极坐标与参数方程最新题型
专题12-1 参数方程与极坐标归类-2023年高考数学一轮复习热点题型(全国通用)(原卷版)
【提分秘籍】
基本规律
极坐标一线两点(一般直线或射线过极点):
| AB | |2 -1|=|B A(| 若是韦达定理型,则= 2 +1 2 -421)
【变式演练】
在平面直角坐标系中,曲线
C1
的参数方程为
x y
3 cos 2 sin
(
为参数),以
O
为极点,x
,求
AB
.
【题型二】参数方程难点 1:万能代换型消参
【典例分析】
在直角坐标系
xOy
中,曲线
C
的参数方程为
x
1 1
t t
2 2
,
(t
为参数).以坐标原点
O
为极点,x
轴的
y
1
4t t
2
正半轴为极轴建立极坐标系,直线 l 的极坐标方程为 2 cos 3 sin 11 0 .
(1)求 C 和 l 的直角坐标方程;(2)求 C 上的点到 l 距离的最小值.
三、极坐标体系弦长公式
(1)一线两点(一般直线(射线)过极点
| AB | |2 -1|=|B A(| 若是韦达定理型,则= 2 +1 2 -421)
(2)两线两点:余弦定理 | AB |2 =22 +12 -221 co(s 2 -1)
【变式演练】
在直角坐标系
xOy
中,曲线 C1 的参数方程为
l
的极坐标方程为
sin
3
2
.
(1)求曲线 C 的普通方程和直线 l 的直角坐标方程; (2)设直线 l 与 y 轴的交点为 P,经过点 P 的动直线 m 与曲线 C 交于 A,B 两点,证明: PA PB 为定值.
高考极坐标与参数方程大题题型汇总(附详细答案)
高考极坐标与参数方程大题题型汇总1.在直角坐标系xoy 中,圆C 的参数方程1cos (sinx y 为参数).以O 为极点,x 轴的非负半轴为极轴建立极坐标系.(1)求圆C 的极坐标方程;(2)直线l 的极坐标方程是(sin 3cos )33,射线:3OM 与圆C 的交点为O 、P ,与直线l 的交点为Q ,求线段PQ 的长.解:(1)圆C 的普通方程是22(1)1x y,又cos ,sinx y ;所以圆C 的极坐标方程是2cos. ---5分(2)设11(,)为点P 的极坐标,则有1112cos 3解得1113.设22(,)为点Q 的极坐标,则有2222(sin 3cos )333解得2233由于12,所以122PQ,所以线段PQ 的长为 2.2.已知直线l 的参数方程为431x t ayt (t 为参数),在直角坐标系xOy 中,以O 点为极点,x 轴的非负半轴为极轴,以相同的长度单位建立极坐标系,设圆M 的方程为26sin8.(1)求圆M 的直角坐标方程;(2)若直线l 截圆M 所得弦长为3,求实数a 的值.解:(1)∵2222268(36si )n81xyy xy ,∴圆M 的直角坐标方程为22(3)1xy ;(5分)(2)把直线l 的参数方程431x t ayt (t 为参数)化为普通方程得:34340x y a ,∵直线l 截圆M 所得弦长为3,且圆M 的圆心(0,3)M 到直线l 的距离22|163|3191()5222a da或376a,∴376a或92a.(10分)3.已知曲线C 的参数方程为sin51cos 52yx(为参数),以直角坐标系原点为极点,Ox 轴正半轴为极轴建立极坐标系。
(1)求曲线c 的极坐标方程(2)若直线l 的极坐标方程为(sin θ+cos θ)=1,求直线l 被曲线c 截得的弦长。
解:(1)∵曲线c 的参数方程为sin51cos 52yx(α为参数)∴曲线c 的普通方程为(x-2)2+(y-1)2=5将sincos yx代入并化简得:=4cos θ+2sin θ即曲线c 的极坐标方程为=4cos θ+2sin θ(2)∵l 的直角坐标方程为x+y-1=0∴圆心c 到直线l 的距离为d=22=2∴弦长为225=234.已知曲线C :2219xy,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,直线l 的极坐标方程为sin()24.(1)写出曲线C 的参数方程,直线l 的直角坐标方程;(2)设P 是曲线C 上任一点,求P 到直线l 的距离的最大值.解:(1)曲线C 的参数方程为3cos sinxy(为参数),直线l 的直角坐标方程为2x y(2)设(3cos,sin)P ,P 到直线l 的距离10cos()23cossin 222d(其中为锐角,且1tan3)当cos()1时,P 到直线l 的距离的最大值max52d 5.设经过点(1,0)P 的直线l 交曲线C :2cos 3sinxy(为参数)于A 、B 两点.(1)写出曲线C 的普通方程;(2)当直线l 的倾斜角60时,求||||PA PB 与||||PA PB 的值.解:(1)C :22143xy.(2)设l :11232x tyt(t 为参数)联立得:254120tt 212121216||||||45PA PB t t t t t t ,1212||||||5PA PB t t 6.以直角坐标系的原点O 为极点,x 轴的正半轴为极轴建立极坐标系,已知点P 的直角坐标为(1,2),点M 的极坐标为(3,)2,若直线l 过点P ,且倾斜角为6,圆C 以M 为圆心,3为半径.(1)求直线l 的参数方程和圆C 的极坐标方程;(2)设直线l 与圆C 相交于,A B 两点,求PA PB.解:(1)直线l 的参数方程为31,212,2x t yt 为参数)t (,(答案不唯一,可酌情给分)圆的极坐标方程为sin6.(2)把31,212,2x t yt 代入22(3)9xy ,得2(31)70tt ,127t t ,设点,A B 对应的参数分别为12,t t ,则12,PAt PBt ,7.PAPB7.在平面直角坐标系xOy 中,直线l 的参数方程是22222x tyt (t 为参数),以原点O 为极点,以x 轴的非负半轴为极轴建立极坐标系,已知圆C 的极坐标方程为42cos()4.(1)将圆C 的极坐标方程化为直角坐标方程;(2)若直线l 与圆C 交于A ,B 两点,点P 的坐标为(2,0),试求11PA PB的值.解:(1)由42cos()4,展开化为2242(cos sin )4(cos sin )2,将代入,得22440xyx y ,所以,圆C 的直角坐标方程是22440xyxy.cos sinxy(2)把直线l 的参数方程22222x tyt(t 为参数)代入圆的方程并整理,可得:22240tt.设A ,B 两点对应的参数分别为12,t t ,则121222,40t t t t ,所以2121212()426t t t t t t .∴121212111126642t t PAPBt t t t .8.已知曲线C 的极坐标方程为2sin cos10,曲线13cos :2sin x C y(为参数).(1)求曲线1C 的标准方程;(2)若点M 在曲线1C 上运动,试求出M 到曲线C 的距离的最小值.解:(1)曲线1C 的标准方程是:22194xy(2)曲线C 的标准方程是:210xy 设点(3cos ,2sin)M ,由点到直线的距离公式得:3cos 4sin 1015cos()1055d其中34cos,sin550时,min5d ,此时98(,)55M 9.在平面直角坐标系xOy 中,直线l 的参数方程为122322x t yt(t 为参数),直线l 与曲线C :22(2)1yx交于A ,B 两点.(1)求AB 的长;(2)在以O 为极点,x 轴的正半轴为极轴建立的极坐标系中,设点P 的极坐标为322,4,求点P 到线段AB 中点M 的距离.解:(1)直线l 的参数方程为122322x t yt ,,(t 为参数),代入曲线C 的方程得24100tt .设点A ,B 对应的参数分别为12t t ,,则124t t ,1210t t ,所以12||||214AB t t .(2)由极坐标与直角坐标互化公式得点P 的直角坐标为(22),,所以点P 在直线l 上,中点M 对应参数为1222t t ,由参数t 的几何意义,所以点P 到线段AB 中点M 的距离||2PM .10.已知直线l 经过点(1,1)P ,倾斜角6,(1)写出直线l 的参数方程。
最新整理极坐标和参数方程基础知识及重点题型教程文件
高中数学回归课本校本教材24(一)基础知识 参数极坐标 1.极坐标定义:M 是平面上一点,ρ表示OM 的长度,θ是MOx ∠,则有序实数实数对(,)ρθ,ρ叫极径,θ叫极角;一般地,[0,2)θπ∈,0ρ≥。
2.常见的曲线的极坐标方程(1)直线过点M 00(,)ρθ,倾斜角为α常见的等量关系:正弦定理sin sin OP OMOMP OPM=∠∠,0OMP παθ∠=-+OPM αθ∠=-;(2)圆心P 00(,)ρθ半径为R 的极坐标方程的等量关系:勾股定理或余弦定理;(3)圆锥曲线极坐标:1cos epe ρθ=-,当1e >时,方程表示双曲线;当1e =时,方程表示抛物线;当01e <<时,方程表示椭圆.提醒:极点是焦点,一般不是直角坐标下的坐标原点。
极坐标方程324cos ρθ=-表示的曲线是 双曲线3.参数方程:(1)圆222()()x a x b r -+-=的参数方程:cos ,sin x a r x b r θθ-=-= (2)椭圆22221x y a b+=的参数方程:cos ,sin x a x b θθ==(3)直线过点M 00(,)x y ,倾斜角为α的参数方程:00tan y y x x α-=-即00cos sin x x y y t θθ--==, 即00cos sin x x t y y t αα=+⎧⎨=+⎩注:0cos x x t θ-=,0sin y y tθ-=据锐角三角函数定义,T 几何意义是有向线段MP u u u r 的数量00000()00.t l M M x y M M M M M M t M M t ><u u u u u u r其中表示直线上以定点为起点,任意一点,为终点的有向线段的数量,当点在的上方时,;当点在的下方时,;如:将参数方程222sin (sin x y θθθ⎧=+⎪⎨=⎪⎩为参数)化为普通方程为2(23)y x x =-≤≤ 将2sin y θ=代入22sin x θ=+即可,但是20sin 1θ≤≤;4. 极坐标和直角坐标互化公式:cos sin x y ρθρθ=⎧⎨=⎩ 或222tan (0)x y yx xρθ⎧=+⎪⎨=≠⎪⎩,θ的象限由点(x,y)所在象限确定. (1)它们互化的条件则是:极点与原点重合,极轴与x 轴正半轴重合.(2)将点(,)ρθ变成直角坐标(cos ,sin )ρθρθ,也可以根据几何意义和三角函数的定义获得。
极坐标系与参数方程专题
练习题学校:___________姓名:___________班级:___________考号:___________ 评卷人 得分一、选择题1.在极坐标系中,点)65,2(π到直线4)3sin(=-πθρ的距离为( ) A .1 B .2 C .3 D .4 2.在极坐标系中,设圆C :4cos ρθ=与直线:(R)4l πθρ=∈交于A ,B 两点,求以AB 为直径的圆的极坐标方程为( ) A .22sin()4πρθ=+B .22sin()4πρθ=-C .22cos()4πρθ=+D .22cos()4πρθ=-3.化极坐标方程2cos 0ρθρ-=为直角坐标方程为( ) A .221x y +=或1y = B .1x =C .221x y +=或1x = D .1y =4.已知圆的直角坐标方程为2220x y y +-=.在以原点为极点,x 轴正半轴为极轴的极坐标系中,该圆的方程为()A .2cos ρθ=B .2sin ρθ=C .2cos ρθ=-D .2sin ρθ=-5.在极坐标中,与圆4sin ρθ=相切的一条直线方程为( )A .sin 2ρθ=B .cos 2ρθ=C .cos 4ρθ=D .cos 4ρθ=-6.参数方程2cos (3sin x y θθθ=⎧⎨=⎩,,为参数)和极坐标方程4sin ρθ=所表示的图形分别是( )(A )圆和直线 (B )直线和直线 (C )椭圆和直线 (D )椭圆和圆 评卷人 得分二、填空题7.在极坐标系中,经过点)3,4(π且与极轴垂直的直线的极坐标方程为 .8.(坐标系与参数方程选做题)极坐标系下,直线2)4cos(=-πθρ与圆2=ρ的公共点个数是________;9.极坐标系中,圆θρsin 4=的圆心到直线)(3R ∈=θπθ 的距离是 .10.已知圆C 的参数方程为cos ,(1sin .x y ααα=⎧⎨=+⎩为参数),直线l 的极坐标方程为sin 1ρθ=,则直线l 与圆C 的交点的直角坐标为 .三、解答题(题型注释)11.在平面直角坐标系中,已知直线l 过点(),12P - ,倾斜角6πα=,再以原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为3ρ=. (Ⅰ)写出直线l 的参数方程和曲线C 的直角坐标方程;(Ⅱ)若直线l 与曲线C 分别交于、M N 两点,求PM PN ⋅的值.12.在极坐标系中,已知曲线)4sin(22:πθρ-=C ,P 为曲线C 上的动点,定点)4,1(πQ .(1)将曲线C 的方程化成直角坐标方程,并说明它是什么曲线; (2)求P 、Q 两点的最短距离.13.在平面直角坐标系xOy 中,直线l 经过点(10)A -,,其倾斜角是α,以原点O 为极点,以x 轴的非负半轴为极轴,与直角坐标系xOy 取相同的长度单位,建立极坐标系.设曲线C 的极坐标方程是26cos 5ρρθ=-.(Ⅰ)若直线l 和曲线C 有公共点,求倾斜角α的取值范围; (Ⅱ)设()B x y ,为曲线C 任意一点,求3x y +的取值范围.14.在直角坐标系xoy 中,直线l 的参数方程为212242x ty t ⎧=-⎪⎪⎨⎪=-⎪⎩(t 为参数).再以原点为极点,以x 正半轴为极轴建立极坐标系,并使得它与直角坐标系xoy 有相同的长度单位.在该极坐标系中圆C 的方程为4sin ρθ=. (1)求圆C 的直角坐标方程;(2)设圆C 与直线l 交于点A 、B ,若点M 的坐标为()2,1-,求MA MB +的值.15.在极坐标系中,已知点A 的极坐标为(22,)4π-,圆E 的极坐标方程为4cos 4sin ρθθ=+,试判断点A 和圆E 的位置关系16.已知曲线1C 的参数方程为45cos ,55sin x t y t=+⎧⎨=+⎩(t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为2sin ρθ=. (1)把1C 的参数方程化为极坐标方程;(2)求1C 与2C 交点的极坐标(0,02ρθπ≥≤<).17.在平面直角坐标系xoy 中,已知曲线1cos :sin x C y θθ=⎧⎨=⎩(θ为参数),将1C 上的所有点的横坐标、纵坐标分别伸长为原来的2和2倍后得到曲线2C ,以平面直角坐标系xoy 的原点O 为极点,x 轴的正半轴为极轴,取相同的单位长度建立极坐标系,已知直线():2cos sin 4l ρθθ+=.(1)试写出曲线1C 的极坐标方程与曲线2C 的参数方程;(2)在曲线2C 上求一点P ,使点P 到直线l 的距离最小,并求此最小值.18.在直角坐标系xOy 中,以原点O 为极点,x 轴的正半轴为极轴建立极坐标系.已知曲线12cos :3sin x C y αα=-+⎧⎨=+⎩(α为参数),28cos :23sin x Cy θθ=⎧⎪⎨=⎪⎩(θ为参数). (1)将12,C C 的方程化为普通方程,并说明它们分别表示什么曲线; (2)若1C 上的点P 对应的参数为2πα=,Q 为2C 上的动点,求PQ 中点M 到直线l :cos 33πρθ⎛⎫-= ⎪⎝⎭的距离的最大值.19.在直角坐标系中,以O 为极点,x 轴正半轴为极轴建立极坐标系.曲线C 的极坐标方程为,M ,N 分别为C 与x 轴,y 轴的交点.(1)写出C 的直角坐标方程,并求M 、N 的极坐标; (2)设MN 的中点为P ,求直线OP 的极坐标方程.20.在平面直角坐标系中,以坐标原点为极点,x 轴的非负半轴为极轴建立坐标系.已知点A 的极坐标为2,4π⎛⎫⎪⎝⎭,直线的极坐标方程为cos 4a πρθ⎛⎫-= ⎪⎝⎭,且点A 在直线上.(1)求a 的值及直线的直角坐标方程;(2)圆C 的参数方程为1cos sin x y αα=+⎧⎨=⎩,(α为参数),试判断直线与圆的位置关系.21.在平面直角坐标系中,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,已知曲线C 的极坐标方程为()2sincos 0a a ρθθ=>,过点()2,4P --的直线l 的参数方程为222242x ty t ⎧=-+⎪⎪⎨⎪=-+⎪⎩(t 为参数),直线l 与曲线C 相交于,A B 两点.(Ⅰ)写出曲线C 的直角坐标方程和直线l 的普通方程; (Ⅱ)若2PA PB AB ⋅=,求a 的值.22.在直角坐标系xoy 中,直线l 的参数方程为122322x t y t ⎧=⎪⎪⎨⎪=+⎪⎩ (t 为参数),若以直角极坐标方程为2cos()4πρθ=-.(1)求直线l 的倾斜角;(2)若直线l 与曲线C 交于,A B 两点,求AB 的距离.23.已知在直角坐标系xOy 中,曲线t t y t x C (,233,211:1⎪⎪⎩⎪⎪⎨⎧+-=+-=为参数,)2≠t ,在以O 为极点,x 轴正半轴为极轴的极坐标系中,曲线θρsin 32:2=C ,曲线θρcos 2:3=C . (Ⅰ)求C 2与C 3交点的直角坐标;(Ⅱ)若C 2与C 1相交于点A ,C 3与C 1相交于点B ,求||AB 的值.24.在直角坐标系xOy 中,圆C 的参数方程1cos (sin x y ϕϕϕ=+⎧⎨=⎩为参数).以O 为极点,x 轴的非负半轴为极轴建立极坐标系. (Ⅰ)求圆C 的极坐标方程; (Ⅱ)射线4:πθ=OM 与圆C 的交点为O 、P 两点,求P 点的极坐标.25.已知曲线C 的参数方程是()cos sin x y m ααα=⎧⎨=+⎩为参数,直线l 的参数方程为()5152545x t t y t ⎧=+⎪⎪⎨⎪=+⎪⎩为参数, (1)求曲线C 与直线l 的普通方程;(2)若直线l 与曲线C 相交于,P Q 两点,且455PQ =,求实数m 的值。
极坐标,参数方程题型全套整合
参 数 方 程 集 中 训 练 题 型 大 全 答题时间:300分钟 满分:300分 命题人:杨晓帆参27.在极坐标系中,点(ρ,θ)与(-ρ, π-θ)的位置关系为( )。
A .关于极轴所在直线对称 B .关于极点对称 C .关于直线θ=2π(ρ∈R) 对称 D .重合28.极坐标方程 4ρsin 22θ=5 表示的曲线是( )。
A .圆 B .椭圆 C .双曲线的一支 D .抛物线29.点 P 1(ρ1,θ1) 与 P 2(ρ2,θ2) 满足ρ1 +ρ2=0,θ1 +θ2 = 2π,则 P 1、P 2 两点 的位置关系是( )。
A .关于极轴所在直线对称B .关于极点对称C .关于θ=2π所在直线对称 D .重合30.椭圆⎩⎨⎧Φ+-=Φ+=sin 51cos 33y x 的两个焦点坐标是( )。
A .(-3, 5),(-3, -3)B .(3, 3),(3, -5)C .(1, 1),(-7, 1)D .(7, -1),(-1, -1) 六、1.若直线的参数方程为12()23x tt y t=+⎧⎨=-⎩为参数,则直线的斜率为( )A .23B .23-C .32D .32-2.下列在曲线sin 2()cos sin x y θθθθ=⎧⎨=+⎩为参数上的点是( )A .1(,2 B .31(,)42- C . D . 3.将参数方程222sin ()sin x y θθθ⎧=+⎪⎨=⎪⎩为参数化为普通方程为( )A .2y x =- B .2y x =+ C .2(23)y x x =-≤≤ D .2(01)y x y =+≤≤4.化极坐标方程2cos 0ρθρ-=为直角坐标方程为( )A .201y y +==2x或 B .1x = C .201y +==2x 或x D .1y =5.点M的直角坐标是(-,则点M 的极坐标为( )A .(2,)3πB .(2,)3π-C .2(2,)3πD .(2,2),()3k k Z ππ+∈6.极坐标方程cos 2sin 2ρθθ=表示的曲线为( )A .一条射线和一个圆B .两条直线C .一条直线和一个圆D .一个圆 七、1.直线l 的参数方程为()x a tt y b t=+⎧⎨=+⎩为参数,l 上的点1P 对应的参数是1t ,则点1P 与(,)P a b 之间的距离是( )A .1t B .12t C1D12.参数方程为1()2x t t t y ⎧=+⎪⎨⎪=⎩为参数表示的曲线是( )A .一条直线B .两条直线C .一条射线D .两条射线3.直线112()x t t y ⎧=+⎪⎪⎨⎪=-⎪⎩为参数和圆2216x y +=交于,A B 两点,则AB 的中点坐标为( )A .(3,3)- B.( C.3)- D.(3,4.圆5cos ρθθ=-的圆心坐标是( )A .4(5,)3π--B .(5,)3π-C .(5,)3πD .5(5,)3π- 5.与参数方程为)x t y ⎧=⎪⎨=⎪⎩为参数等价的普通方程为( ) A .214y +=2x B .21(01)4y x +=≤≤2xC .21(02)4y y +=≤≤2x D .21(01,02)4y x y +=≤≤≤≤2x 6.直线2()1x tt y t=-+⎧⎨=-⎩为参数被圆22(3)(1)25x y -++=所截得的弦长为( )AB .1404CD八、1.把方程1xy =化为以t 参数的参数方程是( )A .1212x t y t -⎧=⎪⎨⎪=⎩B .sin 1sin x t y t =⎧⎪⎨=⎪⎩C .cos 1cos x t y t =⎧⎪⎨=⎪⎩D .tan 1tan x t y t =⎧⎪⎨=⎪⎩ 2.曲线25()12x tt y t=-+⎧⎨=-⎩为参数与坐标轴的交点是( )A .21(0,)(,0)52、B .11(0,)(,0)52、 C .(0,4)(8,0)-、 D .5(0,)(8,0)9、3.直线12()2x tt y t=+⎧⎨=+⎩为参数被圆229x y +=截得的弦长为( )A .125 B. CD4.若点(3,)P m 在以点F 为焦点的抛物线24()4x t t y t⎧=⎨=⎩为参数上, 则PF等于( )A .2B .3C .4D .5 5.极坐标方程cos 20ρθ=表示的曲线为( )A .极点B .极轴C .一条直线D .两条相交直线 6.在极坐标系中与圆4sin ρθ=相切的一条直线的方程为( )A .cos 2ρθ= B .sin 2ρθ=C .4sin()3πρθ=+ D .4sin()3πρθ=-填空题(满分70分,每题4分,记68分,错5道以内的奖励2分)参、5.把参数方程⎩⎨⎧+==1cos sin ααy x (α为参数)化为普通方程,结果是。
极坐标与参数方程15道典型题 (有答案) (2)精编版
极坐标与参数方程15道典型题1在直角坐标系xOy 中,以O 为极点,x 轴正半轴为极轴建立极坐标系.圆1C ,直线2C 的极坐标方程分别为θρsin 4=,22)4cos(=-πθρ.(1)求1C 与2C 的直角坐标方程,并求出1C 与2C 的交点坐标;(2)设P 为1C 的圆心,Q 为1C 与2C 交点连线的中点.已知直线PQ 的参数方程为⎪⎩⎪⎨⎧+=+=1233t b y a t x (t 为参数,R t ∈),求b a ,的值. (1)由极直互化公式得:4)2(:221=-+y x C 04:2=-+y x C ………4分联立方程解得交点坐标为)2,2(),4,0( ………5分(2)由(1)知:)2,0(P ,)3,1(Q 所以直线PQ :02=+-y x , 化参数方程为普通方程:122+-=abx b y , 对比系数得:⎪⎩⎪⎨⎧=-=22112ab b,2,1=-=b a ………10分2.极坐标系与直角坐标系xoy 有相同的长度单位,以原点O 为极点,以x 轴正半轴为极轴,曲线1C 的极坐标方程为32cos 2=θρ,曲线2C 的参数方程为⎩⎨⎧-=+=12t y mt x ,(t 是参数,m 是常数)(1)求1C 的直角坐标方程和2C 的普通方程;(2)若2C 与1C 有两个不同的公共点,求m 的取值范围.解:(1)由极直互化公式得3)sin (cos :2221=-θθρC ,所以322=-y x ;---------------2分 消去参数t 得2C 的方程:122--=m x y ----------------------4分(2)由(1)知1C 是双曲线,2C 是直线,把直线方程代入双曲线方程消去y 得:0444)12(4322=+++--m m x m x ,-------------------------7分若直线和双曲线有两个不同的公共点, 则0)444(12)12(1622>++--=∆m m m , 解得:21-<>m m 或-----------10分3.已知椭圆C:22143x y +=,直线:l 3x y t⎧=-+⎪⎨=⎪⎩(t 为参数). (I )写出椭圆C 的参数方程及直线l 的普通方程;(II )设()1,0A ,若椭圆C 上的点P 满足到点A 的距离与其到直线l 的距离相等,求点P 的坐标.解:(Ⅰ)C :⎩⎨⎧x =2cos θ,y =3sin θ(θ为为参数),l :x -3y +9=0.…4分(Ⅱ)设P (2cos θ,3sin θ),则|AP |=(2cos θ-1)2+(3sin θ)2=2-cos θ,P 到直线l 的距离d =|2cos θ-3sin θ+9|2=2cos θ-3sin θ+92.由|AP |=d 得3sin θ-4cos θ=5,又sin 2θ+cos 2θ=1,得sin θ= 35, cos θ=- 45.故P (- 8 5, 335).…10分4..在极坐标系Ox 中,直线C 1的极坐标方程为ρsin θ=2,M 是C 1上任意一点,点P 在射线OM 上,且满足|OP |·|OM |=4,记点P 的轨迹为C 2. (Ⅰ)求曲线C 2的极坐标方程; (Ⅱ)求曲线C 2上的点到直线ρcos (θ+ π4)=2的距离的最大值.解:(Ⅰ)设P (ρ,θ),M (ρ1,θ),依题意有ρ1sin θ=2,ρρ1=4.消去ρ1,得曲线C 2的极坐标方程为ρ=2sin θ. (5)分(Ⅱ)将C 2,C 3的极坐标方程化为直角坐标方程,得C 2:x 2+(y -1)2=1,C 3:x -y =2.C 2是以点(0,1)为圆心,以1为半径的圆,圆心到直线C 3的距离d =322,故曲线C 2上的点到直线C 3距离的最大值为1+322. (10)5.在极坐标系中,曲线C 的极坐标方程为)4sin(24πθρ+=。
2023年高考数学真题分训练 极坐标系与参数方程(含答案含解析)
专题34 极坐标系与参数方程2⎩2 2考点 116 平面直角坐标系中的伸缩变换 考点 117 极坐标和直角坐标的互化⎧x = t + 1,⎪x = 4cos 2θ, 1.(2023 全国Ⅱ文理 21)已知曲线C 1 , C 2 的参数方程分别为C 1 : ⎨ (θ为参数),C : ⎪ t ( t 为 ⎩ y = 4sin 2θ⎪ y = t - 1参数).(1) 将C 1 , C 2 的参数方程化为一般方程;⎪ t(2) 以坐标原点为极点, x 轴正半轴为极轴建立极坐标系.设C 1 , C 2 的交点为 P ,求圆心在极轴上,且经过极点和 P 的圆的极坐标方程.(解析)(1)由cos 2 θ+ sin 2 θ= 1得C 1 的一般方程为: x + y = 4 ,⎧x = t + 1 ⎧x 2= t 2 + 1 + 2 ⎪ t ⎪ t 2 C 2 2由⎨ 1 得: ⎨1 ,两式作差可得2 的一般方程为: x - y = 4 . ⎪ y = t - ⎪ y 2 = t 2 + - 2 ⎪ t ⎪ t 2⎧x = 5 ⎧x + y = 4 ⎪ (2)由 得: 2 ,即 P ⎛ 5 , 3 ⎫. ⎨x 2 - y 2= 4 ⎨ ⎪ y = 3 ⎩ 2 ⎪ ⎝ ⎭⎛ 5 ⎫2⎛3 ⎫217设所求圆圆心的直角坐标为(a , 0),其中 a > 0 ,则 a - ⎪ + 0 - ⎪ = a 2 ,解得:a = ,⎝2 ⎭⎝2 ⎭10∴ 17 ∴⎛ 17 ⎫2⎛ 17 ⎫222 2 17 所求圆的半径 r = , 10 所求圆的直角坐标方程为: x - 10 ⎪ + y = 10 ⎪ ,即 x + y = x ,5 ∴所求圆的极坐标方程为ρ= 17cos θ.5⎝ ⎭ ⎝ ⎭103⎩⎪x = 2 - t - t 2, 2.(2023 全国Ⅲ文理 22)在直角坐标系 xOy 中,曲线C 的参数方程为⎪ y = 2 - 3t + t 2( t 为参数且t ≠ 1),C与坐标轴交于 A , B 两点.(1) 求 AB ;(2) 以坐标原点为极点, x 轴正半轴为极轴建立极坐标系,求直线 AB 的极坐标方程.(解析)(1)令 x = 0 ,则t 2 + t - 2 = 0 ,解得t = -2 或t =1(舍),则 y = 2 + 6 + 4 = 12 ,即 A (0,12) . 令 y = 0 ,则t 2 - 3t + 2 = 0 ,解得t = 2 或t =1(舍),则 x = 2 - 2 - 4 = -4 ,即 B (-4, 0) .∴ AB == 4 .(2)由(1)可知 k AB =12 - 00 - (-4)= 3 ,则直线 AB 的方程为 y = 3(x + 4) ,即3x - y +12 = 0 .由 x = ρcos θ, y = ρsin θ可得,直线 AB 的极坐标方程为3ρcos θ- ρsin θ+12 = 0 .3.(2023 江苏 22)在极坐标系中,已知点 A (ρ, π) 在直线l : ρcos θ= 2 上,点 B (ρ , π) 在圆C : ρ= 4 sin θ上1 32 6(其中ρ≥ 0 , 0 ≤θ< 2π).(1)求ρ1 , ρ2 的值(2)求出直线l 与圆C 的公共点的极坐标.(解析)(1) Q ρ cos π = 2∴ρ = 4; Q ρ = 4 s inπ2 .131 26 ∴ρ2 = (2) Q ρcos θ= 2, ρ= 4 sin θ∴ 4 sin θcos θ= 2,∴sin 2θ= 1 Q θ∈0, 2π)∴θ= π, 5π,4 4当θ= π时ρ= 2 4;当θ= 5π 时ρ= -2 4 < 0 (舍);即所求交点坐标为当π (2 2, ) . 4 4.(2023 全国 II 文理 22)在极坐标系中,O 为极点,点 M (ρ0 ,θ0 )(ρ0 > 0)在曲线C : ρ= 4 s in θ上,直线 l 过点 A (4, 0) 且与OM 垂直,垂足为 P . (1)当θ = π时,求ρ 及 l 的极坐标方程;3(2)当 M 在 C 上运动且 P 在线段 OM 上时,求 P 点轨迹的极坐标方程.(解析)(1)因为 M (ρ,θ ) 在C 上,当θ = π 时,ρ = 4 s in π= 2 .0 0 0 3 03由已知得| OP |=| OA | cos π= 2 .322333⎢⎥⎢⎥设Q (ρ,θ) 为l 上除P 的任意一点.在Rt △OPQ 中ρcos⎛θ-π ⎫=| OP |= 2 , 3 ⎪ ⎝ ⎭π ⎛ π ⎫经检验,点P (2, ) 在曲线ρcos θ- ⎪ = 2 上. ⎝ ⎭所以,l 的极坐标方程为ρcos ⎛θ- π ⎫= 2 .3 ⎪ ⎝ ⎭(2)设 P (ρ,θ) ,在Rt △OAP 中, | OP |=| OA | cos θ= 4 cos θ,即 ρ= 4 cos θ..因为P 在线段OM 上,且 AP ⊥ OM ,故θ的取值范围是⎡π , π⎤. ⎣ 4 2 ⎦所以,P 点轨迹的极坐标方程为ρ= 4 cos θ,θ∈ ⎡π , π⎤ .⎣4 2 ⎦5.(2023 全国 III 文理 22)如图,在极坐标系 Ox 中, A (2, 0) , B ( 2, π) ,C ( 2, 3π) , D (2, π) ,弧 AB ,4 4 A , A 所在圆的圆心分别是(1, 0) ,π, (1, π) ,曲线 M 是弧 A ,曲线 M 是弧 A ,曲线 M 是BC CD(1, ) 21 AB2 BC3 弧C D .(1) 分别写出 M 1 , M 2 , M 3 的极坐标方程;(2) 曲线 M 由 M 1 , M 2 , M 3 构成,假设点 P 在 M 上,且| OP |= ,求P 的极坐标.(解析)(1)由题设可得,弧 AB , B C ,C D 所在圆的极坐标方程分别为ρ= 2 cos θ,ρ= 2 s in θ,ρ= -2 cos θ,所以 M 的极坐标方程为ρ= 2 cos θ⎛0 θ π ⎫ , M 的极坐标方程为 1 4⎪ 2⎝⎭ρ= 2 sin θ⎛ π θ3π ⎫ , M 的极坐标方程为ρ= -2 cos θ⎛ 3πθ π ⎫ . 4 4 ⎪ 34 ⎪ ⎝ ⎭ ⎝ ⎭(2)设 P (ρ,θ) ,由题设及(1)知3332⎩⎩⎩⎩⎩θ假设0 θπ,则 2 cos θ=,解得θ=π;4 6假设 π θ 3π ,则 2 sin θ= ,解得θ= π 或θ= 2π ; 4 4 3 3 假设 3π θ π ,则-2 cos θ= ,解得θ= 5π .4 ⎛ 综上,P 的极坐标为3, π ⎫ 或⎛3, π ⎫ 或⎛63,2π ⎫ 或⎛3, 5π ⎫ .6⎪ 3⎪ 3 ⎪ 6 ⎪ ⎝⎭ ⎝⎭ ⎝⎭ ⎝ ⎭考点 118 参数方程与一般方程的互化6.(2023 上海 14)已知直线方程3x + 4 y +1 = 0 的一个参数方程可以是()⎧x = 1+ 3t A . ⎨ y = -1+ 4t ⎧x = 1- 4tB . ⎨y = -1- 3t⎧x = 1- 3tC . ⎨y = -1+ 4t ⎧x = 1+ 4t D . ⎨y = -1- 3t(答案)D(解析)A .参数方程可化简为 4x - 3y - 7 = 0 ,故 A 不正确;B .参数方程可化简为3x - 4 y - 7 = 0 ,故B 不正确;C .参数方程可化简为 4x + 3y -1 = 0 ,故 C 不正确;D .参数方程可化简为3x + 4 y +1 = 0 , 故 D 正确.应选 D .7.(2023 全国Ⅲ)选修 4—4:坐标系与参数方程](10 分)在平面直角坐标系 xOy 中, A O 的参数方程为⎧x = cos θ(θ为参数),过点(0, -2) 且倾斜角为α的直线l 与A O 交于 A , B 两点.(1) 求α的取值范围;(2) 求 AB 中点 P 的轨迹的参数方程.⎨ y = sin ,(解析)(1) A O 的直角坐标方程为 x 2 + y 2 = 1. 当α= π时, l 与A O 交于两点.2当α≠ π时,记 tan α= k ,则l 的方程为 y = kx -.l 与A O 交于两点当且仅当< 1 ,解得 k < -1 或2α∈π ππ 3πk > 1,即( , ) 或α∈ ( , ) .4 2 2 4α π 3π 综上,的取值范围是( , ) . 4 4222222⎨(2) l 的参数方程为⎪x = t cos α, (t 为参数, π < α< 3π) . ⎨⎩ y = - + t sin α 4 4 设 A , B , P 对应的参数分别为 t , t , t ,则t =t A + t B,且t , t 满足t 2 - 2 2t sin α+ 1 = 0 .ABPP2A B于是t A + t B= 2 2 sin α, t P =2 sin α.又点 P 的坐标(x , y ) 满足 ⎪x = t P cos α,y = - + t sin α.⎧ ⎪x =2sin 2α, 2 ⎩P π 3π 所以点 P 的轨迹的参数方程是⎨ ⎪ y = - 2 - 2 cos 2α (α为参数, < α< ) . 4 4 ⎪ 2 2考点 119 极坐标方程与参数方程的综合应用8.(2023 北京文理)在极坐标系中,直线ρcos θ+ ρsin θ= a (a > 0) 与圆ρ=2 cos θ相切,则 a =.(答案)1+ (解析)利用 x = ρcos θ, y = ρsin θ,可得直线的方程为 x + y - a = 0 ,圆的方程为(x -1)2 + y 2 = 1 ,所以圆心(1, 0) ,半径 r = 1,由于直线与圆相切,故圆心到直线的距离等于半径,即|1- a |= 1 ,∴ a = 1+ 或1- ,又 a > 0 ,∴ a = 1+ .9.(2023 北京文理)在极坐标系中,点 A 在圆ρ2- 2ρcos θ- 4ρsin θ+ 4 = 0 上,点 P 的坐标为(1, 0) ),则| AP | 的最小值为.(答案)1(解析)圆的一般方程为 x 2 + y 2 - 2x - 4y + 4 = 0 ,即(x -1)2 + ( y - 2)2 = 1 .设圆心为C (1, 2) ,所以| AP |min =| PC | -r = 2 -1 = 1 .10.(2023 天津文理)在极坐标系中,直线4ρcos(θ- π) +1 = 0 与圆ρ= 2 s in θ的公共点的个数为.6(答案)2(解析)直线的一般方程为 2 3x + 2 y +1 = 0 ,圆的一般方程为 x 2 + ( y -1)2= 1 ,因为圆心到直 3线的距离 d = < 1 4,所以有两个交点.11.(2023 北京文理)在极坐标系中,直线ρcos θ- | AB |= .3ρsin θ-1 = 0 与圆ρ= 2 cos θ交于 A , B 两点,则(答案)2(解析)将ρcos θ-3ρsin θ-1 = 0 化为直角坐标方程为 x - 3y -1 = 0 ,将ρ=2cos θ化为直角坐标方程为(x -1)2+ y 2= 1 ,圆心坐标为(1,0),半径 r=1,又(1,0)在直线 x - 3y -1 = 0 上,所以|AB|=2r=2.222234y x ⎩⎩⎩)⎩12.(2023 广东文理)已知直线l 的极坐标方程为 2ρsin(θ- π= 47πA (2 2,) ,则点 Α 到直线l 的距离为 .42 ,点 Α 的极坐标为(答案)(解析)由 2ρsin(θ- 2π ) = 得2ρ´ 4 2 7π(sin θ- cos θ) = ,所以 y - x = 1, 故直线l 的直角坐标方程为 x - y +1 = 0 ,而点 A (2 2, ) 对应的直角坐标为4 A (2,-2) ,所以点 A (2,-2) 到直线l : x - y +1 = 0 的距离为| 2 + 2 +1| = 5 2. 213.(2023 安徽文理)在极坐标系中,圆ρ= 8sin θ上的点到直线θ=是.π(ρ∈ R ) 距离的最大值 3(答案)6(解析)圆ρ= 8sin θ即ρ2= 8ρsin θ,化为直角坐标方程为 x 2+ ( y - 4)2= 16 ,π直线θ=,则tan θ=,化为直角坐标方程为 3x - y = 0 ,圆心(0, 4) 到直线3的距离为| -4 |= 2 ,所以圆上的点到直线距离的最大值为 6.14.(2023 全国Ⅰ文理 21)⎧x = cos k t ,在直角坐标系 xOy 中,曲线C 1 的参数方程为⎨ y = sin k t(t 为参数) .以坐标原点为极点, x 轴正半轴为极轴建立极坐标系,曲线C 2 的极坐标方程为 4ρcos θ-16ρsin θ+ 3 = 0 .(1) 当 k = 1时, C 1 是什么曲线?(2) 当 k = 4 时,求C 1 与C 2 的公共点的直角坐标.(解析)(1)当 k = 1时,曲线C 的参数方程为⎧x = cos t ,( t 为参数),两式平方相加得 x 2 + y 2 = 1 ,1⎨y = sin t∴曲线C 1 表示以坐标原点为圆心,半径为 1 的圆.⎧x = cos 4 t ,(2)当 k = 4 时,曲线C 1 的参数方程为⎨ y = sin 4t ( t 为参数),∴ x ≥ 0, y ≥ 0 ,曲线C 1 的参数方程化为⎧ x = cos 2 t ⎨ y = sin 2t(t 为参数),两式相加得曲线C 1 方程为 + = 1,得 = 1 - ,平方得 5 22x yx 77⎩2y = x - 2 + 1, 0 ≤ x ≤ 1, 0 ≤ y ≤ 1 ,曲线C 2 的极坐标方程为4ρcos θ-16ρsin θ+ 3 = 0 ,曲线C 2 直角坐标方程为4x -16 y + 3 = 0 ,联立C , C 方程⎪ y = x - 2 +1 , ,整理得12 x - 32 + 13 = 0 ,解得 x = 1 或 = 13(舍去),1 2⎨ ⎩4x -16 y + 3 = 02 6 ∴ x = 1 , y = 1 ,∴C ,C 1 1 公共点的直角坐标为( , ) .4 4 1 24 4⎧ 1- t 2 ⎪x =1+ t 215.(2023 全国 1 文理 22)在直角坐标系 xOy 中,曲线 C 的参数方程为⎨ ⎪ y = ⎩ 4t 1+ t 2(t 为参数),以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,直线 l 的极坐标方程为 2ρcos θ+ 3ρsin θ+11 = 0 .(1) 求 C 和 l 的直角坐标方程;(2) 求 C 上的点到 l 距离的最小值.1- t 2⎛ y ⎫2⎛ 1- t 2 ⎫24t 2 (解析)(1)因为-1 < ≤ 1 ,且 x 2 + ⎪ = ⎪ + = 1,所以C 的直角坐标方程为2y 2 1+ t 2⎝ 2 ⎭ ⎝1 + t 2 ⎭ (1+ t 2 )2x += 1(x ≠ -1) .4l 的直角坐标方程为 2x + 3y +11 = 0 .⎧x = cos α, (2)由(1)可设C 的参数方程为 (α为参数, -π <α< π ).⎨y = 2sin α4 cos ⎛α- π ⎫ +113 ⎪ C 上的点到l 的距离为 = ⎝ ⎭.当α= - 2π 时, 4 c os ⎛α- π ⎫+11 取得最小值7,故C 上的点到l 距离的最小值为 . 3 3 ⎪ ⎝ ⎭16.(2023 全国Ⅰ文理) 在直角坐标系 xOy 中,曲线C 1 的方程为 y = k |x | + 2 .以坐标原点为极点, x 轴正半轴为极轴建立极坐标系,曲线C 的极坐标方程为ρ2+ 2ρcos θ- 3 = 0 . (1) 求C 2 的直角坐标方程;x x x | 2 c os α+ 2 3 sin α+11|7⎨y = 4 s in θ,⎩(2) 假设C 1 与C 2 有且仅有三个公共点,求C 1 的方程.(解析)(1)由 x = ρcos θ, y = ρsin θ得C 2 的直角坐标方程为(x +1)2 + y 2 = 4 .(2)由(1)知C 2 是圆心为 A (-1, 0) ,半径为 2 的圆.由题设知,C 1 是过点 B (0, 2) 且关于 y 轴对称的两条射线.记 y 轴右边的射线为l 1 ,y 轴左边的射线为l 2 .由于 B 在圆C 2 的外面,故C 1 与C 2 有且仅有三个公共点等价于l 1 与C 2 只有一个公共点且l 2 与C 2 有两个公共点,或l 2 与C 2 只有一个公共点且l 1 与C 2 有两个公共点.当l 与C 只有一个公共点时, A 到l 所在直线的距离为 2 ,所以| -k + 2 |= 2 ,故 k = - 4 或 k = 0 .1213经检验,当k = 0 时, l 与C 没有公共点;当 k = - 4时, l 与C 只有一个公共点, l 与C 有两个公共点.1231 2 2 2| k + 2 | 当l 与C 只有一个公共点时, A 到l 所在直线的距离为2 ,所以= 2 ,故 k = 0 或 k = 4 .2 2 23经检验,当k = 0 时, l 与C 没有公共点;当 k = 4时, l 与C 没有公共点.1 2 32 2综上,所求C 的方程为 y = - 4| x | +2 .1317.(2023 全国Ⅱ文理)在直角坐标系 xOy 中,曲线C 的参数方程为⎧x = 2 cos θ,( θ 为参数),直线l 的参数⎩⎧x = 1+ t cos α 方程为⎨ y = 2 + t sin α ( t 为参数).(1) 求C 和l 的直角坐标方程;(2) 假设曲线C 截直线l 所得线段的中点坐标为(1, 2) ,求l 的斜率.x 2 + y 2 =(解析)(1)曲线C 的直角坐标方程为 1. 4 16当cos α≠ 0 时, l 的直角坐标方程为 y = tan α⋅ x + 2 - tan α; 当cos α= 0 时, l 的直角坐标方程为 x = 1 .(2)将l 的参数方程代入C 的直角坐标方程,整理得关于t 的方程(1+ 3cos 2 α)t 2 + 4(2 cos α+ sin α)t - 8 = 0 .①3317⎩⎨ y = 1- ty 因为曲线C 截直线l 所得线段的中点(1, 2) 在C 内,所以①有两个解,设为t 1 , t 2 ,则t 1 + t 2 = 0 .4(2 cos α+ sin α)又由①得t 1 + t 2 = -1+ 3cos 2α,故 2 cos α+ sin α= 0 ,于是直线l 的斜率 k = tan α= -2 .18.(2023 江苏)在极坐标系中,直线l 的方程为ρsin( π-θ) = 2 ,曲线C 的方程为ρ= 4 cos θ,求直线l 被曲6 线C 截得的弦长.(解析)因为曲线C 的极坐标方程为ρ=4 cos θ,所以曲线C 的圆心为(2, 0) ,直径为 4 的圆.因为直线l 的极坐标方程为ρsin( π -θ) = 2 ,则直线l 过 A (4, 0) ,倾斜角为 π,所以 A 为直线l 与圆C 的一6 6 个交点.设另一个交点为 B ,则∠OAB= π ,连结 OB ,因为 OA 为直径,从而∠OBA= π ,所以 AB = 4 c os π= 2 .6 因此,直线l 被曲线C 截得的弦长为 2 .2 6⎧x = 3cos θ19.(2023 全国Ⅰ文理)在直角坐标系 xOy 中,曲线C 的参数方程为⎨ y = sin θ ,(θ为参数),直线l 的参数方程为⎧x = a + 4t( t 为参数).⎩ (1) 假设 a = -1,求C 与l 的交点坐标;(2) 假设C 上的点到l 距离的最大值为 ,求 a .(解析)(1)曲线C 的一般方程为 x 2 + 29= 1.当a = -1时,直线l 的一般方程为 x + 4 y - 3 = 0 .⎧x + 4 y - 3 = 0⎧x = - 21 ⎪ ⎧x = 3 ⎪25 21 24由⎨ x 2 2解得⎨ y = 0 或⎨ ,从而C 与l 的交点坐标为(3, 0) , (- 24 , ) . ⎩ 9+ y = 1 ⎩⎪ y = ⎩ 25 25 25171717171733342⎩(2)直线l 的一般方程为 x + 4 y - a - 4 = 0 ,故C 上的点(3cos θ, sin θ) 到l 的距离为| 3cos θ+ 4 sin θ- a - 4 |d =.当a ≥-4 时, d 的最大值为a + 9.由题设得a + 9= ,所以a = 8 ;当a < -4 时, d 的最大值为 -a + 1 .由题设得 -a + 1= ,所以 a = -16 . 综上, a = 8 或 a = -16 .20.(2023 全国Ⅱ文理)在直角坐标系 xOy 中,以坐标原点为极点, x 轴的正半轴为极轴建立极坐标系,曲线C 1 的极坐标方程为ρcos θ= 4 .(1) M 为曲线C 1 上的动点,点 P 在线段OM 上,且满足| OM | ⋅ | OP |= 16 ,求点 P 的轨迹C 2 的直角坐标方程;π(2) 设点 A 的极坐标为(2, 3) ,点 B 在曲线C 2 上,求∆OAB 面积的最大值. (解析)(1)设 P 的极坐标为(ρ,θ) (ρ> 0) , M 的极坐标为(ρ1 ,θ) (ρ1 > 0) .由椭圆知| OP |= ρ, | OM |= ρ1 =cos θ.由| OM | ⋅ | OP |= 16 得C 2 的极坐标方程ρ= 4 cos θ(ρ> 0) , 因此C 的直角坐标方程为(x - 2)2 + y 2= 4(x ≠ 0) .(2)设点 B 的极坐标为(ρB ,α) (ρB > 0) .由题设知| OA |= 2 , ρB = 4cos α,于是∆OAB 面积1 π π 3S = 2 | OA | ⋅ρB ⋅sin ∠AOB = 4cos α| sin(α- 3 ) | = 2 | sin(2α- 3 ) - | ≤ 2 + . 2 当α= - π时, S 取得最大值 2 + ,所以∆OAB 面积的最大值为 2 + .1221.(2023 全国Ⅲ文理)在直角坐标系 xOy 中,直线l 的参数方程为⎧x = 2 + t( t 为参数),直线l 的参数方⎧x = -2 + m⎪1 ⎨ y = kt 2程为⎨ ⎩ y = m k( m 为参数).设l 1 与l 2 的交点为 P ,当 k 变化时, P 的轨迹为曲线C .(1) 写出C 的一般方程;17175224 5⎨t⎩(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,设l3 :ρ(cosθ+ sinθ) -交点,求M 的极径.= 0 ,M 为l3与C 的(解析)(1)消去参数t 得l 的一般方程l : y =k (x -2),消去参数m 得l 的一般方程l : y =1 (x+2).11⎧y =k (x-2)22k⎪设P(x, y) ,由题设得⎨⎩y=1 (x+2)k,消去k 得x2-y2=4 (y ≠0),所以C 的一般方程为x2-y2=4 (y ≠0).⎪ρ2(cos2θ-sin2θ)=4(2)C的极坐标方程为ρ2(cos2θ-sin2θ)=4(0<θ<2π,θ≠π),联立⎨得⎩ρ(cosθ+sinθ)-2=0cosθ- sinθ=2 (cosθ+sinθ),故tanθ=-1,从而cos2θ=9,sin2θ=1,代入ρ2(cos2θ-sin2θ)=4得3ρ2=5,所以交点M的极径为.10 10⎧x =-8 +t22.(2023 江苏)在平面坐标系中xOy 中,已知直线l 的参考方程为⎪y = ( t 为参数),曲线C 的参数方⎧x=2s2⎪2程为⎨⎩y=22s( s 为参数).设P 为曲线C 上的动点,求点P 到直线l 的距离的最小值.(解析)直线l 的一般方程为x - 2 y + 8 = 0 .因为点P 在曲线C 上,设P(2s2 , 2 2s) ,从而点P 到直线l 的的距离4 5d == ,当s =时,dmin=5.因此当点P 的坐标为(4, 4) 时,曲线C 上点P 到直线l 的距离取到最小值.5⎧x =a cos t23.(2023 全国I 文理)在直角坐标系xOy 中,曲线C1 的参数方程为⎨y = 1+a sin t(t 为参数,a>0).在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,曲线C2 :ρ= 4 cosθ.(I)说明C1 是哪种曲线,并将C1 的方程化为极坐标方程;(II)直线C3 的极坐标方程为θ=a0 ,其中a0 满足tan a0 =2 ,假设曲线C1 与C2 的公共点都在C3上,求a.22(s -2)2 +4510 10 ⎫2152⎩1123⎩⎨⎩=⎧x = a cos t (解析)(1) ⎨ y = 1 + a sin t( t 均为参数),∴x 2 + ( y - 1)2= a 2 ①∴ C 为以(0 ,1) 为圆心, a 为半径的圆.方程为 x 2 + y 2 - 2 y +1 - a 2 = 0 .∵ x 2 + y 2 = ρ2 ,y = ρsin θ,∴ ρ2- 2ρsin θ+ 1 - a 2 = 0 ,即为C 的极坐标方程.(2) C :ρ= 4cos θ,两边同乘ρ得ρ2 = 4ρcos θ ρ2= x 2 + y 2 ,ρcos θ= x ,∴ x 2 + y 2 = 4x ,即( x - 2)2+ y 2 = 4 ②C 3 :化为一般方程为 y = 2x ,由题意: C 1 和C 2 的公共方程所在直线即为C 3 ,①—②得: 4x - 2 y + 1 - a 2 = 0 ,即为C ,∴1 - a 2 = 0 ,∴ a = 1 .24.(2023 全国 II 文理)在直角坐标系 xOy 中,圆 C 的方程为( x + 6)2+ y 2 = 25 .(I) 以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求 C 的极坐标方程;⎧x = t cos α(II)直线 l 的参数方程是⎨ y = t sin α(t 为参数),l 与 C 交于 A 、B 两点, AB = ,求 l 的斜率.⎧ρ2 = x 2 + y 2 (解析)(Ⅰ)整理圆的方程得 x 2 + y 2 + 12 + 11 = 0 ,由⎪ρcos θ= x ⎪ρsin θ= y 可知圆C 的极坐标方程为ρ2 + 12ρcos θ+ 11 = 0 .(Ⅱ)记直线的斜率为 k ,则直线的方程为 kx - y = 0 ,由垂径定理及点到直线距离公式知:= 36k 2 290 ,整理得 k 2 = 5 ,则 k = ± . 1 + k 4 3 3⎪x =3 cos α25.(2023 全国 III 文理)在直角坐标系 xOy 中,曲线C 1 的参数方程为⎨ ⎩ y = sin α(α为参数),以坐标原点为极点,以 x 轴的正半轴为极轴,建立极坐标系,曲线C 的极坐标方程为ρsin(θ+ π) = 2.24(Ⅰ)写出C 1 的一般方程和C 2 的直角坐标方程;(Ⅱ)设点 P 在C 1 上,点 Q 在C 2 上,求| PQ |的最小值及此时 P 的直角坐标.x 2 2(解析)(Ⅰ) C 1 的一般方程为 3+ y = 1, C 2 的直角坐标方程为 x + y - 4 = 0 .(Ⅱ)由题意,可设点 P 的直角坐标为( 3 cos α, sin α) ,因为C 2 是直线,所以| PQ | 的最小值,即为 P 到C 2| 3 cos α+sin α- 4 |2222⎨⎩⎪=1⎩的距离d (α) 的最小值, d (α) ==π2 | sin(α+ π ) - 2 | .3 3 1当且仅当α= 2k π+(k ∈ Z ) 时, d (α) 取得最小值,最小值为 6,此时 P 的直角坐标为( , ) . 2 2 ⎧x = 1 + 1t , 26.(2023 江苏)在平面直角坐标系 xOy 中,已知直线l 的参数方程为⎪ ⎪ y = ⎩ 2 3 t , 2(t 为参数) ,椭圆C 的参数⎧x = cos θ,方程为⎨ y = 2sin θ, (θ为参数) ,设直线l 与椭圆C 相交于 A , B 两点,求线段 AB 的长.⎧x = 1+ 1t(解析)椭圆C 的一般方程为 x 2 + y 4 = 1,将直线l 的参数方程⎨ ⎪ y = ⎩2 3 t2 ,代入 x 2 + y 4 = 1,得(1+ 1 t )2 + 3 t )22 = 1,即7t 2 +16t = 0 ,解得t = 0 , t = - 16 ,所以 AB =| t - t | 16 .2 4 1 2 71 2727.(2023 全国Ⅰ文理)在直角坐标系 xOy 中,直线C : x = -2 ,圆C :(x -1)2 + ( y - 2)2= 1 ,以坐标原12点为极点, x 轴的正半轴为极轴建立极坐标系.(Ⅰ)求C 1 , C 2 的极坐标方程;(Ⅱ)假设直线C 3 的极坐标方程为θ=(ρ∈ R ) ,设C 2 与C 3 的交点为 M , N ,求∆C 2MN 的面积.4(解析)(Ⅰ)因为 x = ρcos θ, y = ρsin θ,∴ C 的极坐标方程为ρcos θ= -2 , C 的极坐标方程为ρ2- 2ρcos θ- 4ρsin θ+ 4 = 0 .12(Ⅱ)将θ= π代入ρ2- 2ρcos θ- 4ρsin θ+ 4 = 0 ,得ρ2- 3 2ρ+ 4 = 0 ,解得ρ = 2, ρ = , 4|MN|= ρ - ρ = ,因为C 的半径为 1,则A C MN 的面积 ⨯ 122 ⨯1⨯sin 45o = 1 . 1 2 22 2 2 ⎧x = t cos α,28.(2023 全国Ⅱ文理)在直角坐标系 xOy 中,曲线C 1 : ⎨ y = t sin α, ( t 为参数,t ≠0)其中0 ≤α<π,在以O 为极点,x 轴正半轴为极轴的极坐标系中,曲线C 2 : ρ= 2 sin θ, C 3 : ρ= 2 3 cos θ. (Ⅰ)求C 2 与C 3 交点的直角坐标;(Ⅱ)假设C 1 与C 2 相交于点 A , C 1 与C 3 相交于点 B ,求| AB | 的最大值.222(π3623)( x -1+ y +1= )()⎨(解析)(Ⅰ)曲线C 的直角坐标方程为 x 2 + y 2 - 2 y = 0 ,曲线C 的直角坐标方程为 x 2 + y 2- 2 3x = 0 .联⎪x 2+ y 2- 2 y = 0,⎧x = 0, ⎧ 3 ⎪x = 2 , 立⎨x 2 + y 2 - 2 3x = 0,解得⎨ y = 0, 或⎨ 3 ⎪ ⎩ ⎪ y = ,⎩ 23所以C 2 与C 1 交点的直角坐标为(0, 0) 和( , ) .2 2(Ⅱ)曲线C 1 的极坐标方程为θ= α(ρ∈ R , ρ≠ 0) ,其中0 ≤α<π. 因此 A 得到极坐标为(2 sin α,α) , B 的极坐标为(2 3 cos α,α) . π5π所以 AB = 2 sin α- 2 3 cos α = 4 s in(α-) ,当α= 时, AB 取得最大值,最大值为 4 . 3 629.(2023 江苏) 已知圆 C 的极坐标方程为ρ2+ 2 2ρsin(θ- π- 4 = 0 ,求圆 C 的半径.4(解析) 以极坐标系的极点为平面直角坐标系的原点O ,以极轴为 x 轴的正半轴,建立直角坐标系 xoy .圆C 的极坐标方程为ρ2 + 2⎛ 2 sin θ- 2cos ⎫4 = 0 ,化简,得ρ2 + 2ρsin θ- 2ρcos θ- 4 = 0 . ρ 22 θ⎪⎪ - ⎝ ⎭则圆C 的直角坐标方程为 x 2 + y 2 - 2x + 2 y - 4 = 0 ,即2 2,所以圆C 的半径为 . ⎧x = 3 + 1 t 30.(2023 陕西文理)在直角坐标系 xOy 中,直线l 的参数方程为⎪2⎪ y = 3 t ⎩ 2 轴正半轴为极轴建立极坐标系,⊙ C 的极坐标方程为ρ= 2 3 sin θ. (Ⅰ)写出⊙ C 的直角坐标方程;( t 为参数).以原点为极点, x(Ⅱ) P 为直线l 上一动点,当 P 到圆心C 的距离最小时,求 P 的直角坐标.(解析)(Ⅰ) 由ρ= 2 3 sin θ, 得ρ2= 2 3ρsin θ,从而有 x 2+y 2= 2 3y , 所以x 2+ (y -3 )2= 3 .(Ⅱ)设P (3 += ,故当t =0 时,| PC |取最小值,此时 P 点的直角坐标为(3, 0) .21t,3t), 又C(0, 3) ,则| PC |=3222 3 ⎪55⎨y = 2 - 2t⎩⎩31.(2023 全国Ⅰ文理)已知曲线C : x 4 + y 29 = 1,直线l : ⎧x = 2 + t ( t 为参数). ⎩(Ⅰ)写出曲线C 的参数方程,直线l 的一般方程;(Ⅱ)过曲线C 上任一点 P 作与l 夹角为30o的直线,交l 于点 A ,求| PA |的最大值与最小值.⎧x = 2 cos θ.(解析)〔I 〕曲线C 的参数方程为⎨ y = 3sin θ. (θ为参数).直线l 的一般方程为2x + y - 6 = 0. ……5 分(Ⅱ)曲线C 上任意一点P(2cos θ.3sin θ)到l 的距离为d =4 cos θ+ 3sin θ- 6 .则 PA =d = sin 30︒ 5sin(θ+α) - 6 , 其中α为锐角,且tan α= 4 . 3当sin (θ+α)=-1时,PA 取得最大值,最大值为22 5 .5当sin(θ+α) = 1时,PA 取得最小值,最小值为2 5 .532.(2023 全国Ⅱ文理)在直角坐标系 xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,半圆 C 的极坐标方程为ρ= 2 cos θ,θ∈ ⎡0,π⎤ .(Ⅰ)求 C 的参数方程;⎣⎢ 2 ⎥⎦(Ⅱ)设点 D 在 C 上,C 在 D 处的切线与直线l : y = 3x + 2 垂直,依据(Ⅰ)中你得到的参数方程,确定 D 的坐标.(解析)(I)C 的一般方程为(x -1)0 ≤ t ≤ x ).2 + y 2⎧x = 1+ cos t , = 1(0 ≤ y ≤ 1) ,可得 C 的参数方程为⎨ y = sin t ,(t 为参数,(Ⅱ)设 D (1+ cos t , sin t ) .由(I)知 C 是以 G(1,0)为圆心,1 为半径的上半圆. π因为 C 在点D 处的切线与 t 垂直,所以直线 GD 与 t 的斜率相同, tan t = 3, t =.32 5523⎩⎩⎩1⎩⎩ππ 3故D 的直角坐标为(1+ cos , s in ) ,即( , ) .3 3 2 233.(2023 全国Ⅰ文理)已知曲线C 的参数方程为⎧x = 4 + 5 cos t( t 为参数),以坐标原点为极点,x 轴的正1 ⎨y = 5 + 5sin t半轴为极轴建立极坐标系,曲线C2 的极坐标方程为ρ= 2 s inθ.(Ⅰ)把C1 的参数方程化为极坐标方程;(Ⅱ)求C1 与C2 交点的极坐标( ρ≥0 ,0 ≤θ≤2π).⎧x = 4 + 5 c os t2 2(解析)将⎨y = 5 + 5sin t消去参数t ,化为一般方程(x - 4) + ( y -5) = 25 ,即C1 :x 2 +y2⎧x =ρcosθ-8x -10 y+16 = 0 ,将⎨y =ρsinθ代入x 2 +y2- 8x -10 y + 16 = 0 得,ρ2 - 8ρcosθ-10ρsinθ+16 = 0 ,∴C 的极坐标方程为ρ2 - 8ρcosθ-10ρsinθ+16 = 0 .⎪x2+y2-8x-10y+16=0(Ⅱ) C 的一般方程为x2 +y2 - 2 y = 0 ,由⎨⎧x =1解得⎨⎧x = 0或⎨,2∴C1 与C2 的交点的极坐标分别为(⎩x2+y2-2y=0π),(2, ) .4 2⎩y =1 ⎩y = 2 34.(2023 全国Ⅱ文理)已知动点P ,Q 都在曲线C与β= 2α( 0 <α< 2π) M 为PQ 的中点.⎧x = 2 c os β:⎨y = 2 s in β(β为参数)上,对应参数分别为β=α(Ⅰ)求M的轨迹的参数方程(Ⅱ)将M 到坐标原点的距离d 表示为α的函数,并推断M 的轨迹是否过坐标原点.(解析)(Ⅰ)由题意有P(2c osα,2sinα),Q(2c os2α,2sin2α),因此M(cosα+cos2α,sinα+sin2α),⎧x = cosα+ cos 2α,M 的轨迹的参数方程为⎨y = sinα+ sin 2α, (0 <α< 2π).(Ⅱ)M 点到坐标原点的距离d ==0 <α< 2π),当α=π时,d = 0 ,故M 的轨迹过坐标原点.2,π3⎩100⎩135.(2023 全国文理)已知曲线C 的参数方程是⎧x = 2 cos ϕϕ为参数),以坐标原点为极点, x 轴的正半轴1⎨y = 3sin ϕ(为极轴建立极坐标系,曲线C 2 的极坐标方程是ρ= 2 .正方形 ABCD 的顶点都在C 2 上,且 A 、 B 、C 、πD 依逆时针次序排列,点 A 的极坐标为(2, ) . 3(Ⅰ)求点 A 、 B 、C 、 D 的直角坐标;(Ⅱ)设 P 为C 上任意一点,求| PA |2 + | PB |2 + | PC |2 + | PD |2 的取值范围.π5π 4π 11π(解析)(1)点 A , B , C , D 的极坐标为(2, ), (2, ), (2, ), (2, ) ,3 6 3 6点 A , B , C , D 的直角坐标为(1, 3),(-⎧x 0 = 2cos ϕ3,1), (-1, - 3),( 3, -1) .(2)设 P (x 0 , y 0 ) ;则⎨ y = 3sin (ϕ为参数) , ⎩ 0ϕt = PA 2+ PB 2+ PC 2+ PD 2= 4x 2 + 4 y 2 +16 = 32 + 20 sin 2ϕ∈32, 52.⎧x = 2 c os α 36.(2011 全国文理)在直角坐标系 xOy 中,曲线C 1 的参数方程为⎨ y = 2 + 2 s in(α为参数),M 是C 上 α的动点, P 点满足OP = 2OM , P 点的轨迹为曲线C 2(Ⅰ)求C 2 的方程(Ⅱ)在以 O 为极点,x 轴的正半轴为极轴的极坐标系中,射线θ= π与C 的异于极点的交点为 A ,与C 的异于极点的交点为 B ,求 AB .31 2(解析)(I)设 P (x , y ) ,则由条件知 M( x , y).由于 M 点在C 上,⎧ x = 2 cos α ⎪ 2 2 2⎧ x = 4 cos α 1⎧ x = 4 cos α 所以⎨ y ,即⎨y = 4 + 4 s in ,从而C 2 的参数方程为⎨y = 4 + 4 s in (α为参数), ⎪ = 2 + 2 s in α ⎩ α ⎩ α⎩ 2(Ⅱ)曲线C 1 的极坐标方程为ρ= 4sin θ,曲线C 2 的极坐标方程为ρ= 8sin θ.射线θ= π与C 的交点 A 的极径为ρ = 4sin π,射线θ= π与C 的交点 B 的极径为ρ = 8sin π.3 1 1 3 32 23所以| AB |=| ρ2 - ρ1 |= 2 .。
极坐标与参数方程大题及答案
极坐标与参数方程大题及答案一、极坐标问题1.求解方程$r = 2\\cos(\\theta)$的直角坐标方程。
首先,根据极坐标到直角坐标的转换公式:$$x = r\\cos(\\theta)$$$$y = r\\sin(\\theta)$$将$r = 2\\cos(\\theta)$代入上述两式,得到:$$x = 2\\cos(\\theta)\\cos(\\theta)$$$$y = 2\\cos(\\theta)\\sin(\\theta)$$化简上述两个式子,得到直角坐标方程为:$$x = 2\\cos^2(\\theta)$$$$y = 2\\cos(\\theta)\\sin(\\theta)$$2.将直角坐标方程x2+y2−4x=0转换为极坐标方程。
首先,我们可以将直角坐标方程中的x2和y2替换成r2,从而得到:r2+y2−4x=0然后,将直角坐标方程中的x和y替换成$r\\cos(\\theta)$和$r\\sin(\\theta)$,得到:$$r^2 + (r\\sin(\\theta))^2 - 4(r\\cos(\\theta)) = 0$$将上述方程化简,得到极坐标方程为:$$r^2 + r^2\\sin^2(\\theta) - 4r\\cos(\\theta) = 0$$3.将极坐标方程$r = \\sin(\\theta)$转换为直角坐标方程。
使用极坐标到直角坐标的转换公式,将$r = \\sin(\\theta)$代入,得到:$$x = \\sin(\\theta)\\cos(\\theta)$$$$y = \\sin^2(\\theta)$$化简上述两个式子,得到直角坐标方程为:$$x = \\frac{1}{2}\\sin(2\\theta)$$$$y = \\sin^2(\\theta)$$二、参数方程问题1.求解方程$\\frac{x + y}{x - y} = 2$的参数方程。
极坐标与参数方程题型和方法归纳
极坐标与参数方程题型和方法归纳极坐标与参数方程题型和方法归纳题型一:极坐标方程与直角坐标方程的相互转化,参数方程与普通方程相互转化,极坐标方程与参数方程相互转化。
具体方法如下:1)极坐标方程转直角坐标方程:begin{cases}\rho=x\cos\theta+y\sin\theta\\\tan\theta=\dfrac{y }{x}\end{cases}\Rightarrow\begin{cases}x=\rho\cos\theta\\y=\rho \sin\theta\end{cases}$$其中,$\rho$表示点到原点的距离,$\theta$表示点与$x$轴正半轴的夹角。
2)参数方程转直角坐标方程:begin{cases}x=f(t)\\y=g(t)\end{cases}\RightarrowF(x,y)=0$$其中,$F(x,y)$为$x,y$的函数,$t$为参数。
3)极坐标方程转参数方程:begin{cases}x=r\cos\theta\\y=r\sin\theta\end{cases}\Rightarr ow\begin{cases}r=f(\theta)\\ \theta=g(r)\end{cases}$$题型二:三个常用的参数方程及其应用1)圆的参数方程:begin{cases}x=a+r\cos\theta\\y=b+r\sin\theta\end{cases}$$其中,$(a,b)$为圆心坐标,$r$为半径。
2)椭圆的参数方程:begin{cases}x=a\cos\theta\\y=b\sin\theta\end{cases}$$其中,$a,b$为椭圆的长短半轴。
3)过定点倾斜角为$\alpha$的直线$l$的标准参数方程为:dfrac{x-x_0}{\cos\alpha}=\dfrac{y-y_0}{\sin\alpha}=p$$其中,$(x_0,y_0)$为直线$l$上的一点,$p$为直线$l$到原点的距离。
(完整版)极坐标与参数方程知识点、题型总结(最新整理)
(完整版)极坐标与参数⽅程知识点、题型总结(最新整理)极坐标与参数⽅程知识点、题型总结⼀、伸缩变换:点是平⾯直⾓坐标系中的任意⼀点,在变换),(y x P 的作⽤下,点对应到点,称伸缩变换>?='>?=').0(,y y 0),(x,x :µµλλ?),(y x P ),(y x P '''⼀、1、极坐标定义:M 是平⾯上⼀点,表⽰OM 的长度,是,则有序实数实ρθMOx ∠数对,叫极径,叫极⾓;⼀般地,,。
,点P 的直⾓坐标、(,)ρθρθ[0,2)θπ∈0ρ≥极坐标分别为(x ,y )和(ρ,θ)2、直⾓坐标极坐标 2、极坐标直⾓坐标?cos sin x y ρθρθ=??=??222tan (0)x y y x xρθ?=+??=≠?3、求直线和圆的极坐标⽅程:⽅法⼀、先求出直⾓坐标⽅程,再把它化为极坐标⽅程⽅法⼆、(1)若直线过点M(ρ0,θ0),且极轴到此直线的⾓为α,则它的⽅程为:ρsin(θ-α)=ρ0sin(θ0-α)(2)若圆⼼为M (ρ0,θ0),半径为r 的圆⽅程为ρ2-2ρ0ρcos(θ-θ0)+ρ02-r 2=0⼆、参数⽅程:(⼀).参数⽅程的概念:在平⾯直⾓坐标系中,如果曲线上任意⼀点的坐标都是某个变数的函数并且对于的每⼀个允许值,由这个⽅程所确y x ,t ?==),(),(t g y t f x t 定的点都在这条曲线上,那么这个⽅程就叫做这条曲线的参数⽅程,联系变数),(y x M 的变数叫做参变数,简称参数。
相对于参数⽅程⽽⾔,直接给出点的坐标间关系的y x ,t ⽅程叫做普通⽅程。
(⼆).常见曲线的参数⽅程如下:直线的标准参数⽅程1、过定点(x 0,y 0),倾⾓为α的直线:(t 为参数)ααsin cos 00t y y t x x +=+=(1)其中参数t 的⼏何意义:点P (x 0,y 0),点M 对应的参数为t ,则PM =|t|(2)直线上对应的参数是。
高考数学极坐标与参数方程题型归纳
高考数学极坐标与参数方程题型归纳一、极坐标题型1.圆的极坐标方程圆的极坐标方程为r=a,其中a为常数。
题目中常常给出一个圆的直角坐标方程,要求将其转化为极坐标方程。
2.同一直线与圆的极坐标方程给定一条直线的极坐标方程,如$r=k\\theta$,同时给出一个与该直线相交于两点的圆的极坐标方程,求该圆的半径和圆心的极坐标。
3.圆内切于另一圆与直线的极坐标方程给定一个圆的极坐标方程,要求找出与该圆相切的另一个圆和直线的极坐标方程。
4.线段与圆的极坐标方程给定一段线段的两个端点的极坐标和长度,要求求出与该线段相切的圆的极坐标方程。
二、参数方程题型1.直线的参数方程给定一条直线的直角坐标方程,要求将其转化为参数方程形式。
2.圆的参数方程给定一个圆的直角坐标方程,要求将其转化为参数方程形式。
3.曲线方程的参数化表示给定一个曲线的直角坐标方程,要求将其转化为参数方程形式。
三、极坐标与参数方程的转换题型1.极坐标转换为参数方程给定一个极坐标方程,要求将其转化为参数方程形式。
2.参数方程转换为极坐标给定一个参数方程,要求将其转化为极坐标方程形式。
四、解析法求参数方程的题型1.螺线的参数方程给定一个螺线的解析方程,要求求出其对应的参数方程。
2.抛物线的参数方程给定一个抛物线的解析方程,要求求出其对应的参数方程。
3.椭圆的参数方程给定一个椭圆的解析方程,要求求出其对应的参数方程。
五、参数方程与直角坐标系之间的关系1.参数方程的直角坐标系方程给定一个参数方程,要求将其转化为直角坐标系方程。
2.直角坐标系方程的参数方程给定一个直角坐标系方程,要求将其转化为参数方程。
以上是高考数学中关于极坐标与参数方程的常见题型归纳。
掌握了这些题型的解题方法和转换技巧,就能够更好地应对高考数学中的相关题目。
在解题时,可以根据题目给出的信息选择合适的坐标系,利用相应的公式和性质进行计算,从而得出准确的答案。
希望同学们通过对这些题型的学习和练习,能够在高考中取得优异的成绩!。
极坐标与参数方程题型大全及答案
参 数 方 程 集 中 训 练 题 型 大 全一、回归教材数学选修4-4 坐标系与参数方程[基础训练A 组]一、选择题1.若直线的参数方程为12()23x t t y t =+⎧⎨=-⎩为参数,则直线的斜率为( ) A .23 B .23- C .32 D .32- 2.下列在曲线sin 2()cos sin x y θθθθ=⎧⎨=+⎩为参数上的点是( ) A.1(,2 B .31(,)42- C. D. 3.将参数方程222sin ()sin x y θθθ⎧=+⎪⎨=⎪⎩为参数化为普通方程为( ) A .2y x =- B .2y x =+ C .2(23)y x x =-≤≤ D .2(01)y x y =+≤≤4.化极坐标方程2cos 0ρθρ-=为直角坐标方程为( )A .201y y +==2x 或B .1x =C .201y +==2x 或x D .1y =5.点M的直角坐标是(-,则点M 的极坐标为( ) A .(2,)3πB .(2,)3π-C .2(2,)3πD .(2,2),()3k k Z ππ+∈ 6.极坐标方程cos 2sin 2ρθθ=表示的曲线为( ) A .一条射线和一个圆 B .两条直线 C .一条直线和一个圆 D .一个圆二、填空题1.直线34()45x t t y t =+⎧⎨=-⎩为参数的斜率为______________________。
2.参数方程()2()t t t t x e e t y e e --⎧=+⎪⎨=-⎪⎩为参数的普通方程为__________________。
3.已知直线113:()24x t l t y t=+⎧⎨=-⎩为参数与直线2:245l x y -=相交于点B ,又点(1,2)A , 则AB =_______________。
4.直线122()112x t t y t ⎧=-⎪⎪⎨⎪=-+⎪⎩为参数被圆224x y +=截得的弦长为______________。
2024高考试题分类汇编-极坐标参数方程
极坐标参数方程1.(2024新课标Ⅲ文数)[选修4―4:坐标系与参数方程](10分)在直角坐标系xOy 中,直线l 1的参数方程为2+,,x t y kt =⎧⎨=⎩(t 为参数),直线l 2的参数方程为2,,x m m m y k =-+⎧⎪⎨=⎪⎩(为参数).设l 1与l 2的交点为P ,当k 改变时,P 的轨迹为曲线C . (1)写出C 的一般方程;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,设l 3:ρ(cos θ+sin θ,M 为l 3与C 的交点,求M 的极径.2.(2024新课标Ⅲ理数)[选修44:坐标系与参数方程](10分)在直角坐标系xOy 中,直线l 1的参数方程为2+,,x t y kt =⎧⎨=⎩(t 为参数),直线l 2的参数方程为2,,x m m m y k =-+⎧⎪⎨=⎪⎩(为参数).设l 1与l 2的交点为P ,当k 改变时,P 的轨迹为曲线C . (1)写出C 的一般方程;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,设l 3:ρ(cos θ+sin θ,M 为l 3与C 的交点,求M 的极径.3.(2024新课标Ⅱ文)[选修4−4:坐标系与参数方程](10分)在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线1C 的极坐标方程为cos 4ρθ=.(1)M 为曲线1C 上的动点,点P 在线段OM 上,且满意||||16OM OP ⋅=,求点P 的轨迹2C 的直角坐标方程;(2)设点A 的极坐标为π(2,)3,点B 在曲线2C 上,求OAB △面积的最大值. 4(2024新课标Ⅱ理).[选修4―4:坐标系与参数方程](10分)在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线1C 的极坐标方程为cos 4ρθ=. (1)M 为曲线1C 上的动点,点P 在线段OM 上,且满意||||16OM OP ⋅=,求点P 的轨迹2C 的直角坐标方程;(2)设点A 的极坐标为(2,)3π,点B 在曲线2C 上,求OAB △面积的最大值.5.(2024新课标Ⅰ文数)[选修4―4:坐标系与参数方程](10分)在直角坐标系xOy 中,曲线C 的参数方程为3cos ,sin ,x y θθ=⎧⎨=⎩(θ为参数),直线l 的参数方程为4,1,x a t t y t =+⎧⎨=-⎩(为参数). (1)若a =−1,求C 与l 的交点坐标;(2)若C 上的点到l a.6.(2024新课标Ⅰ理数)[选修4―4:坐标系与参数方程](10分)在直角坐标系xOy 中,曲线C 的参数方程为3cos ,sin ,x y θθ=⎧⎨=⎩(θ为参数),直线l 的参数方程为4,1,x a t t y t =+⎧⎨=-⎩(为参数). (1)若a =−1,求C 与l 的交点坐标;(2)若C 上的点到la.7(2024天津理)在极坐标系中,直线4cos()106ρθπ-+=与圆2sin ρθ=的公共点的个数为___________.8[选修4-4:坐标系与参数方程](本小题满分10分) 在平面直角坐标系中,已知直线的参考方程为(为参数),曲线的参数方程为(为参数).设为曲线上的动点,求点到直线的距离的最小值. 9(2024北京理)在极坐标系中,点A 在圆上,点P 的坐标为(1,0),则|AP |的最小值为___________. xOy l 82x t t y =-+⎧⎪⎨=⎪⎩tC 22x s y ⎧=⎪⎨=⎪⎩s P C P l 22cos 4sin 40ρρθρθ--+=。
新高考数学极坐标与参数方程题目
新高考数学极坐标与参数方程题目
在新高考数学考试中,极坐标与参数方程是相对新的考点,但却十分重要。
通过极坐标和参数方程,我们可以更灵活地描述平面上的图形,使数学问题更具有普适性和解题的高效性。
下面我们来看几个与极坐标和参数方程相关的数学题目。
第一题
已知曲线方程 $r = 2 + \\cos(\\theta)$,求曲线与极轴正向夹角终值。
第二题
已知曲线方程 $x = \\cos(t)$,$y = \\sin(t)$,$0 \\leq t < 2\\pi$,求曲线的周期性和对称性。
第三题
已知曲线方程 $r = 3\\sin(2\\theta)$,求曲线的极点和渐近线方程。
第四题
已知曲线方程 $\\begin{cases} x = t^2 \\\\ y = t^3 \\end{cases}$,求曲线的凹凸性。
第五题
已知曲线方程 $\\begin{cases} x = 2\\cos(t) \\\\ y = 3\\sin(t) \\end{cases}$,求曲线在 $t = \\frac{\\pi}{4}$ 时的切线方程。
第六题
已知曲线方程 $r = 1 + \\sin(\\theta)$,求曲线的弧长。
第七题
已知曲线方程 $r = \\frac{1}{2\\cos(\\theta)-\\sin(\\theta)}$,求曲线的极化方程。
这几道题目涉及到了对极坐标与参数方程的综合运用和理解,希望同学们在解答这些题目的过程中,能够加深对这一部分知识的理解和掌握。
祝大家在高考中取得优异的成绩!。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1)在直角坐标平面内,以坐标原点为极点,轴的非负半轴为极轴建立极坐标系. 已知点的极坐标为,曲线的参数方程为
.
(Ⅰ)求直线的直角坐标方程;(Ⅱ)求点到曲线上的点的距离的最小值.
(2)在直角坐标系xoy中,直线的参数方程为(t为参数)。
在极坐标系(与直角坐标系xoy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)
中,圆C的方程为。
(Ⅰ)求圆C的直角坐标方程;
(Ⅱ)设圆C与直线交于点A、B,若点P的坐标为,求|PA|+|PB|。
2.
已知曲线,.
(1)化的方程为普通方程;
(2)若上的点对应的参数为为上的动点,求中点到直线
距离的最小值.
3.
在平面直角坐标系中,以原点为极点,轴为极轴建立极坐标系,曲线的方程为(为参数),曲线的极坐标方程为,若曲
线与相交于、两点.
(1)求的值; (2)求点到、两点的距离之积.
已知曲线的极坐标方程为,以极点为原点,极轴为轴的正半轴建立平
面直角坐标系,设直线的参数方程为(为参数).
(1)求曲线的直角坐标方程与直线的普通方程;
(2)设曲线与直线相交于两点,以为一条边作曲线的内接矩形,求该矩形的面积。
5.
已知某圆的极坐标方程是,求
(Ⅰ)圆的普通方程和一个参数方程;
(Ⅱ)圆上所有点中的最大值和最小值。
6.
在直角坐标系中,以为极点,轴正半轴为极轴建立极坐标系。
圆,直线的极坐标方程分别为
(1)求与的交点的极坐标;
(2)设为的圆心,为与的交点连线的中点,已知直线的参数方程为
求的值。
7.
已知极坐标系的原点在直角坐标系的原点处,极轴为轴正半轴,直线的参数
方程为,曲线的极坐标方程为
(1)写出的直角坐标方程,并说明是什么曲线?
(2)设直线与曲线相交于两点,求.
已知直线为参数), 曲线(为参数).
(I)设与相交于两点,求;
(II)若把曲线上各点的横坐标压缩为原来的倍,纵坐标压缩为原来的倍,得到曲线,设点是曲线上的一个动点,求它到直线的距离的最小值.
9.
在极坐标系中,动点运动时,与成反比,动点的轨迹经过点
(I)求动点轨迹的极坐标方程;
(II)以极点为直角坐标系原点,极轴为x轴正半轴建立直角坐标系,将(I)中极坐标方程化为直角坐标方程,并说明所得点轨迹是何种曲线.
10.以直角坐标系的原点为极点,轴的正半轴为极轴,已知点P的直角坐标为(1,-
5),点M的极坐标为(4,),若直线过点P,且倾斜角为,圆C以M为圆心,4为半径。
(I)求直线的参数方程和圆C的极坐标方程。
(II)试判定直线与圆C的位置关系。
11.
在直角坐标系中,已知点,曲线的参数方程为为
参数).以原点为极点,轴的正半轴为极轴建立极坐标系,直线的极坐标方程为
(Ⅰ)判断点与直线的位置关系,说明理由;
(Ⅱ)设直线与曲线的两个交点为、,求的值.
12.
已知圆C1的参数方程为(φw为参数),以坐标原点O为极点,x轴的正
半轴为极轴建立极坐标系,圆C2的极坐标方程为ρ=4sin(θ+).
(Ⅰ)将圆C1的参数方程化为普通方程,将圆C2的极坐标方程化为直角坐标系方程;
(Ⅱ)圆C1,C2是否相交?请说明理由.
13.
在极坐标系中,曲线,若以极点为原点,极轴为轴的非负半轴建立平面直角坐标系.
(Ⅰ)求圆的直角坐标方程;
(Ⅱ)若圆上的动点的直角坐标为,求的最大值,并写出取得最大值时点P的直角坐标.
14.已知极坐标的极点在平面直角坐标系的原点O处,极轴与x轴的正半轴重合,且长度
单位相同.直线l的极坐标方程为:ρsin(θ﹣)=10,曲线C:
(α为参数),其中α∈[0,2π).
(Ⅰ)试写出直线l的直角坐标方程及曲线C的普通方程;
(Ⅱ)若点P为曲线C上的动点,求点P到直线l距离的最大值.
15.(本小题满分10分)在平面直角坐标系xoy中,已知曲线C1:x2+y2=1,以平面直角坐标系xoy的原点O为极点,x轴的正半轴为极轴,取相同的单位长度建立极坐标系,
已知直线:ρ(2cosθ-sinθ)=6.
(Ⅰ)将曲线C1上的所有点的横坐标,纵坐标分别伸长为原来的、2倍后得到曲线
C2,试写出直线的直角坐标方程和曲线C2的参数方程.
(Ⅱ)在曲线C2上求一点P,使点P到直线的距离最大,并求出此最大值.
16.
(本小题满分10分)已知曲线的参数方程为(为参数),以坐
标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为。
(Ⅰ)把的参数方程化为极坐标方程;
(Ⅱ)求与交点的极坐标()。
17.(本小题满分10分)在极坐标系中, O为极点, 半径为2的圆C的圆心的极坐标为
.
(1)求圆C的极坐标方程;
(2)在以极点O为原点,以极轴为x轴正半轴建立的直角坐
标系中,直线的参数方程为
(t为参数),直线与圆C相交于A,B两点,已知定点,求|MA|·|MB|.
18.极坐标系与直角坐标系xOy取相同的长度单位,以原点O为极点,以x轴正半轴为极轴.已知直线l的参数方程为(t为参数).曲线C的极坐标方程为ρ
=8cosθ.
(1)求曲线C的直角坐标方程;
(2)设直线l与曲线C交于A,B两点,与x轴的交点为F,求+的值.19.(本小题满分10分)以直角坐标系的原点为极点,x轴的非负半轴为极轴,建立极坐
标系,并在两种坐标系中取相同的长度单位,已知直线l的参数方程为(t
为参数),圆C的极坐标方程为
(I)求直线l和圆C的直角坐标方程;
(Ⅱ)若点P(x,y)在圆C上,求的取值范围.
20.(本题满分10分) 在直角坐标系xOy中,圆C的参数方程
为参数).以O为极点,x轴的非负半轴为极轴建立极坐标系.(Ⅰ)求圆C的极坐标方程;
(Ⅱ)直线的极坐标方程是,射线与圆C的交点为O、P,与直线的交点为Q,求线段PQ的长.
21.
(本小题满分10分)已知曲线C的极坐标方程是.以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,直线l的参数方程是
为参数),设点.
(Ⅰ)将曲线C的极坐标方程化为直角坐标方程,将直线l的参数方程化为普通方程;
(Ⅱ)设直线l与曲线C相交于M,N两点,求的值|PM|·|PN|的值.
22.
(本小题满分10分)曲线的参数方程为(为参数),将曲线上所有点的横坐标伸长为原来的2倍,纵坐标伸长为原来的倍,得到曲线.以平面直角坐标系xOy的原点O为极点,x轴的正半轴为极轴,取相同的单位长度建立极坐标系,已知直线.
(1)求曲线和直线的普通方程;
(2)为曲线上任意一点,求点P到直线的距离的最值.
23.
已知曲线(为参数),曲线,将的横
坐标伸长为原来的2倍,纵坐标缩短为原来的得到曲线,
(1)求曲线的普通方程,曲线的直角坐标方程;
(2)若点P为曲线上的任意一点,Q为曲线上的任意一点,求线段的最小值,并求此时的P的坐标。
24.
在平面直角坐标系中,曲线:,以原点为极点,轴的正半轴为极
轴,取相同的单位长度建立极坐标系,已知直线:将曲线
上的所有点的横坐标,纵坐标分别伸长为原来的、倍后得到曲线,写出直线的直角坐标方程和曲线的参数方程;在曲线上求一点,使点到直线
距离最大,并求出最大值.。