高等代数教案 北大版 第八章

合集下载

高等代数北大版1-6

高等代数北大版1-6

例1. 判别多项式 f ( x ) 有无重因式.
f ( x ) x 5 10 x 3 20 x 2 15 x 4
§1.6 重因式
推论5
不可约多项式 p( x )为 f ( x ) 的 k 重因式
p( x )为 ( f ( x ), f ( x )) 的 k 1 重因式.
p( x ) 是 f ( x ) 与 f ( x ) 的公因式.
§1.6 重因式
推论3 多项式 f ( x )没有重因式 ( f ( x ), f ( x )) 1 . 推论4
f ( x ) P[x ] ,若 ( f ( x ), f ( x )) p1r1 ( 可约多项式, 则 pi ( x ) 为 f ( x )
的 ri 1 重因式.
§1.6 重因式
说明
根据推论3、4可用辗转相除法,求出 ( f ( x ), f ( x )) 来判别 f ( x )是否有重因式.若有重因式 ,还可由
( f ( x ), f ( x )) 的结果写出来.
注:
f ( x) f ( x ) 与 ( f ( x ), f ( x ))有完全相同的不可约因式,
f ( x) 且 的因式皆为单因式. ( f ( x ), f ( x ))
§1.6 重因式
§1.6 重因式
2. 定理6
若不可约多项式 p( x ) 是 f ( x ) 的 k 重因式 ( k 1 ), 则它是 f ( x )的微商 f ( x ) 的 k 1重因式.
证: 假设 f ( x ) 可分解为
f ( x ) p ( x ) g( x ) ,
k
其中 p( x ) | g ( x ) .
f ( x ) p k 1 ( x ) kg( x ) p( x ) p( x ) g( x )

高等代数【北大版】课件

高等代数【北大版】课件
线性规划问题
线性方程组是求解线性规划问题的常用工具 。
物理问题建模
在物理问题中,线性方程组可以用来描述各 种现象,如振动、波动等。
投入产出分析
通过线性方程组分析经济系统中各部门之间 的相互关系。
控制系统分析
在控制系统分析中,线性方程组用于描述系 统的动态行为。
PART 03
向量与矩阵
REPORTING
高等代数【北大版】 课件
REPORTING
• 绪论 • 线性方程组 • 向量与矩阵 • 多项式 • 特征值与特征向量 • 二次型与矩阵的相似对角化
目录
PART 01
绪论
REPORTING
高等代数的应用
在数学其他分支的应用
高等代数是数学的基础学科,为其他分支提供了理论基础,如几 何学、分析学等。
PART 04
多项式
REPORTING
一元多项式的定义与运算
总结词
一元多项式的定义、运算性质和运算方法。
详细描述
一元多项式是由整数系数和变量组成的数学对象,具有加法、减法、乘法和除法等运算性质和运算方法。一元多 项式可以表示为$a_0 + a_1x + a_2x^2 + ldots + a_nx^n$的形式,其中$a_0, a_1, ldots, a_n$是整数,$x$是 变量。
矩阵的相似对角化
总结词
矩阵的相似对角化是将矩阵转换为对角矩阵 的过程,有助于简化矩阵运算和分析。
详细描述
矩阵的相似对角化是通过一系列的线性变换 ,将一个矩阵转换为对角矩阵。对角矩阵是 一种特殊的矩阵,其非主对角线上的元素都 为零,主对角线上的元素为特征值。通过相 似对角化,可以简化矩阵运算,并更好地理 解矩阵的性质和特征。

高等代数课件(北大版)第八章 λ-矩阵§8.5

高等代数课件(北大版)第八章 λ-矩阵§8.5

等价. 然后对 D1 ( ) 重复上述讨论.
2012-9-22§8.5 初等因子
数学与计算科学学院
如此继续进行,直到对角矩阵主对角线上元素所含
1 的方幂是按逆升幂次排列为止.
再依次对 2 , , r 作同样处理. 最后便得到与 D ( ) 等价的对角阵 D ( ).
结论2、两个同级数字矩阵相似
它们有相同的初等因子.
可见:初等因子和不变因子都是矩阵的相似不变量.
2012-9-22§8.5 初等因子
数学与计算科学学院
三、初等因子的求法
1、(引理1)若多项式 f 1 ( ), f 2 ( ) 都与 g 1 ( ), g 2 ( ) 互素,则
f 1 ( ) g 1 ( ),
2
2, 1, 1
得A的不变因子为:
d 3 ( x ) ( 1) ( 2),
2
d 2 ( x ) d 1 ( x ) 1.
2012-9-22§8.5 初等因子
数学与计算科学学院
结论1、若两个同级数字矩阵有相同的不变因子,
则它们就有相同的初等因子; 反之,若它们有相同的初等因子,则它们就有 相同的不变因子.
d 1 ( x ) ( 1 ) d 2 ( x ) ( 1 )
k 11
( 2 )
k 12
( r )
k1 r
, , .
k 21
( 2 )
k 22
( r )
k2 r

d n ( x ) ( 1 )
kn1
( 2 )
f ( ) | f 2 ( ) g 2 ( ),

高等代数(北大版)第8章习题参考答案

高等代数(北大版)第8章习题参考答案

第八章 —矩阵1. 化下列矩阵成标准形1) 2)3) 4)5)6)解 1)对矩阵作初等变换,有A= B,B即为所求。

2)对矩阵作初等变换,有A= B,B即为所求。

3)因为的行列式因子为1=1, 2 =, 3 = ,所以1 = 1,2 = = ,3 = = ,从而A= B,B即为所求。

4)因为的行列式因子为1=1, 2 =, 3 = , 4 = ,所以1 = 1,2 = = ,3 = = ,4 = = ,从而A= B,B即为所求。

5)对矩阵作初等变换,有A= B,B即为所求。

6)对矩阵作初等变换,有A,在最后一个行列式中3=1, 4 =, 5 = ,所以1 =2 =3 =1,4 = =,5 = =。

故所求标准形为B= 。

2.求下列矩阵的不变因子:1) 2)3) 4)5)解 1)所给矩阵的右上角的二阶子式为1,所以其行列式因子为1=1, 2 =1, 3 = ,故该矩阵的不变因子为1 =2 =1,3 =。

2)因为所给矩阵的右上角的三阶子式为-1,所以其行列式因子为3 =2 =1=1,4 =,故矩阵的不变因子为1 =2 =3 =1,4 =。

3)当时,有4 = = ,且在矩阵中有一个三阶子式= ,于是由,3 = 1,可得3 = 1,故该矩阵的不变因子为1 =2 =3 =1,4 = 。

当时,由1=1, 2 =1, 3 = , 4 = ,从而1 =2 =1,3 = ,4 = = 。

4)因为所给矩阵的左上角三阶子式为1,所以其行列式因子为1=1, 2 =1, 3 =1, 4 = ,从而所求不变因子为1 =2 =3 =1,4 = 。

5)因为所给矩阵的四个三阶行列式无公共非零因式,所以其行列式因子为3 =1,4 = ,故所求不变因子为1 =2 =3 =1,4 = 。

3.证明:的不变因子是,其中= 。

证因为n = ,按最后一列展开此行列式,得n == ,= ,因为矩阵左下角的阶子式= ,所以= 1,从而1=2 = … = = 1,故所给矩阵的不变因子为1 =2 = … = = 1,= = ,即证。

高等代数课件 第八章

高等代数课件 第八章
由此得 | | , x12 x22 xn2 (5)
( ,) (x1 y1)2 (xn yn )2 (6)
2.标准正交基的性质
设 {1,2} 是 V2 的一个基,但不一定是
正交基。从这个基出发,只要能得出 V2 的一个
正交基 {1, 2}, 问题就解决了,因为将 1和2
再分别除以它们的长度,就得到一个规范正交
注意:(7)和(8)在欧氏空间的不等式(6) 里被统一起来. 因此通常把(6)式称为柯西-施瓦兹不 等式.
三、向量的正交
定义4 欧氏空间的两个向量ξ与η说是正交的,
如果 , 0
定理8.1.2 在一个欧氏空间里,如果向量ξ
与1,2,,r 中每一个正交,那么ξ与 1,2,,r
的任意一个线性组合也正交.
2 a1 2 a1 0,
因而 2 0,
这就得到 V2 的一个正交基 {1, 2}.
3.标准正交基的存在性
定理8.2.2(正交化方法) 设 {1,2 ,,n}
是欧氏空间V的一组线性无关的向量, 那么可以求
出V 的一个正交组 {1, 2,, n}, 使得 k 可以由 1,2,,k 线性表示,k = 1,2,…,m.
由于1,2,,k 线性无关,得 k 0,
又因为假定了 1, 2 ,, k1 两两正交,所以
k ,i
k ,i
k ,i i , i
i , i 0, i 1,2,, k 1
这样,1, 2,, k 也满足定理的要求。
定理8.2.3 任意n(n >0)维欧氏空间一定有正交
基,因而有标准正交基.
例4 在欧氏空间 R3中对基
4) 当 0 时, , 0 这里 ,, 是V的任意向量,a是任意实数,那么
, 叫做向量ξ与η的内积,而V叫做对于 这个内积来说的一个欧氏空间(简称欧氏空间).

高等代数教案设计(张禾瑞版)

高等代数教案设计(张禾瑞版)

适用文案高等代数教课设计第一章首页讲课内容第一章基本观点第 1.1节——第1。

5 节所需课时12 学时1 .北京师范大学,高等代数高等教育第一版社,1997主要教材或2.北京大学编,高等代数。

高等教育第一版社, 1995参照资料3.华东师范大学,高等代数与几何高等教育第一版社,1997知识目标:教课目的和教课基本要求:(1 )掌握会合,子集,空集等基本观点,明确会合、子会合之间的关系及表示方法。

(2 )掌握映照、单射、满射及双射的基本观点。

(3 )掌握数学概括原理、最小数原理,第二数学概括法原理应用。

教课目的(4 )掌握带余除法,最大公因数,互素观点和方法。

(5 )掌握数环,数域及最小数域—有理数域为基本观点。

能力目标:( 1 )训练学生领悟和掌握高等代数的基本方法和思想方式。

(2 )掌握高等代数的基本观点中的公义化定义、性质,而且会解决实质问题教课要点会合、映照、数学概括法、整数的一些整除性质、数环和数域。

教课难点数学概括法原理的证明和应用、数环和数域的抽象观点的理解。

教课方法 1. 讲解法。

2.议论法。

3.讲练联合适用文案§1会合§2映照教课内容及§3数学概括法时间安排2学时2学时2学时§4整数的一些整除性质§5数环和数域2学时2学时习题课 2 学时1.复习教材和笔录中本章内容。

学习指导 2.让学生阅读北京师范大学,高等代数第一章3.让学生阅读《高等代数协助教材》第一章。

教材第一章习题:第 6 页: 6、7;第 14 页:5、10;第 18 页: 1、4、5;作业及思虑题第 29 页: 2、4、5;第 25 页:3、5。

赞同上述安排。

教研室批阅建议教研室主任署名:王书琴2005 年 2月 28 日高等代数教课设计第二章首页讲课内容第二章多项式第 2.1 节——第2。

8 节所需课时28学时1.北京师范大学高等代数高等教育第一版社, 1997主要教材或2.北京大学编高等代数高等教育第一版社, 1995参照资料3.华东师范大学高等代数与几何高等教育第一版社,1997知识目标:教课目的和教课基本要求:(1 )掌握一元多项式的观点和运算规则,整除互素的观点及简单性质并能进行有关论证。

高等代数课件(北大版)第八章 λ-矩阵§8.2

高等代数课件(北大版)第八章 λ-矩阵§8.2
2020/2/7§8.2 λ─矩阵的标准数形学与计算科学学院
一、λ-矩阵的初等变换
定义:
λ―矩阵的初等变换是指下面三种变换: ① 矩阵两行(列)互换位置; ② 矩阵的某一行(列)乘以非零常数 c;
③ 矩阵的某一行(列)加另一行(列)的( )倍, ( )是一个多项式.
2020/2/7§8.2 λ─矩阵的标准数形学与计算科学学院
定义:
将单位矩阵进行一次 ―矩阵的初等变换所得的
矩阵称为 ―矩阵的初等矩阵.
注: ① 全部初等矩阵有三类:
1

O



P(i, j)



1

0L 1
i行
M 1L 0
j行
1
O 1
2020/2/7§8.2 λ─矩阵的标准数形学与计算科学学院
1

O

1

LL
LL
L L
L L

2020/2/7§8.2 λ─矩阵的标准数形学与计算科学学院
r() L L
[1,i ]

L a11 L
L
(
L
)
L L L
L L L


B( ).
B( ) 的左上角元素 r( )符合引理的要求,
故 B( ) 为所求的矩阵.
ii) 在A( )的第一行中有一个元素 a1i ( )不能被a11( )
对 A( ) 作下述初等行变换:
a11( ) L
A(
)



L
ai1(
L
)
L L
L
a1 j ( ) L
L L
aij ( )

高等代数电子教案(Ⅲ)

高等代数电子教案(Ⅲ)
7.4 不变子空间 7.5 本征值和本征向量 7.6 可以对角化矩阵
7.1 线性映射
学习内容 线性映射的定义、线性变换的象与核.
§7.1.1 线性映射的定义
设F是一个数域,V和W是F上向量空间. 定义1 设σ是V 到W 的一个映射. 如果下列条 件被满足,就称σ是V 到W 的一个线性映射: ①对于任意 , V , ( ) ( ) ( ). ②对于任意 a F , V , (a ) a ( ) 容易证明上面的两个条件等价于下面一个条件: ③对于任意 a, b F 和任意 , V ,
进一步,设 f ( x) a0 a1 x an x . 是F上一个多项式,而 L(V ), 以σ代替x,以 a 0 代替 a 0 ,得到V的一个线性变换
n
a0 a1 an n .
这个线性变换叫做当 记作 f ( ).
x 时f (x)的值,并且
例3 令A是数域F上一个m × n矩阵,对于n元列空 间的 F m 每一向量
x1 x2 x n
规定: 是一个m×1矩阵,即是空间 F m的一个向量, σ是 到 F n 的一个线性映射. Fm
例4 令V 和W是数域F 上向量空间.对于V 的每一向 量ξ令W 的零向量0与它对应,容易看出这是V 到 W的一个线性映射,叫做零映射.
令 k ,那么对于任意 a, b F 和任意 , V ,
(a b ) k ( (a b )) k (a ( ) b ( ))
ak ( ) bk ( ) a 的一个线性变换.
如果线性映射 : V W 有逆映射 1 ,那么是W 到V 的一个线性映射. 建议同学给出证明.

高等代数课件(北大版)第八章 λ-矩阵§8.6

高等代数课件(北大版)第八章 λ-矩阵§8.6

i 0 L 0 0
1 i L 0 0
Ji
L 0
0
L 0 0
L L L
L
i
1
L , 0
i
2020/4/11§8.6 若当标准形的数理学与论计算推科学导学院
i 1,2,L , s
J1

J
J2 O
Js
则 J 的初等因子也是(*),
即J与A有相同的初等因子.
故J 与A相似.
2020/4/11§8.6 若当标准形的数理学与论计算推科学导学院
0 0 2 2 0 0
0 0 0 0 2
A 的初等因子为 , , 2 .
0 0 0
故 A的若当标准形为
0 0
0 0
0 2
.
2020/4/11§8.6 若当标准形的数理学与论计算推科学导学院
例2、已知12级矩阵A的不变因子为
114,12,L43,1,( 1)2,( 1)2 1, 12 1( 2 1)2 9个 求A的若当标准形. 解:依题意,A的初等因子为 12 , 12 , 12 , 1, 1, i2 , i2
00 00
L L 1n1
1 0
L 1
所以 E J0 的 n 1 级行列式因子为1. 从而, E J0 的 n 2,L ,2,1 级行列式因子皆为1.
J0 的不变因子是:
d1 L dn1 1, dn 0 n . 故 J0 的初等因子是: 0 n .
2020/4/11§8.6 若当标准形的数理学与论计算推科学导学院
1
O
1
s ks
等价. 由定理9,J 的全部初等因子是:
( 1 )k1 , ( 2 )k2 , L , ( s )ks .

(完整word版)高等代数教案北大版第八章

(完整word版)高等代数教案北大版第八章
定理4 为 的n-1阶行列式因子。
引理设 -矩阵 的左上角 ,并且 中至少有一个元素不能被它除尽,那么一定可以找到一个与 等价的矩阵 ,它的左上角元素也不为零,但是次数比 的次数低。
定理2任意一个非零的 的 -矩阵 都等价与下列形式的矩阵
最后化成的这个矩阵称为 的标准形。例求 -矩阵 Nhomakorabea的标准型.

即为所求的标准型.
二、矩阵最小多项式
定义3:设 是一个矩阵,如果多项式
由于Jordan标准型的求解与特征多项式有关,而从函数的角度看,特征多项式实际上是特殊的函数矩阵(元素是函数的矩阵),这就引出对 -矩阵的研究.
一、 -矩阵及其标准型
定义1称矩阵 为 -矩阵,其中元素
为数域 上关于 的多项式.
定义2称 阶 -矩阵 是可逆的,如果有
并称 为 的逆矩阵.反之亦然.
定理1矩阵 可逆的充要条件是其行列式为非零的常数,即
一、 -矩阵的初等变换。
定义1下面的三种变换叫做 -矩阵的初等变换:
(1)矩阵的两行(列)互换位置;
(2)矩阵的某一行(列)乘以非零的常数 ;
(3)矩阵的某一行(列)加另一行(列)的 倍, 是一个多项式。
初等变换都是可逆的,并且有

为了写起来方便起见,我们采用以下的记号:
代表 行(列)互换位置;
代表用非零的数 去乘 行(列);
.
证明:(1)充分性设 是一个非零的数. 表示 的伴随矩阵,则 也是一个 -矩阵,且有
因此, 是可逆的.
(2)必要性设 有可逆矩阵 ,则
两边取行列式有
由于 与 都是多项式,而它们的乘积为1,所以它们都是零次多项式,即都是非零常数.证毕.
例题1判断 -矩阵

高等代数 北大 课件

高等代数 北大 课件

拉普拉斯定理与因式分解
总结词
拉普拉斯定理的表述、应用和因式分解的方法。
详细描述
拉普拉斯定理是行列式计算中的重要定理,它提供了计算行列式的一种有效方法。因式分解是将多项式分解为若 干个因子的过程,是解决代数问题的重要手段之一。
CHAPTER 04
矩阵的分解与二次型
矩阵的分解
01
02
03
矩阵的三角分解
矩阵的乘法
矩阵的乘法满足结合律和分配律,但不一定满足 交换律。
பைடு நூலகம்
矩阵的逆与行列式
矩阵的逆
对于一个非奇异矩阵,存在一个逆矩阵,使得原矩阵 与逆矩阵相乘等于单位矩阵。
行列式的定义
行列式是一个由矩阵元素构成的数学量,可以用于描 述矩阵的某些性质。
行列式的性质
行列式具有一些重要的性质,如交换律、结合律、分 配律等。
将一个矩阵分解为一个下 三角矩阵和一个上三角矩 阵之积。
矩阵的QR分解
将一个矩阵分解为一个正 交矩阵和一个上三角矩阵 之积。
矩阵的奇异值分解
将一个矩阵分解为若干个 奇异值和若干个奇异向量 的组合。
二次型及其标准型
二次型的定义
一个多项式函数,可以表示为$f(x_1, x_2, ..., x_n) = sum_{i=1}^{n} sum_{ j=1}^{n} a_{ij} x_i x_j$,其中 $a_{ij}$是常数。
VS
二次型的标准型
通过线性变换,将一个二次型转化为其标 准形式,即一个平方项之和减去另一个平 方项之和。
正定二次型与正定矩阵
正定二次型的定义
对于一个二次型,如果对于所有 的非零向量$x$,都有$f(x) > 0$ ,则称该二次型为正定二次型。

高等代数教案(北大版)高等代数试题以及解答

高等代数教案(北大版)高等代数试题以及解答

高等代数教案(北大版)-高等代数试题以及解答一、线性方程组1. 定义线性方程组,并说明线性方程组的解的概念。

2. 线性方程组的求解方法:高斯消元法、克莱姆法则。

3. 线性方程组的解的性质:唯一性、存在性。

4. 线性方程组在实际应用中的例子。

二、矩阵及其运算1. 定义矩阵,说明矩阵的元素、矩阵的行和列。

2. 矩阵的运算:加法、减法、数乘、矩阵乘法。

3. 矩阵的转置、共轭、伴随矩阵。

4. 矩阵的行列式、行列式的性质和计算方法。

三、线性空间与线性变换1. 定义线性空间,说明线性空间的基、维数。

2. 线性变换的定义,线性变换的矩阵表示。

3. 线性变换的性质:线性、单调性、可逆性。

4. 线性变换的应用:线性映射、线性变换在几何上的意义。

四、特征值与特征向量1. 特征值、特征向量的定义。

2. 矩阵的特征多项式、特征值和特征向量的计算方法。

3. 特征值和特征向量的性质:特征值的重数、特征向量的线性无关性。

4. 对称矩阵的特征值和特征向量。

五、二次型1. 二次型的定义,二次型的标准形。

2. 二次型的矩阵表示,矩阵的合同。

3. 二次型的性质:正定、负定、不定。

4. 二次型的判定方法,二次型的最小值和最大值。

六、向量空间与线性映射1. 向量空间的概念,包括基、维数和维度。

2. 线性映射的定义,线性映射的性质,如线性、单调性和可逆性。

3. 线性映射的表示方法,包括矩阵表示和坐标表示。

4. 线性映射的应用,如线性变换、线性映射在几何上的意义。

七、特征值和特征向量的应用1. 特征值和特征向量的计算方法,包括特征多项式和特征方程。

2. 特征值和特征向量的性质,如重数和线性无关性。

3. 对称矩阵的特征值和特征向量的性质和计算。

4. 特征值和特征向量在实际问题中的应用,如振动系统、量子力学等。

八、二次型的定义和标准形1. 二次型的定义,包括二次型的标准形和矩阵表示。

2. 二次型的矩阵表示,包括矩阵的合同和相似。

3. 二次型的性质,如正定、负定和不定。

高等代数教学大纲2014 - 副本

高等代数教学大纲2014 - 副本

高等代数教学大纲代数教研室[本大纲以北大数学系编《高等代数》第四版为依据拟定,共需约216学时 (讲授144学时+习题课72学时)][本大纲以北大数学系编《高等代数》第四版为依据拟定,共需约216学时 (讲授144学时+习题课72学时)]课程总体目标1.理解和掌握高等代数中的一些基本概念和基础知识,如数域、多项式、n阶行列式、线性方程组、矩阵、二次型、向量空间、线性变换、 矩阵、欧氏空间、以及双线性函数与辛空间等抽象代数基本概念。

2.具备逻辑推理、抽象思维与综合分析的能力,能运用高等代数中的基础知识、基本理论进行推理和证明。

3.熟练掌握高等代数中常用的方法。

4.了解近世代数研究的对象和基本方法.第一章多项式(26学时)(一)教学目的和要求1)熟练掌握一元多项式的基本概念及其运算。

2)熟练掌握一元多项式的整除,最大公因子,互素的概念,性质及有关的证明。

3)熟练掌握不可约多项式的概念,性质,理解因式分解定理的意义,掌握复数域,实数域上的多项式的标准分解式及复数域,实数域上不可约多项式4)会直接利用艾森斯坦因判别法,会求Q[x]中的多项式的有理根。

(二)教学内容1)多项式的概念及其运算:多项式的定义,多项式相等,零多项式,多项式次数。

2)多项式和与积的定义;带余除法,用带余除法求商和余式,商与余存在及唯一性定理;多项式的值与多项式的根的定义,余数定理,综合除法,用综合除法求多项式的值;多项式的次数与根的个数的关系,多项式相等的定义。

3)多项式整除的定义,性质;最大公因式的定义;用辗转相除法求最大公因式,最大公因式的存在与唯一性定理;最大公因式的性质;互素的定义及等价条件;不可约多项式的定义及等价条件;不可约多项式的性质;因式分解定理及标准分解式。

4)重因式:重因式的定义,系数与重因式的关系;无重因式的充要条件,去掉重因式的方法;重根的定义,重根与系数的关系。

5)复数域和实数域上的多项式的因式分解:代数学基本定理,C[x]上的不可约多项式,多项式的标准分解式,C上的n次多项式有n个根;R上的不可约多项式,多项式的标准分解式。

高等代数 北京大学第三版 北京大学精品课程

高等代数 北京大学第三版  北京大学精品课程

资料范本本资料为word版本,可以直接编辑和打印,感谢您的下载高等代数北京大学第三版北京大学精品课程地点:__________________时间:__________________说明:本资料适用于约定双方经过谈判,协商而共同承认,共同遵守的责任与义务,仅供参考,文档可直接下载或修改,不需要的部分可直接删除,使用时请详细阅读内容第一学期第一次课第一章代数学的经典课题§1 若干准备知识代数系统的概念一个集合,如果在它里面存在一种或若干种代数运算,这些运算满足一定的运算法则,则称这样的一个体系为一个代数系统。

数域的定义定义(数域)设是某些复数所组成的集合。

如果K中至少包含两个不同的复数,且对复数的加、减、乘、除四则运算是封闭的,即对内任意两个数、(可以等于),必有,则称K为一个数域。

例1.1 典型的数域举例:复数域C;实数域R;有理数域Q;Gauss数域:Q (i) = {i |∈Q},其中i =。

命题任意数域K都包括有理数域Q。

证明设为任意一个数域。

由定义可知,存在一个元素。

于是。

进而Z,。

最后,Z,,。

这就证明了Q。

证毕。

集合的运算,集合的映射(像与原像、单射、满射、双射)的概念定义(集合的交、并、差) 设是集合,与的公共元素所组成的集合成为与的交集,记作;把和B中的元素合并在一起组成的集合成为与的并集,记做;从集合中去掉属于的那些元素之后剩下的元素组成的集合成为与B的差集,记做。

定义(集合的映射)设、为集合。

如果存在法则,使得中任意元素在法则下对应中唯一确定的元素(记做),则称是到的一个映射,记为如果,则称为在下的像,称为在下的原像。

的所有元素在下的像构成的的子集称为在下的像,记做,即。

若都有则称为单射。

若都存在,使得,则称为满射。

如果既是单射又是满射,则称为双射,或称一一对应。

1.1.4 求和号与求积号1.求和号与乘积号的定义. 为了把加法和乘法表达得更简练,我们引进求和号和乘积号。

高中数学第八章教案模板

高中数学第八章教案模板

高中数学第八章教案模板
一、教学目标:
1. 理解正弦、余弦、正切的定义,掌握它们在直角三角形中的性质;
2. 能够用三角函数解决实际问题;
3. 掌握三角函数的图像和性质;
4. 理解三角函数的周期性和奇偶性;
5. 能够灵活运用三角函数解决相关的综合性问题。

二、教学重点与难点:
1. 了解三角函数的定义和性质;
2. 掌握三角函数的应用技巧。

三、教学内容与教学步骤:
1. 理解正弦、余弦、正切的定义,了解它们在直角三角形中的表示方法;
2. 导出正弦、余弦、正切的性质;
3. 学习三角函数在单位圆上的表示方法;
4. 探讨三角函数的周期性和奇偶性;
5. 讲解如何用三角函数解决实际问题;
6. 利用习题让学生巩固知识点。

四、教学手段:
1. 知识讲解与示范;
2. 示意图和实例分析;
3. 互动讨论和答疑。

五、教学资源:
1. 教科书;
2. 习题册;
3. 多媒体课件。

六、教学评价:
1. 课堂表现评价;
2. 作业完成情况评价。

七、教学总结与展望:
通过本章的学习,学生们应该能够熟练掌握三角函数的定义、性质和应用技巧,为今后的学习打下坚实的基础。

在以后的学习中,我们将进一步深入探讨三角函数的各种应用,帮助学生更全面地理解和运用三角函数。

高等代数北大版教(学)案_第8章λ_矩阵

高等代数北大版教(学)案_第8章λ_矩阵

第八章 λ-矩阵本章主要介绍λ-矩阵及其性质,并用这些性质证明若当标准形的主要定理。

§1 λ-矩阵如果一个矩阵的元素是λ的多项式,即][λP 的元素,这个矩阵就称为λ-矩阵。

为了与λ-矩阵相区别,我们把以数域P 中的数为元素的矩阵称为数字矩阵。

由于数域中的数也是][λP 中的元素,所以在λ-矩阵中包括以数为元素的矩阵,即数字矩阵为λ-矩阵的一个特殊情形。

同样可以定义一个λ-矩阵的行列式,既然有行列式,也就有λ-矩阵的子式的概念。

利用这个概念。

我们有定义1 如果λ-矩阵)(λA 中有一个r )1(≥r 级子狮不为零。

而所有1+r 级子式(如果有的话)全为零,则称)(λA 的秩为r ,零矩阵的秩规定为零。

定义2 一个n n ⨯的λ-矩阵)(λA 称为可逆的,如果有一个n n ⨯的λ-矩阵)(λB 使)(λA )(λB =)(λB )(λA =E (1) 这里E 是n 级单位矩阵。

适合(1)的矩阵)(λB (它是唯一的)称为)(λA 的逆矩阵,记为)(1λ-A关于λ-矩阵可逆的条件有定理1 一个n n ⨯的λ-矩阵)(λA 是可逆的充分必要条件为行列式|)(|λA 是一个非零的数。

§2 λ-矩阵在初等变换下的标准形λ-矩阵也有初等变换。

定义3 下面的三种变换叫做λ-矩阵的初等变换:(1)矩阵的两行(列)互换位置;(2)矩阵的某一行(列)乘以非零的常数c ;(3)矩阵的某一行(列)加另一行(列)的)(λΦ倍,)(λΦ是一个多项式。

初等变换都是可逆的,并且有))(())((),,(),(111---==c i p c i p j i p j i p ,))(,())(,(1ϕφ-=-j i p j i p 。

为了写起来方便起见,我们采用以下的记号:],[j i 代表j i ,行(列)互换位置;)]([c i 代表用非零的数c 去乘i 行(列);)]([φj i +代表把j 行(列)的)(λφ倍加到i 行(列)。

高等代数【北大版】课件

高等代数【北大版】课件

多项式的因式分解与根的性质
总结词
多项式的因式分解、根的性质和求解方 法
VS
详细描述
多项式的因式分解是将多项式表示为若干 个线性因子乘积的过程。通过因式分解, 可以更好地理解多项式的结构,简化计算 和证明。此外,多项式的根是指满足多项 式等于0的数。根的性质包括根的和与积、 重根的性质等。求解多项式的根的方法有 多种,如求根公式、因式分解法等。
性方
02
线性方程组的解法
高斯消元法 通过行变换将增广矩阵化为阶梯形矩 阵,从而求解线性方程组。
选主元高斯消元法
选择主元以避免出现除数为0的情况, 提高算法的稳定性。
追赶法
适用于系数矩阵为三对角线矩阵的情 况,通过逐步消去法求解。
迭代法
通过迭代逐步逼近方程组的解,常用 的方法有雅可比迭代法和SOR方法。
向量空间的子空间与基底
总结词
子空间与基底
详细描述
子空间是向量空间的一个非空子集,它也满足向量空间的定义和性质。基底是 向量空间中一个线性独立的集合,它可以用来表示向量空间中的任意元素。基 底中的向量个数称为向量空间的维数。
ቤተ መጻሕፍቲ ባይዱ
向量空间的维数与基底的关系
总结词
维数与基底的关系
详细描述
向量空间的维数与基底密切相关。一个向量空间的维数等于其基底的向量个数。 如果一个向量空间有n个基底,则它的维数为n。同时,如果一个向量空间有有限 个基底,则它的维数是有限的。
行列式
06
行列式的定义与性质
总结词
行列式的定义和性质是高等代数中的 基础概念,包括代数余子式、余子式、 转置行列式等。
详细描述
行列式是由n阶方阵的n!项组成的代数 式,按照一定规则排列,具有一些重 要的性质,如交换律、结合律、代数 余子式等。这些性质在后续章节中有 着广泛的应用。

高等代数教案(北大版)高等代数试题以及解答

高等代数教案(北大版)高等代数试题以及解答

高等代数教案(北大版)-高等代数试题以及解答一、线性方程组1. 定义线性方程组,并了解线性方程组的基本性质。

2. 掌握高斯消元法求解线性方程组,并能够运用该方法解决实际问题。

3. 了解克莱姆法则,并能够运用该法则判断线性方程组的解的情况。

4. 通过例题讲解,让学生熟练掌握线性方程组的求解方法。

二、矩阵及其运算1. 定义矩阵,并了解矩阵的基本性质。

2. 掌握矩阵的运算,包括矩阵的加法、减法、数乘以及矩阵的乘法。

3. 了解逆矩阵的概念,并掌握逆矩阵的求法。

4. 通过例题讲解,让学生熟练掌握矩阵的运算方法。

三、线性空间与线性变换1. 定义线性空间,并了解线性空间的基本性质。

2. 掌握线性变换的概念,并了解线性变换的基本性质。

3. 了解特征值和特征向量的概念,并掌握特征值和特征向量的求法。

4. 通过例题讲解,让学生熟练掌握线性空间和线性变换的相关知识。

四、二次型1. 定义二次型,并了解二次型的基本性质。

2. 掌握二次型的标准形以及惯性定理。

3. 了解二次型的正定性以及其判定方法。

4. 通过例题讲解,让学生熟练掌握二次型的相关知识。

五、向量空间与线性映射1. 定义向量空间,并了解向量空间的基本性质。

2. 掌握线性映射的概念,并了解线性映射的基本性质。

3. 了解核空间以及秩的概念,并掌握核空间和秩的求法。

4. 通过例题讲解,让学生熟练掌握向量空间和线性映射的相关知识。

六、特征值和特征向量1. 回顾特征值和特征向量的定义,理解它们在矩阵对角化中的作用。

2. 学习如何求解一个矩阵的特征值和特征向量,包括利用特征多项式和行列式等方法。

3. 掌握特征值和特征向量在简化矩阵表达式和解决实际问题中的应用。

4. 提供例题,展示如何将一般矩阵问题转化为特征值和特征向量的问题,并教会学生如何解这些问题。

七、二次型1. 复习二次型的基本概念,包括二次型的定义、标准形和惯性定理。

2. 学习如何将一般二次型转化为标准形,以及如何从标准形判断二次型的正定性。

高等代数教案第八章λ-矩阵

高等代数教案第八章λ-矩阵

第八章 -λ矩阵§1 -λ矩阵设P 是数域,λ是一个文字,作多项式环][λP ,一个矩阵如果它的元素是λ的多项式,即][λP 的元素,就称为-λ矩阵.在这一章讨论-λ矩阵的一些性质,并用这些性质来证明上一章第八节中关于若当标准形的主要定理.因为数域P 中的数也是][λP 的元素,所以在-λ矩阵中也包括以数为元素的矩阵.为了与-λ矩阵相区别,把以数域P 中的数为元素的矩阵称为数字矩阵.以下用Λ),(),(λλB A 等表示-λ矩阵.我们知道,][λP 中的元素可以作加、减、乘三种运算,并且它们与数的运算有相同的运算规律.而矩阵加法与乘法的定义只是用到其中元素的加法与乘法,因此可以同样定义-λ矩阵的加法与乘法,它们与数字矩阵的运算有相同的运算规律.行列式的定义也只用到其中元素的加法与乘法,因此,同样可以定义一个n n ⨯的-λ矩阵的行列式.一般地,-λ矩阵的行列式是λ的一个多项式,它与数字矩阵的行列式有相同的性质.定义1 如果-λ矩阵)(λA 中有一个)1(≥r r 级子式不为零,而所有1+r 级子式(如果有的话)全为零,则称)(λA 的秩为r .零矩阵的秩规定为零.定义 2 一个n n ⨯的-λ矩阵)(λA 称为可逆的,如果有一个n n ⨯的-λ矩阵)(λB 使E A B B A ==)()()()(λλλλ, (1)这里E 是n 级单位矩阵.适合(1)的矩阵)(λB (它是唯一的)称为)(λA 的逆矩阵,记为)(1λ-A ..定理1 一个n n ⨯的-λ矩阵)(λA 是可逆的充要条件为行列式|)(|λA 是一个非零的数.§2 -λ矩阵在初等变换下的标准形-λ矩阵也可以有初等变换定义3 下面的三种变换叫做-λ矩阵的初等变换:(1) 矩阵的两行(列)互换位置;(2) 矩阵的某一行(列)乘以非零的常数c ;(3) 矩阵有某一行(列)加另一行(列)的)(λϕ倍,)(λϕ是一个多项式. 和数字矩阵的初等变换一样,可以引进初等矩阵.例如,将单位矩阵的第j 行的)(λϕ倍加到第i 行上得行行列列j i j i P j i ⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=11)(11))(.(O M O ΛO λϕϕ 仍用),(j i P 表示由单位矩阵经过第i 行第j 行互换位置所得的初等矩阵,用))((c i P 表示用非零常数c 乘单位矩阵第i 行所得的初等矩阵.同样地,对一个n s ⨯的-λ矩阵)(λA 作一次初等变换就相当于在)(λA 的左边乘上相应s s ⨯的初等矩阵;对)(λA 作一次初等列变换就相当于)(λA 在的右边乘上相应的n n ⨯的初等矩阵.初等矩阵都是可逆的,并且有))(,())(,(,))(())((,),(),(1111ϕϕ-===----j i P j i P c i P c i P j i P j i P .由此得出初等变换具有可逆性:设-λ矩阵)(λA 用初等变换变成)(λB ,这相当于对)(λA 左乘或右乘一个初等矩阵.再用此初等矩阵的逆矩阵来乘)(λB 就变回)(λA ,而这逆矩阵仍是初等矩阵,因而由)(λB 可用初等变换变回)(λA .定义4 -λ矩阵)(λA 称为与)(λB 等价,如果可以经过一系列初等变换将)(λA 化为)(λB .等价是-λ矩阵之间的一种关系,这个关系显然具有下列三个性质: (!) 反身性:每一个-λ矩阵与它自身等价.(2) 对称性:若)(λA 与)(λB 等价,则)(λB 与)(λA 等价.(3) 传递性:若)(λA 与)(λB 等价,)(λB 与)(λC 等价,则)(λA 与)(λC 等价. 应用初等变换与初等矩阵的关系即得,矩阵)(λA 与)(λB 等价的充要条件为有一系列初等矩阵t l Q Q Q P P P ,,,,,,,2121ΛΛ,使t l Q Q Q B P P P A ΛΛ2121)()(λλ=. (2)这一节主要是证明任意一个-λ矩阵可以经过初等变换化为某种对角矩阵. 引理 设-λ矩阵)(λA 的左上角元素0)(11≠λa ,并且)(λA 中至少有一个元素不能被它除尽,那么一定可以找到一个与)(λA 等价的矩阵)(λB ,它的左上角元素也不为零,但是次数比)(11λa 的次数低.定理2 任意一个非零的n s ⨯的-λ矩阵)(λA 都等价于下列形式的矩阵⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛00)()()(21O O λλλr d d d , 其中),,2,1)((,1r i d r i Λ=≥λ是首项系数为1的多项式,且)1,,2,1()(|)(1-=+r i d d i i Λλλ.这个矩阵称为)(λA 的标准形.例 用初等变换化-λ矩阵⎪⎪⎪⎭⎫ ⎝⎛--++---=232211121)(λλλλλλλλλλλA 为标准形.§3 不 变 因 子现在来证明,-λ矩阵的标准形是唯一的.定义5 设-λ矩阵)(λA 的秩为r ,对于正整数,1,r k k ≤≤,)(λA 中必有非零的k 级子式. )(λA 中全部k 级子式的首项系数为1的最大公因式)(λk D 称为)(λA 的k 级行列式因子.由定义可知,对于秩为r 的-λ矩阵,行列式因子一共有r 个.行列式因子的意义就在于,它在初等变换下是不变的.定理3 等价的-λ矩阵具有相同的秩与相同的各级行列式因子.现在来计算标准形矩阵的行列式因子.设标准形为⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛00)()()(21O O λλλr d d d (1) 其中)(,),(),(21λλλr d d d Λ是首项系数为1的多项式,且)1,,2,1()(|)(1-=+r i d d i i Λλλ.不难证明,在这种形式的矩阵中,如果一个k 级子式包含的行与列的标号不完全相同,那么这个k 级子式一定为零.因此,为了计算k 级行列式因子,只要看由k i i i ,,,21Λ行与k i i i ,,,21Λ列组成的k 级子式就行了,而这个k 级子式等于)(,),(),(21λλλk i i i d d d Λ显然,这种k 级子式的最大公因式就是)()()(21λλλk d d d Λ定理4 -λ矩阵的标准形是唯一的.证明 设(1)是)(λA 的标准形.由于)(λA 与(1)等价,它们有相同的秩与相同的行列式因子,因此,)(λA 的秩就是标准形的主对角线上非零元素的个数r ;)(λA的k 级行列式因子就是),,2,1()()()()(21r k d d d D k k ΛΛ==λλλλ. (2)于是)()()(,,)()()(,)()(112211λλλλλλλλ-===r r r D D d D D d D d Λ. (3) 这就是)(λA 的标准形(1)的主对角线上的非零元素是被)(λA 的行列式因子所唯一决定的,所以)(λA 的标准形是唯一的.定义6 标准形的主对角线上非零元素)(,),(),(21λλλr d d d Λ称为-λ矩阵)(λA 的不变因子.定理5 两个-λ矩阵等价的充要条件是它们有相同的行列式因子,或者,它们有相同的不变因子.由(3)可以看出,在-λ矩阵的行列式因子之间,有关系式)1,,2,1()(|)(1-=+r k D D k k Λλλ. (4)在计算-λ矩阵的行列式因子时,常常是先计算最高级的行列式因子.这样,由(4)就大致有了低级行列式因子的范围了.例如,可逆矩阵的标准形.设)(λA 为一个n n ⨯可逆矩阵,由定理1知d A =|)(|λ,其中d 是一非零常数,这就是说1)(=λn D于是由(4)可知,),,2,1(1)(n k D k Λ==λ从而),,2,1(1)(n k d k Λ==λ因此,可逆矩阵的标准形是单位矩阵E .反过来,与单位矩阵等价的矩阵一定是可逆矩阵,因为它的行列式是一个非零的数.这就是说,矩阵可逆的充要条件是它与单位矩阵等价.又矩阵)(λA 与)(λB 等价的充要条件是有一系列初等矩阵t l Q Q Q P P P ,,,,,,,2121ΛΛ,使t l Q Q Q B P P P A ΛΛ2121)()(λλ=特别是,当时E B =)(λ,就得到定理6 矩阵)(λA 是可逆的充要条件是它可以表成一些初等矩阵的乘积. 推论 两个n s ⨯的-λ矩阵)(λA 与)(λB 等价的充要条件为,有一个s s ⨯可逆矩阵与一个n n ⨯可逆矩阵)(λQ ,使)()()()(λλλλQ A P B =.§4 矩阵相似的条件在求一个数字矩阵A 的特征值和特征向量时曾出现过-λ矩阵A E -λ,我们称它A 为的特征矩阵.这一节的主要结论是证明两个n n ⨯数字矩阵A 和B 相似的充要条件是它们的特征矩阵A E -λ和B E -λ等价.引理1 如果有n n ⨯数字矩阵00,Q P 使00)(Q B E P A E -=-λλ, (1)则A 和B 相似.引理2 对于任何不为零的n n ⨯数字矩阵A 和-λ矩阵)(λU 与)(λV ,一定存在-λ矩阵)(λQ 与)(λR 以及数字矩阵0U 和0V 使0)()()(U Q A E U +-=λλλ, (2)0))(()(V A E R V +-=λλλ. (3)定理7 设A ,B 是数域P 上两个n n ⨯矩阵. A 与B 相似的充要条件是它们的特征矩阵A E -λ和B E -λ等价.矩阵A 的特征矩阵A E -λ的不变因子以后简称为A 的不变因子.因为两个-λ矩阵等价的充要条件是它们有相同的不变因子,所以由定理7即得推论 矩阵A 与B 相似的充要条件是它们有相同的不变因子.应该指出,n n ⨯矩阵的特征矩阵的秩一定是n .因此,n n ⨯矩阵的不变因子总是有n 个,并且,它们的乘积就等于这个矩阵的特征多项式.以上结果说明,不变因子是矩阵的相似不变量,因此我们可以把一个线性变换的任一矩阵的不变因子(它们与该矩阵的选取无关)定义为此线性变换的不变因子.§5 初等因子一、初等因子的概念定义7 把矩阵A (或线性变换A )的每个次数大于零的不变因子分解成互不相同的一次因式方幂的乘积,所有这些一次因式方幂(相同的必须按出现的次数计算)称为矩阵A (或线性变换A )的初等因子.例 设12级矩阵的不变因子是222229)1)(1()1(,)1()1(,)1(,1,,1,1++-+--λλλλλλ43421Λ个. 按定义,它的初等因子有7个,即22222)(,)(,)1(,)1(,)1(,)1(,)1(i i +-++---λλλλλλλ.其中2)1(-λ出现三次,1+λ出现二次.现在进一步来说明不变因子和初等因子的关系.首先,假设n 级矩阵A 的不变因子)(,,)(,)(21λλλn d d d Λ为已知.将),,2,1)((n i d i Λ=λ分解成互不相同的一次因式方幂的乘积:r k r k k d 11211)()()()(211λλλλλλλ---=Λ,r k r k k d 22221)()()()(212λλλλλλλ---=Λ,nr n n k r k k n d )()()()(2121λλλλλλλ---=ΛΛΛΛΛΛΛ,则其中对应于1≥ij k 的那些方幂)1()(≥-ij k j k ij λλ就是A 的全部初等因子.注意不变因子有一个除尽一个的性质,即)1,,2,1()(|)(1-=+n i d d i i Λλλ,从而),,2,1;1,,2,1()(|)(,1r j n i j i ij k j k j ΛΛ=-=--+λλλλ.因此在)(,,)(,)(21λλλn d d d Λ的分解式中,属于同一个一次因式的方幂的指数有递升的性质,即),,2,1(21r j k k k nj j j ΛΛ=≤≤≤.这说明,同一个一次因式的方幂作成的初等因子中,方次最高的必定出现在)(λn d 的分解中,方次次高的必定出现在)(1λ-n d 的分解中.如此顺推下去,可知属于同一个一次因式的方幂的初等因子在不变因子的分解式中出现的位置是唯一确定的.二、初等因子与不变因子的求法上面的分析给了我们一个如何从初等因子和矩阵的级数唯一地作出不变因子的方法.设一个n 级矩阵的全部初等因子为已知,在全部初等因子中将同一个一次因式),,2,1)((r j j Λ=-λλ的方幂的那些初等因子按降幂排列,而且当这些初等因子的个数不足n 时,就在后面补上适当个数的1,使得凑成n 个.设所得排列为),,2,1(,)(,,)(,)(1,1r j j j n nj kj k j k j ΛΛ=----λλλλλλ. 于是令 ),,2,1()()()()(2121n i d ir i i k r k k i ΛΛ=---=λλλλλλλ,则)(,,)(,)(21λλλn d d d Λ就是A 的不变因子.这也说明了这样一个事实:如果两个同级的数字矩阵有相同的初等因子,则它们就有相同的不变因子,因而它们相似.反之,如果两个矩阵相似,则它们有相同的不变因子,因而它们有相同的初等因子.综上所述,即得定理8 两个同级复数矩阵相似的充要条件是它们有相同的初等因子.初等因子和不变因子都是矩阵的相似不变量.但是初等因子的求法与不变因子的求法比较,反而方便一些.如果多项式)(,)(21λλf f 都与)(,)(21λλg g 互素,则.))(,)(())(,)(())()(),()((21212211λλλλλλλλg g f f g f g f ⋅=.引理 设)()(00)()()(2211λλλλλg f g f A =,)()(00)()()(2112λλλλλg f g f B =,如果多项式)(,)(21λλf f 都与)(,)(21λλg g 互素,则)(λA 和)(λB 等价.定理9 首先用初等变换化特征矩阵A E -λ为对角形式,然后将主对角线上的元素分解成互不相同的一次因式方幂的乘积,则所有这些一次因式的方幂(相同的按出现的次数计算)就是A 的全部初等因子.§6 若尔当(Jordan)标准形的理论推导我们用初等因子的理论来解决若尔当标准形的计算问题.首先计算若尔当标准形的初等因子.不难算出若尔当块nn J ⨯⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=0001000010001000λλλΛM M M M ΛΛΛ 的初等因子是n )(0λλ-.事实上,考虑它的特征矩阵⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛------=-00001000010001000λλλλλλλΛM M M M ΛΛΛJ E显然n J E )(00λλλ-=-,这就是0J E -λ的n 级行列式因子.由于0J E -λ有一个1-n 级子式是100)1(100100001001--=------n ΛΛM MM M ΛΛλλλλ,所以它的1-n 级行列式因子是1,从而它以下各级的行列式因子全是1.因此它的不变因子n n n d d d )()(,1)()(011λλλλλ-====-Λ.由此即得,0J E -λ的初等因子是n )(0λλ-.再利用§5的定理9,若尔当形矩阵的初等因子也很容易算出. 设⎪⎪⎪⎪⎪⎭⎫⎝⎛=s J J J J O21 是一个若尔当形矩阵,其中),,2,1(100010001000s i J ii k k i i ii ΛΛM M M M ΛΛΛ=⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⨯λλλ. 既然i J 的初等因子是),,2,1()(s i i k i Λ=-λλ,所以i J E -λ与⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-i k i )(11λλO 等价.于是⎪⎪⎪⎪⎪⎭⎫⎝⎛---=-s k k k J E J E J E J E s λλλλO2121 与⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛---s k s k k )(11)(11)(112121λλλλλλOOO 等价.因此,J 的全部初等因子是:s k s k k )(,,)(,)(2121λλλλλλ---Λ.这就是说,每个若尔当形矩阵的全部初等因子就是由它的全部若尔当形矩阵的初等因子构成的.由于每个若尔当块完全由它的级数n 与主对角线上元素0λ所刻划,而这两个数都反映在它的初等因子n )(0λλ-中.因此,若尔当块被它的初等因子唯一决定.由此可见,若尔当形矩阵除去其中若尔当块排列的次序外被它的初等因子唯一决定.定理10 每个n 级的复数矩阵A 都与一个若尔当形矩阵相似,这个若尔当形矩阵除去其中若尔当块的排列次序外是被矩阵A 唯一决定的,它称为A 的若尔当标准形.例1 §5的例中,12级矩阵的若尔当标准形就是1212101011110111011101⨯⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛----i i i i 例2 求矩阵⎪⎪⎪⎭⎫⎝⎛-----=411301621A的若尔当标准形.定理10换成线性变换的语言来说就是:定理11 设A 是复数域上n 维线性空间V 的线性变换,在V 中必定存在一组基,使A 在这组基下的矩阵是若尔当形,并且这个若尔当形矩阵除去其中若尔当块的排列次序外是被A 唯一决定的.应该指出,若尔当形矩阵包括对角矩阵作为特殊情形,那就是由一级若尔当块构成的若尔当形矩阵,由此即得定理12 复数矩阵A 与对角矩阵相似的充要条件是A 的初等因子全为一次的.根据若尔当形的作法,可以看出矩阵A 的最小多项式就是A 的最后一个不变因子.因此有定理13 复数矩阵A 与对角矩阵相似的充要条件是A 的不变因子都没有重根.虽然我们证明了每个复数矩阵A 都与一个若尔当形矩阵相似,并且有了具体求矩阵A 的若尔当标准形的方法,但是并没有谈到如何确定过渡矩阵T ,使AT T 1-成若尔当标准形的问题. T 的确定牵涉到比较复杂的计算问题.最后指出,如果规定上三角形矩阵⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛00000000100000100001λλλλΛΛM M M M M ΛΛ为若尔当块,应用完全类似的方法,可以证明相应于定理10,定理11的结论也成立.§7 矩阵的有理标准形前一节中证明了复数域上任一矩阵A 可相似于一个若尔当形矩阵.这一节将对任意数域P 来讨论类似的问题.我们证明了P 上任一矩阵必相似于一个有理标准形矩阵.定义8 对数域P 上的一个多项式n n n a a d +++=-Λ11)(λλλ称矩阵⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛----=--12110010001000a a a a A n n n ΛM M M M ΛΛΛ (1)为多项式)(λd 的伴侣阵.容易证明,A 的不变因子(即A E -λ的不变因子)是)(,1,,1,11λd n 43421Λ个-.(见习题3)定义9 下列准对角矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛=s A A A A O21, (2) 其中i A 分别是数域P 上某些多项式),,2,1()(s i d i Λ=λ的伴侣阵,且满足)(||)(|)(21λλλs d d d Λ,A 就称为P 上的一个有理标准形矩阵.引理 (2)中矩阵A 的不变因子为)(,,)(,)(,1,,1,121λλλs d d d ΛΛ,其中1的个数等于)(,,)(,)(21λλλs d d d Λ的次数之和n 减去s .定理14 数域P 上n n ⨯方阵A 在上相似于唯一的一个有理标准形,称为A 的有理标准形.把定理14的结论变成线性变换形式的结论就成为定理15 设A 是数域P 上n 维线性空间V 的线性变换,则在V 中存在一组基,使A 在该基下的矩阵是有理标准形,并且这个有理标准形由A 唯一决定的,称为A 的有理标准形.例 设33⨯矩阵A 的初等因子为)1(,)1(2--λλ,则它的不变因子是1,2)1(,)1(--λλ,它的有理标准形为.⎪⎪⎪⎭⎫ ⎝⎛-210100001.第八章 -λ矩阵(小结)一、基本概念-λ矩阵,可逆的-λ矩阵,秩;-λ矩阵的初等变换及标准形,-λ矩阵的等价;行列式因子,不变因子,初等因子;若尔当标准形,矩阵的有理标准形.二、主要结论1. 一个n n ⨯的-λ矩阵)(λA 是可逆的充要条件为行列式|)(|λA 是一个非零的数.2. 任意一个非零的n s ⨯的-λ矩阵)(λA 都等价于其唯一的标准形矩阵:⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛00)()()(21O O λλλr d d d , 其中),,2,1)((,1r i d r i Λ=≥λ是首项系数为1的多项式,且)1,,2,1()(|)(1-=+r i d d i i Λλλ.3. 两个-λ矩阵等价的充要条件是它们有相同的行列式因子,或者,它们有相同的不变因子.4. 矩阵)(λA 是可逆的充要条件是它可以表成一些初等矩阵的乘积.5. 两个n s ⨯的-λ矩阵)(λA 与)(λB 等价的充要条件为,有一个s s ⨯可逆矩阵与一个n n ⨯可逆矩阵)(λQ ,使)()()()(λλλλQ A P B =.6. 设A ,B 是数域P 上两个n n ⨯矩阵. A 与B 相似的充要条件是它们的特征矩阵A E -λ和B E -λ等价.7. 两个同级复数矩阵相似的充要条件是它们有相同的初等因子.8. 首先用初等变换化特征矩阵A E -λ为对角形式,然后将主对角线上的元素分解成互不相同的一次因式方幂的乘积,则所有这些一次因式的方幂(相同的按出现的次数计算)就是A的全部初等因子.9. 每个n级的复数矩阵A都与一个若尔当形矩阵相似,这个若尔当形矩阵除去其中若尔当块的排列次序外是被矩阵A唯一决定的,它称为A的若尔当标准形.10. 设A是复数域上n维线性空间V的线性变换,在V中必定存在一组基,使A在这组基下的矩阵是若尔当形,并且这个若尔当形矩阵除去其中若尔当块的排列次序外是被A唯一决定的.11. 复数矩阵A与对角矩阵相似的充要条件是A的初等因子全为一次的(或A的不变因子都没有重根).12. 数域P上nn 方阵A在上相似于唯一的一个有理标准形,称为A的有理标准形.13. 设A是数域P上n维线性空间V的线性变换,则在V中存在一组基,使A在该基下的矩阵是有理标准形,并且这个有理标准形由A唯一决定的,称为A 的有理标准形.。

高等代数.第八章.λ-矩阵(介绍).课堂笔记

高等代数.第八章.λ-矩阵(介绍).课堂笔记
高等代数
课堂笔记
第九章
第八章 λ-矩阵(介绍)
本章主要介绍如何求给定的复数矩阵的若尔当标准形. 已学知识回顾: 第七章第五节 ∀������ ∈ P ������×������ ,������与对角矩阵相似当且仅当������有������个线性无关的特征向量. 事实上������ ′ ������������ = ������������������������(������1 , ������2 , … , ������������ ), ������ ∈ P ������×������ ,������可逆, ⟺ ������������ = ������ ∙ ������������������������(������1 , ������2 , … , ������������ ) ⟺ ������������������ = ������������ ������������ , ������ = 1,2, … , ������, 其中,������������ 为������的第������ 个列向量,即������ = (������1, ������2 , … , ������������ ). 第九章第六节 ∀������ ∈ P ������×������ 且������ = ������′,������正交相似于对角阵,即存在正交阵������, 使得������ ′ ������������ = ������������������������(������1 , ������2 , … , ������������ ). ∀������ ∈ ℂ������×������ ,������与若尔当形矩阵������相似,且出去若尔当块排列次序外,������是唯一的(称为 ������的若尔当标准形). ——定理 14 这里,������级若尔当块是指如下形式的复数矩阵: ������0 1 ������0 ,记作������(������0 , ������), ������0 ∈ ℂ, 1 ⋱ ⋱ ������0 [ 1 ������0 ] 而由若干个若尔当块合成的分块对角矩阵 ������1 ������ = [ ������2 ,称为若尔当形矩阵,其中������������ = ������(������������ , ������������ ),
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

( )与 B( )的 k 阶行列式因子.需要证明 f ( )= g( ).分 3 种情况讨论: 别是 A
A ( ) B( ),此时, B( )的每个 k 阶子式或者等于 A( )的某个 (1)
k 阶子式,或者与 A ( )的某个阶子式反号,所以, f ( )是 B( )的 k 阶子式的公
P 、Q ,使得 B P A Q
证明 因 为 A B , 所 以 A( ) 可 以 经 过 有 限 次 初 等 变 换 变 成
B( ),即存在初等矩阵
P 1 ( ), P 2 ( ),
与初等矩阵
0 0 A 0 0
1 0 0 0
0 0 0 0
0 0 1 0
0 0 B 0 0
1 0 0 0
0 0 0 0
0 0 0 0
mA () mB () 2 ,但 A、B 不相似。
引理 5 设 A 为 n 阶方阵且 A 相似于
[i j ( )]代表把 j 行(列)的 ( ) 倍加到 i 行(列) 。
定义 2 -矩阵 A( ) 称为与 B ( ) 等价,如果可以经过一系列初等变换将
A( ) 化为 B ( ) 。
等价是 -矩阵之间的一种关系,这个关系,显然具有下列三个性质: (1) 反身性:每一个 -矩阵与自己等价。 (2) 对称性:若 A( ) 与 B ( ) 等价,则 B ( ) 与 A( ) 等价。这是由于 初等变换具有可逆性的缘故。 (3) 传递性:若 A( ) 与 B ( ) 等价, B ( ) 与 C ( ) 等价,则 A( ) 与
, Ps ( )
Q1 ( ), Q2 ( ),
使得
, Qt ( )
B( ) P 1 ( ) P 2 ( )

Ps () A()Q1 ()Q2 ()
Qt ()
P( ) P 1 ( ) P 2 ( ) Q( ) Q1 ( )Q2 ( )
Ps () , Qt ( )
因此, A( ) 是可逆的. (2)必要性 设 A( ) 有可逆矩阵 B( ),则
A B I
两边取行列式有
A B I 1
由于 A 与 B 都是多项式,而它们的乘积为 1,所以它们都是零次多项式, 即都是非零常数.证毕. 例题 1 判断 -矩阵
所以, f ( )是的 k 阶子式公因式,从而 f ( ) |g( ).
( ) 经过一 系列的初等 变换变成 对于 列变换 , 可以一样地讨论 . 总之 , A B( ),那么 f( ) |g( ).又由于初等变换的可逆性, B( )经过一系列的初等变 ( ),从而也有 g( ) 换可以变成 A | f( ). ( )所有的阶子式为零时, B( )所有的 k 阶子式也就等于零; 当A 反之亦然. ( )与 B( )又相同的各阶行列式因子,从而有相同的秩.证毕. 故A
教 学 过 程
初等变换都是可逆的,并且有
p(i, j ) 1 p(i, j ), p(i(c))1 p(i(c 1 )) p(i, j( ))1 p(i, j( )) 。
为了写起来方便起见,我们采用以下的记号:
,
[i, j ] 代表 i, j 行(列)互换位置; [i (c)] 代表用非零的数 c 去乘 i 行(列) ;
就是所要求的 -矩阵.它们都是初等矩阵的乘积,从而使可逆的.证毕.
定义 4 矩阵 A( ) 的所有非零 k 阶子式的首一 (最高次项系数为 1) 最大 公因式 Dk 称为 A( ) 的 k 阶行列式因子. 定理 2 等价矩阵具有相同的秩和相同的各级行列式因子. 证明 设 -矩阵 A( ) 经过一次行初等变换化为了 B( ),f ( )与 g( )分
2
1 2 A( ) 0 1 2
即为所求的标准型.
1 2 1 0 0 0 0 0 2 2 2 0 0 0 0
授课内容 教学时数 教学目标 教学重点 教学难点 教学方法与 手段
第八章 λ -矩阵
2 学时
第一讲 λ -矩阵
授课类型
讲授法与练习法
使学生了解 -矩阵的概念,以及 -矩阵和数字矩阵的关系,基本掌握 矩阵秩的判断,可逆的条件,以及求逆矩阵。
-矩阵秩的判断,可逆的条件,以及求逆矩阵。
求 -矩阵的逆矩阵
既然初等变换不改变行列式因子,所以,每个 -矩阵与它的标准型有完全相 同的行列式因子.而求标准型的矩阵是较为简单的,因而,在求一个 -矩阵的行列 式因子时,只要求出它的标准型的行列式因子即可.
讨论、 练习与 作业 课后反思
授课内容 教学时数 教学目标 教学重点 教学难点 教学方法与 手段
第二将 λ -矩阵在初等变换下的标准型 2
二、矩阵最小多项式 定义 3:设 A M n ( K ) 是一个矩阵,如果多项式
f () a0 m a1 m1 am1 am
使得:
f ( A) a0 Am a1 Am1 am1 A am En 0
则称 f ( ) 是 A 的零化多项式。A 的次数最小的首一零化多项式称为 A 的极小 多项式(minimal polymial),记为 mA ( ) 。 引理 2: mA ( ) 整除 A 的任意零化多项式。特别的 mA ( ) | f A ( ) 。 证明 设 f ( ) 是 A 的任一零花多项式,则 f ( A) 0 。由带余除法定理可知
d 1 ( ) d 2 ( ) d r ( ) 0 0
最后化成的这个矩阵称为 A( ) 的标准形。 例 求 -矩阵
1 A( ) 1+ 2
的标准型. 解
2 2
B B 1 0
B2 B3
其中 B1 、 B3 为方阵,则 [mB1 ( ), mB2 ( )]| mB ( ) 特别的由引理 3 知 当 B2 0 时
u( ), v( ) C[ ] 使得 u( )( 0 ) v( )mA ( ) 1
u( A)( A 0 I m ) I n ,取行列式知 det( A 0 I m ) 0 与 0 是 A 的特征根矛
盾。 由引理 1、2 知 mA ( ) 与 f A ( ) 有相同的根。 引理 4 例1 设 相似矩阵有相同的最小多项式,反之不真。
C ( ) 等价,
引理 设 -矩阵 A( ) 的左上角 a11 ( ) 0 ,并且 A( ) 中至少有一个元
素不能被它除尽,那么一定可以找到一个与 A( ) 等价的矩阵 B ( ) ,它的左上 角元素也不为零,但是次数比 a11 ( ) 的次数低。 定理 2 任意一个非零的 s n 的 -矩阵 A( ) 都等价与下列形式的矩阵
启发式讲授,讨论,练习
n 阶矩阵 A 与对角阵相似的充要条件是 A 有 n 个线性无关的特征向量.那
(m n)个线性无关的特征向量时, A 与对角阵是不相似的.对这种情 么当只有 m
况,我们“退而求其次”,寻找“几乎对角的”矩阵来与 A 相似.这就引出了矩阵 在相似下的各种标准型问题. Jordan 标准型是最接近对角的矩阵并且其有关的理论包含先前有关与对角 阵相似的理论作为特例.此外, Jordan 标准型的广泛应用涉及到 Hamilton-Cayley 定理的证明,矩阵分解,线性微分方程组的求解等等.
要的,可逆的本质就是要保证变换的矩阵可以通过非零常数的倒数逆回去. 定义 3 如果矩阵 A( ) 经过有限次的初等变换化成矩阵 B( ),则称矩阵
A( ) 与 B( )等价,记为
A B
定 理 2 矩 阵 A( ) 与 B( ) 等 价 的 充 要 与 条 件 是 存 在 可 逆 矩 阵
det ( A( )) c 0 .
证明: (1)充分性 设 A =d 是一个非零的数. A* 表示 A( ) 的伴
随矩阵,则 d 1 A* 也是一个 -矩阵,且有
A d 1 A* d 1 A* A I
为数域 F 上关于 的多项式. 定义 2
, m; j 1, 2,
, n)
称 n 阶 -矩阵 A( ) 是可逆的,如果有
A B B A I n
并称 B( )为 A( ) 的逆矩阵.反之亦然. 定理 1 矩阵 A( ) 可逆的充要条件是其行列式为非零的常数,即
授课类型
讲授课
了解 -矩阵的初等变换, 掌握求标准型的方法, 掌握最小多项式的概念和 求最小多项式的方法。 求标准型的方法和最小多项式的求法 求 -矩阵标准型的方法
课堂讲授,辅以提问、练习
一、 -矩阵的初等变换。 定义 1 下面的三种变换叫做 -矩阵的初等变换: (1)矩阵的两行(列)互换位置; (2)矩阵的某一行(列)乘以非零的常数 c ; (3)矩阵的某一行(列)加另一行(列)的 ( ) 倍, ( ) 是一个多项 式。
(3) A ( ) B( ),此时, B( )中那些包含 i 行与 j 行的阶子式和 i j( )
( )中对应的 k 阶子式;B( )中那些包含 i 那些不包含 i 行的 k 阶子式都等于 A ( )的一个 k 阶子式 行但不包含 j 行的 k 阶子式,按 i 行分成两个部分,而等于 A ( )的两个 k 阶子式的线性组合, 与另一个 k 阶子式的 ( )倍的和,,也就是 A
r ( ) 0 或 0 (r()) 0 (mA ()) 。 f ( ) mA ( )q( ) r ( ) , 由 r ( A) 0 及
0 (mA ( )) 的最小性知 r ( ) 0
mA ( ) | f A ( )
相关文档
最新文档