eviews入门模型线性回归模型
试验二 一元线性回归模型Eviews操作
试验二一元线性回归模型Eviews操作案例:建立我国最终消费支出与国内生产总值(单位:亿元)之间的回归模型,并进行变量和方程整体的显著性检验。
当显著性水平为0.05, 2004年国内生产总值为38000亿元时,对2004年我国最终消费支出和平均最终消费支出进行点预测和区间预测。
一、创建工作文件建立工作文件的方法有以下几种。
1.菜单方式在主菜单上依次单击File→New→Workfile(见图2-1),选择数据类型和起止日期。
时间序列提供起止日期(年、季度、月度、周、日),非时间序列提供最大观察个数。
本例中在Start Data里输入1978,在End data 里输入2003,见图2-3。
单击OK后屏幕出现Workfile工作框,如图2-4所示。
2.命令方式在命令窗口直接输入建立工作文件的命令CREATE,命令格式:CREATE 数据频率起始期终止期其中,数据频率类型分别为A(年)、Q(季)、M(月)、U(非时间序列数据)。
输入Eviews 命令时,命令字与命令参数之间只能用空格分隔。
如本例可输入命令:CREATE A 1978 2003工作文件创立后,需将工作文件保存到磁盘,单击工具条中Save→输入文件名、路径→保存,或单击菜单兰中File→Save或Save as→输入文件名、路径→保存。
图2-1这时屏幕上出现Workfile Range对话框,如图2-2所示。
图2-2图2-3图2-4二、输入和编辑数据建立或调入工作文件以后,可以输入和编辑数据。
输入数据有两种基本方法:命令方式和菜单方式。
1.命令方式命令格式:data 〈序列名1〉〈序列名2〉…〈序列名n〉功能:输入新变量的数据,或编辑工作文件中现有变量的数据。
在本例中,在命令窗口直接输入:Data Y X2.菜单方式在主菜单上单击Objects→New object,在New object对话框里,选Group并在Name for Object上定义变量名(如变量X、Y),单击OK,屏幕出现数据编辑框。
EViews计量经济学实验报告-简单线性回归模型分析
时间地点实验题目简单线性回归模型分析一、实验目的与要求:目的:影响财政收入的因素可能有很多,比如国内生产总值,经济增长,零售物价指数,居民收入,消费等。
为研究国内生产总值对财政收入是否有影响,二者有何关系。
要求:为研究国内生产总值变动与财政收入关系,需要做具体分析。
二、实验内容根据1978-1997年中国国内生产总值X和财政收入Y数据,运用EV软件,做简单线性回归分析,包括模型设定,估计参数,模型检验,模型应用,得出回归结果。
三、实验过程:(实践过程、实践所有参数与指标、理论依据说明等)简单线性回归分析,包括模型设定,估计参数,模型检验,模型应用。
(一)模型设定为研究中国国内生产总值对财政收入是否有影响,根据1978-1997年中国国内生产总值X 和财政收入Y,如图1:1978-1997年中国国内生产总值和财政收入(单位:亿元)根据以上数据,作财政收入Y 和国内生产总值X 的散点图,如图2:从散点图可以看出,财政收入Y 和国内生产总值X 大体呈现为线性关系,所以建立的计量经济模型为以下线性模型:01i i i Y X u ββ=++(二)估计参数1、双击“Eviews ”,进入主页。
输入数据:点击主菜单中的File/Open /EV Workfile —Excel —GDP.xls;2、在EV 主页界面点击“Quick ”菜单,点击“Estimate Equation ”,出现“Equation Specification ”对话框,选择OLS 估计,输入“y c x ”,点击“OK ”。
即出现回归结果图3:图3. 回归结果Dependent Variable: Y Method: Least Squares Date: 10/10/10 Time: 02:02 Sample: 1978 1997 Included observations: 20Variable Coefficient Std. Error t-Statistic Prob. C 857.8375 67.12578 12.77955 0.0000 X0.1000360.00217246.049100.0000R-squared 0.991583 Mean dependent var 3081.158 Adjusted R-squared 0.991115 S.D. dependent var 2212.591 S.E. of regression 208.5553 Akaike info criterion 13.61293 Sum squared resid 782915.7 Schwarz criterion 13.71250 Log likelihood -134.1293 F-statistic 2120.520 Durbin-Watson stat0.864032 Prob(F-statistic)0.000000参数估计结果为:i Y = 857.8375 + 0.100036i X(67.12578) (0.002172)t =(12.77955) (46.04910)2r =0.991583 F=2120.520 S.E.=208.5553 DW=0.8640323、在“Equation ”框中,点击“Resids ”,出现回归结果的图形(图4):剩余值(Residual )、实际值(Actual )、拟合值(Fitted ).(三)模型检验1、 经济意义检验回归模型为:Y = 857.8375 + 0.100036*X (其中Y 为财政收入,i X 为国内生产总值;)所估计的参数2ˆ =0.100036,说明国内生产总值每增加1亿元,财政收入平均增加0.100036亿元。
《计量经济学》eviews实验报告一元线性回归模型详解
计量经济学》实验报告一元线性回归模型-、实验内容(一)eviews基本操作(二)1、利用EViews软件进行如下操作:(1)EViews软件的启动(2)数据的输入、编辑(3)图形分析与描述统计分析(4)数据文件的存贮、调用2、查找2000-2014年涉及主要数据建立中国消费函数模型中国国民收入与居民消费水平:表1年份X(GDP)Y(社会消费品总量)200099776.339105.72001110270.443055.42002121002.048135.92003136564.652516.32004160714.459501.02005185895.868352.62006217656.679145.22007268019.493571.62008316751.7114830.12009345629.2132678.42010408903.0156998.42011484123.5183918.62012534123.0210307.02013588018.8242842.82014635910.0271896.1数据来源:二、实验目的1.掌握eviews的基本操作。
2.掌握一元线性回归模型的基本理论,一元线性回归模型的建立、估计、检验及预测的方法,以及相应的EViews软件操作方法。
三、实验步骤(简要写明实验步骤)1、数据的输入、编辑2、图形分析与描述统计分析3、数据文件的存贮、调用4、一元线性回归的过程点击view中的Graph-scatter-中的第三个获得在上方输入Isycx回车得到下图DependsntVariable:Y Method:LeastSquares□ate:03;27/16Time:20:18 Sample:20002014 Includedobservations:15VariableCoefficientStd.Errort-StatisticProb.C-3J73.7023i820.535-2.1917610.0472X0416716 0.0107S838.73S44 a.ooao R-squared0.991410 Meandependentwar119790.2 AdjustedR.-squared 0.990750 S.D.dependentrar 7692177 S.E.ofregression 7J98.292 Akaike infocriterion20.77945 Sumsquaredresid 7;12E^-08 Scliwarz 匚「爬伽20.37386 Loglikelihood -1&3.3459Hannan-Quinncriter. 20.77845 F-statistic 1I3&0-435 Durbin-Watsonstat0.477498Prob(F-statistic)a.oooooo在上图中view 处点击view-中的actual ,Fitted ,Residual 中的第一 个得到回归残差打开Resid 中的view-descriptivestatistics 得到残差直方图/icw Proc Qtjject PrintN^me FreezeEstimateForecastStatsResids凹Group:UNIIILtD Worktile:UN III LtLJ::Unti1DependentVariablesMethod;LeastSquares□ate:03?27/16Time:20:27Sample(adjusted):20002014Includedobservations:15afteradjustmentsVariable Coefficient Std.Errort-Statistic ProtJ.C-3373.7023^20.535-2.191761 0.0472X0.4167160.01075S38.735440.0000R-squared0.991410 Meandependeniwar1-19790.3 AdjustedR-squa.red0990750S.D.dependentvar 76921.77 SE.ofregre.ssion 7J98.292 Akaike infacriterion20.77945 Sumsquaredresid 7.12&-0S Schwarzcriterion 20.S73S6 Laglikelihood -153.84&9Hannan-Quinncrite匚20.77545 F-statistic1I3&0.435Durbin-Watsonstat 0.477498 ProbCF-statistic) a.ooaooo在回归方程中有Forecast,残差立为yfse,点击ok后自动得到下图roreestYFM J訓YForea空巾取且:20002015 AdjustedSErmpfe:2000231i mskJddd obaerratire:15Roof kter squa red Error理l%2Mean/^oLteError畐惯啟iJean Afe.PereersErro r5.451SSQThenhe鼻BI附GKWCE口.他腐4Prop&niwi□ooooooVactaree Propor^tori0.001^24G M『倚■底Props^lori09®475在上方空白处输入lsycs…之后点击proc中的forcase根据公式Y。
eviews实验报告一元线形回归模型
【实验编号】 1【实验名称】一元线形回归模型【实验目的】掌握一元线性回归分析的步骤【实验内容】一、实验数据表1 1978年-2009年中国税收与国内生产总值统计表单位:亿元年份税收GDP 年份税收GDP1978 519.28 3645.2 1994 5126.88 48197.91979 537.82 4062.6 1995 6038.04 60793.71980 571.7 4545.6 1996 6909.82 71176.61981 629.89 4891.6 1997 8234.04 78973.01982 700.02 5323.4 1998 9262.80 84402.31983 775.59 5962.7 1999 10682.58 89677.11984 947.35 7208.1 2000 12581.51 99214.61985 2040.79 9016.0 2001 15301.38 109655.21986 2090.73 10275.2 2002 17636.45 120332.71987 2140.36 12058.6 2003 20017.31 135822.81988 2390.47 15042.8 2004 24165.68 159878.31989 2727.4 16992.3 2005 28778.54 184937.41990 2821.86 18667.8 2006 34804.35 216314.41991 2990.17 21781.5 2007 45621.97 265810.31992 3296.91 26923.5 2008 54223.79 314045.41993 4255.30 35333.9 2009 59521.59 340506.9 资料来源:《中国统计年鉴2010》二、实验过程1、建立工作文件(1)点击桌面Eviews5.0图标,运行Eviews软件。
回归分析实验1 Eviews基本操作及一元线性回归
第一部分EViews基本操作第一章预备知识一、什么是EViewsEViews (Econometric Views)软件是QMS(Quantitative Micro Software)公司开发的、基于Windows平台下的应用软件,其前身是DOS操作系统下的TSP软件。
EViews具有现代Windows软件可视化操作的优良性。
可以使用鼠标对标准的Windows菜单和对话框进行操作。
操作结果出现在窗口中并能采用标准的Windows技术对操作结果进行处理。
EViews还拥有强大的命令功能和批处理语言功能。
在EViews的命令行中输入、编辑和执行命令。
在程序文件中建立和存储命令,以便在后续的研究项目中使用这些程序。
EViews是Econometrics Views的缩写,直译为计量经济学观察,通常称为计量经济学软件包,是专门从事数据分析、回归分析和预测的工具,在科学数据分析与评价、金融分析、经济预测、销售预测和成本分析等领域应用非常广泛。
应用领域■ 应用经济计量学■ 总体经济的研究和预测■ 销售预测■ 财务分析■ 成本分析和预测■ 蒙特卡罗模拟■ 经济模型的估计和仿真■ 利率与外汇预测EViews引入了流行的对象概念,操作灵活简便,可采用多种操作方式进行各种计量分析和统计分析,数据管理简单方便。
其主要功能有:(1)采用统一的方式管理数据,通过对象、视图和过程实现对数据的各种操作;(2)输入、扩展和修改时间序列数据或截面数据,依据已有序列按任意复杂的公式生成新的序列;(3)计算描述统计量:相关系数、协方差、自相关系数、互相关系数和直方图;(4)进行T 检验、方差分析、协整检验、Granger 因果检验;(5)执行普通最小二乘法、带有自回归校正的最小二乘法、两阶段最小二乘法和三阶段最小二乘法、非线性最小二乘法、广义矩估计法、ARCH 模型估计法等;(6)对选择模型进行Probit、Logit 和Gompit 估计;(7)对联立方程进行线性和非线性的估计;(8)估计和分析向量自回归系统;(9)多项式分布滞后模型的估计;(10)回归方程的预测;(11)模型的求解和模拟;(12)数据库管理;(13)与外部软件进行数据交换EViews可用于回归分析与预测(regression and forecasting)、时间序列(Time Series)以及横截面数据(cross-sectional data )分析。
经典线性回归模型的Eviews操作
经典线性回归模型经典回归模型在涉及到时间序列时,通常存在以下三个问题:1)非平稳性→ ADF单位根检验→ n阶单整→取原数据序列的n阶差分(化为平稳序列)2)序列相关性→D.W.检验/相关图/Q检验/LM检验→n阶自相关→自回归ar(p)模型修正3)多重共线性→相关系数矩阵→逐步回归修正注:以上三个问题中,前两个比较重要。
整体回归模型的思路:1)确定解释变量和被解释变量,找到相关数据。
数据选择的时候样本量最好多一点,做出来的模型结果也精确一些。
2)把EXCEL里的数据组导入到Eviews里。
3)对每个数据序列做ADF单位根检验。
4)对回归的数据组做序列相关性检验。
5)对所有解释变量做多重共线性检验。
6)根据上述结果,修正原先的回归模型。
7)进行模型回归,得到结论。
Eviews具体步骤和操作如下。
一、数据导入1)在EXCEL中输入数据,如下:除去第一行,一共2394个样本。
2)Eviews中创建数据库:File\new\workfile, 接下来就是这个界面(2394就是根据EXCEL里的样本数据来),OK3)建立子数据序列程序:Data x1再enter键就出来一个序列,空的,把EXCEL里对应的序列复制过来,一个子集就建立好了。
X1是回归方程中的一个解释变量,也可以取原来的名字,比如lnFDI,把方程中所有的解释变量、被解释变量都建立起子序列。
二、ADF单位根检验1)趋势。
打开一个子数据序列,先判断趋势:view\graph,出现一个界面,OK。
得到类似的图,下图就是有趋势的时间序列。
X1.4.2.0-.2-.4-.6-.8100020003000400050002)ADF检验。
直接在图形的界面上进行操作,view\unit root test,出现如下界面。
在第二个方框内根据时序的趋势选择,Intercept指截距,Trend为趋势,有趋势的时序选择第二个,OK,得到结果。
上述结果中,ADF值为-3.657113,t统计值小于5%,即拒绝原假设,故不存在单位根。
多元线性回归eviews操作
多元线性回归eviews操作一.模型设定本例中我们假设拟建立如下多元回归模型:01122Y X X u βββ=+++二.估计参数1.建立工作文件首先,进入Eviews 主页,在菜单中依次点击File\New\Workfile ,出现对话框Work Create 。
截面数据Unstructured/undated 只需输入样本数就可以。
时间序列数据Dated-regular frequency 在Date specification 中选择数据频率: Annual (年度) Weekly (周数据) Quarterly (季度) Daily (5 day week )每周5天日数据 Daily (7 day week )每周7天日数据Monthly (月度)integer date (未注明日期或者不规则的) Semi Annual (半年度)其次,点击OK ,出现未命名文件的Workfile UNTITLED 工作框。
其中c 为截距项,resid 为残差项。
若要将文件存盘,点击save ,在save as 对话框中选择存盘路径,并输入文件名。
如多元线性回归案例2.输入数据方法一:Quick\Empty Group 等方法二:data Y X1 X2,得到如下表;3.估计参数方法一:Quick\Estimate Equation 方法二: LS Y C X1 X2三、解释表里参数标准差1β∧S =0.075308,回归标准差=被解释变量标准差=回归模型标准差:σ∧残差平方和:2i e ∑=4170093被解释变量的标准差:2=2388.459 AIC 和SC 准则:这两个准则要求仅当所增加的解释变量能减少AIC 值或SC 值时才在原模型中增加该解释变量。
与调整的可决系数相似。
多元小于一元,可以将前期人均居民消费作为解释变量包括在模型中。
四、模型检验1.经济意义检验估计的参数值都为正数,经济意义合理。
实验 Eviews的基本使用线性回归模型的估计和检验
实验一 Eviews 的基本使用、线性回归模型的估计和检验实验目的与要求:熟悉Eviews 软件基本使用功能、掌握线性回归模型的参数估计及其检验。
实验内容:建立一个工作文件、数据的输入、数据的保存、生成新序列、 作序列图和相关图。
线性回归模型的参数估计及其检验。
实验步骤:(具体步骤同学们可按照课堂讲解的程序进行也可按下面的指导操作,无论怎么操作,只要得到正确的结果即可) 一、模型的构建表 2002年中国各地区城市居民人均年消费支出和可支配收入 作城市居民家庭平均每人每年消费支出(Y)和城市居民人均年可支配收入(X)的散点图,如图从散点图可以看出居民家庭平均每人每年消费支出(Y)和城市居民人均年可支配收入(X)大体呈现为线性关系,4000600080001000012000Y所以建立的计量经济模型为如下线性模型: 12i i i Y X u ββ=++ 二、估计参数利用EViews 作简单线性回归分析的步骤如下: 1、建立工作文件首先,双击EViews 图标,进入EViews 主页。
在菜单一次点击File\New\Workfile ,出现对话框“Workfile Range ”。
在“Workfile frequency ”中选择数据频率: Annual (年度) Weekly ( 周数据 )Quartrly (季度) Daily (5 day week ) ( 每周5天日数据 ) Semi Annual (半年) Daily (7 day week ) ( 每周7天日数据 ) Monthly (月度) Undated or irreqular (未注明日期或不规则的)在本例中是截面数据,选择“Undated or irreqular ”。
并在“Start date ”中输入开始时间或顺序号,如“1”在“end date ”中输入最后时间或顺序号,如“31”点击“ok ”出现“Workfile UNTITLED ”工作框。
使用eviews做线性回归分析
使用eviews做线性回归分析随着统计学的发展,线性回归分析越来越被广泛应用于数据分析。
Eviews是一种经济数据分析软件,具有强大的数据分析功能和易于使用的界面,可广泛用于数据分析和预测。
本文将介绍使用Eviews进行线性回归分析的基础步骤,以及如何解读结果和提高模型的准确性。
一、数据准备在进行线性回归分析之前,我们需要准备一组数据。
数据可以从各种来源获得,例如国家统计局、经济学文献、互联网数据库等。
在Eviews中,可以使用Excel、SPSS和STATA等软件导入数据。
在导入数据时,必须确保数据格式正确,包括数据类型、数值范围等。
二、建立模型在Eviews中,建立模型的步骤如下:1.打开导入的数据文件,进入“工作文件”界面。
2.选择“Quick”菜单下的“Estimate Equation”选项,然后在弹出的“Model Specifica tion”对话框中填写相关信息。
此对话框包括四个标签页:变量、样本、选项和高级。
3.在“变量”标签页中,选择研究对象和解释变量,并将它们拖动到相应的框中。
例如,如果我们想研究通货膨胀对GDP的影响,那么GDP应当作为解释变量,通货膨胀率应作为解释变量。
4.在“样本”标签页中,设置分析的时间范围,如开始年份、结束年份、选定的样本或整个样本。
5.在“选项”标签页中,选择所需的估计方法,如OLS、GLS、FGLS等,并指定所需的统计量、弱工具检验、边际效应和预测分析等。
6.在“高级”标签页中,选择是否需要对模型进行修正,如修正异方差、自相关或其他检验结果不好的部分。
7.完成设置后,单击“OK”按钮,Eviews即可自动推导出相应的模型,并显示在“结果”窗口中,在这里可以查看与验证自己的模型结果是否正确等。
三、结果解读1.变量系数:表示自变量的影响程度。
如果系数大于零,则表示该变量与因变量正相关;如果系数小于零,则表示该变量与因变量负相关;如果系数等于零,则表示该变量与因变量之间没有关系。
实验课课件eviews基本操作与一元线性回归
目录
• EViews软件介绍 • EViews基本操作 • 一元线性回归模型 • EViews中进行一元线性回归分析 • 实验结果分析 • 实验总结与展望
EViews软件介绍
01
软件特点
强大的数据处理能力
EViews提供了丰富的数据处理 功能,包括数据导入、清洗、
数据转换
根据需要,可以对数据进 行转换,如对数转换、标 准化等,以适应回归分析 的要求。
建立一元线性回归模型
设定模型
选择一元线性回归模型,并确定 自变量和因变量。
模型诊断
在建立模型之前,需要进行必要的 诊断,如残差图、散点图等,以确 定是否满足线性回归的前提假设。
模型参数估计
使用最小二乘法或其他估计方法, 对模型参数进行估计。
02
输入数据时,需要确保数据的格 式和单位与实际相符,并注意数 据的完整性和准确性。
生成序列
在EViews中,可以通过多种方式生 成序列,如通过数学公式、通过已有 的序列运算、通过其他软件的数据转 换等。
生成序列时,需要确保生成的序列与 实际需求相符,并注意序列的命名和 格式。
数据的图形化表示
在EViews中,可以通过多种方式将数据图形化表示,如绘制散点图、折线图、柱 状图等。
转换和统计分析等。
多种回归分析方法
EViews支持多种回归分析方法 ,如最小二乘法、广义最小二 乘法、最大似然估计法等。
图形化界面
EViews采用图形化界面,操作 简单直观,方便用户进行数据 分析。
灵活的自定义功能
EViews支持用户自定义函数和 程序,扩展性良好。
软件界面
01
02
Eviews5章基本回归模型的OLS估计
编辑课件ppt
5
EViews统计分析基础教程
一、普通最小二乘法(OLS)
2.方程对象
EViews5.1提供了8种估计方法: “LS”为最小二乘法; “TSLS”为两阶段最小二乘法; “GMM”为广义矩法; “ARCH”为自回归条件异方差; “BINARY”为二元选择模型,其中包括Logit模型、 Probit模型和极端值模型; “ORDERED”为有序选择模型; “CENSORED”截取回归模型; “COUNT”为计数模型。
12
EViews统计分析基础教程
四、 线性回归模型的基本假定
线性回归模型必须满足以下几个基本假定:
假定1:随机误差项u具有0均值和同方差,即 E ( ui ) = 0 i=1,2,…,n Var ( ui ) = σ2 i=1,2,…,n
其中,E表示均值,也称为期望,在这里随机误差项u的 均值为0。Var表示随机误差项u的方差,对于每一个样 本点i,即在i=1,2,…,n的每一个数值上,解释变量y 对被解释变量x的条件分布具有相同的方差。当这一假定
样本回归函数为
yt= B1 + B2xt +μt
yt= b1 + b2xt + et 其中,et为残差项,
5-3式为估计方程,b1 和b2分别为B1和B2的估计量, 因而
e = 实际的yt –估计的yt
编辑课件ppt
3
EViews统计分析基础教程
一、普通最小二乘法(OLS)
1.最小二乘原理 估计总体回归函数的最优方法是选择B1和B2的估计量b1 , b2,使得残差et尽可能达到最小。 用公式表达即为
条直线能反映出该组数据的变化。
如果用不同精度多次观测一个或多个未知量,为了确定各未 知量的可靠值,各观测量必须加改正数,使其各改正数的平 方乘以观测值的权数的总和为最小。因而称最小二乘法。
用Eviews软件建立一元线性回归模型并进行有关检验的实验报告
用Eviews软件建立一元线性回归模型并进行相关检验的实验报告1.数据表1列出了某年中国部分省市城镇居民每个家庭平均全年可支配收入X与消费性支出Y 的统计数据。
2.建立模型应用EViews软件,以表1的数据可绘出可支配收入X与消费性支出Y的散点图(图2-1)。
从该三点图可以看出,随着可支配收入的增加,消费性支出也在增加,大致程线性关系。
据此,我们可以建立一元线性回归模型:Y=β0+β1·X+μ图2-1对模型作普通最小二乘法估计,在Eviews软件下,OLS的估计结果如图(2-2)所示。
Dependent Variable: YMethod: Least SquaresDate: 12/07/11 Time: 21:00Sample: 1 20Included observations: 20Variable Coefficient Std. Error t-Statistic Prob.X 0.755368 0.023274 32.45486 0.0000C 271.1197 159.3800 1.701090 0.1061R-squared 0.983198 Mean dependent var 5199.515Adjusted R-squared 0.982265 S.D. dependent var 1625.275S.E. of regression 216.4435 Akaike info criterion 13.68718Sum squared resid 843260.4 Schwarz criterion 13.78675Log likelihood -134.8718 Hannan-Quinn criter. 13.70661F-statistic 1053.318 Durbin-Watson stat 1.302512Prob(F-statistic) 0.000000图2-2OLS估计结果为^Y=271.12+0.76X(1.70) (32.45)R2=0.9832 D.W. =1.3025 F=1053.3183.模型检验从回归估计的结果看,模型拟合较好。
线性回归模型Eviews的实现
Eviews演示——建立对象:序列
Eviews演示——建立对象:序列
Eviews演示——建立对象(objects):序列(series)
• 重复
Eviews演示——建立对象(源自bjects):组(group)进入编辑 状态 (Edit+/切换)输 入或者粘 贴数据
Eviews演示——图示变量之间的关系
Eviews演示——建立(或打开) 工作文件(workfile)
Eviews演示——建立工作文件
• 注意:不同类型的数据,不同的选择
Eviews的使用 2、导入数据: 数据见:上机练习所需数据.xls-example objects New objection series
Eviews演示——建立对象:序列
Eviews演示——计算Y-hat
Eviews演示——计算Y-hat
Eviews演示——计算Y-hat
Eviews演示——计算Y-hat
Eviews演示
Eviews演示——Y与Y-hat
Eviews演示——预测(给定X0预测Y0)
Eviews演示——预测
Eviews演示——预测
Eviews演示——预测
一元线性回归模型的实例及Eviews的操作
软件Eviews的安装: Eviews3.1 disk1
Set up (launcher) 按提示操作到完成为止。
Eviews的使用
双击打开软件
1、打开或新建一个Work file:工作文件(必须)
操作:new(按数据类型,填入起始 观测和终止观测。)
Eviews演示——建立(或打开) 工作文件(workfile)
Eviews演示——预测
将2000改为2001
计量经济学Eviews简单线性回归模型的建立与分析应用实验报告
实验一:简单线性回归模型的建立与分析应用【实验目的】1、熟悉计量经济学软件包EViews的界面和基本操作;2、掌握计量经济学分析实际经济问题的具体步骤;3、掌握简单线性回归模型的参数估计、统计检验、预测的基本操作方法;4、理解简单线性回归模型中参数估计值的经济意义。
【实验类型】综合型【实验软硬件要求】计量经济学软件包EViews、微型计算机【实验内容】为研究深圳市地方预算内财政收入(Y)与地区生产总值(X)的关系,建立简单线性回归模型,现根据深圳市统计局网站的相关信息,得到统计数据如下表:请按照下列步骤完成实验一,每个步骤要写出操作过程:(1)打开EViews,新建适当的工作文件夹;打开Eviews后,依次点击File-New-Workfile,新建一个时间序列数据(Dated-regular frequencied)类型的文件,频率选择年度(Annual),键入起止日期1990-2008(如图一),点击ok,新建工作文件夹完成(如图二)(图一)(图二)(2)在工作文件夹中新建变量X和Y,并输入数据;依次点击Objects-New Object,对象类型选择序列(Series),并输入序列名Y(如图三),点击OK,重复以上操作,新建系列对象X。
新建系列对象完成后如(图四)按住ctrl并同时选定X和Y,用鼠标右击选择open—as group,点击Edit +/-开始编辑,输入数据,数据输入完毕再点击Edit+/-一次。
数据输入后如(图五)。
(图三)(图四)(图五)(3)生成X和Y的自然对数序列,保存在工作文件夹中,命名为lnX和lnY;依次点击Objects-Generate Sereies,出现Generate Series by Equation 窗口,在Enter equation窗口中输入公式:lnY=log(Y)点击ok,重复以上操作,输入:lnX=log(X) 创建序列lnX。
(如图六)(图六)(4)求X和Y的描述统计量的值,写出操作过程并画出相应表格;依次点击Quick-Group Statistics—Descriptive Statistics-Common sample,打开Series List窗口,输入x y,点击ok,输出结果(如图七)(图七)(5)作出X和Y的散点图,写出操作过程并画出相应图像,并判断模型是否接近于线性形式;依次点击Quick-Graph,打开Graph Options窗口,在Specific 中选择Scatter(散点图) (如图八)点击OK,得到散点图(如图九)(图八)由散点图可以看出模型接近线性形式(图九)(6) 用OLS 法对模型i i i u X Y ++=21ββ做参数估计,将估计结果保存在工作文件夹中,命名为eq01,写出操作过程和回归分析报告,并解释斜率的经济含义;在窗口空白处输入:ls y c x ,回车,得到结果如图回归分析报告:根据输出结果可得Ŷi = 26.02096 + 0.088820Xi (14.80278) (0.004356) t= (1.757843) (20.38986) R 2 = 0.960716 F=415.7464 D.W=0.626334 n=19 斜率的经济含义:斜率为0.088820,表示地区生产总值每增加1亿元,地方预算内财政收入平均来说增加0.088820亿元(7) 用OLS 法对模型i i i u X Y ++=ln ln 21ββ做参数估计,将估计结果保存在工作文件夹中,命名为eq02,写出操作过程和回归分析报告,并解释斜率 的经济含义;在主窗口空白处输入:ls lny c lnx ,回车,结果如图回归分析报告:根据输出结果可得lny = -1.272730 + 0.873867lnx(0.238775) (0.032394) t= (-5.330249) (26.9761) R 2 = 0.977172 F=727.7097 D.W= 0.811127 n=19 斜率的经济含义:斜率为0.873867,表示地区生产总值每增加1亿元,地方预算内财政收入平均来说增加0.0873867亿元(8) 将保存工作文件夹保存在桌面,文件名为test1.wfl ;依次点击File-Save As 将文件保存在桌面,命名为test1.wfl (9) 对eq01的估计结果做经济意义检验和统计检验(05.0=α),估计的效果如何?经济意义检验:x 的系数β2的估计值为0.088820,说明地区生产总值每增加1亿元,地方预算内财政收入平均来说增加0.088820亿元,该值处于(0,1)符合预期。
计量经济学Eviews软件应用2---【线性回归模型】--1次课
Eviews软件操作实例
例2:经研究发现,学生用于购买书籍及课外读物的支
出与本人受教育年限和其家庭收入水平有关,对18名 学生进行调查的统计资料见表2-2,其中,Y——购买 书籍及课外读物支出(元/年); X1 ——受教育年限 (年);X2 —— 家庭月可支配收入(元/月)。要求 通过使用Eviews软件: (1)试建立学生购买书籍及课外读物的支出 Y 与受 教育年限 X1 和家庭收入水平X2 的二元线性回归模 型; (2)假设有一学生的受教育年限X1= 10 年,家庭月 可支配收入 X2 =480元/月,试预测该学生全年购买书 籍及课外读物的支出,并给出相应的预测区间。
Eviews软件操作实例
(三) 做散点图
菜单方式:组窗口工具条View/Graph/Scatter/Simple Scatter →X 和Y 的散点图(以X 列的观测值为横坐标,以Y 列的观测值为纵坐标,在 X-Y 坐标系中描点得到 X 和 Y 两个变量的散点图) ,点击Freeze冻结为一个图→Name命 名graph01→此图的图标出现在工作文件目录中; 或者Eviews主菜单中的Quick/Graph/Scatter →弹出的文 本框中输入 X Y →OK →打开未命名的图窗口→Name命 名; 命令方式:scat X Y 然后回车 (打开未命名的图窗口,可name命名)
Eviews软件操作实例
(一) 工作文件基本操作 2、保存工作文件
直接点击工作文件窗口工具条中的“Save” 或者选择
Eviews主菜单中的 File/Save→如果工作文件已命名 (example1 ), 弹出“Workfile Save”对话框(默认状态) → 点击Ok后系统自动将工作文件保存在默认目录下,扩 展名为wf1;
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、建立模型 菜单方式:选object/new object,在新建对象对话 框中选对象为Equation,并命名,点击OK 或选Quick/estimate equation. 命令方式: 在主窗口命令行输入: Ls qmg=c(1) +c(2)*car+c(3)*pmg+c(4)*pop+c(5)*rgnp 或等价的输入变量列表 Ls Qmg c car pmg pop rgnp
2.预测
菜单命令是对方程对象操作proc/forecast
,或 直接从工具栏中选Forecast,Eviews会产生 一个新的对话框,可以生成名为原自变量名 加f名的新序列,也可自己命名。
均方根误差; MAE平均绝对误差 MAPE即平均绝对百分误差 Theil inequality coefficient 希尔不等系数 Bias proportion 偏差率 Variance proportion 方差率 Covariance proportion 协变率
线性化方法
在某些情形下,可以将这些非线性模型,通
过一定的变换线性化,作为线性模型处理。 这类模型称为可线性化的非线性模型。
例3
case3是某企业在16个月度的某产品产量(X)
和单位成本(Y)资料,研究二者关系 。
为了明确产量和单位成本是何种关系,先绘
制散点图。
三个备选模型:
多元线性回归模型案例
case2是1950-1987年间美国机动汽油消费量
和影响消费量的变量数值。其中各变量表示: QMG-机动车汽油消费量;MOB-汽车保有量; PMG-机动汽油零售价格;POP-人口数; GNP-按照1982年美元计算的GNP;以汽油 消费量为因变量,其它变量为自变量,建立 一个回归模型。
2、画散点图。
命令方式: scat y x 菜单方式:从EViews主菜单中点击Quick 键,选择Graph/ Scatter功能 Group操作方式:首先要将序列y和x组成 一个群,再在主窗口选择菜单View/Graph/Scatter 画图时应该先输入横轴的变量名,再输入纵 轴的变量名。
从输出结果看,上述三种模型的回归系数和
回归方程都通过了显著性检验。说明用这三 种模型来描述x和y的关系都是很好的。决定 系数相差不大,但双曲线的决定系数最大。 以双曲线模型作为终选模型。
虚拟变量的应用
一般的线性回归模型,变量取值都是具体的连续数 值,例如国民生产总值、职工年人均收入等,这些 都属于定量变量。然而,实际问题中经常会碰到这 样一些变量,如性别、职称、历史时期(计划经济或 市场经济)等,不是用数值度量的,被称为定性变量。 含有定性变量的线性回归问题可分为自变量含定性 变量和因变量含定性变量两种情况,由于后者比较 复杂,本节只讨论自变量含定性变量的情况。
输出结果中,
Error (标准误差) :主要用来衡量回归系 数的统计可靠性。标准误差越大,回归系数 估计值越不可靠。 t - Statistic (t统计量) :检验的是某个系数是否 为零(该变量是否不存在于回归模型中) 。 prob (概率),此列显示在服从t分布条件下, 对应其左侧一列t统计量值的概率。通过这一 信息可以方便地分辨出是拒绝还是接受系数 真值为零的假设。正常情况下,概率低于 0.05即可认为对应系数显著不为零。
1 Z x y a bZ
Z ln x y a bZ
ln y ln axb ln a b ln x T ln y Z ln x c ln a T c bZ
按照线性化的法则,建立非线性模型有两种
方法 1、用genr命令按变换函数生成新序列,再运 用LS命令对新序列进行参数估计。 Genr z=1/x Ls y c z 2、在使用LS命令时直接对序列进行操作而 不必生成任何新序列。 Ls y c 1/x 在条件许可的情况下建议使用第二种处理方 法。
X=20条件下模型的样本外预测方法
把工作文件范围从原来的1~16改为1
~17。 打开x的数据窗口,利用Edit +/-键给x的第17 个观测值赋值为20。 输出结果窗口中点击Forecast键,随即弹出 一个关于预测(Forecast)的对话框。yf 在 Forecast name选择区自动生成, yf是保存预 测值的变量。 在Forecast sample选择区把预测范围从1 ~ 17改为17 ~ 17,即只预测x =20时的y的值。
Sum
Dependent Var (被解释变量的均值) : 被解释变量的样本均值。 F-Statistic (F统计量) :这是对回归方程中的所 有系数均为0(除了常数项)的假设检验。Prob (F-Statistic) (F统计量对应的概率) :该项是由 上面F统计量的值计算出的概率。
Mean
3.EViews的操作
解释变量中含有定性变量的问题比较简单,
EViews的操作步骤与一般多元线性回归模型 的建模过程基本相同,只需将定性变量看作 一般数值变量操作即可。
例 case24
回归函数的截距有特定的经济学意义,这里
它代表了女教师的平均初职年薪 对回归模型的解释如下,当性别变量为常量 时,平均年薪将增加1371美元,当教龄变量 保持不变时,男老师的平均年薪比女老师多 3334美元。由于虚拟变量的系数是统计显著 的,因此我们能够说两类老师的平均年薪不 同,虽然男女老师平均年薪对教龄有相同的 年增长率。
首先作图,观察季节波动趋势与长期趋势。
从工作文件主菜单中点击Quick键,选
Generate Series功能、弹出的对话框中填入 DI =@seas(1)定义虚拟变量D1,
即如果数据属于第1季度则D1=1,否则D1=0。
同理定义虚拟变量D2、D3以区别第2季度和
第3季度的值(注意:不能在含有常数项的模型 中同时使用4个虚拟变量)。
4、结果显示 点击方程对象窗口中的View键: Actual, Fitted, Residua/Actual, Fitted, Residual Table功能,可以得到图形,用来进行残差分析。 Presentation,可以得到输出结果的代数表达式 Stats键,可以还原回第一种显示方式。 Name键,可以为此输出结果命名 Estimate键,可以随时改变估计模型的数学形式、 样本范围以及估计方法。
1.虚拟变量的设立
在建立回归模型之前,首先应对属于定性变
量的自变量加以数量化处理,常用方法是引 入只取0和1两个值的名义(Dummy)变量。
例如研究职工工作量的回归模型: 其中,yi和xi分别表示第i个职工的工作量及工
作时间, Di是一个定性变量。引入的虚拟变量,又称 哑变量。 当描述的事物或现象有m种情况时,引入虚 拟变量的个数应为m-1。
2、虚拟变量的引入方式 (1)加法类型 (2)乘法类型 用不同方式引入虚拟变量将反映不同的影响效 果,所以设置虚拟变量时,最好先根据散点图或经 济分析,大致判断定性因素的影响类型(即影响截 距还是斜率),然后再用加法方式或乘法方式在模 型中设置虚拟变量。 实际应用中,事先往往难以确定定性因素的影响类 型。因此,一般是直接以加法和乘法方式引入虚拟 变量,然后再利用t检验判断其系数是否显著不等于 0,进而确定虚拟变量的引入方式。
第二章 线性回归模型
一元线性回归模型
多元线性回归模型 可线性化模型 虚拟变量
一元线性回归模型案例
Case1是黑龙江省伊春林区1999年16个林业
局的年木材采伐量和相应伐木剩余物数据。 下面利用该数据介绍怎样利用EViews软件进 行OLS回归
1、数据文件的读取或打开。
执行EViews估计命令Fra biblioteky c @trend(1982.1) d1 d2 d3
由于D2、D3的回归参数没有显著性,说明没
有必要把第2季度、第3季度单独分类。从模 型中剔除虚拟变量D2、D3, 执行EViews估计命令,y c @trend(1982.1) d1 估计结果说明对于这组数据,只把第1季度区 别于其他3个季度就可以了
利用极大似然法估计模型参数
这就是变量Y的似然函数。对似 然函数求极大值和对对数似然函 数求极大值是等价的。
EViews编程
以case1为例。 先在object中打开logl对象 在logl对象窗口输入: @logl logl1 @param c(1) -0.7 c(2) 0.4 c(3) 4 Res=y-c(1)-c(2)*x Var=c(3) Logl1=log(@dnorm(res/@sqrt(var)))-log(var)/2
例5
中国进出口模型。中国进出口贸易总额数据 (1950-1984年)见trade.xls。试检验改革开放前 后该时间序列的斜率是否发生变化。 以1978年前为0
y b0 b1x a1D1 a2 X D1 u
例6 虚拟变量在季节调整中的应用
1982
: 1 ~ 1985 : 4中国季度酒销量(y,,万吨) 数据见case36,这是一个时间序列数据,呈 明显的季节变化特征,建立模型时应该加入 季节虚拟变量以描述季节特征。
RMSE
多元线性回归模型的极大似然估计
用对数极大似然估计来估计一个模型,主要的工作 是建立用来求解似然函数的说明文本。 EViews中似然函数的说明只是一系列对序列的赋值 语句,这些语句在极大化的过程中被反复的计算。 我们要做的是写下一组语句,在计算时,这些语句 将描述一个包含每个观测值对似然函数贡献的序列。
Std.
R-squared(可决系数)
: 表示拟合优度的好坏, 可决系数越大,方程拟合得越好。 S. E. of regression (回归的标准误差):这是一 个对预测误差大小的总体度量,是对残差大 小的度量。