向量自回归模型(VAR)_Eviews实现共213页文档

合集下载

var-向量自回归模型

var-向量自回归模型

预测评估
采用适当的评估方法(如均方误差、平均绝 对误差等)对预测结果进行评估,以确保预 测的准确性和可靠性。
政策建议与展望
政策建议
根据VAR模型的实证分析结果,提出针对性 的政策建议,以促进经济的稳定和可持续发 展。
展望
对VAR模型未来的发展趋势和应用前景进行 展望,为进一步研究提供方向和思路。
05
VAR模型的优缺点与改 进方向
VAR模型的优点
01
描述经济变量之间的ຫໍສະໝຸດ 态关系VAR模型能够描述多个经济变量之间的动态关系,通过分析变量之间的
相互影响,揭示经济系统的内在机制。
02
避免结构化约束
VAR模型不需要对经济变量之间的因果关系进行结构化约束,而是通过
变量自身的历史数据来分析相互影响,减少了主观因素对模型的影响。
模型估计与结果解读
模型估计
采用适当的统计软件(如EViews、Stata等)对VAR模型进行估计,确定模型的最佳滞 后阶数,并检验模型的稳定性。
结果解读
对估计结果进行详细解读,包括各经济指标之间的动态关系、长期均衡关系等,以便更 好地理解经济现象。
模型预测与评估
模型预测
利用估计好的VAR模型对未来经济走势进行 预测,为政策制定提供参考依据。
拓展应用领域
可以将VAR模型拓展应用到其他领域,如金融市 场、环境经济学、健康经济学等,以揭示不同领 域变量之间的动态关系。
THANKS FOR WATCHING
感谢您的观看
金融市场分析
VAR模型可用于分析股票、债券等金 融市场的相关性,以及市场波动对其 他经济指标的影响。
国际经济关系研究
VAR模型可用于分析不同国家之间的 经济关系,例如贸易往来、汇率变动 等。

Eviews中向量自回归模型VAR解读PPT课件

Eviews中向量自回归模型VAR解读PPT课件
一、向量自回归(VAR)模型定义
• VAR模型是自回归模型的联立形式,所以称向量自回归模型。假设y1t,y2t之间存在关系,如果分别建立两 个自回归模型
• y1t = f (y1,t-1, y1,t-2, …) • y2t = f (y2,t-1, y2,t-2, …) • 则无法捕捉两个变量之间的关系。如果采用联立的形式,就可以建立起两个变量之间的关系。
• (4)VAR模型的另一个特点是有相当多的参数需要估计。比如一个 VAR模型含有三个变量,最大滞后期k = 3,则有k N 2 = 3 32 = 27个参数需要估计。当样本容量较小时,多数参数的估计量误差较大。
• (5)无约束VAR模型的应用之一是预测。由于在VAR模型中每个方程 的右侧都不含有当期变量,这种模型用于样本外一期预测的优点是不必 对解释变量在预测期内的取值做任何预测。
• 在残差序列数据组窗口中点击View键,选择Covariances功能
第25页/共28页
上一排数值为方差或协方差,下一排为相 关系数。
第26页/共28页
五、VAR、协整与VEC模型
第27页/共28页
感谢您的欣赏!
第28页/共28页
• (6.3)u中t ,(u1t , u2t ,uNt )' 第3页/共28页
11, j
j
21, j
N1, j
12, j 22, j
N 2, j
1N, j
2N,
j
,
j
1,2,, k
NN
,
j
对单一方程而言,每个方程的随机误差项独立不相关(时间序列上前 后不相关),但对模型而言,不同方程的随机误差项存在相关性。
第12页/共28页
特征根数值

向量自回归(VAR)模型PPT课件

向量自回归(VAR)模型PPT课件
可以看出,模型(8.46)对应的正是 利用OLS方法,Y j t 对 X t 进行回归得到的系 数估计值。
8.2.2 VAR模型的设定
1).使用平稳变量还是非平稳变量
Sims, Stock, 和 Watson (1990) 提出,非平稳序列仍然可以放在VAR模型 中,通过估计结果分析经济、金融含义。
估计方法
Yt C 1Yt1 2Yt2 L Yp t p t
t : i.i.d.N (0, )
(1)MLE : l () ( nT ) ln(2 ) (T ) ln 1
2
2

1 2
T t 1
(Yt

X t )1(Yt
Xt )
略了y 1 t 和 y 2 t 之间的互动关系,整个VAR模
型是一个互动的动态系统!
另一个例子,

y1t y2t


0.9

0
.1
0.1
0.8


y1,t 1 y2,t 1


1t


2
t

1 0.9 z 0.1z
(z) n 1z 0.2 z
关于VMA ( ) ,以下几点需要注意:
第一,因为矩阵F是由VAR模型中的 系数组成的,所以, ( L ) 是这些系数的非 线性函数。
第二,在VMA模型中,方程右侧只有
向量白噪音过程(和均值 )出现。这可
以理解为,当滞后项Y t j 经过反复迭代之 后都从VAR(p)中被替换掉了。
8.2 VAR模型的估计与相关检验
n p 1 p1 2 p2 L p 0
的根落在单位圆内。

向量自回归模型

向量自回归模型
移而发生突变。
诊断主要是对模型残差进行一系列检验, 如果诊断结果表明模型存在问题,需要
以判断模型是否充分拟合了数据,是否 对模型进行修正或重新设定,以确保模
存在异常值或违反模型假设的情况。常
型的准确性和可靠性。
见的诊断方法包括残差诊断、正态性检
验、异方差性检验等。
03
向量自回归模型的实现
向量自回归模型的编程语言实现
诊断与修正困难
向量自回归模型在诊断和修正模型中的问题时较为复杂,需要较高 的统计技巧和经验。
对数据要求高
向量自回归模型要求数据具有平稳性,对于非平稳数据需要进行差分 或其他处理,可能会影响模型的准确性和稳定性。
向量自回归模型的发展趋势与未来展望
改进估计方法
针对向量自回归模型参数过多的问题,未来研究可以探索更加有 效的参数估计方法,提高模型的泛化能力。
能够更好地捕捉时间序列数据的长期趋势和稳定性。
解释性强
02
向量自回归模型能够清晰地揭示多个变量之间的相互影响关系,
有助于理解经济现象之间的内在联系。
适用范围广
03
向量自回归模型适用于多种类型的数据,包括平稳和非平稳时
间序列数据。
向量自回归模型的缺点
参数过多
向量自回归模型需要估计的参数数量较多,容易产生过拟合问题, 导致模型泛化能力下降。
极端天气事件预测
通过向量自回归模型预测极端天气事件的发生, 如暴雨、洪涝、干旱等,有助于减轻灾害损失。
3
气候变化对生态系统的影响
利用向量自回归模型分析气候变化对生态系统的 影响,如植被分布、物种多样性和生态平衡等。
向量自回归模型在社会科学领域的应用
经济发展预测
通过分析历史经济发展数据,利用向量自回归模型预测未来经济 发展趋势,为政策制定提供依据。

向量自回归模型

向量自回归模型
没有结构性的含义,被称为简化形式的冲击向量。
为了叙述方便,下面先考虑的VAR模型都是不含外生 变量的非限制向量自回归模型,用下式表示
yt A1 yt1 Ap yt p εt 或
A(L) yt εt
(1.5)
11
VAR模型的稳定性
现在讨论VAR模型的稳定性。稳定性是指当 把一个脉动冲击施加在VAR模型中某一个方 程的新息(innovation)过程上时,随着时 间的推移,这个冲击会逐渐地消失。如果是 不消失,则系统是不稳定的。
42
可以在对话框内添入相应的信息: (1) 选择模型类型(VAR Type):
无约束向量自回归(Unrestricted VAR)或者向量误 差修正(Vector Error Correction)。无约束VAR模型是 指VAR模型的简化式。 (2) 在Estimation Sample编辑框中设置样本区间。
9
IPt a11IPt1 a12M1t1 b11IPt2 b12M1t2 C1 1,t
M1t a2,1IPt1 a22M1t1 b21IPt2 b22M1t2 C2 2,t
其中,aij ,bij , ci 是要被估计的参数。也可表示成:
参数的估计量误差较大。
(5)无约束VAR模型的应用之一是预测。由于在VAR模型
中每个方程的右侧都不含有当期变量,这种模型用于样本
外一期预测的优点是不必对解释变量在预测期内的取值做
任何预测。
(6)用VAR模型做样本外近期预测非常准确。做样本外长
期预测时,则只能预测出变动的趋势,而对短期波动预测
C(L) C0 C1L C2 L2 C0 Ik
39

向量自回归(VAR)模型PPT课件

向量自回归(VAR)模型PPT课件



s1 t1

F (s 11
)
(Yt

)

F (s) 12
(Yt
1

)


F (s) 1p
(Yt (
p 1)

)
其中:i

F (i 11
)
,
F (i 11
)
表示F i
矩阵的左上角
的部分,而F i 是矩阵F的 i次幂。
只 要 VAR(p)模 型 为 平 稳 系 统 , 就 确 保 了
1 z 0.6z
(z) n 1z 0.5z
0 10.7z
(1 z)(10.7z) 0.3z2 0
z2 0.75z 2.5 0
z1 5/ 4, z2 2
在上面给出的例子中,很明显第一个 等式的自回归系数是1(11 1 ),但是整个 VAR(1)系统是平稳的!所以,整个VAR模 型系统的平稳与否,千万不能单凭某一个 等式中的自回归系数判断,而是要考虑整 个系统的平稳性条件。这是因为,在只考 虑单个等式中的某个自回归系数时,却忽
8.2 VAR模型的估计与相关检验
8.2.1 VAR模型的估计方法
虽然VAR模型系统比一维模型看上去 复杂得多,但是用来估计VAR的方法却并 不一定很繁难。常见的估计方法包括最 大似然估计(Maximum Likelihood Estimator,MLE)和常见的最小二乘估 计(OLS)。在特定条件下,MLE与OLS估 计获得的系数是完全相同的。
8.1.5 VAR模型与VMA模型的转化
VMA过程,就是用向量形式表示的移 动平均过程,在这样的移动平均过程中, 随机扰动项以向量白噪音的形式出现。所 以,一个VMA(q)过程的定义为:

Eviews向量自回归模型

Eviews向量自回归模型

9
表中的每一列对应 VAR模型中一个内生变量的方 程。对方程右端每一个变量,EViews会给出系数估计

值、估计系数的标准差 ( 圆括号中 ) 及 t- 统计量 ( 方括号
中)。
同时,有两类回归统计量出现在VAR对象估计输
出的底部:
10
11
输出的第一部分显示的是每个方程的标准OLS回归 统计量。根据各自的残差分别计算每个方程的结果,
计算对数似然值:
Tn T ˆ l 1 ln 2π ln Σ 2 2
AIC和SC两个信息准则的计算将在后文详细说明。
13
二 VAR模型的检验
无论建立什么模型,都要对其进行识别和检验,以
判别其是否符合模型最初的假定和经济意义。本节简单
介绍关于VAR模型的各种检验。这些检验对于后面将要 介绍的向量误差修正模型(VEC)也适用。 (一) Granger因果检验 VAR模型的另一个重要的应用是分析经济时间序列 变量之间的因果关系。本节讨论由 Granger(1969) 提出, Sims(1972) 推广的如何检验变量之间因果关系的方法。
相互之间可以同期相关,但不与自己的滞后值相关及不与
等式右边的变量相关
3
由于仅仅有内生变量的滞后值出现在等式的右边,所 以不存在同期相关性问题,用普通最小二乘法 (OLS)能得
到VAR简化式模型的一致且有效的估计量。即使扰动向量
t有同期相关,OLS仍然是有效的,因为所有的方程有相
同的回归量,其与广义最小二乘法 (GLS)是等价的。注意, 由于任何序列相关都可以通过增加更多的 yt的滞后而被消 除(absorbed),所以扰动项序列不相关的假设并不要求 非常严格。
4
(二)EViews软件中VAR模型的建立和估计

实验十一 向量自回归模型(VAR模型)

实验十一  向量自回归模型(VAR模型)
实验十一 协整与向量自回归模型
1
协整
0、问题的提出
经典回归模型 (classical regression model)是建立在 稳定数据变量基础上的,对于非稳定变量,不能使用经典 回归模型,否则会出现虚假回归等诸多问题。 由于许多经济变量是非稳定的,这就给经典的回归分析方 法带来了很大限制。 但是,如果变量之间有着长期的稳定关系,即它们之间是 协整 的( cointegration) ,则是可以使用经典回归模型方 法建立回归模型的。 例如,中国居民人均消费水平与人均GDP变量的例子中: 因果关系回归模型要比ARMA模型有更好的预测功能, 其原因在于,从经济理论上说,人均GDP决定着居民人均 消费水平,而且它们之间有着长期的稳定关系,即它们之 间是协整的(cointegration)。
12
二、协整检验的具体方法 (一)EG检验
假如Xt和Yt都是I (1),如何检验它们之间是否存 在协整关系,我们可以遵循以下思路:
首先用OLS对协整回归方程 yt xt t 行估计。 进
然后,检验残差 e 是否是平稳的。因为如果Xt和 t Yt没有协整关系,那么它们的任一线性组合都是 非平稳的,残差 et 也将是非平稳的。
从协整的定义可以看出:
(d,d)阶协整是一类非常重要的协整关系,它的经济意义 在于: 两个变量,虽然它们具有各自的长期波动规律,但 是如果它们是(d,d)阶协整的,则它们之间存在着一个长 期稳定的比例关系。 例如:假设中国CPC和GDPPC,它们各自都是2阶单整, 并且将会看到,它们是(2,2)阶协整,说明它们之间存在着 一个长期稳定的比例关系,从计量经济学模型的意义上讲, 建立如下居民人均消费函数模型
CPCt 0 1GDPPC t t

向量自回归模型

向量自回归模型
The Royal Swedish Academy of Sciences has decided to award the Sveriges Riksbank Prize in Economic Sciences in Memory of Alfred Nobel for 2011 to Thomas J. Sargent, New York University, New York, NY, USA, and Christopher A. Sims, Princeton University, Princeton, NJ, USA, “for their empirical research on cause and effect in the macroeconomy”
2、结构向量自回归模型 (Structural Vector Auto-Regression,SVAR)
添加标题
西姆斯(1986)以及布兰查德(Q.J.Blanchard)和匡赫(D.Quah)(1989)
添加标题
变量之间的当期关系揭示了变量之间的相互影响,实际上是对VAR模型施加了基于经济理论的限制性条件,从而识别变量之间的结构关系。
检验结果
4、几个应用中的实际问题
滞后期长度的选择问题
检验结果对于滞后期长度的选择比较敏感,不同的滞后期可能会得到不同的检验结果。 一般而言,需要进行不同滞后期长度下的检验,观察其敏感程度;并且根据模型中随机误差项不存在序列相关时的滞后期长度来选取滞后期。 例题中不同滞后期的检验结果
从2阶滞后期开始,检验模型都拒绝了“X不是Y的格兰杰原因”的假设,而不拒绝“Y不是X的原因”的假设。 滞后阶数为2或3时,两类检验模型都不存在序列相关性。 由赤池信息准则,发现滞后2阶检验模型拥有较小的AIC值。 可判断:可支配收入X是居民消费支出Y的格兰杰原因,而不是相反,即国民收入的增加更大程度地影响着消费的增加。

VAR(向量自回归)模型

VAR(向量自回归)模型

系;确定滞后期。 3)VAR 模型没有参数的零约束。 4)VAR 模型中有相当多的参数需要估计。 一.向量自回归的条件似然函数 令 yt 表示包含时期 t 的 n 个变量的值,为 ( n ×1) 向量。假定 yt 的动 态服从 p 阶高斯向量自回归
yt = c + Φ1 yt −1 + Φ 2 yt − 2 + ... + Φ p yt − p + ε t
( 5)
VAR ( p ) 系统中,每一个变量对常数项和它的 p 阶滞后值,同时对 VAR ( p ) 中的其他变量的 p 阶滞后值回归。每个回归中,其解释变量相
同。 例如 VAR(2)模型为
⎛ yt ⎞ ⎛ C111 C112 ⎞ ⎛ yt −1 ⎞ ⎛ C211 C212 ⎞ ⎛ yt − 2 ⎞ ⎛ u1t ⎞ ⎜ ⎟=⎜ ⎟+⎜ ⎟+⎜ ⎟ ⎟⎜ ⎟⎜ ⎝ xt ⎠ ⎝ C121 C122 ⎠ ⎝ xt −1 ⎠ ⎝ C221 C222 ⎠ ⎝ xt − 2 ⎠ ⎝ u2t ⎠
t =1 t =1
(27)
中间项是一个数量,所以运用迹算子
T ⎡T ⎤ 2∑ ε t′Ω −1 ( Π − Π )′ xt = trace ⎢ ∑ ε t′Ω −1 ( Π − Π )′ xt ⎥ t =1 ⎣ t =1 ⎦
⎡T ⎤ = trace ⎢ ∑ Ω −1 ( Π − Π )′ xt ε t′ ⎥ ⎣ t =1 ⎦
(22)
二. Π 的极大似然估计 命题 1: Π 极大似然估计 MLE 为
⎡T ⎤⎡ T ⎤ Π ′ = ⎢ ∑ yt xt′ ⎥ ⎢ ∑ xt xt′ ⎥ ⎣ t =1 ⎦ ⎣ t =1 ⎦
−1
(23)

向量自回归模型(VAR)-Eviews实现

向量自回归模型(VAR)-Eviews实现
缺点
对于滞后阶数的选择存在主观性,可 能导致模型拟合不足或过度拟合;无 法进行因果检验和结构分析。
02 Eviews软件介绍
Eviews软件的特点
界面友好
Eviews软件采用图形用户界面,操作简便,易 于上手。
灵活多变
Eviews软件支持自定义函数和命令,用户可以 根据需要自行编写程序。
ABCD
系方面的有效性。
实证分析中,我们采用了国内生 产总值(GDP)、消费者价格指数 (CPI)和货币供应量(M2)三个经 济指标,通过VAR模型分析它们 之间的动态关系,并利用Eviews 软件进行了模型估计和检验。
实证结果表明,VAR模型能 够有效地描述多个时间序列 变量之间的动态关系,并且 通过Eviews软件可以实现方
02
模型通过估计变量之间的滞后系数来分析变量之间 的动态关系。
03
滞后阶数决定了模型中包含的滞后项数量,滞后阶 数越多,模型拟合的自由度越少。
VAR模型的应用场景
用于分析多个经济指标或金融变量之间的动态关 系。 用于预测经济趋势和政策效应。
用于评估经济政策的有效性。
VAR模型的优缺点
优点
能够同时考虑多个时间序列变量之间 的动态关系,能够捕捉到变量之间的 长期均衡关系和短期调整机制。
预测性能评估
使用各种预测性能指标, 如MSE、MAE、RMSE等, 对VAR模型的预测性能进 行评估。
04 案例分析
案例选择与数据准备
案例选择
选择一个具有代表性的经济时间序列数据集,如股票收益率、汇 率等。
数据准备
收集所需数据,进行数据清洗和整理,确保数据准确性和一致性。
数据预处理
对数据进行必要的预处理,如缺失值填充、异常值处理等。

第十一章_向量自回归(VAR)模型和向量误差修正(VEC)模型_理论及EVIEWS操作

第十一章_向量自回归(VAR)模型和向量误差修正(VEC)模型_理论及EVIEWS操作

19
表11.3
P AIC
AIC与SC随P的变化
SC
Lnl(P )
1 2 3 4
-5.3753 -5.6603 -5.8804 -5.6693
-4.8474 -4.7271 -4.5337 -3.9007
108.7551 120.0551 129.9676 132.5442
由表11.3知,在P=1时,SC 最小(-4.8474) ,在P=3时,AIC 最小(-5.8804),相互矛盾不 能确定P值,只能用似然比LR确定P值。
模型形式 (C t p)
(c 0 3) (c 0 0) (c 0 0)
DW值
1.6551 1.9493 1.8996
结论
LGDPt ~I(1) LCt ~I( 1) LIt~I(1)
LCt
2
LIt
2
注 C为位移项, t为趋势,p为滞后阶数。
由表11.1知, LGDPt、 LCt和LIt均为一阶单 整,可能存在协整关系。
待估参数个数为2 × 2×2= P N 2 用线性方程组表示VAR(2)模型:
y t 1 1 1 y t 1 1 1 2 x t 1 2 1 1 y t 2 2 1 2 x t 2 u 1t x t 1 2 1 y t 1 1 2 2 x t 1 2 2 1 y t 2 2 2 2 x t 2 u 2 t
4
政策分析。但实际中,这种模型的效果并不令人满 意。
联立方程组模型的主要问题:
(1)这种模型是在经济理论指导下建立起来的结构模型 。遗憾的是经济理论并不未明确的给出变量之间的动态关 系。 (2)内生、外生变量的划分问题较为复杂; (3)模型的识别问题,当模型不可识别时,为达到可识别 的目的,常要将不同的工具变量加到各方程中,通常这种 工具变量的解释能力很弱; (4)若变量是非平稳的(通常如此),则会违反假设, 带来更严重的伪回归问题。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档