专题02 常见动力学模型(上)(解析版)

合集下载

专题(19)动力学中三种典型物理模型(解析版)

专题(19)动力学中三种典型物理模型(解析版)

2021年高考物理一轮复习考点全攻关专题(19)动力学中三种典型物理模型(解析版)命题热点一:“传送带”模型【例1】(多选)如图所示,x 轴与水平传送带重合,坐标原点O 在传动带的左端,传送带右端A 点坐标为X A =8m ,匀速运动的速度V 0=5m/s ,一质量m =1kg 的小物块,轻轻放在传送带上OA 的中点位置,小物块随传动带运动到A 点后,冲上光滑斜面且刚好能够到达N 点处无机械能损失,小物块与传送带间的动摩擦因数μ=0.5,斜面上M 点为AN 的中点,重力加速度g =10m/s 2。

则下列说法正确的是( )A .N 点纵坐标为y N =1.25mB .小物块第一次冲上斜面前,在传送带上运动产生的热量为12.5JC .小物块第二次冲上斜面,刚好能够到达M 点D .在x =2m 位置释放小物块,小物块可以滑动到N 点上方 【答案】AB【解析】小物块在传送带上匀加速运动的加速度a=μg =5 m/s 2 ,小物块与传送带共速时,所用的时间,运动的位移,故小物块与传送带达到相同速度后以v 0=5 m/s 的速度匀速运动到Q ,然后冲上光滑斜面到达N 点,由机械能守恒定律得,解得 y N =1.25 m ,选项A 正确;小物块与传送带速度相等时,传送带的位移x=v 0t =5×1=5m ,传送带受摩擦力的作用,小物块在传送带上运动产生的热量Q =f (x -△x )=μmg (x -△x )=0.5×10×2.5=12.5J ,选项B 正确;物块从斜面上再次回到A 点时的速度为5m/s ,滑上传送带后加速度仍为5m/s 2,经过2.5m 后速度减为零,然后反向向右加速,回到A 点时速度仍为5m/s ,则仍可到达斜面上的N 点,选项C 错误;在x =2m位置释放05s 1s 5v t a ===202512.5m 4m 2522A v x X a ====⨯<2012N mv mgy =小物块,则小滑块在传送带上仍滑动2.5m 后与传送带相对静止,则到达A 点时的速度等于5m/s ,则小物块仍可以滑动到N 点,选项D 错误。

动力学问题中三种典型物理模型

动力学问题中三种典型物理模型

专题强化四动力学中三种典型物理模型专题解读 1.本专题是动力学方法在三类典型模型问题中的应用,其中等时圆模型常在选择题中考查,而滑块—木板模型和传送带模型常以计算题压轴题的形式命题.2.通过本专题的学习,可以培养同学们的审题能力、建模能力、分析推理能力和规范表达等物理学科素养,针对性的专题强化,通过题型特点和解题方法的分析,能帮助同学们迅速提高解题能力.3.用到的相关知识有:匀变速直线运动规律、牛顿运动定律、相对运动的有关知识.1.两种模型(如图1)2.等时性的证明设某一条光滑弦与水平方向的夹角为α,圆的直径为d,如图1所示.根据物体沿光滑弦做初速度为零的匀加速直线运动,加速度为a=g sin α,位移为x=d sin α,所以运动时间为t0=2xa=2d sin αg sin α=2dg.即沿同一起点或终点的各条光滑弦运动具有等时性,运动时间与弦的倾角、长短无关.例1如图2所示,PQ为圆的竖直直径,AQ、BQ、CQ为三个光滑斜面轨道,分别与圆相交于A、B、C三点.现让三个小球(可以看作质点)分别沿着AQ、BQ、CQ轨道自端点由静止滑到Q点,运动的平均速度分别为v1、v2和v3.则有:()A.v2>v1>v3B.v1>v2>v3C.v3>v1>v2D.v1>v3>v2变式1如图3所示,竖直半圆环中有多条起始于A点的光滑轨道,其中AB通过环心O并保持竖直.一质点分别自A点沿各条轨道下滑,初速度均为零.那么,质点沿各轨道下滑的时间相比较()A.无论沿图中哪条轨道下滑,所用的时间均相同B.质点沿着与AB夹角越大的轨道下滑,时间越短C.质点沿着轨道AB下滑,时间最短D.轨道与AB夹角越小(AB除外),质点沿其下滑的时间越短1.水平传送带模型项目图示滑块可能的运动情况情景1①可能一直加速②可能先加速后匀速情景2①v0>v,可能一直减速,也可能先减速再匀速②v0=v,一直匀速③v0<v,可能一直加速,也可能先加速再匀速情景3①传送带较短时,滑块一直减速到达左端②传送带较长时,滑块还要被传送带传回右端.若v0>v,返回时速度为v,若v0<v,返回时速度为v02.项目图示滑块可能的运动情况情景1①可能一直加速②可能先加速后匀速情景2①可能一直匀速②可能一直加速3.模型特点传送带问题的实质是相对运动问题,这样的相对运动将直接影响摩擦力的方向.4.解题关键(1)理清物体与传送带间的相对运动方向及摩擦力方向是解决传送带问题的关键.(2)传送带问题还常常涉及临界问题,即物体与传送带达到相同速度,这时会出现摩擦力改变的临界状态,对这一临界状态进行分析往往是解题的突破口.例2(多选)(2019·福建泉州市5月第二次质检)如图4,一足够长的倾斜传送带顺时针匀速转动.一小滑块以某初速度沿传送带向下运动,滑块与传送带间的动摩擦因数恒定,则其速度v随时间t变化的图象可能是()变式2(多选)(2019·陕西榆林市第三次测试)如图5所示,绷紧的水平传送带足够长,且始终以v1=2 m/s 的恒定速率顺时针运行.初速度大小为v2=3 m/s的小墨块从与传送带等高的光滑水平地面上的A处滑上传送带.若从小墨块滑上传送带开始计时,小墨块在传送带上运动5 s后与传送带的速度相同,则() A.小墨块未与传送带速度相同时,受到的摩擦力方向水平向右B.小墨块的加速度大小为0.2 m/s2C.小墨块在传送带上的痕迹长度为4.5 mD.小墨块在传送带上的痕迹长度为12.5 m1.模型特点“滑块—木板”模型类问题中,滑动摩擦力的分析方法与“传送带”模型类似,但这类问题比传送带类问题更复杂,因为木板受到摩擦力的影响,往往做匀变速直线运动,解决此类问题要注意从速度、位移、时间等角度,寻找各运动过程之间的联系.2.解题关键(1)临界条件:使滑块不从木板的末端掉下来的临界条件是滑块到达木板末端时的速度与木板的速度恰好相同.(2)问题实质:“板—块”模型和“传送带”模型一样,本质上都是相对运动问题,要分别求出各物体相对地面的位移,再求相对位移.例3(2019·贵州毕节市适应性监测(三))一长木板置于粗糙水平地面上,木板右端放置一小物块,如图6所示.木板与地面间的动摩擦因数μ1=0.1,物块与木板间的动摩擦因数μ2=0.4.t=0时刻开始,小物块与木板一起以共同速度向墙壁运动,当t=1 s时,木板以速度v1=4 m/s与墙壁碰撞(碰撞时间极短).碰撞前后木板速度大小不变,方向相反.运动过程中小物块第一次减速为零时恰好从木板上掉下.已知木板的质量是小物块质量的15倍,重力加速度大小g取10 m/s2.求:(1)t=0时刻木板的速度大小;(2)木板的长度.变式3(2019·江西宜春市模拟)如图7所示,在倾角θ=37°的固定斜面上放置一质量M=1 kg、长度L=0.75 m的薄平板AB.平板的上表面光滑,其下端B与斜面底端C的距离为4 m.在平板的上端A处放一质量m =0.6 kg的滑块,开始时使平板和滑块都静止,之后将它们无初速度释放.设平板与斜面间、滑块与斜面间的动摩擦因数均为μ=0.5,通过计算判断无初速度释放后薄平板是否立即开始运动,并求出滑块与薄平板下端B到达斜面底端C的时间差Δt.(sin 37°=0.6,cos 37°=0.8,g=10 m/s2)1.如图1所示,ad、bd、cd是竖直面内三根固定的光滑细杆,a、b、c、d位于同一圆周上,a点为圆周的最高点,d点为圆周的最低点.每根杆上都套着一个小滑环(图中未画出),三个滑环A、B、C分别从a、b、c处由静止开始释放,用t1、t2、t3依次表示滑环A、B、C到达d点所用的时间,则()A.t1<t2<t3B.t1>t2>t3C.t3>t1>t2D.t1=t2=t32.(2020·广东东莞市质检)如图2所示,AB和CD为两条光滑斜槽,它们各自的两个端点均分别位于半径为R和r的两个相切的圆上,且斜槽都通过切点P.设有一重物先后沿两个斜槽从静止出发,由A滑到B和由C滑到D,所用的时间分别为t1和t2,则t1与t2之比为()A.2∶1 B.1∶1C.3∶1 D.1∶33.(多选)(2019·湖北黄冈市模拟)机场使用的货物安检装置如图3所示,绷紧的传送带始终保持v =1 m/s 的恒定速率运动,AB 为传送带水平部分且长度L =2 m ,现有一质量为m =1 kg 的背包(可视为质点)无初速度地放在水平传送带的A 端,可从B 端沿斜面滑到地面.已知背包与传送带间的动摩擦因数μ=0.5,g =10 m/s 2,下列说法正确的是( )A .背包从A 运动到B 所用的时间为2.1 s B .背包从A 运动到B 所用的时间为2.3 sC .背包与传送带之间的相对位移为0.3 mD .背包与传送带之间的相对位移为0.1 m4.(多选)(2019·河南周口市上学期期末调研)如图4所示,质量M =2 kg 的足够长木板静止在光滑水平地面上,质量m =1 kg 的物块静止在长木板的左端,物块和长木板之间的动摩擦因数μ=0.1,最大静摩擦力等于滑动摩擦力,重力加速度g 取10 m/s 2.现对物块施加一水平向右的恒力F =2 N ,则下列说法正确的是( ) A .物块和长木板之间的摩擦力为1 N B .物块和长木板相对静止一起加速运动 C .物块运动的加速度大小为1 m/s 2 D .拉力F 越大,长木板的加速度越大5.(多选)(2019·江西上饶市重点中学六校第一次联考)如图5所示,长木板放置在水平面上,一小物块置于长木板的中央,长木板和物块的质量均为m ,物块与木板间的动摩擦因数为μ,木板与水平面间动摩擦因数为μ4,已知最大静摩擦力与滑动摩擦力大小相等,重力加速度为g .现对物块施加一水平向右的拉力F ,则木板加速度a 大小可能是( ) A .0 B.2μg 3 C.μg2D.F 2m -μg46.(多选)(2019·河南天一大联考上学期期末)如图6甲所示,一滑块置于足够长的长木板左端,木板放置在水平地面上.已知滑块和木板的质量均为2 kg ,现在滑块上施加一个F =0.5t (N)的变力作用,从t =0时刻开始计时,滑块所受摩擦力随时间变化的关系如图乙所示.设最大静摩擦力与滑动摩擦力相等,重力加速度g 取10 m/s 2,则下列说法正确的是( ) A .滑块与木板间的动摩擦因数为0.4 B .木板与水平地面间的动摩擦因数为0.2 C .图乙中t 2=24 sD .木板的最大加速度为2 m/s 27.如图7甲所示,倾角为37°足够长的传送带以4 m/s的速度顺时针转动,现使小物块以2 m/s的初速度沿斜面向下冲上传送带,小物块的速度随时间变化的关系如图乙所示,g=10 m/s2,sin 37°=0.6,cos 37°=0.8,试求:(1)小物块与传送带间的动摩擦因数为多大;(2)0~8 s内小物块与传送带之间的划痕为多长.。

热点专题2 第15讲 动力学中的三种典型物理模型

热点专题2 第15讲 动力学中的三种典型物理模型

第15讲动力学中的三种典型物理模型热点概述(1)本热点是动力学方法在三类典型模型问题中的应用,其中“等时圆”模型常在选择题中考查,而“滑块—木板”模型和“传送带”模型常以选择题或计算题的形式命题。

(2)通过本热点的学习,可以培养同学们的审题能力、建模能力、分析推理能力和规范表达能力等物理学科素养。

经过针对性的专题强化,通过题型特点和解题方法的分析,帮助同学们迅速提高解题能力。

(3)用到的相关知识有:匀变速直线运动规律、牛顿运动定律、相对运动的有关知识。

热点一“等时圆”模型1.“等时圆”模型设想半径为R的竖直圆内有一条光滑直轨道,该轨道是一端与竖直直径相交的弦,倾角为θ,一个物体从轨道顶端滑到底端,则下滑的加速度a=g sinθ,位移x=2R sinθ,而x=12,解得t=2R g,这也是沿竖直直径自由下落的时间。

2at总结:物体沿着位于同一竖直圆上的所有光滑细杆(或光滑斜面)由静止下滑,到达圆周的最低点(或从最高点到达同一圆周上各点)的时间相等,都等于物体沿直径做自由落体运动所用的时间。

2.三种典型情况(1)质点从竖直圆上沿不同的光滑弦上端由静止开始滑到圆的最低点所用时间相等,如图甲所示。

(2)质点从竖直圆上最高点沿不同的光滑弦由静止开始滑到下端所用时间相等,如图乙所示。

(3)两个竖直圆相切且两圆的竖直直径均过切点,质点沿不同的过切点的光滑弦从上端由静止开始滑到下端所用时间相等,如图丙所示。

如图所示,ab 、cd 是竖直平面内两根固定的光滑细杆,a 、b 、c 、d 位于同一圆周上,b 点为圆周的最低点,c 点为圆周的最高点,若每根杆上都套着一个小滑环(图中未画出),将两滑环同时从a 、c 处由静止释放,用t 1、t 2分别表示滑环从a 到b 、从c 到d 所用的时间,则( )A .t 1=t 2B .t 1>t 2C .t 1<t 2D .无法确定解析 设滑杆与竖直方向的夹角为α,圆的直径为D ,根据牛顿第二定律得滑环的加速度为a =mg cos αm =g cos α,杆的长度为x =D cos α,则根据x =12at 2得,t =2x a =2D cos αg cos α=2Dg ,可见时间t 只与圆的直径、当地的重力加速度有关,A 正确,B 、C 、D 错误。

专题 动力学中的典型“模型”

专题 动力学中的典型“模型”

专题动力学中的典型“模型”热点一等时圆模型1.模型特征(1)质点从竖直圆环上沿不同的光滑弦上端由静止开始滑到环的最低点所用时间相等,如图Z3-1甲所示.(2)质点从竖直圆环上最高点沿不同的光滑弦由静止开始滑到下端所用时间相等,如图乙所示.(3)两个竖直圆环相切且两环的竖直直径均过切点,质点沿不同的光滑弦上端由静止开始滑到下端所用时间相等,如图丙所示.2.思维模板例1 如图Z3-2所示,在竖直平面内建立直角坐标系xOy,该平面内有AM、BM、CM三条光滑固定轨道,其中A、C两点处于同一个圆上,C是圆上任意一点,A、M分别为此圆与y轴、x轴的切点,B点在y轴上且∠BMO=60°,O'为圆心.现将a、b、c三个小球分别从A、B、C点同时由静止释放,它们将沿轨道运动到M点,所用时间分别为t A、t B、t C,则()A.t A<t C<t BB.t A=t C<t BC.t A=t C=t BD.由于C点的位置不确定,故无法比较时间大小关系变式题1 如图Z3-3所示,有一个半圆,其直径水平且与另一圆的底部相切于O点,O点恰好是半圆的圆心,它们处在同一竖直平面内.现有三条光滑轨道AOB、COD、EOF,它们的两端分别位于上、下两圆的圆周上,轨道与竖直直径的夹角关系为α>β>θ.现让一小物块先后从三条轨道顶端由静止下滑至底端,则小物块在每一条倾斜轨道上滑动所经历的时间关系为()A.t AB=t CD=t EFB.t AB>t CD>t EFC.t AB<t CD<t EFD.t AB=t CD<t EF变式题2 如图Z3-4所示,有一固定的支架ACB,AC竖直,AC=BC=l.AB为光滑钢丝,一穿在钢丝中的小球从A 点由静止出发,则它滑到B点的时间t为(重力加速度为g)()A .B .C.2 D .热点二涉及传送带的动力学问题项目图示滑块可能的运动情况水平传送带(1)v0=0时,可能一直加速,也可能先加速后匀速(2)v0>v时,可能一直减速,也可能先减速再匀速(3)v0<v时,可能一直加速,也可能先加速再匀速(1)传送带较短时,滑块一直减速到达左端(2)传送带较长时,滑块还要被传送带传回右端.其中v0>v时返回速度为v,v0<v时返回速度为v0倾斜传送带(1)传送带两端距离较小时,可能一直加速(2)传送带两端距离较大时,可能先加速后匀速(1)传送带两端距离较小时,可能一直加速(2)传送带两端距离较大时,若μ≥tan θ,则先加速后匀速,若μ<tan θ,则先以a1加速,后以a2加速(1)μ<tan θ时,一直加速(2)μ=tan θ时,一直匀速(3)μ>tan θ时,先减速,后反向加速例3 [2018·山西忻州一中月考]如图Z3-8所示,水平传送带长L=11.5 m,以速度v=7.5 m/s沿顺时针方向匀速转动.在传送带的A端无初速度放上一个质量为m=1 kg的滑块(可视为质点),在将滑块放到传送带的同时,对滑块施加一个大小为F=5 N、方向与水平面成θ=37°角的拉力,滑块与传送带间的动摩擦因数为μ=0.5,重力加速度g取10 m/s2,sin 37°=0.6,cos 37°=0.8.在滑块从A端运动到B端的过程中,求:(1)滑块运动的时间;(2)滑块和传送带组成的系统因摩擦产生的热量.变式题1 (多选)[2018·湖南张家界三模]如图Z3-9所示,一个可视为质点的物体从高为h=0.8 m的光滑斜面顶端由静止开始下滑,物体经过A点时速率变化可忽略不计,滑上传送带A端的瞬时速度为v A,到达B端的瞬时速度设为v B,水平传送带A、B两端相距x=6 m,物体与传送带间的动摩擦因数μ=0.1,g取10 m/s2.下列说法中正确的是()A.物体滑上传送带A端的瞬时速度v A=4 m/sB.若传送带不动,则物体到达B端的瞬时速度v B=2 m/sC.若传送带逆时针匀速转动,则v B一定小于2 m/sD.若传送带顺时针匀速转动,则v B一定大于2 m/s变式题2 (多选)[2018·贵阳模拟]如图Z3-10甲所示,位于同一平面的两条倾斜轨道Ⅰ、Ⅱ分别与一传送装置两端平滑相连.现将小物块从轨道Ⅰ顶端由静止释放,若传送装置不运转,则小物块运动到轨道Ⅱ底端过程的v-t图像如图乙所示;若传送装置匀速运转,则小物块下滑过程的v-t图像可能是图Z3-11中的()热点三滑块—长木板模型滑块和木板的位移关系、速度关系是解答滑块—长木板模型的切入点,前一运动阶段的末速度是下一运动阶段的初速度,解题过程中必须以地面为参考系.(1)模型特点:滑块(视为质点)置于长木板上,滑块和木板均相对地面运动,且滑块和木板在摩擦力的作用下发生相对滑动.(2)位移关系:滑块由木板一端运动到另一端过程中,当滑块和木板同向运动时,位移大小之差Δx=x2-x1=L(板长);当滑块和木板反向运动时,位移大小之和Δx=x2+x1=L.例2[2018·吉林三调]如图Z3-5甲所示,滑块与长木板叠放在光滑水平面上,开始时均处于静止状态.作用于滑块的水平力F随时间t的变化图像如图乙所示,t=2.5 s时撤去力F.已知滑块质量m=2 kg,木板质量M=1 kg,滑块与木板间的动摩擦因数μ=0.2,g取10 m/s2.(已知滑块在0~2.5 s内没有滑离木板)(1)在0~0.5 s内,求滑块和长木板之间的摩擦力大小;(2)在2.5 s时,求滑块和长木板各自的速度大小.变式题1 如图Z3-6甲所示,足够长的木板静止在水平面上,木板的质量M=0.4 kg,长木板与水平面间的动摩擦因数μ1=0.1,质量m=0.4 kg的小滑块以v0=1.8 m/s的速度从右端滑上长木板,小滑块刚滑上长木板的0.2 s内的速度图像如图乙所示,小滑块可看成质点,重力加速度g取10 m/s2.(1)求小滑块与长木板间的动摩擦因数μ2和小滑块刚滑上长木板时长木板的加速度大小a1;(2)求小滑块从滑上长木板到与长木板速度相等过程中相对长木板滑行的距离L;(3)求小滑块从滑上长木板到最后停下来的过程中运动的总距离s.变式题2 [2018·安徽十校联考]如图Z3-7所示,水平地面上固定一倾角为θ=37°的光滑斜面,一长为L1=0.18 m的木板锁定在斜面上,木板的上端到斜面顶端的距离为L2=0.2 m,绕过斜面顶端光滑定滑轮的一根轻绳一端连接在板的上端,另一端悬吊重物Q,木板与滑轮间的轻绳与斜面平行,物块Q离地面足够高.现在长木板的上端由静止释放一可视为质点的物块P,同时解除对长木板的锁定,结果物块P沿木板下滑而长木板仍保持静止.已知P的质量为m,Q的质量为2m,长木板的质量为3m,重力加速度g取10 m/s2,sin 37°=0.6,cos 37°=0.8.(1)求物块P与木板间的动摩擦因数;(2)从释放物块P至长木板的上端滑到斜面顶端共需要多长时间?。

专题2 图像信息(学生版)--2025版动力学中的九类常见模型精讲精练讲义

专题2 图像信息(学生版)--2025版动力学中的九类常见模型精讲精练讲义

动力学中的九类常见模型精讲精练专题2 图像图表信息【知识精讲】1.与动力学相关的常见的几种图像:v——t图像、a——t图像、F——t图像、a——F图像等。

常见动力学图像及应用方法v-t图像根据图像的斜率判断加速度的大小和方向,进而根据牛顿第二定律求解合外力F-a图像首先要根据具体的物理情景,对物体进行受力分析,然后根据牛顿第二定律推导出F、a两个量间的函数关系式,根据函数关系式结合图像,明确图像的斜率、截距或面积的意义,从而由图像给出的信息求出未知量a-t图像要注意加速度的正、负,正确分析每一段的运动情况,然后结合物体受力情况根据牛顿第二定律列方程F-t图像要结合物体受到的力,根据牛顿第二定律求出加速度,分析每一时间段的运动性质2.两类问题(1)已知物体的运动图像或受力图像,分析有关受力或运动的问题。

(2)已知物体的受力或运动情况,判断选择有关的图像。

【方法归纳】1. 图像问题的分析思路(1)分析图像问题时,首先明确图像的种类及其意义,再明确图线的点、线段、斜率、截距、交点、拐点、面积等方面的物理意义。

(2)根据牛顿运动定律及运动学公式建立相关方程解题。

2. 求解图像问题的“一、二、三”【典例精析】[例题] 两物体A 、B 并排放在水平地面上,且两物体接触面为竖直面,现用一水平推力F 作用在物体A 上,使A 、B 由静止开始一起向右做匀加速运动,如图(a)所示,在A 、B 的速度达到6 m/s 时,撤去推力F 。

已知A 、B 质量分别为m A =1 kg 、m B =3 kg ,A 与地面间的动摩擦因数μ=0.3,B 与地面间没有摩擦,B 物体运动的vt 图像如图(b)所示。

g 取10 m/s 2。

求:(1)推力F 的大小;(2)A 物体刚停止运动时,物体A 、B 之间的距离。

【模拟题精练】1. . (2024安徽芜湖3月质检)如图甲所示,A 、B 两个物体靠在一起,静止在光滑的水平面上,它们的质量分别为A 1kg m =、B 3kg m =,现分别用水平向右的力A F 推A 、B F 拉B ,A F 和B F 随时间t 变化关系如图乙所示,则( )A. 1s t =时,A 、B 之间的弹力为3NB. 2s =t 时,A 、B 脱离C. A 、B 脱离前,它们一起运动的位移为6mD. A 、B 脱离后,A 做减速运动,B 做加速运动2.(2024年3月江苏无锡四校调研)如图所示为跳伞者在竖直下降过程中速度v 随时间t 变化的图像,根据图像判断下列说法正确的是( )A .0~t 1内跳伞者速度越大,空气阻力越大B .0~t 1内,跳伞者处于超重状态C .tan θ=g (g 为当地的重力加速度)D .在t 1~t 2内,跳伞者处于失重状态3. (2024重庆主城区第一次质检)在一次军事演习中,一伞兵从悬停在高空的直升机中以初速度为零落下,在空中沿竖直方向运动的v -t 图像如图。

专题2动力学中的典型“模型”

专题2动力学中的典型“模型”

滑环从a到b、从c到d所用的时间,贝U(解析设光滑细杆与竖直方向的夹角为a 圆周的直径为D ,根据牛顿第二定律 得滑环的加速度为a 二^m°S 壬geos a,光滑细杆的长度为x 二Deos a,贝U 根据x鑒07: "/2D,可见时间t 与a 无尖,故有ti 二t2,因答案A务雄训练快” ■1 •如图3所示,位于竖直平面内的圆周与水平面相切于M 点,与竖直墙相切于A 点,竖 直墙上另一点B 与M 的连线和水平面的夹角为60。

° C 是圆环轨道的圆心。

已知在同 一时刻,甲、乙两球分别从A 、B 两点由静止开始沿光滑倾斜直轨道运 答案C动到M 点。

丙球由C 点自山下落到M 点。

则()图3A. 甲球最先到达M 点B.乙球最先到达M 点C.丙球最先到达M 点D.三个球同时到达M 点解析设圆轨道的半径为R,根据等时圆模型有t 乙〉t 甲,t 甲二 §戶;丙球做自2.(2020合肥质检)如图4所示,有一半圆,其直径水平且与另一圆的底部相切于A. ti= t2 C.tl V t2B.ti> t2D ・无法确定=2at 2得,t 此A 项正,所以有t^>t ?>t 丙,选项c 正确由落体运动,有t 丙二0点,o点恰好是下半圆的圆心,它们处在同一竖直平面内。

现有三条光滑轨道AOB 、COD 、EOF ,它们的两端分别位于上下两圆的圆周上,轨道与竖直直径的 夹角尖系为必供现让一小物块先后从三条轨道顶端由静止下滑至底端, 则小物块在每一条倾斜轨道上滑动时所经历的时间尖系为()A.tAB 二 tCD 二 tEFB.tAB>tCD>tEFC.tABVtCDVtEFD.tAB 二 tCDVtEF解析如图所示,过D 点作0D 的垂线与竖直虚线交于G 点,以0G 为直径作tAB>tCD>tEF '选项 B 正确。

答案B圆,可以看出F 点在辅助圆内,而B 点在辅助圆外,由等时圆结论可知,模型二“传送带”模型1 •水平传送带模型2倾斜传送带模型考向❶水平传送带1解题尖键1:对物体所受的摩擦力进行正确的分析判断。

专题2 动力学的常见模型

专题2 动力学的常见模型

项目 情境2
情境3
图示
关键能力 · 突破
滑块可能的运动情况
续表
①v0>v时,可能一直减速(条件:v≤ v02 2μgl ),也可能先 减速再匀速(条件: v02 2μgl <v<v0); ②v0<v时,可能一直加速(条件:v≥ v02 2μgl ),也可能先 加速再匀速(条件:v0<v< ) v02 2μgl
情境3
关键能力 · 突破
图示
滑块与传送带共速条件

v2 2g
≤l,滑块与传送带能共速

|
v2 v02 2g
|
≤l,滑块与传送带能共速

v02 2g
≤l且v0≥v,滑块与传送带能共速
关键能力 · 突破
例2 (多选)如图所示,水平传送带A、B两端相距x=4 m,以v0=4 m/s的速度(始 终保持不变)顺时针运转。今将一小煤块(可视为质点)无初速度地轻放在A 端,由于煤块与传送带之间有相对滑动,会在传送带上留下划痕。已知煤块与 传送带间的动摩擦因数μ=0.4,重力加速度大小g取10 m/s2。则煤块从A运动 到B的过程中,下列说法正确的是 ( BD ) A.煤块从A运动到B的时间是2.25 s B.煤块从A运动到B的时间是1.5 s C.划痕长度是0.5 m D.划痕长度是2 m
关键能力 · 突破
审题关键 这里只有a球路径属于等时圆模型,b、c球如何跟等时圆模型建 立联系? 提示:b球路径比等时圆弦长要长,c球路径是直径的1/2
关键能力 · 突破
解析 由等时圆模型知,a球运动时间小于b球运动时间,a球运动时间和 沿过CM的直径的下落时间相等,所以从C点自由下落到M点的c球运动时间 最短,故C正确。

2025高考物理总复习动力学中的两类常见模型课件

2025高考物理总复习动力学中的两类常见模型课件
2. 位移关系:如图所示,滑块由木板一端运动到另一端的过程中,滑
块和木板同向运动时,位移之差Δx=x1-x2=L(板长);滑块和木
板反向运动时,位移大小之和x2+x1=L。
目录
高中总复习·物理
3. 解题关键
目录
高中总复习·物理
【典例1】
如图所示,右侧带有挡板的长木板质量M=6 kg、放在
水平面上,质量m=2 kg的小物块放在长木板上,小物块与长木板
第17课时 动力学中的两类常见模型
CONTENTS
01
着眼“四翼”·探考点
题型 规律 方法
02
聚焦“素养”·提能力
巧学 妙解 应用
02
着眼“四翼”·探考点
题型 规律 方法
目录
高中总复习·物理
模型一
动力学中的滑块—木板模型
1. 模型特点:滑块(视为质点)置于木板上,滑块和木板均相对地面
运动,且滑块和木板在摩擦力的作用下发生相对滑动。
传送带在生产生活中被广泛应用。如图所示,一水平传送带左
右两端相距L=10 m,以v=5 m/s的速度运行。水平传送带的右端
与一光滑斜面平滑连接,斜面倾角θ=30°。一物块由静止轻放到
传送带左端,物块在传送带上先匀加速运动,后匀速运动,然后
冲上光滑斜面。已知物块与传送带间的动摩擦因数μ=0.25,重力
右侧的挡板的距离为L。此时水平向右的力F作用于长木板上,长木
板和小物块一起以v0=4 m/s的速度匀速运动。已知长木板与水平面
间的动摩擦因数为μ1=0.6,物块与长木板之间的动摩擦因数为μ2=
0.4,某时刻撤去力F,最终小物块会与右侧挡板发生碰撞,最大静
摩擦力等于滑动摩擦力,重力加速度g=10 m/s2。

专题02 三种不同性质的力——弹力、重力和摩擦力(解析版)

专题02 三种不同性质的力——弹力、重力和摩擦力(解析版)

专题2:三种不同性质的力——弹力、重力和摩擦力【考点概览】弹力、重力和摩擦力是物理学中三种最基本的力,是初中物理学习最基础的力学知识,只有透彻理解这三种常见力,才能对物体的运动形式作出正确的分析和判断,为以后学习其他力学知识的学习打下良好的基础。

【知识点精析】1、弹力、重力和摩擦力的比较:2、重心——重力的作用点:(1)重心的确定:①形状规则、质量分布均匀物体重心就在物体的几何中心上;②质量分布不均匀的物体的重心与物体的形状、质量分布有关:形状不规则薄板形物体的重心,可用悬挂法确定。

③物体的重心可在物体上,也可在物体外;(2)重心与稳定的关系:重心越低或者支面越大,稳定程度越高。

3、弹力的应用——弹簧测力计(1)原理:在弹性范围内,弹簧的形变量与受到拉力的大小成正比。

(2)使用方法:①测量前认清弹簧测力计的量程和分度值;②测量前检查、调整使弹簧测力计的指针指在零刻度线上;③测量时,被测力的方向应与弹簧测力计方向保持一致,避免弹簧跟测力计外壳摩擦造成较大的测量误差;④读数时,眼睛与指针相平,不能仰视或俯视。

注意:①弹簧的形变量与受到拉力的大小成正比,是形变量,而不是弹簧长度。

②其他弹力,可以通过运动情况,根据平衡条件来计算。

4、静摩擦力的理解:两个相对静止的物体之间有相对运动趋势(将要运动)时产生的摩擦力是静摩擦力,它是一种被动力,其作用是与使物体产生运动趋势的力(即外力)相平衡,所以取值范围内是根据物体的“需要”取值,与正压力、接触面的粗糙程度无关。

因此说静摩擦力会随外力的变化而变化,直到达到最大静摩擦力。

例如:用水平向左的1N的力推静止在物体A,物体未动,此时物体受到的摩擦力为1N;增大推力到5N,物体仍未动,此时物体受到的摩擦力为5N;推力增大到10N,物体A刚好运动,此时受到的摩擦力是最大静摩擦力,为10N。

5、判断摩擦力是否存在和大小、变化(1)根据摩擦力产生的条件来判断摩擦力是否存在:接触并挤压、有相对运动或者有相对运动的趋势、接触面粗糙,三者缺一不可(只要题目中已知接触面光滑,就认为没有摩擦力)。

动力学中三种典型物理模型—高考物理总复习优质PPT课件

动力学中三种典型物理模型—高考物理总复习优质PPT课件

1.(2019·合肥质检)如图所示,有一半圆,
其直径水平且与另一圆的底部相当于 O 点,
O 点恰好是下半圆的圆心,它们处在同一竖
直平面内.现有三条光滑轨道 AOB、COD、
EOF,它们的两端分别位于上下两圆的圆周上,轨道与
竖直直径的夹角关系为 α>β>θ,现让一小物块先后从三
条轨道顶端由静止下滑至底端,则小物块在每一条倾斜轨
关于物块与传送带间的动摩擦因数 μ 及物块在传送带上
运动第一次回到传送带左端的时间 t,下列计算结果正确
的是( )
A.μ=0.4
B.μ=0.2
C.t=4.5 s
D.t=3 s
[思维点拨] (1)由 v-t 图象可知,物块刚滑上传送带
的速率为 4 m/s,传送带的速率为 2 m/s.
(2)物块在传送带上所受摩擦力方向始终向左,物块
答案:B
二、“传送带”模型
1.水平传送带模型
项目
图示
滑块可能的运动情况
情景 1
①可能一直加速; ②可能先加速后匀速
①v0>v,可能一直减速,也可能 先减速再匀速;
情景 2
②v0=v,一直匀速; ③v0<v 时,可能一直加速,也可 能先加速再匀速
情景 3
①传送带较短时,滑块一直减速 到达左端; ②传送带较长时,滑块还要被传 送带传回右端.其中 v0>v 返回 时速度为 v,当 v0<v 时返回时速 度为 v0
物块经减速、反向加速到与传送带相对静止,最后匀速运 动回到传送带左端时,物块的位移为 0,由题图乙可得物 块在传送带上运动的总时间为 4.5 s,C 正确,D 错误.
答案:BC
物体在传送带上运动过程情况判断 1.若传送带较长,或物体与传送带间的动摩擦因数 较大,则物体先与传送带相对运动,后相对静止.物体 往往先加速后匀速,直至传送带端点. 2.若传送带较短,或物体与传送带间的动摩擦因数 较小,则物体与传送带一直是相对运动的,无相对静止 过程.物体往往一直加速到传送带端点.

20第二讲动力学三大模型

20第二讲动力学三大模型
物体以 v0 的初速度从 B 端开始向上运动,物体与传送带之间的动摩擦因数 μ>
tanθ,传送带的速度为 v(v0<v)
,方向未知,重力加速度为 g.物体在传送带上
运动过程中,摩擦力对物体做功的最大瞬时功率是(

A.μmg√ 2 + 02cosθ
B.μmgv0cosθ
C.μmgvcosθ
D. μmg(v+v0)cosθ
送带之间的动摩擦因数为 μ,A、B 间的距离为 l.则(

A.行李在传动带上始终做匀加速直线运动
B.行李在传送带上始终受到向右的摩擦力
C.行李在传送带上可能有一段时间不受摩擦力
D.行李在传送带上的时间一定小于√ 2

【例13】如图所示为地铁站用于安全检查的装置,主要由安检传送带和 x 光透视系统两部
B.t2 时刻,小物块相对传送带滑动的距离达到最大
C.0~t3 时间内,小物块受到的摩擦力方向先向右后向左
D.0~t3 时间内,小物块始终受到大小不变的摩擦力作用
倾斜传送带
【例17】如图所示,物块 M 在静止的传送带上匀速下滑时,传送带突然顺时针(图中箭头
所示)转动起来,则传送带转动后,下列说法正确的是(
D.v 、t 、μ 任何一个增大 d 都将增大
0
0
0
0ቤተ መጻሕፍቲ ባይዱ
【例22】(多选)如图甲所示的水平传送带 AB 逆时针匀速转动,一物块沿曲面从一定高度
处由静止开始下滑,以某一初速度从传送带左端滑上,在传送带上由速度传感器记
录下物块速度随时间的变化关系如图乙所示(图中取向左为正方向,以物块刚滑上
传送带时为计时起点)。已知传送带的速度保持不变,重力加速度 g 取 10 m/s2。

专题02 力与直线运动 【讲】-2023年高考物理毕业班二轮热点题型归纳与变式演练(解析版)

专题02 力与直线运动 【讲】-2023年高考物理毕业班二轮热点题型归纳与变式演练(解析版)

专题01力与直线运动【要点提炼】1.解决匀变速直线运动问题的方法技巧(1)常用方法①基本公式法,包括v t 2=x t =v 0+v2,Δx =aT 2。

②v ­t 图象法。

③比例法:适用于初速度为零的匀加速直线运动和末速度为零的匀减速直线运动。

④逆向思维法:末速度为零的匀减速直线运动可看做反向初速度为零的匀加速直线运动。

(2)追及相遇问题的临界条件:前后两物体速度相同时,两物体间的距离最大或最小。

2.物体的直线运动(1)条件:所受合外力与速度在同一直线上,或所受合外力为零。

(2)常用规律:牛顿运动定律、运动学公式、动能定理或能量守恒定律、动量定理或动量守恒定律。

3.动力学问题常见的五种模型(1)等时圆模型(图中斜面光滑)(2)连接体模型两物体一起加速运动,m 1和m 2的相互作用力为F N =m 2·Fm 1+m 2,有无摩擦都一样,平面、斜面、竖直方向都一样。

(3)临界模型两物体刚好没有相对运动时的临界加速度a =g tan α。

(4)弹簧模型①如图所示,两物体要分离时,它们之间的弹力为零,速度相同,加速度相同,分离前整体分析,分离后隔离分析。

②如图所示,弹簧长度变化时隔离分析,弹簧长度不变(或两物体运动状态相同)时整体分析。

(5)下列各情形中,速度最大时加速度为零,速度为零时加速度最大。

4.传送带上物体的运动由静止释放的物体,若能在匀速运动的传送带上同向加速到与传送带共速,则加速过程中物体的位移必与物体和传送带的相对位移大小相等,且等于传送带在这个过程中位移的一半。

在倾斜传送带(倾角为θ)上运动的物体,动摩擦因数与tanθ的关系、物体初速度的方向与传送带速度方向的关系是决定物体运动情况的两个重要因素。

5.水平面上的板块模型问题分析两物体的运动情况需要关注:两个接触面(滑块与滑板之间、滑板与地面之间)的动摩擦因数的大小关系,外力作用在哪个物体上。

若外力作用在下面物体上,随着力的增大,两物体先共同加速,后发生相对滑动,发生相对滑动的条件是下面物体的加速度较大。

动力学中的两种典型模型

动力学中的两种典型模型

专题突破2 动力学中的两种典型模型1.求解的关键在于对物体所受的摩擦力进行正确的分析判断。

2.传送带上的物体所受摩擦力不论是其大小突变,还是其方向突变,都发生在物体的速度与传送带速度相等的时刻。

【例1】 (2019·江西省重点中学协作体联考)如图1所示,绷紧的水平传送带始终以恒定速率v1运行。

初速度大小为v2,质量为m 的小物块从与传送带等高的光滑水平地面上的A 处滑上传送带。

若从小物块滑上传送带开始计时,小物块在传送带上运动的v -t 图象(以地面为参考系)如图乙所示。

已知v2>v1,则( )“传送带”模型考向1 水平传送带问题A.物块与传送带的动摩擦因数为v 2gt 1B.水平传送的长度可能小于12v 2t 1C.t 1时刻,物块受到的摩擦力发生突变考向2倾斜传送带问题1.求解的关键在于分析清楚物体与传送带的相对运动情况,从而确定其是否受到滑动摩擦力作用。

2.当物体速度与传送带速度相等时,物体所受的摩擦力有可能发生突变。

摩擦力方向能否发生“突变”,还与动摩擦因数的大小有关。

【例2】如图2所示,传送带与水平地面夹角θ=37°,从A到B长度为L=10.25 m,传送带以v0=10 m/s 的速率逆时针转动。

在传送带上端A无初速地放一个质量为m=0.5 kg的黑色煤块,它与传送带之间的动摩擦因数为μ=0.5。

煤块在传送带上经过会留下黑色痕迹。

已知sin 37°=0.6,g=10 m/s2,求:(1)煤块从A到B的时间;(2)煤块从A到B的过程中传送带上形成痕迹的长度。

1. (多选) (2019·山东济宁期末)机场使用的货物安检装置如图3所示,绷紧的传送带始终保持v=1 m/s的恒定速率运动,AB为传送带水平部分且长度L=2 m,现有一质量为m=1 kg的背包(可视为质点)无初速度地放在水平传送带的A端,可从B端沿斜面滑到地面。

已知背包与传送带的动摩擦因数μ=0.5,g=10 m/s2,下列说法正确的是()A.背包从A运动到B所用的时间为2.1 sB.背包从A运动到B所用的时间为2.3 sC.背包与传送带之间的相对位移为0.3 mD.背包与传送带之间的相对位移为0.1 m2.(多选)如图4甲所示,足够长的传送带与水平面夹角为θ,在传送带上某位置轻轻放置一小木块,小木块与传送带间动摩擦因数为μ,小木块的速度随时间变化关系如图乙所示,v0、t0已知,则( )1.分析“板—块”模型时要抓住一个转折和两个关联2.两种类型A.传送带一定逆时针转动B.μ=tan θ+v 0gt 0cos θC.传送带的速度大于v 0D.t 0后木块的加速度为2g sin θ-v 0t 0“板—块”模型考向1水平面上的“板—块”模型【例3】(多选)如图5所示,表面粗糙、质量M=2 kg的木板,t=0时在水平恒力F的作用下从静止开始沿水平面向右做匀加速直线运动,加速度a=2.5 m/s2,t=0.5 s时,将一质量m=1 kg的小铁块(可视为质点)无初速度地放在木板最右端,铁块从木板上掉下时速度是木板速度的一半,已知铁块和木板之间的动摩擦因数μ1=0.1,木板和地面之间的动摩擦因数μ2=0.25,g取10 m/s2,则()A.水平恒力F的大小为10 NB.铁块放在木板上后,木板的加速度为2 m/s2C.铁块在木板上运动的时间为1 sD.木板的长度为1.625 m底端,货物开始在车厢内向车头滑动,当货物在车厢内滑动了4 m时,车头距制动坡床顶端38 m,再过一段时间,货车停止。

动力学中的两类典型模型(精品课件)

动力学中的两类典型模型(精品课件)
(1)求行李刚开始运动时所受滑动摩擦力的大小与加速度的大小; (2)求行李做匀加速直线运动的时间; (3)如果提高传送带的运行速率,行李就能被较快地传送到B处, 求行李从A处传送到B处的最短时间和传送带对应的最小运行速率.
解析 (1)行李所受滑动摩擦力大小 Ff=μmg=0.1×4×10 N=4 N, 根据牛顿第二定律得Ff=ma 加速度大小a=μg=0.1×10 m/s2=1 m/s2. (2)行李达到与传送带相同速率后不再加速,则 v=at1, 得t1=va=11 s=1 s.
得:a2=g(sin θ-μcos θ)=2 m/s2,方向沿传送带向下. 设货物再经时间t2,速度减为零,则t2=0--av2 =1 s 沿传送带向上滑的位移x2=v+2 0t2=1 m 则货物上滑的总距离为x=x1+x2=8 m.
货物到达最高点后将沿传送带匀加速下滑,下滑加速度大小等于 a2.设下滑时间为t3,则x=12a2t23,代入解得t3=2 2 s.
所以货物从A端滑上传送带到再次滑回A端的总时间为t=t1+t2+t3 =(2+2 2)s.
答案 (1)10 m/s2,方向沿传送带向下 (2)1 s 7 m (3)(2+2 2)s
解答传送带问题应注意的事项 (1)比较物块和传送带的初速度情况,分析物块所受摩擦力的大小 和方向,其主要目的是得到物块的加速度. (2)关注速度相等这个特殊时刻,水平传送带中两者一块匀速运 动,而倾斜传送带需判断μ与tan θ的关系才能决定物块以后的运动. (3)得出运动过程中两者相对位移情况,以后在求解摩擦力做功时 有很大作用.
第4课时 动力学中的两类典型模型 (能力课时)
考点一 传送带模型 考向1 水平传送带问题
1.情景特点分析:
项目
图示
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

浙江高考物理尖子生核心素养提升之常见动力学模型(上)滑块滑板问题是高考常考的热点,这类问题对学生的综合分析能力和数学运算能力要求较高,而且滑块滑板模型常和功能关系、动量守恒等结合,分析过程较复杂。

学生常因为对过程分析不清或计算失误而丢分。

命题点一水平面上的滑块—滑板模型1.两种位移关系滑块由滑板的一端运动到另一端的过程中,若滑块和滑板同向运动,位移之差等于板长;反向运动时,位移大小之和等于板长。

2.解题思路[典例]如图所示,质量m=1 kg的物块A放在质量M=4 kg的木板B的左端,起初A、B 静止在水平地面上。

现用一水平向左的力F作用在B上,已知A、B之间的动摩擦因数为μ1=0.4,地面与B之间的动摩擦因数为μ2=0.1。

假设最大静摩擦力等于滑动摩擦力,g=10 m/s2。

求:(1)能使A、B发生相对滑动的力F的最小值;(2)若力F=30 N,作用1 s后撤去,要想A不从B上滑落,则B至少多长;从开始到A、B 均静止,A的总位移是多少。

[解析](1)A的最大加速度由A、B间的最大静摩擦力决定,即对于A,根据牛顿第二定律得:μ1mg=ma m解得a m=4 m/s2对于A、B整体,根据牛顿第二定律得:F-μ2(M+m)g=(M+m)a m解得F=25 N。

(2)设力F作用在B上时A、B的加速度大小分别为a1、a2,撤去力F时速度分别为v1、v2,撤去力F后A、B速度相等前加速度大小分别为a1′、a2′,A、B速度相等时速度为v3,加速度大小为a3对于A,根据牛顿第二定律得:μ1mg=ma1得a1=4 m/s2,v1=a1t1=4 m/s对于B,根据牛顿第二定律得:F-μ1mg-μ2(M+m)g=Ma2得a2=5.25 m/s2,v2=a2t1=5.25 m/s撤去力F:a1′=a1=4 m/s2μ1mg+μ2(M+m)g=Ma2′得a2′=2.25 m/s2经过t2时间后A、B速度相等v1+a1′t2=v2-a2′t2得t2=0.2 s共同速度v3=v1+a1′t2=4.8 m/s从开始到A、B相对静止,A、B的相对位移即为B的最短长度LL=x B-x A=v222a2+v32-v22-2a2′-12a1(t1+t2)2=0.75 mA、B速度相等后共同在水平地面上做匀减速运动,加速度大小a3=μ2g=1 m/s2对于A、B整体从v3至最终静止位移为x=v322a3=11.52 m所以A的总位移为x A总=x A+x=14.4 m。

[答案](1)25 N(2)0.75 m14.4 m[规律方法]求解“滑块—滑板”类问题的方法技巧(1)弄清各物体初态对地的运动和相对运动(或相对运动趋势),根据相对运动(或相对运动趋势)情况,确定物体间的摩擦力方向。

(2)准确地对各物体进行受力分析,并根据牛顿第二定律确定各物体的加速度,结合加速度和速度的方向关系确定物体的运动情况。

(3)速度相等是这类问题的临界点,此时往往意味着物体间的相对位移最大,物体的受力和运动情况可能发生突变。

[集训冲关]1.如图所示,光滑水平面上静止放着长为L=1.6 m、质量为M=3 kg的木板,一质量为m=1 kg的物块放在木板的最右端,物块与木板之间的动摩擦因数为μ=0.1,对木板施加一水平向右的拉力F,g取10 m/s2。

(1)施力F 后,要想把木板从物块的下方抽出来,求力F 的大小应满足的条件;(2)为使木板从物块的下方抽出来,施加力F 后,发现力F 作用最短时间t 0=0.8 s ,恰好可以抽出,求力F 的大小。

解析:(1)力F 拉动木板运动过程中,物块与木板相对运动时: 对物块,由牛顿第二定律知μmg =ma ,解得a =1 m/s 2 对木板,由牛顿第二定律知F -μmg =Ma 1,即 a 1=F -μmg M要想抽出木板,则只需a 1>a ,即F >μ(M +m )g 代入数据解得F >4 N 。

(2)设施加力F 时木板的加速度大小为a 2,则 a 2=F -μmg M设撤去力F 时木板的加速度大小为a 3,则 a 3=μmg M =13m/s 2设从撤去力F 到木板恰好被抽出所用时间为t 2 木板从物块下抽出时有 物块速度为v =a (t 0+t 2) 发生的位移为s =12a (t 0+t 2)2木板的速度为v 板=a 2t 0-a 3t 2发生的位移为s 板=12a 2t 02+a 2t 0t 2-12a 3t 22木板刚好从物块下抽出时应有v 板=v 且s 板-s =L 联立并代入数据得t 2=1.2 s ,a 2=3 m/s 2,F =10 N 。

答案:(1)F >4 N (2)10 N2.(2019·成都模拟)如图所示,长为l 的长木板A 放在动摩擦因数为μ1的水平地面上,一滑块B (可视为质点)从A 的左侧以初速度v 0向右滑上A ,B 与A 间的动摩擦因数为μ2(A 与水平地面间的最大静摩擦力与滑动摩擦力大小相同)。

已知A 的质量为M =2.0 kg ,B 的质量为m =3.0 kg ,A 的长度为l =2.5 m ,μ1=0.2,μ2=0.4(g 取10 m/s 2)。

(1)A 、B 刚开始运动时各自的加速度分别是多大?(2)为保证B 在滑动过程中不滑出A ,初速度v 0应满足什么条件? (3)在满足(2)中条件的情况下,分别求出A 、B 对水平地面的最大位移。

解析:(1)分别对A 、B 进行受力分析, 根据牛顿第二定律,B 的加速度大小: a B =f m =μ2mg m =4 m/s 2A 的加速度大小:a A =f -f ′M =μ2mg -μ1(M +m )g M=1 m/s 2。

(2)当A 、B 速度相等时,若B 恰好运动到A 的右侧末端,则可保证B 不会滑出A , 设经过时间t ,A 、B 的速度相等,则有: v 0-a B t =a A t 根据位移关系得: v 0t -12a B t 2-12a A t 2=l代入数据解得:t =1 s ,v 0=5 m/s 所以初速度v 0≤5 m/s 。

(3)B 恰好不滑出A 时,A 、B 对水平地面的位移最大,A 、B 速度相等后相对静止,一起以v =a A t =1 m/s 的初速度做匀减速运动直到静止, 匀减速运动的加速度大小为a =μ1(M +m )g M +m =2 m/s 2发生的位移:s =v 22a =0.25 mA 、B 速度相等前A 发生的位移: s A =12a A t 2=0.5 mB 发生的位移:s B =v 0t -12a B t 2=3 m所以A 发生的位移: s A +s =0.5 m +0.25 m =0.75 m B 发生的位移:s B +s =3 m +0.25 m =3.25 m 。

答案:(1)1 m/s 2 4 m/s 2 (2)v 0≤5 m/s (3)0.75 m 3.25 m命题点二 斜面上的滑块—滑板模型滑块—滑板类模型应抓住一个转折和两个关联[典例] 如图所示,倾角α=30°的足够长光滑斜面固定在水平面上,斜面上放一长L =1.8 m 、质量M =3 kg 的薄木板,木板的最右端叠放一质量m =1 kg 的小物块,物块与木板间的动摩擦因数μ=32。

对木板施加沿斜面向上的恒力F ,使木板沿斜面由静止开始做匀加速直线运动。

设物块与木板间的最大静摩擦力等于滑动摩擦力,重力加速度g 取10 m/s 2。

(1)为使物块不滑离木板,求力F 应满足的条件;(2)若力F =37.5 N ,物块能否滑离木板?若不能,请说明理由;若能,求出物块滑离木板所用的时间及滑离木板后沿斜面上升的最大距离。

[解析] (1)以物块和木板整体为研究对象,由牛顿第二定律得F -(M +m )g sin α=(M +m )a 以物块为研究对象,由牛顿第二定律得 F f -mg sin α=ma 又F f ≤F fm =μmg cos α 解得F ≤30 N 。

(2)因力F =37.5 N >30 N ,所以物块能够滑离木板,对木板,由牛顿第二定律得 F -μmg cos α-Mg sin α=Ma 1 对物块,由牛顿第二定律得 μmg cos α-mg sin α=ma 2 设物块滑离木板所用时间为t 木板的位移x 1=12a 1t2物块的位移x 2=12a 2t 2物块与木板的分离条件为 Δx =x 1-x 2=L 解得t =1.2 s物块滑离木板时的速度v =a 2t物块滑离木板后的加速度大小为a3=g sin α=5 m/s2物块滑离木板后沿斜面上升的最大距离为x=0-v2-2a3解得x=0.9 m。

[答案](1)F≤30 N(2)能 1.2 s0.9 m[规律方法]解决速度临界问题的思维模板[集训冲关]1.如图所示,足够长光滑斜面的倾角为θ,斜面上放着质量为M的木板,木板左端有一个质量为m的木块,木块与木板之间的动摩擦因数为μ,木块和木板的初速度都为零。

对木块施加平行斜面向上的恒力F后,下列说法正确的是()A.若μ>tan θ,则木板一定沿斜面向上运动B.若F=mg sin θ,则木块一定静止在木板上C.若木板沿斜面向上滑动,木板质量M越小,木块与木板分离时,木块滑行的距离越大D.若木板沿斜面向下滑动,木板质量M越大,木块与木板分离时,木块滑行的距离越大解析:选C如果恒力F趋于0,木板一定沿斜面向下运动,故A错误;如果μ趋于0,木板一定向下运动,两者不能保持静止,故B错误;假设木板质量M趋于0,木板将随木块一直运动,故C正确;如果木块始终静止,无论M多大,木块滑行的距离都为0,故D错误。

2.(多选)(2019·日照模拟)滑沙运动是小孩比较喜欢的一项运动,其运动过程可类比为如图所示的模型,倾角为37°的斜坡上有长为1 m 的滑板,滑板与沙间的动摩擦因数为916。

小孩(可视为质点)坐在滑板上端,与滑板一起由静止开始下滑。

小孩与滑板之间的动摩擦因数取决于小孩的衣料,假设图中小孩与滑板间的动摩擦因数为0.5,小孩的质量与滑板的质量相等,斜坡足够长,sin 37°=0.6,cos 37°=0.8,g 取10 m/s 2,则下列判断正确的是( )A .小孩在滑板上下滑的加速度大小为2 m/s 2B .小孩和滑板脱离前滑板的加速度大小为0.5 m/s 2C .经过 2 s 的时间,小孩离开滑板D .小孩离开滑板时的速度大小为433m/s解析:选AC 对小孩,由牛顿第二定律,加速度大小为a 1=mg sin 37°-μ1mg cos 37°m =2 m/s 2,同理对滑板,加速度大小为a 2=mg sin 37°+μ1mg cos 37°-2μ2mg cos 37°m =1 m/s 2,选项A 正确,B 错误;要使小孩与滑板分离,12a 1t 2-12a 2t 2=L ,解得t = 2 s(另一解不符合,舍去),离开滑板时小孩的速度大小为v =a 1t =2 2 m/s ,选项C 正确,D 错误。

相关文档
最新文档