出的解需要带入麦克斯韦方程 组进行检验。
1.1矢量分析
• 矢量的表示方法 图示:带箭头的线段; → 书写:黑斜体,如A;或斜体字母上加一箭头,如 A 。 矢量的大小称为矢量A的模,记A 为 或 A。 矢量的方向可用单位矢量 a(a=A/A)表示,或记作eA
1.1矢量分析
• 矢量的表示方法 矢量可用其在坐标轴上的投影,即坐标分量表 示。直角坐标系中
1.1矢量分析
1.1矢量分析
1.1矢量分析
1.1矢量分析
• 斯托克斯定理表明,通过一个开放平面S的 矢量场旋度的合成环量可有沿着包围此开 放平面的闭合回路C的矢量场的先积分来获 得。这个结论使得面积分和线积分之间能 相互转换。
《工程电磁场教案》

《工程电磁场教案》第一章:电磁场的基本概念1.1 电磁现象的发现1.2 电荷与电场1.3 电流与磁场1.4 电磁感应第二章:静电场2.1 静电场的定义与特性2.2 静电力与库仑定律2.3 电势与电势能2.4 电场强度与高斯定律第三章:稳恒电流场3.1 电流场的定义与特性3.2 欧姆定律3.3 电阻的计算3.4 电流场的分布与等势线第四章:稳恒磁场4.1 磁场的基本概念4.2 安培定律4.3 磁感应强度与磁场强度4.4 磁通量与磁通量密度第五章:电磁波5.1 电磁波的产生与传播5.2 电磁波的波动方程5.3 电磁波的极化与反射、折射5.4 电磁波的应用第六章:电磁场的数值计算方法6.1 有限差分法6.2 有限元法6.3 边界元法6.4 有限体积法第七章:电磁场的测量与检测7.1 电磁场测量的基础知识7.2 电磁场测量仪器与设备7.3 电磁兼容性测试7.4 电磁辐射的防护与控制第八章:电磁场在工程中的应用8.1 电机与变压器8.2 电磁兼容设计8.3 无线通信与雷达技术8.4 电力系统的电磁场问题第九章:电磁场相关的标准与规范9.1 国际电工委员会(IEC)标准9.2 北美电气和电子工程师协会(IEEE)标准9.3 欧洲电信标准协会(ETSI)标准9.4 我国电磁兼容性标准第十章:电磁场的环境保护与安全10.1 电磁污染与电磁干扰10.2 电磁场的生物效应10.3 电磁场的防护措施10.4 电磁场环境监测与管理重点和难点解析一、电磁场的基本概念难点解析:电磁现象的内在联系,电磁场的定量描述,电磁感应的数学表达。
二、静电场难点解析:静电场的能量分布,电势的计算,高斯定律在复杂几何形状中的应用。
三、稳恒电流场难点解析:电流场的散度,等势面的概念,复杂电路中的电流分布计算。
四、稳恒磁场难点解析:磁场的闭合性,安培定律的适用条件,磁通量的计算,磁场的能量。
五、电磁波难点解析:电磁波的麦克斯韦方程组,电磁波的产生机制,电磁波在不同介质中的传播特性。
电磁场的数学物理基础

( , , z)
• 球(global)坐标系
见P330附录一
(r , , )
• 1. 直角坐标系 x, y, z 坐标变量
坐标单位矢量 ex , e y , ez r ex x e y y ez z 位置矢量 线元矢量 dl ex dx ey dy ez dz 面元矢量 dS x exdl y dlz exdydz
A B Ax Bx Ay By Az Bz
• 4、矢量积
ex A B C AB sin( AB )eC Ax Bx
ey Ay By
ez Az Bz
M rF
二、坐标系统
常用的正交(quadrature)坐标系统(coordinate
system)有: • 直角(rectangular)坐标系 • 圆柱(cylinder)坐标系
dS z ez dlxdl y ez dxdy
体积元
dS y ey dl x dl z ey dxdz
o
z z z0 (平面 )
ez
ex
P
ey
点 P(x0,y0,z0)
y y y0(平面)
x
x x0 (平面)
直角坐标系
z
dz
dS z ez dxdy
图.1 三维高度场的梯度
指向地势升高的方向。
例 2 电位场的梯度 电位场的梯度与过该点的 等位线垂直; 数值等于该点的最大方向导数; 指向电位(potential)增加的 方向。
图2 电位场的梯度
五、矢量场的通量与散度
(Flux and Divergence of Vector) 1 通量 ( Flux ) 矢量E 沿有向曲面 S 的面积分
电磁场和电磁波基础

第一章 电磁场和电磁波基础1 电磁学基本物理量 2 电磁场定律 3 边界条件 4 本构关系 5 波动方程 6 场和方程的复数形式 7 波数和波阻抗 8 均匀平面波 9 平面波的反射和折射 10 坡印亭定理1 电磁学基本物理量在电磁场基本方程中,所涉及到的基本物理量有:E :称为电场强度(伏/米)H :称为磁场强度(安/米)D :称为电通密度(库/米 2) B :称为磁通密度(韦/米 2)电位移矢量 磁感应强度⎯真空→ ε 0 E ⎯ ⎯ ⎯真空→ μ 0 H ⎯ ⎯J :电流密度(安/米 2)ρ :电荷密度(库/米 )3⎧ ⎪基本物理量:E , B ⎨ ⎪导出物理量:D, H ⎩瞬时值或时域表示 一般情况下,各场量和源量既是空间坐标的函数,又是时 间的函数,即2 电磁学场定律电磁学场定律描述场和源的关系,包括积分形式场定 律和微分形式场定律。
微分场定律形式把某点的场与就在该点的源及该点 的其它场量联系起来,适用于场、源量都是连续函数并有 S 连续的导数的良态域。
•⎧ E = E ( r , t ) = E ( x, y , z , t ) ⎪ ⎪ D = D ( r , t ) = D ( x, y , z , t ) ⎪ B = B ( r , t ) = B ( x, y , z , t ) ⎪ ⎨ ⎪ H = H ( r , t ) = H ( x, y , z , t ) ⎪ ρ = ρ (r , t ) = ρ ( x, y, z , t ) ⎪ ⎪ J = J (r , t ) = J ( x, y, z , t ) ⎩对应不同时刻,这些场量和源量的方向和数值会发生变 化,对应着一般时变场,称为场量的时域表示,或者瞬时 值。
P⎧ ⎪场:E , B ⎨ ⎪源:ρ,J ⎩2.1 自由空间场定律 2.2 物质中场定律V2.1 自由空间场定律∇× E = −B∂B (1a) ∂t∂ε 0 E (1b) ∂tVS自由空间指真空或同真空基本上具有同样特性的任 何其它媒质 (如空气) 自由空间场定律描述纯粹的源 ρ 、 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
质须的采分用界边面界上条仍件然。适用,由此可导出电磁
场矢量在不同媒质分界面上的边界条件。
E和H边界条件
H•dl JD•dS
C
S 媒质 t 2
n
H2t H2
e
2 2 2
E•dl C
S1媒 B t质 •1dS 1 1
h H1
M
l H2t
el
n
D和B边界条件
D2n D2
B•dS 0 S
媒质 2
用下,导电媒质中将形成定向移动电流。
带电粒子
晶格
对于线性和各向同性导电媒质,媒质内任一点的电流密度矢 量 J 和电场强度 E 成正比,表示为
J E
麦克斯韦方程组: 媒质的本构关系:
H J D t
E B t
•B 0
•D
D 0 rE Β 0 rH J E
16个未知量,7+9=16个独立的方程
微波技术与天线
——第1章 电磁场理论基 础
矢量分析部分
回忆:有关矢量的定义及计算
矢量定义—— 既有大小又有方向的量
如:力、速度、加速度
矢量的表示方法:
图示形式
A
A 和 eA
ur
ur
r
A
A 和 eA
书写形式
ur ur ur ur AAx Ay Az
rrr exAx eyAy ezAz
直角坐标系中的表示方法
变化的磁场可以在电路中产生电场
➢高斯定理
ÑS D•dS q
阐明了穿过封闭表面的电通量与 封闭曲面内电荷之间的关系。
电荷可以产生电场
➢高斯磁定理
ÑS B•dS0
自然界中没有发现独立的磁荷
➢两个假设
1、位移电流假设 电位移矢量随时间的变化会产生位移电流。
2、有旋电场假设 变化的磁场可以产生有旋电场。
1. 电介质的极化现象
在电场作用下,介质中无极分子的束缚电荷发生位移, 有极分子的固有电偶极矩的取向趋于电场方向,这种现象称 为电介质的极化。
无极分子
有极分子
无外加电场
E
无极分子
有极分子
有外加电场
极化时,介质中的电场应该是外加电场和极化电荷 产生的电场的叠加。
我们常采用介电常数来描述介质的这一电磁特性,对 对于均匀各向同性的媒质:
媒质 2
2 2 2
h M
质1中的量
媒质 1
S
1 1 1
D1
D1n
n H 2 H1 J s
n n
•
E 2 B2
E1 B1
0 0
n • D 2 D1 s
H 2t H 1t J s
E B
2 2
t n
E 1t B 1n
D 2 n D 1 n s
注意:
1. 磁场强度H的切向分量不连续,其差值等于电流面密度
D 0rE
2. 电介质的磁化现象 在外磁场作用下,分子磁矩定向排列,宏观上显示
出磁性,这种现象称为磁介质的磁化。
B
无外加磁场
外加磁场
磁化时,介质中的磁场应该是传导电流和磁化电流 共同激励的结果。
我们常采用磁导率来描述介质的这一电磁特性,对 于均匀各向同性的媒质,该介质的本构关系为:
Β0rH
3. 导电媒质的传导现象 存在可以自由移动带电粒子的介质称为导电媒质。在外场作
2 2 2
h M
D•dSq S
媒质 1
S
1 1 1
D1
D1n
边界条件
n
H2t H2
n H 2 H 1 媒 质 J s2
e
n E 2 E 12 0 2 2
h
M
el
n
n
• •
B2 D2
BD111媒0质 1s 1 1
H1
l H2t
n
注意Βιβλιοθήκη D2n D21. n从媒质1指向媒质2 2. 媒质2中的量减去媒
1.2.3 边界条件
➢ 什么是边界条件?
n
➢实为际电什磁么场要问研题究都边是在界一条定件的?物理空
间内发生的,该空间中可能是由多种不同
媒质1 媒质2
媒质物➢数组理学如成::的何由麦。讨于克边在论斯界分韦边条界方界件面程条就两组是件侧是不?介微同质分媒的方质特程的性组分参,其
界面上的数电发解磁生是场突不矢变确量,定满场的足在,的界边关面界系两条,侧件是也起在发定不解的 同媒质分生形界突 式麦作面变在克用上。分斯。电麦界韦磁克面方场斯两程的韦侧组基方失的本程去积属组意分性的义形。微,式分必在不同媒
矢量的基本运算 矢量的加法 矢量的减法 矢量的乘法
点乘 叉乘
点乘
(标量)
叉乘
(矢量)
定义 运算法则 重要结论
A•BABcos
A •B A xB xA yB yA zB z A•B0 AB
定义 运算法则 重要结论
ABnABsin
ex ey ez A B Ax Ay Az
Bx By Bz
AB0 A//B
1.2 麦克斯韦方程和边界条件
1.2.1 麦克斯韦方程的一般形式
1. 积分形式
麦克斯韦-安培定律: H•dl JD•dS
C
S t
法拉第电磁感应定律: E•dl B•dS
C
S t
表明传导电流和
高斯磁定律: B•dS 0 S
变麦化克的斯电韦场第都二能方 产程磁生,场磁表无场明通变量化源的, 磁电场感荷产线是生总产电是生场闭电合场
电磁波基础
安培环路定理
1.2 麦克斯韦方程
法拉第电磁 感应定律
高斯定理
麦克斯韦方程
位移电流
有旋电场
➢安培环路定理
Ñ CH•dlSJ•dS
描述了一条导线中的电流与环绕 这导线的磁场环量之间的关系。
电流可以产生磁场
➢法拉第电磁感应定律
dd tB Ñ C E g d l tSB g d S
任何封闭电路中感应电动势的大 小等于穿过这一电路磁通量的变化率。
2. 电场强度E的切向分量连续
3. 磁感应强度B的法向分量连续
4. 电位移矢量D的法向分量不连续,其差值等于电荷面密 度
两种特殊情况下的边界条件
理想导体表面 的边界条件
理想介质分界 面的边界条件
特殊性
理想导体 内部电磁场 为零
理想介质 分界面上不 存在面电荷 和面电流
场问题的研究手段
核心思想:围绕一个算子求三个度,分析对象场 的分布规律
哈密尔顿算子
ex
xey
yez
z
三个度
标量场 矢量场
u
ur gA 哈密顿算子与矢量的点乘
ur A 哈密顿算子与矢量的叉乘
vv F 0 , F 0
vv F 0 . F 0
vv F 0 , F 0
vv F 0 , F 0
高斯定律: D•dSq S
曲的线通量源
1.2 麦克斯韦方程和边界条件
2. 微分形式
H•dl JD•dS
C
S t
E•dl B•dS
C
S t
B•dS 0 S
D•dSq S
旋度定律
HJD t
E B t
散度定律
•B0 •D
3. 媒质的本构关系
• 媒质对电磁场的响应可分为三种情况:极化、磁化和传导。