第6章数理统计的基本概念习题及答案
概率论与数理统计练习册(理工类) - 第5,6章答案

答;收入至少400元的概率几乎为0.
(2)设出售1.2元的蛋糕数量为Y,则Y ~ B(300, 0.2), E(Y ) = 60, D(Y ) = 48.
P{Y
60}
=
Y P{
− 60
0}
=
(0)
=
0.5
48
答:售出价格为1.2元的蛋糕多于60只的概率0.5.
28
一、选择题:
概率论与数理统计练习题
x} = (x)
n→
n
n
Xi −n
(C) lim P{ i=1
x} = (x)
n→
n
n
Xi −
(D) lim P{ i=1
x} = (x)
n→
n
二、填空题:
224
1.对于随机变量 X,仅知其 E( X ) = 3,D( X ) = 1 ,则可知 P{| X − 3 | 3} 225
一、选择题:
概率论与数理统计练习题
系
专业
班 姓名
学号
第五章 大数定律与中心极限定理
1.设 n 是 n 次重复试验中事件 A 出现的次数,p 是事件 A 在每次试验中出现的概率,则对任意
的
0
均有
lim
P
n
−
p
n→ n
[A ]
(A) = 0
(B) = 1
(C) 0
(D) 不存在
系
专业
班 姓名
学号
第六章 数理统计的基本知识
§6.1 总体、样本与统计量、§6.2 抽样分布
1.设 X1, X 2 , X 3 是取自总 X 体的样本,a 是一个未知参数,下述哪个样本函数是统计量[ B ]
数理统计全套标准答案

习题一、基本概念1.解:设12345,,,,X X X X X 为总体的样本1)51151~(1,) (,,)(1)i ix x i X B p f x x p p -==-∏ 555(1)11(1),5x x i i p p x x -==-=∑2)λλλλλ55155151!!),,( )(~-==-∏∏==e x ex x x f P X i ixi i xi3)5155111~(,) (,,),,1,...,5()i X U a b f x x a xi b i b a b a ===≤≤=--∏所以5151,,1,...,5()(,,)0,a xi b i b a f x x ⎧≤≤=⎪-=⎨⎪⎩其他4)()⎪⎭⎫ ⎝⎛-==∑∏=-=-5122/55125121exp 221),,( )1,(~2i i i x x e x x f N X i ππμ2.解:因为0110,(),1,n k k k x x k F x x x x nx x ++<⎧⎪⎪≤<⎨⎪≥⎪⎩,所以40,00.3,010.65,12()0.8,230.9,341,4x x x F x x x x <⎧⎪≤<⎪⎪≤<⎨≤<⎪⎪≤<⎪≥⎩3.解:它近似服从均值为172,方差为5.64的正态分布,即(172,5.64)N4.解:()55-5 510/2- -⎪⎪⎭⎫ ⎝⎛<<-=⎪⎪⎭⎫ ⎝⎛<=<k X k P k X P k X P μμμ 因k 较大()()()()()()()-555(15)2510.950.95P X k k k k k k k μ<≈Φ-Φ-=Φ--Φ=Φ-=Φ=,5 1.65,0.33k k ==查表5.解:()-5250.853.8 1.1429 1.7143(1.7143)( 1.14296.3/6X P X P ⎛⎫<<=-<<=Φ-Φ- ⎪⎝⎭)0.9564(10.8729)0.8293 =--=6.解:()()()~(20,0.3),~(20,0.2),~(0,0.5),0.3 0.30.3Y N Z N Y Z Y Z N P Y Z P Y Z P Y Z -->=->+-<-设与相互独立,0.42430.42431(0.4243)(1(0.4243))22(0.4243)P P ⎫⎫=>=+<-⎪⎪⎭⎭=-Φ+-Φ=-Φ220.66280.6744=-⨯=7.解:101010222111~(0,4),~(0,1),2111 10.05,0.95444444ii i i i i i i X X N N c c c P X P X P X ===⎛⎫⎛⎫⎛⎫>=-≤=≤= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭∑∑∑则查卡方分位数表 c/4=18.31,c=73.248.解:由已知条件得:(1,),1()i X Y B p p F μ=-由i X 互相独立,知i Y 也互相独立,所以1(,),1().ni X i Y B n p p F μ==-∑9.解:1) )1(,)1(,2p Np DX ES np Np n DX X D Np EX X E -==-==== 2) λλλ======DX ES nn DX X D EX X E 2,, 3) ()()12,12,2222a b DX ES n a b n DX X D b a EX X E -==-==+==4) 1,1,2======DX ES nn DX X D EX X E μ 10.解:1) ()22212)1()1()1()1(σ-=-=-=-=-∑=n DX n ES n S n E X X E ni i2)()222242221(1)(1)(1), ~(1)ni i n S n S D X X D n S D n σχσσ=⎛⎫---=-=- ⎪⎝⎭∑ ()2412(1)ni i D X X n σ=∴-=-∑11.解:ππππππn X E dt e dy ey dy ey X nE Y E nn DY X E EY N X n Y n N X t y y 2)(,2)1(222222||21)(),11,0(),1,0(~),/1,0(~)102222==Γ==========-∞+-∞+-∞+∞-⎰⎰⎰ 令ππππππ211,2)1(222222||21),1,0(~)21102222===Γ====∑∑⎰⎰⎰==-∞+-∞+-∞+∞-n i i n i i t x x X E n X n E dt e dx ex dx ex X E N X12.解:1) ()2224X E X E X E n μμ-=-=()244100.1X X D E n n⎡⎤=+=+≤⎢⎥⎣⎦ 40n ∴≥2)222211,2u u X u E u e du u du +∞+∞---∞-===⎰⎰222220022002(1)0.1,80010,254.6,255u uutue du ue duue d e dtE X En nμπ+∞+∞--+∞+∞--===Γ=-==≤≥≥=∴≥⎰⎰⎰⎰3) ()()111P X P X Pμμ⎛-≤=-≤-≤=≤≤⎝⎭0.975210.95,2221.96,15.36,162u n n⎛⎫⎛⎫⎛=Φ-Φ-=Φ-≥⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭≥=≥≥13.解:()()()112221111111,n ni ii iY XY X a X na X an b b n bEY EX a S Sb b==⎛⎫=-=-=-⎪⎝⎭=-=∑∑14.解:1)12345~(0,2),~(0,3)X X N X X X N+++~~(0,1)N N1111,, 2.23c d n∴===2)()2345222212~(2),~(1)3X X XX Xχχ+++()()22122234523~(2,1),,2,123XX F c m n X X X +===++15.解:设1(1,)p F n α-=,即()1(1P F p P p α≤=-⇔≤≤=-()()12()2()12P T P T p P T p pP T ⇔≤-≤=-⇔≤=-⇔≤=-122112()()(1,)p p p t n tn F n α---=∴==16.解:()()()()()()()()()121222222221212222212121212212221212~(0,2),~(0,~~(0,1)~~(2)2210.1,2X X N X X N N N X X X X t P t P X X X X X X X X X X t P X X X X c χχ+-+⎛⎫⎛⎫++>=> ⎪ ⎪ ⎪ ⎪++-++-⎝⎭⎝⎭⎧⎫+⎪⎪=-≤=⎨⎬++-⎪⎪⎩⎭=0.9(1,2)8.532tF ==17.证明: 1)2211122211()0,(),(0,)1(1)(1)n n n n n E X X D X X XX N nnn S n t n σσχσ+++++-=-=∴---=- 又2)2211111()0,(),(0,)n n n n n E X X D X X X X N nnσσ+++++-=-=∴- 3)2211111()0,(),(0,)n n E X X D X X X X N n nσσ---=-=∴- 18. 解:()()()62,47.61,96.125.0,975.025.0,95.0125.0225.0/25.025.0975.0≥≥=≥≥Φ≥-Φ=⎪⎪⎭⎫ ⎝⎛≤-≤-=≤-n n u n n n n n X n P X P σμσμ 19.解[,]0,1,[,](),(),0,[,]1,X U a b x a x a b x af x F x a x b b a b a x a b x b ≤⎧⎧⎪∈-⎪⎪∴==<≤-⎨⎨-⎪⎪∉⎩>⎪⎩1(1)()(1())()n f x n F x f x -∴=-111()1(),[,]0,[,]1(),[,]()(())()0,[,]n n n n b a n x a b b a b a x a b x a n x a b f x n F x f x b a b ax a b ----⎧∈⎪=--⎨⎪∉⎩-⎧∈⎪==--⎨⎪∉⎩20.解:()()()()()()()55(1)(1)11515555555(5)111011011011101211121(1(1))1(11(1))1(1)0.5785121515 1.5(1.5)0.93320.70772i i i i i i i i i i P X P X P X P X X P X P X P X P =====<=-≥=-≥=--≤⎛-⎫⎛⎫=--≤- ⎪⎪⎝⎭⎝⎭=--Φ-=--+Φ=-Φ=-⎛⎫<==<=<=Φ== ⎪⎝⎭∏∏∏∏∏21. 解:1)因为21~(0,)mi i X N m σ=∑,从而~(0,1)miXN ∑2221~()m ni i m Xn χσ+=+∑,所以~()miX t n ξ=2)因为22211~()mii Xm χσ=∑,22211~()m nii m Xn χσ+=+∑所以2121~(,)mi i m ni i m n X F m n m X =+=+∑∑3)因为21~(0,)mii XN m σ=∑,21~(0,)m nii m XN n σ+=+∑所以2212()~(1)mi i X m χσ=∑,2212()~(1)m ni i m X n χσ+=+∑故 222221111~(2)m m n i i i i m X X m n χσσ+==+⎛⎫⎛⎫+ ⎪ ⎪⎝⎭⎝⎭∑∑22.解:由Th1.4.1 (2)()(),95.047.321),1(~122222=⎪⎪⎭⎫⎝⎛≤---σχσS n P n S n查表:n 121,n 22-==23.解:由推论1.4.3(2)05.095.0139.2139.2),14,19(~222122212221=-=⎪⎪⎭⎫ ⎝⎛≤-=⎪⎪⎭⎫ ⎝⎛>S S P S S P F S S 24.解: 1)()()94.005.099.057.3785.10)20(~),1,0(~),,0(~2201222220122=-=≤≤=⎪⎭⎫ ⎝⎛-=---∑∑==χχχσμσμσμσμP X XN X N X i i i ii i2)()895.01.0995.058.381965.11),19(~192222222012=-=⎪⎪⎭⎫ ⎝⎛≤≤=-∑=σχσσS P S X Xi i25. 解:1)()4532.07734.0221)75.0(21431435/2080380=⨯-=+Φ-=⎪⎭⎫ ⎝⎛≤-=⎪⎪⎭⎫ ⎝⎛>-=>-U P X P X P2)()()05.01975.021064.21064.25/2674.780380=+⨯-=≤-=⎪⎪⎭⎫ ⎝⎛>-=>-T P X P X P 26.解: 1)8413.0120472.4472.4=⎪⎪⎭⎫ ⎝⎛<-=⎪⎪⎭⎫ ⎝⎛<-=⎪⎭⎫ ⎝⎛+<σσσa X P a X P a X P 2)2222222222223132222222S P S P S P S P σσσσσσσσ⎛⎫⎛⎫⎛⎫⎛⎫-<=-<-<=<<=<< ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭22199.528.50.950.050.9S P σ⎛⎫=<<=-= ⎪⎝⎭3)3676.3,328.120,1.020,9.02012020/1===⎪⎪⎭⎫ ⎝⎛≤=⎪⎪⎭⎫⎝⎛≤-=⎪⎪⎭⎫ ⎝⎛>-=⎪⎪⎭⎫⎝⎛>-=⎪⎪⎭⎫ ⎝⎛>-c c c T P cT P cS X P c S X P c X S P μμμ27.解:22cov(,)(,)1()()1cov(,)()1(,)1i j i j i j i j i j i j X X X X r X X X X n D X X D X X nX X X X E X X X X X X X X nr X X X X n σσ----=--=-=--=---=-∴--=--28.解:()2221212)1(2)1(,)1(,21),2,2(~σσμ-=-=-=-===+=∑∑==+n ES n ET S n Y Y T X Y n Y N X X Y Y Y ni i ni i in i i 令习题二、参数估计1. 解: 矩估计()1 3.40.10.20.90.80.70.766X =+++++= ()()11111ln ln(1)ln nnni ii i nii L x x L n x αααααα===⎡⎤=+=+⎣⎦=++∏∏∑121ln ln 01ˆ10.2112ln ni i n ii d n L x d n x αααα====+=+=--=∑∑3077.0121ˆ,212)1()1(110121=--==++=++=+=⎰++X X X x dx x EX αααααααα所以12112ˆˆ,11ln nii X n X X αα=⎛⎫ ⎪- ⎪==-+-⎪ ⎪⎝⎭∑,12ˆˆ0.3079,0.2112αα≈≈ 2.解:1)3077.02ˆ,21====X X EX θθ111ln 0nni L nL θθθ====-=∏无解,依定义:21ˆmax ii nX θ≤≤=2)矩法:211ˆˆ1.2,0.472212EX DX θθ====极大似然估计:22ˆˆ1.1,0.1833212EX DX θθ====3.1)解:矩法估计:111ˆ,EX X Xλλ===最大似然估计:111,ln ln niii nnx x ni i i L eeL n L x λλλλλ=--==∑===-∑∏2111ˆln 0,ni ni ii d n nL x d Xxλλλ===-===∑∑ 2)解:~()X P λ矩估计:X X EX ===1ˆ,λλ最大似然估计:1,ln ln ixnxnn i i iiL eeL n nx x x x λλλλλλ--====-+-∑∏∏2ˆln 0,d nx L n X d λλλ=-+== 3)解:矩估计:()2,212b a a bEX DX -+== 联立方程:()2*221ˆ2ˆa X b X a bX b a M ⎧=-⎪→+⎧=⎪⎪⎨-⎪=⎪⎩⎨=+⎪⎩极大似然估计:依照定义,11ˆˆmin ,max i ii ni naX b X ≤≤≤≤== 4) 解:矩估计:ln EX dx xxθθ+∞+∞==⎰,不存在22111,ln ln 2ln nnni i i i iL L n x x x θθθ=====-∑∏∏ ln 0n L αθ∂==∂,无解;故,依照定义,(1)ˆX θ= 5)解:矩法:()/0()(1)(2)x txEX e dx t edt αβααβαββ+∞+∞---==+=Γ+Γ⎰⎰X αβ=+=22220()(1)2(2)(3)t EX t e dt αβααββ+∞-=+=Γ+Γ+Γ⎰ 222222122()i M X nααββαββ=++=++==∑22222*2111ˆˆi M X X X M nX βαβ=-=-==-=∑即11ˆˆX X αβ==-==极大似然估计:()()/1111exp ,ln ln i nx n i n L e nx n L n nx αβαβαβββββ---=⎡⎤==--=--+⎢⎥⎣⎦∏2ln 0,ln ()0n n n L L x ααββββ∂∂===-+-=∂∂ α无解,依定义有:(1)(1)ˆˆ,L L X X X X αβα==-=- 7)解: 矩法:22223222(2)x x t x EX dx dte dt X θθθ+∞+∞+∞---=====⎰⎰⎰ˆMθ=极大似然估计:22222211iixnxn ni ii iL x eθθ--==∑⎛⎫== ⎪⎝⎭∏∏222ln ln43ln ln iixL n n n xθθ=---∑∑233ˆln20,iLxnLθθθθ∂=-+==∂∑8)解:矩法:2222222222022222223(1)(1)[(1)](1)(1)(1)1221x x x x x xxxd dEX x xd dd dq Xdq dq qθθθθθθθθθθθθθ∞∞∞-===∞==--=-=---=====-∑∑∑∑2ˆM Xθ=极大似然估计:22221(1)(1)(1)(1)ln2ln(2)ln(1)ln(1)inx n nx ni iiiL x xL n nx n xθθθθθθ--==--=--=+--+-∏∏∑222ˆln0,1Ln nx nLXθθθθ∂-=-==∂-4解:11112112(,,)(1)(1)ln(,,)ln(1)ln(1)n ni ii i i iy yny y nninL p y y y p p p pL p y y y ny p n y p==--=∑∑=-=-=+--∏12(,,)0(1)ny pd L p y y y ndp p p-==-ˆp Y=记001,;0,i i i iy x a y x a=≥=<则(1,)iY B p;1,ln ln i nx n nx i L e e L n nx λλλλλλ--====-∏711120000ˆln 0,,2010001000i i i d n L nx X x v d X λλλ==-=====∑ 1ˆ0.05Xλ== 6解:因为其寿命服从正态分布,所以极大似然估计为:2211ˆˆ,()ni i x x n μσμ===-∑ 根据样本数据得到:2ˆˆ997.1,17235.811μσ==。
第6章数理统计的基本概念习题及答案

49第六章 数理统计的基本概念一.填空题1.若n ξξξ,,,21 是取自正态总体),(2σμN 的样本,则∑==ni i n 11ξξ服从分布 )n,(N 2σμ .2.样本),,,(n X X X 21来自总体),(~2σμN X 则~)(221nS n σ- )(1χ2-n ; ~)(nS n X μ- _)(1-n t __。
其中X 为样本均值,∑=--=n i n X X n S 12211)(。
3.设4321X X X X ,,,是来自正态总体).(220N 的简单随机样本,=a X4.1(,y U5. 设X 为X6. 令T =, 则2~T F (1,n ) 分布.解:由T =, 得22X T Y n =. 因为随机变量~(0,1)X N , 所以22~(1).X χ再由随机变量X 与Y 相互独立, 根据F 分布的构造, 得22~(1,).X T F n Y n=507. 设12,,,n X X X 是总体(0,1)N 的样本, 则统计量222111n k k X n X =-∑服从的分布为(1,1)F n - (需写出分布的自由度).解:由~(0,1),1,2,,i X N i n = 知222212~(1),~(1)nk k X X n χχ=-∑, 于是22122211(1)1~(1,1)./11nkn k k k Xn X F n X n X ==-=--∑∑8. 总体21234~(1,2),,,,X N X X X X 为总体X 的一个样本,设从9. 对”)(1) 在 , 则 样 本 对 )(2) 若 0≠-θθ)ˆ(E 则 称 θ为 θ 的 渐 近 无 偏 估 计 量 .( 错 )(3) 设总体X 的期望E(X),方差D(X)均存在,21x x , 是X 的一个样本 ,则统计量213231x x +是 E(X) 的无偏估计量。
( 对 )(4) 若 θθθ==)ˆ()ˆ(21E E 且 )ˆ()ˆ(21θθD D <则 以 θ2估 计 θ 较 以 θ1估 计 θ 有 效 。
自-6-8第六、七、八章数理统计参考答案

第六、七、八章 数理统计 (抽样分布、参数估计、假设检验)一、思考题1.统计抽样工作中,得到的都是具体数值,即样本值。
为什么说样本是随机变量? 2.参数的区间估计中,参数与置信区间谁是随机的?3.假设检验中两类错误的关系如何?要想同时减少犯两类错误的概率,办法是什么? 4.在单边检验问题中,建立原假设与备择假设的原则是什么? 二、单项选择题1. 设)1(,,,,21>n X X X n 是来自正态总体),(2σμN 的一个简单随机样本,X 为样本均值,则}|{|εμ<-X P ( )}|{|εμ<-X P 。
(A )>(B )<(C )≥(D )≤2. 设n X X X ,,,21 是来自正态总体),(2σμN 的一个简单随机样本,X 和S 2分别为样本均值和样本方差,则∑=⎪⎭⎫⎝⎛-ni i X 12σμ~( )。
(A ) )1,0(N (B ))1(2-n χ (C ))(2n χ (D))1(-n t3. 设n X X X ,,,21 是来自正态总体N (0,1)的一个样本,则下列统计量中,服从自由度为n -1的 2χ分布的是 ( )。
(A )∑=ni iX12(B )S 2 (C )(n -1)2X (D )(n -1)S 24. 设n X X X ,,,21 是来自正态总体),0(2σN 的一个样本,则下列统计量中,服从自由度为n -1的t 分布的是 ( )。
(A )SXn (B )SXn (C )2SXn (D )2SXn 5. 设随机变量)(~n t X )1(>n ,21X Y =,则( )。
(A ))(~2n Y χ (B ))1(~2-n Y χ (C ))1,(~n F Y (D )),1(~n F Y 6. 总体均值μ的95%置信区间的意义是指这个区间 ( )。
(A )平均含总体95%的值(B )平均含样本的95﹪的值 (C )有95%的可能含μ的真值 (D )有95%的可能含样本均值X7. 设n X X X ,,,21 是来自总体X 的样本,E(X)= μ,D(X)=σ2,则可以作为σ2的无偏估计量的是( )。
概率论与数理统计(茆诗松)第二版课后第六章习题参考答案

⎝ 2 2⎠
2
则X
=Y
+θ
−
1 2
,
X (1)
= Y(1)
+θ
−
1 2
, X(n)
= Y(n)
+θ
−
1 2
,即
1 2
(
X
(1)
+
X(n)) =
1 2 (Y(1)
+ Y(n) ) + θ
−1 2
,
可得 E( X ) = E(Y ) + θ − 1 = E(Y ) +θ − 1 = θ , Var(X ) = Var(Y ) = 1 Var(Y ) = 1 ,
y( n) 0
⎤ ⎥⎦
=
1 0
y(nn+)1dy(n)
=
n
1 +
2
y n+2 (n)
1 0
=
1 n+
2
,
即 Var(Y(1) )
=
(n
2 + 1)(n
+
2)
−
⎜⎛ ⎝
1 ⎟⎞2 n +1⎠
=
(n
n + 1)2 (n
+
2)
, Var(Y(n) )
=
n
n +
2
− ⎜⎛ ⎝
n ⎟⎞2 n +1⎠
=
(n
n + 1)2 (n
=
1 12n
>
Var⎢⎣⎡
1 2
( X (1)
+
X (n) )⎥⎦⎤
=
2(n
1 + 1)(n
概率论与数理统计(理工类.第四版)吴赣昌主编答案5,6,7,8章

T=X1+X2+⋯+X9Y12+Y22+⋯+Y92=X1′+X2′+⋯+X9′Y′12+Y′22+ ⋯+Y′92=X′Y′2=X′/3Y′2/9∼t(9),
注意到X′,Y′2相互独立.
习题5
设总体X∼N(0,4), 而X1,X2,⋯,X15为取自该总体的样本,问随机变
量
Y=X12+X22+⋯+X1022(X112+X122+⋯+X152)
D(Y1)=D[a(X1-2X2)]=aD(X1-X2)=a(D(X1)+22D(X2)) =a(4+4×4)=20a=1,
D(Y2)=D[b(3X3-4X4)]=bD(3X3-4X4) =b(9D(X3)+16D(X4))=b(4×9+16×4)=100b=1,
分别得a=120,b=1100. 这时Y∼χ2(2), 自由度为n=2. 解法二 因Xi∼N(0,22)且相互独立,知
(百元)
1010-1111-12
合计
户数 18357624191414 200
求样本容量n,样本均值X¯,样本方差S2.
解答:
对于抽到的每个居民户调查均收入,可见n=200. 这里,没有给出原始 数据,而是给出了整理过的资料(频率分布), 我们首先计算各组 的“组中值”,然后计算X¯和S2的近似值:
则a=?,b=?时,统计量Y服从χ2分布,其自由度是多少?
解答:
解法一 Y=[a(X1-2X2)]2+[b(3X3-4X4)]2, 令Y1=a(X1-2X2),Y2=b(3X3-4X4), 则
Y=Y12+Y22, 为使Y∼χ2(2), 必有Y1∼N(0,1),Y2∼N(0,1), 因而
数理统计课后答案-第六章

r
,
SST =
∑ j∑ ( i
=1 =1
X ij − X ,SSe =
)
2
∑ j∑ ( i
=1
X ij − X i
)
2
∑ SS i ,SS A =
i =1
ni ( X i ∑ i
r
=1
−X
)
2
可以证明离差分解公式: SST = SS e + SS A ,以及在 H 0 : μ1 = μ2 = ... = μr 成立时有
58 92 75
67.8 83.2 73.6 SS A = 604.93
218.8 362.8 271.2 SS e = 852.8
方差分析表为: 来源 平方和 自由度
A
误差 总和
SS A = 604.93
SS e = 852.8
SS T = 1457.73
r −1 = 2 n − r = 12 71.067 n − 1 = 14
ξ i ~ N ( μ i , σ 2 ) ,i = 1, 2, 3 。 检验三种教学方法的效果有无显著差异,
1
相当于要检验假设 H 0 : μ1 = 计算结果见下表: 水平
μ 2 = μ3 。
Xi
133.7333 144.5833
SS i
观测值(身高) 128.1 134.1 133.1 138.9 140.8 127.4 150.3 147.9 136.8 126.0 150.7 155.8 140.6 143.1 144.5 143.7 148.5 146.4
ξ i j ~ N (μ i j , σ 2 ) , 其中, μi j = μ + αi + β j , i = 1, 2, 3, 4 ,j = 1, 2, 3 。
概率论与数理统计第六章数理统计的基本概念习题答案

解:c 2
=
9S 2 16
~
c 2 (9), P(S 2
> a) =
P
æ çè
c
2
>
பைடு நூலகம்9a 16
ö ÷ø
=
0.1.
查表得 9a = 14.684, 16
\ a = 14.684 ´16 = 26.105. 9
大学数学云课堂
028606.设总体X 服从标准正态分布,X1,X 2,L,X n是来自总体X的一个简单随机样本
ò ò E( X ) = +¥ xf (x)dx = 1 +¥ xe- x dx = 0
-¥
2 -¥
ò ò ò E( X 2 ) = +¥ x2 f (x)dx = 1 +¥ x2e- x dx = +¥ x2e-xdx = 2,
-¥
2 -¥
0
\E(S2) = 2
大学数学云课堂
2004研考
å å 么E
é ê ê ê ê
n1 i =1
(Xi
ê ê - Xë )2 + n1 + n2
n1 + n2 - 2
n2
(Y j
-
Y
)2
ù ú
j =1
ú=
-2
ú
ú
n1
+
1 n2
ú ú û -
g E (s 2
2 c12
+s
2
c
2 2
)
ë
û
=
n1
s2 + n2
-
2
[E(c12 )
+
E
(
《概率论与数理统计》习题及答案 第六章

《概率论与数理统计》习题及答案第 六 章1.某厂生产玻璃板,以每块玻璃上的泡疵点个数为数量指标,已知它服从均值为λ的泊松分布,从产品中抽一个容量为n 的样本12,,,n X X X L ,求样本的分布.解 样本12(,,,)n X X X L 的分量独立且均服从与总体相同的分布,故样本的分布为11221(,,,)()nn n ii i P X k X k X k P Xk ======∏L 1!ikni i e k λλ-==∏112!!!ni i n k n e k k k λλ=-∑=L 0,1,i k =L ,1,2,,,i n =L 2.加工某种零件时,每一件需要的时间服从均值为1/λ的指数分布,今以加工时间为零件的数量指标,任取n 件零件构成一个容量为n 的样本,求样本分布。
解 零件的加工时间为总体X ,则~()X E λ,其概率密度为,0,()0,0.x e x f x x λλ-⎧>=⎨≤⎩于是样本12(,,,)n X X X L 的密度为1121,0(,,,)0,.nii ix nnx i n i e x f x x x e λλλλ=--=⎧∑⎪>==⎨⎪⎩∏K 其它 1,2,,i n =L 3.一批产品中有成品L 个,次品M 个,总计N L M =+个。
今从中取容量为2的样本(非简单样本),求样本分布,并验证:当,/N M N p →∞→时样本分布为(6.1)式中2n =的情况。
解 总体~(01)X -,即(0),(1)L MP X P X N N==== 于是样本12(,)X X 的分布如下 121(0,0)1L L P X X N N -===⋅-,12(0,1)1L M P X X N N ===⋅-12(1,0)1M L P X X N N ===⋅-,121(1,1)1M M P X X N N -===⋅- 若N →∞时M p N →,则1Lp N→-,所以2002012(0,0)(1)(1)P X X p p p +-==→-=-012112(0,1)(1)(1)P X X p p p p +-==→-=-102112(1,0)(1)(1)P X X p p p p +-==→-=-2112212(1,1)(1)P X X p p p +-==→=-以上恰好是(6.1)式中2n =的情况.4.设总体X 的容量为100的样本观察值如下:15 20 15 20 25 25 30 15 30 25 15 30 25 35 30 35 20 35 30 25 20 30 20 25 35 30 25 20 30 25 35 25 15 25 35 25 25 30 35 25 35 20 30 30 15 30 40 30 40 15 25 40 20 25 20 15 20 25 25 40 25 25 40 35 25 30 20 35 20 15 35 25 25 30 25 30 25 30 43 25 43 22 20 23 20 25 15 25 20 25 30433545304530454535作总体X 的直方图解 样本值的最小值为15,最大值为45取14.5a =,45.5b =,为保证每个小区间内都包含若干个观察值,将区间[14.5,45.5]分成8个相等的区间。
概率论与数理统计第六章习题答案

第六章习题6-11、由一致估计的定义,对0ε∀>{}{}{}()1212max ,,,max ,,,n n P X X X P X X X θεεθεθ-<=-+<<+()()F F εθεθ=+--+()0, 0, 01, X x xF x x x θθθ<⎧⎪=≤≤⎨⎪>⎩及(){}()()()()1212max ,,,n n X X X X X X F x F x F x F x F x ==⋅⋅⋅()1F εθ∴+=(){}()12max ,,,1nn x F P X X X εθεθθ⎫⎛-+=<-+≈- ⎪⎝⎭{}()12max ,,,111()nn x P X X X n θεθ⎫⎛∴-<=--→→∞ ⎪⎝⎭2、证明:EX μ=()1111111ni i n n i i i i nn n i i i i i i i i a X E a E X a a a a μμ======⎫⎛⎪ ⎪ ==⋅=⎪ ⎪⎝⎭∑∑∑∑∑∑ 11niii nii a Xa==∴∑∑是μ的无偏估计量3、证明: ()() ()()22D E E θθθ=-()() ()()()2222E D E D θθθθθθ∴=+=+> 2θ∴不是2θ的无偏估计量4、证明:()~X P λEX λ∴=,()()222E X DX EX λλ=+=+()22E X EX λ∴-=,即()22E X X λ-=用样本矩2211n i i A X n ==∑,1A X =代替相应的总体矩()2E X 、EX所以得2λ的无偏估计量: 22111n i i A A X X n λ==-=-∑ 5、()~,X B n p ,EX np ∴=()()()()22222111E X np p n p np n n p EX n n p =-+=+-=+-()()()()222111E X EX E X X p n n n n -⎫⎛∴=-=⎪ --⎝⎭所以用样本矩2211n i i A X n ==∑,1A X =分别代替总体矩()2E X 、EX得2p 的无偏估计量: ()()()222121111ni i i A A p X X n n n n =-==---∑6、()~,1X N m ,()i E X m ∴=,()1i D X =,(1,2)i =()()()11212212121333333E m E X X E X E X m m m ⎫⎛∴=+=+=+= ⎪⎝⎭()()()1121221414153399999D m D X X D X D X ⎫⎛=+=+=+= ⎪⎝⎭同理可得: ()2E m m =, ()258D m =, ()3E m m =, ()212D m =123,,m m m ∴都是m 的无偏估计量,且在 123,,m m m 中, 3m 的方差最小习题6-21、(1)()11cccEX x c xdx cx dx θθθθθθθθ+∞+∞-+-=⋅==-⎰⎰EXEX cθ∴=-,令X EX =X X c θ∴=-为矩估计量,θ的矩估计值为 x x cθ=-,其中11n i i x x n ==∑似然函数为:()()11211,,,;nnn n n ii i i L x x x c xcx θθθθθθθ-+-====∏∏ ,i x c > 对数似然函数:()()()1ln ln ln 1ln nii L n n c x θθθθ==+-+∑求导,并令其为0,得:1ln ln ln 0ni i d L nn c x d θθ==+-=∑ 1ln ln Lnii nx n cθ=∴=-∑,即θ的最大似然估计量为 1ln ln Lnii nXn cθ==-∑(2)21111EX EX x x dx EX θθθθθ-⎫⎛=⋅=⇒= ⎪--⎝⎭⎰ 以X EX =,得: 21X X θ⎫⎛=⎪ -⎝⎭为θ的矩估计量θ的矩估计值为: 21x x θ⎫⎛=⎪ -⎝⎭,其中11ni i x x n ==∑ 而()1121211,,,;n nnn i i i i L x x x x x θθθθθ--==⎫⎛==⎪⎝⎭∏∏ ,01i x ≤≤()()1ln ln 1ln 2nii nL x θθθ=∴=+-∑令1ln 11ln 022ni i d L n x d θθθ==+⋅⋅=∑, 21ln L ni i n x θ=⎫⎛⎪ ⎪ ∴=⎪⎪⎝⎭∑ 所以θ的最大似然估计量 21ln L ni i n x θ=⎫⎛⎪ ⎪ =⎪ ⎪⎝⎭∑ (3)()~,X B m p ,EXEX mp p m∴=⇒=p ∴的矩估计量: 111n i i X p X X m mn m====∑p ∴的矩估计值为: 11n i i p x mn ==∑ 而()()()111211,,,;11nniii i ii i i nnx m x m x x x x n mm i i L x x x p Cpp C pp ==--==∑∑=-=⋅⋅-∏∏ ,0,1,,ix m = ()()()111ln ln ln ln 1i nnn x mi i i i i L p C x p m x p ====+⋅+-⋅-∑∑∑令() 111ln 111101n n n i i L ii i i d L x m x p x x dp p p mn m ====⋅--⋅=⇒==-∑∑∑ p ∴的最大似然估计量为: 1L p X m=2、(1)()01;2EX xf x dx xdx θθθθ+∞-∞===⎰⎰令11n i i EX X X n ===∑,22X X θθ∴=⇒=2X θ∴= (2)由观测的样本值得:6111(0.30.80.270.350.620.55)0.481766i i x x ===+++++≈∑20.9634x θ∴== 3、由1111122EX X θθθθθ+=⨯+⨯++⨯== 21X θ∴=-为θ的矩估计量 4、设p :抽得废品的概率;1p -:抽得正品的概率 引入{1, i i X i =第次抽到废品0,第次抽到正品,1,2,,60i =()1i P X p ∴==,()01i P X p ==-,且i EX p =所以对样本1260,,,X X X 的一个观测值1260,,,x x x由矩估计法得,p 的估计值为: 601141606015ii p x ====∑,即这批产品的废品率为1155、()()2212213132EX θθθθθ=⨯+⨯-+⨯-=-,()1412133x =⨯++=EX x = , 3526x θ-∴==为矩估计值 ()()()()()()()34511223312121i i i L P X x P X x P X x P X x θθθθθθ========⋅⋅-=-∏()()ln ln25ln ln 1L θθθ=++-令() ln 1155016Ld L d θθθθθ=⨯-=⇒=- 6、(1)λ的最大似然估计 LX λ=, ()0LX P X e e λ--∴=== (2)设X :一个扳道员在五年内引起的严重事故的次数()~X P λ∴,122n =得样本均值:5011(044142221394452) 1.123122122r r x r s ==⨯⋅=⨯⨯+⨯+⨯+⨯+⨯+⨯=∑()1.12300.3253x P X e e --∴====习题6-33、从总体中抽取容量为n 的样本12,,,n X X X 由中心极限定理:()~0,1,/X U N n nμσ-=→∞(1)当2σ已知时,近似得到μ的置信度为1α-的置信区间为:22,X u X u n n αασσ⎫⎛-⋅+⋅⎪ ⎝⎭ (2)当2σ未知时,用2σ的无偏点估计2s 代替2σ:~(0,1),/X N n s nμ-→∞于是得到μ的置信度为1α-的置信区间为:22,s s X u X u n n αα⎫⎛-⋅+⋅⎪ ⎝⎭一般要求30n ≥才能使用上述公式,称为大样本区间估计 4、40n = 属于大样本,2,X N n σμ⎫⎛∴⎪ ⎝⎭ 近似μ∴的95%的置信区间近似为:2x u n ασ⎫⎛±⋅⎪ ⎝⎭其中642x =,3σ=,40 6.32n =≈,21.96u α=()23642 1.966420.9340x u n ασ⎫⎛⎫⎛∴±⋅=±⨯≈±⎪ ⎪⎝⎭⎝⎭故μ的95%的置信区间上限为642.93,下限为641.075、100n =属于大样本,2~,X N n σμ⎛⎫∴ ⎪⎝⎭近似μ∴的99%的置信区间近似为:2x u n ασ⎫⎛±⋅⎪ ⎝⎭其中10x =,3σ=,100n =,22.58u α=()()2310 2.58100.7749.226,10.774100x u n ασ⎛⎫⎛⎫∴±⋅=±⨯=±= ⎪ ⎪⎝⎭⎝⎭由此可知最少要准备10.77410000107740()kg ⨯=这种商品,才能以0.99的概率满足要求。
概率论与数理统计(茆诗松)第二版课后第六章习题参考答案

解:因 E(Y ) = aE( X1) + bE( X 2 ) = aµ + bµ = (a + b)µ = µ , 故 Y 是µ 的无偏估计;
因 Var(Y ) = a2 Var( X1) + b2
Var( X 2 ) = a2
⋅σ2 n1
+ (1 − a)2 ⋅ σ 2 n2
=
⎜⎜⎝⎛
n1 + n2 n1n2
xn是来自n1的样本由正态分布可加性知x服从正态分布??????nn1则?????????dxxsndxnxssexnxnnxn222222ee2e2因es可知对任意的反常积分???dxxsxnxn22e收敛6则由参数的任意性以及该反常积分在?与两个方向的收敛性知?????dxxsxnxn22e收敛因xnxsxsxnxnxnxn???????????????2222ee且yey有1?2222eexnxnxnxnxn????则由?????dxxsxnxn122e的收敛性知?????????????dxxsxnxn22e一致收敛可得?????dxxsnsexnxnn2222ee2关于参数可导与es在0处不可导矛盾故g没有无偏估计
nλ n −1
,
故1/ X 不是λ的无偏估计.
3. 设θˆ 是参数θ 的无偏估计,且有 Var(θˆ) > 0 ,试证 (θˆ)2 不是θ 2 的无偏估计.
证:因 E(θˆ) = θ ,有 E[(θˆ)2 ] = Var(θˆ) + [E(θˆ)]2 = Var(θˆ) + θ 2 > θ 2 ,故 (θˆ)2 不是θ 2 的无偏估计.
⋅ n ⋅ (−1)d ( y(n)
−
y(1) )n−1
∫ ∫ =
数理统计的基本概念习题及答案

第6章数理统计的基本概念习题及答案(总7页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--49第六章 数理统计的基本概念一.填空题1.若n ξξξ,,,21 是取自正态总体),(2σμN 的样本,则∑==ni i n 11ξξ服从分布 )n,(N 2σμ .2.样本),,,(n X X X 21来自总体),(~2σμN X 则~)(221nS n σ- )(1χ2-n ; ~)(nS n X μ- _)(1-n t __。
其中X 为样本均值,∑=--=n i n X X n S 12211)(。
3.设4321X X X X ,,,是来自正态总体).(220N 的简单随机样本,+-=221)2(X X a X 243)43(X X b -,则当=a 201=a 时,=b 1001=b时,统计量X 服从2X 分布,其自由度为 2 .4. 设随机变量ξ与η相互独立, 且都服从正态分布(0,9)N , 而129(,,,)x x x 和129(,,,)y y y 是分别来自总体ξ和η的简单随机样本, 则统计量929~U y=++ (9)t .5. 设~(0,16),~(0,9),,X N Y N X Y 相互独立, 129,,,X X X 与1216,,,Y Y Y 分别为X 与Y 的一个简单随机样本,则2221292221216X X X Y Y Y ++++++服从的分布为 (9,16).F6. 设随机变量~(0,1)X N ,随机变量2~()Y n χ, 且随机变量X 与Y 相互独立,令T=, 则2~T F (1,n ) 分布.解:由T =, 得22X T Y n =. 因为随机变量~(0,1)X N , 所以22~(1).X χ 再由随机变量X 与Y 相互独立, 根据F 分布的构造, 得22~(1,).X T F n Y n=507. 设12,,,n X X X 是总体(0,1)N 的样本, 则统计量222111n k k X n X =-∑服从的分布为(1,1)F n - (需写出分布的自由度).解:由~(0,1),1,2,,i X N i n =知222212~(1),~(1)nk k X X n χχ=-∑, 于是22122211(1)1~(1,1)./11nkn k k k Xn X F n X n X ==-=--∑∑8. 总体21234~(1,2),,,,X N X X X X 为总体X 的一个样本, 设212234()()X X Z X X -=-服从 F (1,1) 分布(说明自由度)解:由212~(0,2)X X N σ+,有22~(1)χ, 又 234~(0,2)X X N σ-,故22~(1),χ因为2与2独立,所以21234~(1,1).X X F X X ⎛⎫+ ⎪-⎝⎭9.判断下列命题的正确性:( 在圆括号内填上“ 错” 或“ 对”)(1) 若 总 体 的 平 均 值 ?与 总 体 方 差 ?2 都 存 在 , 则 样 本 平 均 值 x 是 ? 的 一 致 估 计。
概率论与数理统计答案第六章

第六章 样本及抽样分布1.[一] 在总体N (52,6.32)中随机抽一容量为36的样本,求样本均值X 落在50.8到53.8之间的概率。
解: 8293.0)78()712(}63.68.163.65263.62.1{}8.538.50{),363.6,52(~2=-Φ-Φ=<-<-=<<X P X P N X2.[二] 在总体N (12,4)中随机抽一容量为5的样本X 1,X 2,X 3,X 4,X 5. (1)求样本均值与总体平均值之差的绝对值大于1的概率。
(2)求概率P {max (X 1,X 2,X 3,X 4,X 5)>15}. (3)求概率P {min (X 1,X 2,X 3,X 4,X 5)>10}.解:(1)⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧>-=⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧>-=>-25541225415412}112{|X P X P X P =2628.0)]25(1[2=Φ-(2)P {max (X 1,X 2,X 3,X 4,X 5)>15}=1-P {max (X 1,X 2,X 3,X 4,X 5)≤15}=.2923.0)]21215([1}15{1551=-Φ-=≤-∏=i i X P (3)P {min (X 1,X 2,X 3,X 4,X 5)<10}=1- P {min (X 1,X 2,X 3,X 4,X 5)≥10}=.5785.0)]1([1)]21210(1[1}10{15551=Φ-=-Φ--=≥-∏=i i X P 4.[四] 设X 1,X 2…,X 10为N (0,0.32)的一个样本,求}.44.1{1012>∑=i i X P解:)5(1.0}163.0{}44.1{),10(~3.0101221012221012查表=>=>∑∑∑===i ii ii iX P XP χX7.设X 1,X 2,…,X n 是来自泊松分布π (λ )的一个样本,X ,S 2分别为样本均值和样本方差,求E (X ), D (X ), E (S 2).解:由X ~π (λ )知E (X )= λ ,λ=)(X D∴E (X )=E (X )= λ, D (X )=.)()(,)(2λX D S E nλnX D ===[六] 设总体X~b (1,p),X 1,X 2,…,X n 是来自X 的样本。
概率论与数理统计 汤大林 期末复习大纲习题答案

11.将一枚硬币连掷100次,试用隶莫佛--拉普拉斯定理计算出现正面 的次数大于60的概 率 。已知 : (1) = 0.8413; (2) = 0.9772 ; 当 x > 4 , (x) =1。 解:设 为 掷 100次中出现正面的次数 ,它服从二项分布B ( 100, ) 这里 由 隶 莫 佛 -- 拉 普 拉 斯 定 理 , 得
解:
由的“对称性”可得
.
又
所以
.
又
由的“对称性”可得
所以 故
第 5 章 大数定律与中心极限定理 1、 填空题:
1.设随机变量
,方差
,则由切比雪夫不等式有
. 3. 设随机变量 相互独立且同分布, 而且有 , ,令
, 则对任意给定的 , 由切比雪夫不等式直接可得
. 二.计算题: 1、在每次试验中,事件A发生的概率为0.5,利用切比雪夫不等式估 计,在1000次独立试验中,事件A发生的次数在450至550次之间的概率.
B、 C、 D、 4、设 是总体 的样本, 分别是样本的均值和样本标准差,则有( C ) A、 B、 C、
D、 第7章 参数估计 ----点估计 一、填空题 1、设总体 服从二项分布 , , 是其一个样本,那么矩估计量
. 2、设总体
,且
已知,现在以置信度
估计总体均值
,下列做法中一定能使估计更精确的是( C ). A、提高置信度
H0:m=m0=190;H1:m>m0=190(s2末知) 由于t=2.5>1.7531===t0.95(15)===t1-a(n-1)
故拒绝H0,即认为该装置的平均工作温度高于190。C。
7、 某 厂 生 产 的 某 种 产 品 , 由 以 往 经 验 知 其 强
概率论与数理统计课后答案第6章

第6章习题参考答案1.设是取自总体X的一个样本,在下列情形下,试求总体参数的矩估计与最大似然估计:(1),其中未知,;(2),其中未知,。
2.设是取自总体X的一个样本,其中X服从参数为的泊松分布,其中未知,,求的矩估计与最大似然估计,如得到一组样本观测值X 0 1 2 3 4频数17 20 10 2 1求的矩估计值与最大似然估计值。
3.设是取自总体X的一个样本,其中X服从区间的均匀分布,其中未知,求的矩估计。
4.设是取自总体X的一个样本,X的密度函数为其中未知,求的矩估计。
5.设是取自总体X的一个样本,X的密度函数为其中未知,求的矩估计和最大似然估计。
6.设是取自总体X的一个样本,总体X服从参数为的几何分布,即,其中未知,,求的最大似然估计。
7. 已知某路口车辆经过的时间间隔服从指数分布,其中未知,现在观测到六个时间间隔数据(单位:s):1.8,3.2,4,8,4.5,2.5,试求该路口车辆经过的平均时间间隔的矩估计值与最大似然估计值。
8.设总体X的密度函数为,其中未知,设是取自这个总体的一个样本,试求的最大似然估计。
9. 在第3题中的矩估计是否是的无偏估计?解故的矩估计量是的无偏估计。
10.试证第8题中的最大似然估计是的无偏估计。
11. 设为总体的样本,证明都是总体均值的无偏估计,并进一步判断哪一个估计有效。
12.设是取自总体的一个样本,其中未知,令,试证是的相合估计。
13.某车间生产滚珠,从长期实践中知道,滚珠直径X服从正态分布,从某天生产的产品中随机抽取6个,量得直径如下(单位:mm):14.7,15.0,14.9,14.8,15.2,15.1,求的0.9双侧置信区间和0.99双侧置信区间。
14.假定某商店中一种商品的月销售量服从正态分布,未知。
为了合理的确定对该商品的进货量,需对和作估计,为此随机抽取七个月,其销售量分别为:64,57,49,81,76,70,59,试求的双侧0.95置信区间和方差的双侧0.9置信区间。
《概率论与数理统计》习题及答案 第六章

《概率论与数理统计》习题及答案第 六 章1.某厂生产玻璃板,以每块玻璃上的泡疵点个数为数量指标,已知它服从均值为λ的泊松分布,从产品中抽一个容量为n 的样本12,,,n X X X ,求样本的分布.解 样本12(,,,)n X X X 的分量独立且均服从与总体相同的分布,故样本的分布为11221(,,,)()nn ni ii P X k X k X k P X k ======∏1!ik ni i ek λλ-==∏112!!!nii n k n ek k k λλ=-∑=0,1,i k =,1,2,,,i n = 2.加工某种零件时,每一件需要的时间服从均值为1/λ的指数分布,今以加工时间为零件的数量指标,任取n 件零件构成一个容量为n 的样本,求样本分布。
解 零件的加工时间为总体X ,则~()X E λ,其概率密度为,0,()0,0.xex f x x λλ-⎧>=⎨≤⎩于是样本12(,,,)n X X X 的密度为1121,0(,,,)0,.ni i ix nn x i n i ex f x x x eλλλλ=--=⎧∑⎪>==⎨⎪⎩∏其它 1,2,,i n = 3.一批产品中有成品L 个,次品M 个,总计N L M =+个。
今从中取容量为2的样本(非简单样本),求样本分布,并验证:当,/N M N p →∞→时样本分布为(6.1)式中2n =的情况。
解 总体~(01)X -,即(0),(1)L M P X P X NN====于是样本12(,)X X 的分布如下 121(0,0)1L L P X X N N -===⋅-,12(0,1)1L M P X X NN ===⋅-12(1,0)1M L P X X N N ===⋅-,121(1,1)1M M P X X NN -===⋅-若N →∞时M p N→,则1L p N→-,所以2002012(0,0)(1)(1)P X X p p p +-==→-=- 012112(0,1)(1)(1)P X X p p p p +-==→-=- 102112(1,0)(1)(1)P X X p p p p +-==→-=-2112212(1,1)(1)P X X p pp +-==→=-以上恰好是(6.1)式中2n =的情况.4.设总体X 的容量为100的样本观察值如下:15 20 15 20 25 25 30 15 30 25 15 30 25 35 30 35 20 35 30 25 20 30 20 25 35 30 25 20 30 25 35 25 15 25 35 25 25 30 35 25 35 20 30 30 15 30 40 30 40 15 25 40 20 25 20 15 20 25 25 40 25 25 40 35 25 30 20 35 20 15 35 25 25 30 25 30 25 30 43 25 43 22 20 23 20 25 15 25 20 25 30433545304530454535作总体X 的直方图解 样本值的最小值为15,最大值为45取14.5a =,45.5b =,为保证每个小区间内都包含若干个观察值,将区间[14.5,45.5]分成8个相等的区间。
概率论与数理统计习题集及答案

《概率论与数理统计》作业集及答案第1章 概率论的基本概念§1 .1 随机试验及随机事件1. (1) 一枚硬币连丢3次,观察正面H ﹑反面T 出现的情形. 样本空间是:S= ;(2) 一枚硬币连丢3次,观察出现正面的次数. 样本空间是:S= ;2.(1) 丢一颗骰子. A :出现奇数点,则A= ;B :数点大于2,则B= .(2) 一枚硬币连丢2次, A :第一次出现正面,则A= ;B :两次出现同一面,则= ;C :至少有一次出现正面,则C= .§1 .2 随机事件的运算1. 设A 、B 、C 为三事件,用A 、B 、C 的运算关系表示下列各事件:(1)A 、B 、C 都不发生表示为: .(2)A 与B 都发生,而C 不发生表示为: .(3)A 与B 都不发生,而C 发生表示为: .(4)A 、B 、C 中最多二个发生表示为: .(5)A 、B 、C 中至少二个发生表示为: .(6)A 、B 、C 中不多于一个发生表示为: .2. 设}42:{},31:{},50:{≤<=≤<=≤≤=x B x x A x x S :则(1)=⋃B A ,(2)=AB ,(3)=BA ,(4)B A ⋃= ,(5)B A = 。
§1 .3 概率的定义和性质1. 已知6.0)(,5.0)(,8.0)(===⋃B P A P B A P ,则(1) =)(AB P , (2)()(B A P )= , (3))(B A P ⋃= .2. 已知,3.0)(,7.0)(==AB P A P 则)(B A P = .§1 .4 古典概型1. 某班有30个同学,其中8个女同学, 随机地选10个,求:(1)正好有2个女同学的概率,(2)最多有2个女同学的概率,(3) 至少有2个女同学的概率.2. 将3个不同的球随机地投入到4个盒子中,求有三个盒子各一球的概率.§1 .5 条件概率与乘法公式1.丢甲、乙两颗均匀的骰子,已知点数之和为7, 则其中一颗为1的概率是 。
概率论课后习题第6章答案

第六章 数理统计的基本概念1.设样本均值为X ,则由题意,有6,4.1(~2n N X ,或)1,0(~/64.1N nX −,于是由1)3(2/64.34.5/64.3/64.34.1}4.54.1{95.0−Φ=⎭⎬⎫⎩⎨⎧−<−<−=<<≤nn n X nP X P⇒ 975.03(≥Φn ⇒ 96.13≥n⇒5744.34≥n 故样本容量至少应取35. 2.由题意可知)1,0(~/2.0N na X n −,又122/2.01.0/2.0}1.0|{|95.0−⎟⎟⎠⎞⎜⎜⎝⎛Φ=⎭⎫⎩⎨⎧<−=<−≤n n n a X P a X P n n 故有 975.0)2(≥Φn ⇒ 96.12≥n⇒ 3664.15≥n 因此至少应等于16.n 3. 由正态分布的性质及样本的独立性知,212X X −和4343X X −均服从正态分布,由于,0)2(21=−X X E 20)(4)()2(2121=+=−X D X D X X D以及,0)43(43=−X X E 100)(16)(9)43(4343=+=−X D X D X X D所以,有)20,0(~221N X X −⇒)1,0(~20221N X X −)100,0(~4343N X X − ⇒)1,0(~104343N X X −于是由分布的定义知,当2χ,201=a 1001=b 时,有 ()())2(~10432024322243221243221χ⎟⎠⎞⎜⎝⎛−+⎟⎟⎠⎞⎜⎜⎝⎛−=−+−=X X X X X X b X X a X 4. 由正态分布的性质及样本的独立性知, ⇒ )9,0(~2921N X X X +++")1,0(~)(91921N X X X +++" 又)1,0(~3N Y i, 9,,2,1"=i 所以 )9(~)(913332292221292221χY Y Y Y Y Y +++=⎟⎠⎞⎜⎝⎛++⎟⎠⎞⎜⎝⎛+⎟⎠⎞⎜⎝⎛""由于两个总体是X 和Y 相互独立的,所以其相应的样本也是相互独立的,故)9(9121X X X +++"与)(21Y 912922Y Y +++"也相互独立,于是由t 分布的定义知,)9(~9/)(91)(91292191292191t Y Y X X YY X X U +++=++++=""""5.由题意知,)1,0(~2N X i,,故有 15,,2,1"=i )10(~22)(4122102121021χ⎟⎠⎞⎜⎝⎛++⎟⎠⎞⎜⎝⎛=+=X X X X U "" )5(~22)(412215211215211χ⎟⎠⎞⎜⎝⎛++⎟⎠⎞⎜⎝⎛=+=X X X X V ""利用样本的独立性以及F 分布的定义,有)5,10(~5/10/)(221521121021F V U X X X X Y =++++="" 6.解法1 考虑n n n n X X X X X X 22211,,,+++++",将其视为取自正态总体的简单随机样本,则其样本均值为 )2,2(2σμN X X n X X n ni i n i i n i 21)(1211==+∑∑==+样本方差为 Y n 11−由于2211σ=⎟⎠⎞⎜⎝⎛−Y n E ,所以 22)1(2)2)(1()(σσ−=−=n n Y E 解法2 记,11∑==′n i i X n X ,11∑=+=′ni i n X n X 显然有X X X ′′+′=2,因此[]⎭⎬⎫⎩⎨⎧′′−+′−=⎥⎦⎤⎢⎣⎡−+=∑∑=+=+n i i n i n i i n i X X X X E X X X E Y E 1212)()()2()( []⎭⎬⎫⎩⎨⎧′′−+′′−′−+′−=∑=++n i i n i n i i X X X X X X X X E 122)())((2)(222)1(2)1(0)1(σσσ−=−++−=n n n 7.记(未知),易见2)(σ=X D )()(21Y E Y E =, ,6/)(21σ=Y D 3/)(22σ=Y D 由于相互独立,故有21,Y Y ,0)(21=−Y Y E 236)(22221σσσ=+=−Y Y D从而 )1,0(~2/21N Y Y U σ−=,又 )2(~22222χσχS =由于与相互独立,与独立,由定理 6.3.2,与独立,所以1Y 2Y 1Y 2S 2Y 2S 21Y Y −与独立,于是由t 分布的定义,知 2S )2(~2/)(2221t USY Y Z χ=−=8.由)1(~)1(222−−n S n χσ,其中由题意知,25=n , ,于是1002=σ}12)125({)1(50)1(}50{22222>−=⎭⎬⎫⎩⎨⎧−>−=>χσσP n S n P S P975.0}12)24({2≥>=χP 上式中的不等式是查表得到的,所以所求的概率至少为0.9759. 本题要用到这样一个结论,即Γ分布),(βαΓ关于第一个参数具有可加性,即若),(~1βαΓU ,),(~2βαΓV ,且U 与V 相互独立,则),(~21βαα+Γ+V U ,其中),(βαΓ的概率密度为: ⎪⎩⎪⎨⎧=)(x f αβ>其它0,x βΓ−)(1/1e x α−0x α可利用卷积公式证明.回到本题,当λβα11=,=,分布就是参数为Γλ的指数分布,所以样本的独立性及Γ分布的可加性,有 )1,(~21λn X +X X n Γ++"即的概率密度为 ∑=ni i X 1⎪⎩⎪⎨⎧>−=−−其它00,)!1()(1x e x n x g x n nλλ 因此∑==ni i X n X 11的概率密度为 ⎪⎩⎪⎨⎧≤>−==−−0,00,)!1()()()(1y y e y n n ny ng y h ny n n λλ 10. (1) 根据正态分布的性质,与21X X +21X X −服从二维正态分布,所以要证明它们相互独立,只需它们不相关,由于0)()()])([(22212121=−=−+X E X E X X X X E 0)()(2121=−+X X E X X E 所以 0),(2121=−+X X X X Cov 即与相互独立21X X +21X X −(2) 由于0=μ,所以)2,0(~221σN X X +⇒)1,0(~221N X X σ+ ⇒)1(~212221χσ⎟⎠⎞⎜⎝⎛+X X⇒)2,0(~221σN X X −)1,0(~221N X X σ− ⇒)1(~212221χσ⎟⎠⎞⎜⎝⎛−X X由上面证明的独立性,再由F 分布的定义知)1,1(~2/2/)()(21221221221F X X X X X X X X F ⎟⎠⎞⎜⎝⎛−⎟⎠⎞⎜⎝⎛+=−+=σσ 所以 25.0}83.5{}4{4)()(221221=<<<=⎭⎬⎫⎩⎨⎧<−+F P F P X X X X P。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
.第六章 数理统计的基本概念一.填空题1.若n ξξξ,,,21Λ是取自正态总体),(2σμN 的样本,则∑==ni i n 11ξξ服从分布 )n ,(N 2σμ .2.样本),,,(n X X X Λ21来自总体),(~2σμN X 则~)(221n S n σ- )(1χ2-n ; ~)(nS n X μ- _)(1-n t __。
其中X 为样本均值,∑=--=n i n X X n S 12211)(。
3.设4321X X X X ,,,是来自正态总体).(220N 的简单随机样本,+-=221)2(X X a X 243)43(X X b -,则当=a 201=a 时,=b 1001=b时,统计量X 服从2X 分布,其自由度为 2 .4. 设随机变量ξ与η相互独立, 且都服从正态分布(0,9)N , 而129(,,,)x x x L 和129(,,,)y y y L 是分别来自总体ξ和η的简单随机样本, 则统计量~U = (9)t .5. 设~(0,16),~(0,9),,X N Y N X Y 相互独立, 129,,,X X X L 与1216,,,Y Y Y L 分别为X 与Y 的一个简单随机样本,则2221292221216X X X Y Y Y ++++++L L 服从的分布为 (9,16).F6. 设随机变量~(0,1)X N , 随机变量2~()Y n χ, 且随机变量X 与Y 相互独立,令T =, 则2~T F (1,n ) 分布.解:由T =, 得22X T Y n =. 因为随机变量~(0,1)X N , 所以22~(1).X χ.再由随机变量X 与Y 相互独立, 根据F 分布的构造, 得22~(1,).X T F n Y n= 7. 设12,,,n X X X L 是总体(0,1)N 的样本, 则统计量222111n k k X n X =-∑服从的分布为(1,1)F n - (需写出分布的自由度).解:由~(0,1),1,2,,i X N i n =L 知222212~(1),~(1)nk k X X n χχ=-∑, 于是22122211(1)1~(1,1)./11nkn k k k Xn X F n X n X ==-=--∑∑8. 总体21234~(1,2),,,,X N X X X X 为总体X 的一个样本, 设212234()()X X Z X X -=-服从 F (1,1) 分布(说明自由度)解:由212~(0,2)X X N σ+, 有2212~(1)2X X χσ+⎛⎫ ⎪⎝⎭, 又 234~(0,2)X X N σ-, 故2234~(1),2X X χσ-⎛⎫ ⎪⎝⎭ 因为2122X X σ+⎛⎫ ⎪⎝⎭与2342X X σ-⎛⎫⎪⎝⎭独立,所以21234~(1,1).X X F X X ⎛⎫+ ⎪-⎝⎭9.判断下列命题的正确性:( 在圆括号内填上“ 错” 或“ 对”)(1) 若 总 体 的 平 均 值 与 总 体 方 差2 都 存 在 , 则 样 本平 均 值 x 是 的 一 致 估 计。
( 对 )(2) 若 0≠-θθ)ˆ(E 则 称 $θ为 的 渐 近 无 偏 估 计 量 .( 错 )(3) 设总体X 的期望E(X),方差D(X)均存在,21x x , 是X 的一个样本 , 则统计量213231x x +是 E(X) 的无偏估计量。
( 对 ).(4) 若 θθθ==)ˆ()ˆ(21E E 且 )ˆ()ˆ(21θθD D <则 以 $θ2估 计 较 以 )θ1估计 有 效 。
( 错 )(5) 设$θn 为的估计量,对任意> 0,如果0=≥-∞→}|ˆ{|lim εθθnn P 则称 $θn 是 的一致估计量 。
( 对 )(6)样本方差()∑=--=ni i n XX n D 1211是总体),(~2σμN X 中2 的无偏估计量。
()211∑=-=n i i X X n D *是总体X 中2的有偏估计。
( 对 )10.设321X X X ,,是取自总体X 的一个样本,则下面三个均值估计量3213321232111214331ˆ,1254131ˆ,2110351ˆX X X uX X X u X X X -+=++=++=μ都 是总体均值的无偏估计,其中方差越小越有效,则 2ˆμ最有效.二、选择题1、设总体ξ服从正态分布),(2σN N ,其中μ已知,σ未知,321,,ξξξ是取自总体ξ的一个样本,则非统计量是( D ).A 、)(31321ξξξ++ B 、μξξ221++ C 、),,m ax (321ξξξD 、)(12322212ξξξσ++2、设n ξξξΛ,,21是来自正态总体),(2σμN 的简单随机样本∑=--=ni i n S 1221)(11ξξ,∑=-=n i i n S 1222)(1ξξ,∑=--=n i i n S 1223)(11μξ,∑=-=n i i n S 1224)(1μξ,则服从自由度为1-n 的t 分布的随机变量是( B ).A 、1/1--n S μξ B 、1/2--n S μξ C 、nS /3μξ- D 、nS /4μξ-3、设)2,1(~2N ξ,n ξξξK ,,21为ξ的样本,则( C ). A 、)1,0(~21N -ξB 、)1.0(~41N -ξ.C 、)1,0(~/21N n-ξD 、)1,0(~/21N n-ξ4、设n ξξξΛ,,21是总体)1,0(~N ξ的样本,S ,ξ分别是样本的均值和样本标准差,则有( C )A 、)1,0(~N n ξB 、)1,0(~N ξC 、∑=ni in x 122)(~ξD 、)1(~/-n t S ξ5.. 简 单 随 机 样 本 (X X X n 12,,Λ ,) 来 自 某 正 态 总 体,X 为 样 本 平 均 值, 则 下 述 结 论 不 成 立 的 是 ( C )。
( A ) X 与(¡)XX ii n-=∑21独 立( B )X i 与X j 独 立 ( 当j i ≠ ) ( C )X i i n=∑1与X i i n 21=∑ 独 立( D )X i 与X j 2独 立 ( 当j i ≠)6. 设1n 21X , ,X ,X Λ, 来自总体2n 21211Y ,,Y ,Y ),,(N ~X ,X Λσμ 来自总体Y £,),(N ~Y 222σμ, 且 X 与 Y 独 立。
∑∑====21n 1i ,i 2n 1i ,i 1,Y n 1Y ,X n 1X∑∑==-=-=21211n 1i 2,i 22n 2n 1i 2,i 12n 1,)Y Y (n 1S ,)X X (n 1S则如下结论中错误的是 ( D )。
( A ))1,0(N ~n n )]()Y X [(22212121σ+σμ-μ--=ξ-( B ) )1n ,1n (F ~S S )1n (n )1n (n 212n22n 12122122121--⋅σσ⋅--=η( C ) )2n n (~S n S n 212222n 22212n 1121-+χσ+σ=ζ ( D ))2n n (t ~2n n 2121-+ζξ⋅-+=ρ7. 设n X X X Λ,,21是取自总体),0(2σN 的样本,则可以作为2σ的无偏估计量是( A ).A 、∑=n i i X n 121B 、∑=-n i i X n 1211C 、∑=ni i X n 11D 、∑=-ni i X n 1118. 3、设321,,X X X 是来自母体X 的容量为3的样本,32112110351ˆX X X ++=μ,32121254131ˆX X X ++=μ,3213216131ˆX X X ++=μ,则下列说法正确的是( B ). A 、321ˆ,ˆ,ˆμμμ都是)(X E =μ的无偏估计且有效性顺序为321ˆˆˆμμμ>> B 、321ˆ,ˆ,ˆμμμ都是)(X E =μ的无偏估计,且有效性从大到小的顺序为.312ˆˆˆμμμ>> C 、321ˆ,ˆ,ˆμμμ都是)(X E =μ的无偏估计,且有效性从大到小的顺序为123ˆˆˆμμμ>> D 、321ˆ,ˆ,ˆμμμ不全是)(X E =μ的无偏估计,无法比三. 计算题1、在总体)2,30(~2N X 中随机地抽取一个容量为16的样本,求样本均值X 在 29到31之间取值的概率.解:因)2,30(~2N X ,故)162,30(~2N X ,即))21(,30(~2N X)221302()3120(<-<-=<<∴X P X P 9544.01)2(2)2()2(=-Φ=-Φ-Φ=2、设某厂生产的灯泡的使用寿命),1000(~2σN X (单位:小时),抽取一容量为9的样本,其均方差100=S ,问)940(<X P 是多少?解:因2σ未知,不能用),1000(2nN X σ=来解题,而)1(~--=n t nS X T μ )8(~3t SX T μ-=∴ )()(39403940S S X P X P μμ-<-=<∴,而1000,100==μS)940(<∴X P )8.1()1003)1000940((-<=⨯-<=T P T P )8.1(>=T P由表查得056.0)8.1()940(=>=<T P X P 3、设721,,X X X Λ为总体)5.0,0(~2N X 的一个样本,求∑=>712)4(i i X P .解:)5.0,0(~2N X)1,0(~2N X i ∴∑∑===∴7171222)7(~4)2(i i ii x XX∑∑==≈>=>∴717122025.0)164()4(i i i iX P X P.4、设总体)1,0(~N X ,从此总体中取一个容量为6的样本654321,,,,,X X X X X X , 设26542321)()(X X X X X X Y +++++=,试决定常数C ,使随机变量CY 服 从2x 分布.解:)3,0(~321N X X X ++,)3,0(~654N X X X ++)1,0(~3321N X X X ++∴,)1,0(~3654N X X X ++)2(~)3()3(226542321x X X X X X X +++++∴即)2(~)(31)(31226542321x X X X X X X +++++ 31=∴C 时,)2(~2x CY5、设随机变量T 服从)(n t 分布,求2T 的分布.解:因为nY X T /=,其中)1,0(~N X ,)(~2n x Y ,nY X n Y X T /1//222==)1(~22x X ),1(~2n F T ∴6. 利 用 t 分 布 性 质 计 算 分 位 数 t 0.975( 50 ) 的 近 似 值 。