第二章 有限元方程的求解方法 PPT
FEM_有限元法 PPT
❖ 应用范围
广泛地被应用于各种结构工程 成功地用来解决其他工程领域中的问题
➢热传导、渗流、流体力学、空气动力学、土壤力学、 机械零件强度分析、电磁工程问题等等
有限元法
❖ Finite Element Method的缩写,有限单元法,其实际应用 中往往被称为有限元分析(FEA),是一个数值方法解偏微 分方程。FEM是一种高效能、常用的计算方法,它将连续体 离散化为若干个有限大小的单元体的集合,以求解连续体力 学问题。有限元法在早期是以变分原理为基础发展起来的, 所以它广泛地应用于以拉普拉斯方程和泊松方程所描述的各 类物理场中(这类场与泛函的极值问题有着紧密的联系)。 自从1969年以来,某些学者在流体力学中应用加权余数法 中的迦辽金法(Galerkin)或最小二乘法等同样获得了有限元 方程,因而有限元法可应用于以任何微分方程所描述的各类 物理场中,而不再要求这类物理场和泛函的极值问题有所联 系.
❖ FEM是应用于现代复杂机械结构优化设计的非常重要的计算 机辅助分析方法。FEM早期主要应用于航空航天制造、船舶 工业及高端军事领域 。
方法运用的基本步骤
❖ 基本思想:由解给定的泊松方程化为求解泛函的极值问题。
❖ 步骤1:剖分 ❖ 将待解区域进行分割,离散成有限个元素的集合.元素பைடு நூலகம்单
元)的形状原则上是任意的.二维问题一般采用三角形单元 或矩形单元,三维空间可采用四面体或多面体等.每个单元 的顶点称为节点(或结点)。
有限元分析-动力学分析PPT课件
目录
• 引言 • 有限元分析基础 • 动力学分析基础 • 有限元分析在动力学中的应用 • 案例分析 • 结论与展望
01 引言
目的和背景
01
介绍有限元分析在动力学分析中 的应用和重要性。
02
阐述本课件的目标和内容,帮助 读者了解有限元分析在动力学分 析中的基本概念、方法和应用。
随着工程复杂性和精确度要求的提高,有限元分析在动力学分析中的 应用将更加重要和必要。
02
未来需要进一步研究有限元分析算法的改进和优化,以提高计算效率 和精度。
03
未来需要加强有限元分析与其他数值计算方法的结合,如有限差分、 有限体积等,以实现更复杂的动力学模拟和分析。
04
未来需要加强有限元分析在多物理场耦合和多尺度模拟中的应用,以 更好地解决工程实际问题。
有限元分析的优点和局限性
• 精确性:对于某些问题,可以得到相当精确的结 果。
有限元分析的优点和局限性
数值误差
由于离散化的近似性,结果存在一定的数值误 差。
计算成本
对于大规模问题,计算成本可能较高。
对模型简化的依赖
结果的准确性很大程度上依赖于模型的简化程度。
03 动力学分析基础
动力学简介
动力学是研究物体运 动过程中力与运动关 系的科学。
THANKS FOR WATCHING
感谢您的观看
ห้องสมุดไป่ตู้
求解等。
02 有限元分析基础
有限元方法概述
01
有限元方法是一种数值分析方法,通过将复杂的物理系统离散化为有 限个简单元(或称为元素)的组合,来模拟和分析系统的行为。
02
它广泛应用于工程领域,如结构分析、流体动力学、热传 导等领域。
第二章 有限元分析基本理论
第二章 有限元分析基本理论有限元法的基本思路是将一个连续求解区域分割成有限个不重叠且按一定方式相互连接在一起的子域(单元),利用在每一个单元内假设的近似函数来分片地表示全求解域上待求的未知场函数。
单元内的场函数通常由未知场函数或其导数在单元各个节点的数值和其插值函数来近似表示。
这样,未知场函数或其导数在各个节点上的数值即成为未知量(自由度)。
根据单元在边界处相互之间的连续性,将各单元的关系式集合成方程组,求出这些未知量,并通过插值函数计算出各个单元内场函数的近似值,从而得到全求解域上的近似解。
有限元将一个连续的无限自由度问题变成离散的有限自由度问题进行求解。
如果将区域划分成很细的网格,也即单元的尺寸变得越来越小,或随着单元自由度的增加及插值函数精度的提高,解的近似程度将不断被改进。
如果单元是满足收敛要求的,近似解最后可收敛于精确解。
2.1 有限元分析的基本概念和计算步骤首先以求解连续梁为例,引出结构有限元分析的一些基本概念和计算步骤。
如图2-1,连续梁承受集中力矩作用。
将结构离散为三个节点,两个单元。
结构中的节点编号为1、2、32.1.1单元分析在有限元分析过程中,第一步是进行结构离散,并对离散单元进行分析,分析的目的是得到单元节点的力与位移的关系。
单元分析的方法有直接法和能量法,本节采用直接法。
从连续梁中取出一个典型单元e ,左边为节点i ,右边为节点j 。
将节点选择在支承点处,单元两端只产生转角位移e i θ、ej θ,顺时针转动为正。
独立的单元杆端内力为弯矩i m 、j m ,顺时针为正。
记:{}e j i eu ⎭⎬⎫⎩⎨⎧=θθ为单元e 的节点位移向量;{}ej i em m f ⎭⎬⎫⎩⎨⎧=为单元e 的杆端力向量。
根据结构力学位移法可得如下平衡方程:⎪⎭⎪⎬⎫+=+=e j e e i e e j ej e e i e e i k k m k k m θθθθ22211211 (2-1)式中:ee e e ee i k k i k k 2412212211====,lEIi e =,EI 、l 分别为单元e 的抗弯刚度和长度。
《有限元分析及应用》PPT课件
41
2.3 基本变量的指标表达
指标记法的约定:
自由指标:在每项中只有一个下标出现,如
,
i,j为自由指标,它们可以自由变化;在三维ij 问题
中,分别取为1,2,3;在直角坐标系中,可表示
三个坐标轴x, y, z。
哑指标:在每项中有重复下标出现,如:
,j为哑指标。在三维问题中其变化的范ai围j x为j 1,b2i ,3
有限元方法的思路及发展过程
思路:以计算机为工具,分析任意变形体以获得所有 力学信息,并使得该方法能够普及、简单、高效、方 便,一般人员可以使用。 实现办法:
20
技术路线:
21
发展过程: 如何处理
对象的离散化过程
22
常用单元的形状
.点 (质量)
面 (薄壳, 二维实体,
.. 轴..对称实体.).......
3
有限元法是最重要的工程分析技术之一。 它广泛应用于弹塑性力学、断裂力学、流 体力学、热传导等领域。有限元法是60年 代以来发展起来的新的数值计算方法,是 计算机时代的产物。虽然有限元的概念早 在40年代就有人提出,但由于当时计算机 尚未出现,它并未受到人们的重视。
4
随着计算机技术的发展,有限元法在各个 工程领域中不断得到深入应用,现已遍及 宇航工业、核工业、机电、化工、建筑、 海洋等工业,是机械产品动、静、热特性 分析的重要手段。早在70年代初期就有人 给出结论:有限元法在产品结构设计中的 应用,使机电产品设计产生革命性的变化, 理论设计代替了经验类比设计。
由此得到
考虑 X 0
xyl ym zy n Y xl yxm zxn X
考虑
Z 0 xzl yzm zn Z
应力边界条件
有限元法基础ppt课件
有限单元法
一、数值模拟方法概述 二、有限单元法简介 三、有限单元法分析步骤 四、利用有限元软件进行工程分析
一、数值模拟方法概述
工程技术领域中的许多力学问题和场问题,如固 体力学中的位移场、应力场分析、电磁学中的电磁 分析、振动特性分析、热力学中的温度场分析,流 体力学中的流场分析等,都可以归结为在给定边界 条件下求解其控制方程的问题。
结构矩阵分析方法认为:整体结构可以看作是由有限 个力学小单元相互连接而组成的集合体,每个单元的 力学特征可以看作建筑物的砖瓦,装配在一起就能提 供整体结构的力学特性。
结构矩阵分析方法分析的结构本身都明显地由杆件组 成,杆件的特征可通过经典的位移法分析建立。
虽然矩阵位移法整个分析方法和步骤都与有限单元法 相似,也是用矩阵来表达、用计算机来求解,但是它 与目前广泛应用的有限单元法是有本质区别的。
❖ 国际上早在20世纪50年代末、60年代初就投入大量的人力和 物力开发具有强大功能的有限元分析程序。其中最为著名的是 由美国国家宇航局(NASA)在1965年委托美国计算科学公司 和贝尔航空系统公司开发的NASTRAN有限元分析系统。该系 统发展至今已有几十个版本,是目前世界上规模最大、功能最 强的有限元分析系统。
有限元法
既可以分析杆系结构,又分析非杆系的连续 体结构。
三、有限单元法简介
有限单元法的常用术语:
有限元模型 是真实系统理想化的数学抽象。
定义
真实系统
有限元模型
自由度(DOFs- degree of freedoms)
自由度(DOFs) 用于描述一个物理场的响应特性。
UY ROTY
ROTZ UZ
UX ROTX
目前在工程技术领域内常用的数值模拟方法有: 1、有限单元法FEM( Finite Element Method) 2、边界元法BEM(Boundary Element Method ) 3、有限差分法FDM( Finite Difference Method 4、离散单元法DEM(Discrete Element Method) 其中有限单元法是最具实用性和应用最广泛的。
弹性力学与有限元完整版ppt课件
. 1
平面应变
• 4 变形协调方程
平面应力
平面应变
调和方程
由6个简化为1个
平面问题
方程数量: 平衡方程——2个 物理方程——3个 几何方程——3个
合计 8
未知量:
应力分量——3个 x、 y、 xy
应变分量——3个
x、 y z、 xy
位移分量——2个
u、v
合计 8
第三章 弹性力学问题求解方法简述
• 研究的内容:
– 外力作用下
应力、应变、位移
• 物体变形——弹性变形、塑性变形
• 弹性变形:
– 当外力撤去以后恢复到原始状态,没有变形残留,材 料的应力和应变之间具有一一对应的关系。与时间无 关,也与变形历史无关。
• 塑性变形:
– 当外力撤去以后尚残留部分变形量,不能恢复到原始 状态,——即存在永久变形。应力和应变之间的关系 不再一一对应,与时间、与加载历程有关。
1.3 几个基本概念
1. 外力 2. 一点的应力状态 3. 一点的形变 4. 位移分量
1 外力
• 作用于物体的外力可以分为3种类型: 体力、面力、集中力。
• 体力——就是分布在物体整个体积内部各个质点上的
力,又称为质量力。例如物体的重力,惯性力,电磁力等 等。
• 面力——是分布在物体表面上的力,例如风力,静水
大小和方向不同。
• 体力分量:将体力沿三个坐标轴xyz 分解,用X、
Y、Z表示,称为体力分量。
• 符号规定:与坐标轴方向一致为正,反之为
负。 应该注意的是:在弹性力学中,体力是指单位
体积的力 。
• 体力的因次:[力]/[长度]^3
• 表示:F={X Y Z}
计算固体力学(有限元以及无网格方法)全套教学【121P】PPT课件
i(xi , yi ) u i
um vj
uj j(xj , yj )
x O
三角形单元
将位移试函数代入上式,并求偏导数,得
xxyy222111 (((bcciiiuuviii
bjuj cjvj cjuj
bmum) cmvm) cmum)(bivi
bjvj
bmvm)
第二章 平面弹性力学的有限元法
反映了单元的位移形态,称为形函数
vm
m (xm, ym)
vi
i(xi , yi ) u i
um vj
uj j(xj , yj )
x
三角形单元
同理有 vN iv i N jvj N m v m N kv k
则位移向量可表示为
i,j,m
{ } e 单元节点位移向量
ui
vi
{f
}
u v
Ni
0
0 Ni
求
L(u)0
解 域
u aiui
离 散
i
L'(ui) 0
AXB
各种数值方法
ui u(xi)离散节点的变量值
第一章 科学和工程中的数值方法
1.3 几个简单示例
(a) 开孔板力学模型
(b) 力学模型离散化
平面问题有限元法
第一章 科学和工程中的数值方法
BEM的变形
起重机吊钩
FEM的变形
第一章 科学和工程中的数值方法
2.2 三角形常应变单元
y
3 单元中的应变和应力
{}[B]{}e
由于[B]是常量,单元内各点应变分
量也都是常量,这是由于采用了线性位移 O 函数的缘故,这种单元称为三角形常应变 单元。
有限元课件ppt
将所有单元的刚度矩阵依照一定的方式组合起来,形成整体的刚度 矩阵。
载荷向量与束缚条件
载荷向量
表示作用在结构上的外力,包括集中力和散布力。
束缚条件
表示结构在某些结点上的位移受到限制,常见的束缚有固定束缚、 弹性束缚等。
载荷向量和束缚条件的引入
在建立整体刚度矩阵后,需要将载荷向量和束缚条件引入到整体刚 度矩阵中,形成完全的线性方程组。
并行计算
采取并行计算技术,提高计算效率。
算法改进
优化算法,提高计算精度和效率。
06 有限元分析软件 介绍
ANSYS
01
功能特点
ANSYS是一款功能强大的有限元分析软件,广泛应用于结构、流体、
电磁等多种工程领域。它提供了丰富的建模工具和求解器,能够处理复
杂的工程问题。
02
优点
ANSYS具有友好的用户界面和强大的前后处理功能,使得建模和网格
有限元法的应用领域
结构分析
有限元法在结构分析中应用最 为广泛,可以用于分析各种类 型的结构,如桥梁、建筑、机
械零件等。
热传导
有限元法可以用于求解温度场 的问题,如热传导、热对流和 热辐射等问题。
流体动力学
有限元法在流体动力学领域也 有广泛应用,可以用于求解流 体流动和流体传热等问题。
其他领域
除了上述领域外,有限元法还 广泛应用于电磁场、声场、化
学反应等领域。
02 有限元的数学基 础
线性代数基础
向量与矩阵
01
介绍向量的基本概念、向量的运算、矩阵的表示和运算规则等
。
线性方程组
02
论述线性方程组的解法,包括高斯消元法、LU分解等。
特征值与特征向量
有限元基本概念ppt课件
i1
i1
其中: Hi( xj )δij H'i(xj )0
'
Hi( xj )0 Hi( xj )δij
1 i j δij 0 i j
眼睛是心灵的窗户,是人体中最宝贵 的感觉 器官, 可很多 孩子对 眼睛的 重要性 不重视 。在每 学期的 视力测 查中情 况都不 容乐观
经推导:
n
n
P 2 n - 1 ( x ) 1 2 W i 'x ix x i W i2 x u ix - x iW i2 x u i '
眼睛是心灵的窗户,是人体中最宝贵 的感觉 器官, 可很多 孩子对 眼睛的 重要性 不重视 。在每 学期的 视力测 查中情 况都不 容乐观
• 有限元方法的分类
依据求解问题的路径不同,有限元方法大致可分为: 位移法:以位移为基本未知量 力法:应力为基本未知量 混合法:部分以位移;部分以应力为基本未知量
• 有限元位移法的基本概念
几何矩阵的一般表达形式:
其中:
ε
B
e
δ
x
0
0
0
y
0
0
B
y
0
x
z
0
N
0
0
1
0 N1 0
0 0 N1
N2 0 0
0 N2 0
0
0
N 2
0
z y
z
0
x
眼睛是心灵的窗户,是人体中最宝贵 的感觉 器官, 可很多 孩子对 眼睛的 重要性 不重视 。在每 学期的 视力测 查中情 况都不 容乐观
ji ji
i,j0,1,2, n
可令:
Ni
x
C x x 0 x x 1 x x i - 1 x x i + 1 x x n
有限元法PPT课件
Motorola– Drop Test Fujitsu-Computers Intel –Chip Integrity
电子
Baxter - Equipment J&J – Stents Medtronic - Pacemakers
医疗
Principia-spain Arup-U.K. T.Y. Lin - Bridge
有限元法
左图所示,为分析齿轮上一个齿内的应力分布,可分析图中所示的一个平面截面内位移分布.作为近似解,可以先求出图中各三角形顶点的位移.这里的 三角形就是单元,其顶点就是节点。
从物理角度理解, 可把一个连续的齿形截面单元之间在节点处以铰链相链接,由单元组合而成的结构近似代替原连续结构,在一定的约束条件下,在给定的载荷作用下,就可以求出各节点的位移,进而求出应力.
一.Abaqus公司简介
公司
’00 ’01 ’02 ’03 ’04 ‘05 ’06 ‘07
18%
18%
20%
SIMULIA公司(原ABAQUS公司)成立于1978年,全球超过600名员工,100% 专注于有限元分析领域。 全球28个办事处和9个代表处 业务迅速稳定增长,是当前有限元软件行业中唯一保持两位数增长率的公司。 2005年5月ABAQUS加入DS集团,将共同成为全球PLM的领导者
Where :
Displacement interpolation functions (位移插值函数)
13.3 Approximating Functions for Two-Dimensional Linear Triangular Elements (二维线性三角形单元的近似函数)
node (节点)
element(单元)
有限元法基础线性代数方程组的解法PPT课件
波前法和分块解法基本思想都是基于对高斯消 去法的再分析,由先集成后消元修正,发展到集 成和消元修正交替进行。
第41页/共69页
有限元法基础
7.3 利用计算机外存的直接法
三.波前法(Front Method) 高斯循序消去法和三角分解法的求解规模与带
高斯循环消去法 Do 15 m = 1, n-1 Do 15 i = m+1, n Do 15 j = i, n K(i,j )= K(i,j) – K(m,i) * K(m,j) /K(m,m)
15 continue
按行三角分解 Do 15 i = 1, n Do 15 j = 1, n Do 15 m = 1, i-1 K(i,j )= K(i,j) – K(m,i) * K(m,j) /K(m,m)
波前法的计算过程 1)按单元顺序扫描计算单元刚度矩阵,并送入内 存进行集成 2)检查那些DOF已完成集成,将集成完毕的DOF 作为主元,对其他行、列进行消元修正 3)完成消元修正后,将主DOF行有关的K和P中的 元素移到外存 4)重复1~3步,将全部单元扫描完毕 5)按消元顺序,由后向前依次回代求解
第37页/共69页
有限元法基础
7.3 利用计算机外存的直接法 二.分块解法 设允许使用内存为NA
NA =NQ 行数 ND 要求 NA>ND
在每一分块,NQ-ND行集成完毕,可进行消元修 正,最后的ND行进入到下一块系数矩阵一起集成, 消元修正。
第38页/共69页
有限元法基础
7.3 利用计算机外存的直接法 分块解法的特点 1) 在每一分块中,系数矩阵的元素是先集成后消
第2页/共69页
有限单元法原理及应用简明教程ppt课件
(a) 瞬变结构
(b) 分离体分析
(c) 平衡状态分析
图2-32 瞬变结构
24
第二章 结构几何构造分析
(2) 两刚片规则 两刚片用三根既不完全平行也不交于同一点的链杆 相联,所得结构是几何不变结构。
(a) 铰与链杆连接两刚片 (b) 三链杆连接两刚片 图2-33 两刚片连接规则
25
第二章 结构几何构造分析
章
生刚体位移时,称之为几何不变结构或几何稳定结构,
节
反之则称为几何可变结构或几何不稳定结构。几何可
目 录
变结构不能承受和传递载荷。对结构进行几何构造分
析也是能够对工程结构作有限单元法分析的必要条件。
11
第二章 结构几何构造分析
(a) 结构本身可变 (b) 缺少必要的约束条件 (c) 约束汇交于一点 图2-1 几何可变结构
节
何不变结构上,由增加二元体而发展的结构,是一个
目
几何不变结构。铰接三角形是最简单的几何不变结构。
录
图2-31 铰接三角形
23
第二章 结构几何构造分析
结构的特征是:当它受载荷作用时会产生微小的 位移, 但位移一旦发生后, 即转变成一几何不变结 构,但结构的内力可能为无限大值或不定值,这样的 结构称为瞬变结构。显然,瞬变结构在工程结构设计 中应尽量避免。
(5) 约束处理,求解系统方程
(6) 其它参数计算
4
第一章 概述
图1-2 工程问题有限单元法分析流程
5
第一章 概述
1.3 工程实例
返 回 章 节 目 录
(a) 铲运机举升工况测试
(b) 铲运机工作装置插入工况有限元分析
图1-3 WJD-1.5型电动铲运机
第二章 有限元法的直接刚度法-1梁单元
2l
2
l 3 12 6l 12 6l
6l
2l 2
6l
4l
2
2.1直梁的有限元分析
从式(2-22)可以看出,单元刚度矩阵 K e是一个对称矩阵,
即 aij a ji 。
将单元刚度矩阵K e的公式,即式(2-22),应用于三个实际的梁
单元,如图2.5所示,得到每个单元的节点力和节点位移的关系分别
。 见式(2-23)、(2-24)和(2-25)
图2.5 三个单元的受力图
2.1直梁的有限元分析
q11
12 6l 12 6l f1
mq2111
m21
2EI l3
6l
12
6l
4l 2 6l 2l 2
6l 12 6l
2l 2 6l 4l 2
f122
mqq322222 m32
知识点: 直梁和平面刚架的直接刚度法
重点: 梁单元杆和刚架单元的自由度 单元的坐标变换
难点:直接刚度法的计算过程与物理意义
Ⅰ. 关于梁和弯曲的概念
受力特点: 杆件在包含其轴线的纵向平面内,承受垂直于轴线的 横向外力或外力偶作用。 变形特点: 直杆的轴线在变形后变为曲线。 梁——以弯曲为主要变形的杆件称为梁。
f ii
f
' i
f
" i
1
' i
" i
0
(2-13)
其中,f i'
移, fi 、
i、 为图i' 为2.3图(2b.3)(所b)示所m示i单独qi作单用独所作产用生所的产位生移的。位
图2.3 (b) 节点i的节点力
2.1直梁的有限元分析
教材有误
有限元ppt课件
y(xi )2 y(xi1) h
a x b x
y(xi1) 2 y(xi ) y(xi1)
h hi 2 i1
yi1 2 yi yi1 h2
(1 5)
x
13
将(1-4)(1-5)代入(1-3),得
yi1 2 yi h2
yi1
yi1 yi h
39
厚度为1的微分体,在水平方向拉
力F的作用下发生了位移 xdx
拉力表达式:
F xdy 1
x
x dy
拉力做的功:
dx
xdx
dW
1 2
F xdx
将F代入:
dW
1 2
x
x
dxdy
40
储存在微分体内的应变能:
x
x dy
dU
dW
1 2
x
x
dxdy
单位体积内的应变能:
17
因此有 y(x) (x)
试探函数中所取的项数越多,逼近的精度越高。
将试探函数代入式(1-9),可以得到关于n个待定系数
的泛函表达式,简记为 I y(x) I(1,2,3, ,n)
根据多元函数有极值的必要条件,有
1
I (1,2 ,3,
2
I (1,2 ,3,
机械工程有限元法基础
1
有限元法是根据变分原理求解数学物理问题的一 种数值方法.
它从最初的固体力学领域 拓展到了
发展到了
从简单的静力分析
电磁学,流体力学,传热学, 声学等领域
动态分析,非线性分析, 多物理场耦合分析等复 杂问题的计算
偏微分方程的有限元方法市公开课一等奖省赛课获奖PPT课件
第19页
展开J
(Ju(nu)n
)
1 2
(un , un
)
(
f
,
un
)
1 2
n i 1
n
(i , j )cic j
j 1
n
( f , j )c j
j 1
令
J (un ) 0 j 1, 2, , n
c j
则c1, c2 ,, cn满足
n
(i , j )ci ( f , j ) j 1, 2, , n
第1页
偏微分方程有限元方法
一 边值问题变分原理
1 引论 (1)等周问题
在长度一定全部平面封闭曲线中,求所 围面积为最大曲线。
模型:在条件
s2
dx
2
dy
2
ds
l
下
s1 ds ds
求使得泛函 s(x, y) 1 s2 x dy y dx ds
2 s1 ds ds
到达最大函数 x(s), y(s。)
x (a,b)
J (u) 1 (Lu,u) ( f ,u)
2
1
b d p du udx
b
qu
2
dx
b
fudx
2 a dx dx
a
a
1 b ( pu2 qu2 2 fu)dx
2a
引入泛函算子
(u, v)
b
[
p
du
dv
quv]dx
a dx dx
则 J (u) 1 (u,u) ( f ,u)
x2
,,x
n
)T
ann
b (b1, b2 ,,bn )T
则J(x)可表示为: