(数组和广义表)
数据结构第4章 数组和广义表
第4章数组和广义表【例4-1】二维数组A的每一个元素是由6个字符组成的串,其行下标i=0,1,…,8,列下标j=1,2,…,10。
若A以行为主序存储元素,A[8][5]的物理地址与当A按列为主序存储时的元素()的物理地址相同。
设每个字符占一个字节。
A.A[8][5] B.A[3][10] C.A[5][8] D.A[0][9]解:二维数A是一个9行10列的矩阵,即A[9][10]。
按行存储时,A[8][5]是第85个元素存储的元素。
而按列存储时,第85个存储的元素是A[3][10]。
即正确答案为B。
【例4-2】若对n阶对称矩阵A以行序为主序方式将其下三角形的元素(包括主对角线上所有元素)依次存放于一维数组B[n(n+1)/2]中,则在B中确定的位置k的关系为()。
A.jii+-2)1(*B.ijj+-2)1(*C.jii++2)1(*D.ijj++2)1(*解:如果a ij按行存储,那么它的前面有i-1行,其有元素个数为:1+2+3+…+(i-1)=i(i-1)/2。
同时它又是所在行的第j列,因此它排列的顺序还得加上j,一维数组B[n(n+1)/2]中的位置k与其下标的关系是:jii+-2)1(*。
因此答案为A。
【例4-3】已知n阶下三角矩阵A,按照压缩存储的思想,可以将其主对角线以下所有元素(包括主对角线上元素)依次存放于一维数组B中。
请写出从第一列开始以列序为主序分配方式时在B中确定元素a ij的存放位置的公式。
解:如果a ij按列存储,那么它的前面有j-1列,共有元素:n+(n-1)+(n-2)+ …+[n-(j-2)]=(j-1)*n-2)1)(2(--jj而它又是所在列的第i行,因此在它前的元素个数还得加上i。
因此它在一维数组B中的存储顺序为:(j-1)*n-2)1)(2(--jj+i【例4-4】已知广义表L=((x,y,z),a,(u,t,w)),从L表中取出的原子项ASCII码最大的运算是()。
数据结构——用C语言描述(第3版)教学课件第5章 数组与广义表
5.1 数组的定义和运算 5.2 数组的顺序存储和实现 5.3 特殊矩阵的压缩存储
5.3.1 三角矩阵 5.3.2 带状矩阵 5.3.3 稀疏矩阵 5.4 广义表 5.5 总结与提高
5.1 数组的定义和运算
数组是一种数据类型。从逻辑结构上看,数组可以 看成是一般线性表的扩充。二维数组可以看成是线 性表的线性表。例如:
Am×n=
a12 a12 ┅
a1j
┅ a1n
a21 a22 ┅
a2j
┅ a2n
┇┇
ai1 ai2 ┅
aij
┇┇
┅ ain
am1 am2 ┅
amj
┅ amn
矩阵Am×n看成n个列向量的线性表,即j=(a1j,a2j, …,amj)
我们还可以将数组Am×n看成另外一个线性表: B=(1,,2,,… ,m),其中i(1≤i ≤m)本身也是一个线性表, 称为行向量,即: I= (ai1,ai2, …,aij ,…,ain)。
Loc[j1,j2,j3]=Loc[c1,c2,c3]+ α1*(j1-c1)+ α2*(j2-c2)+ α3(j3-c3)
=Loc[c1,c2,c3]+ Σαi*(ji-ci) (1≤i≤3)
由公式可知Loc[j1,j2,j3]与j1,j2,j3呈线性关系。 对于n维数组A(c1:d1,c2:d2,…,cn,dn),我们只要把上式推 广,就可以容易地得到n维数组中任意元素aj1j2…jn的存储 地址的计算公式。
疏矩阵。
0 12 9 0 0 0 0
0 0 3 0 0 15
0 0 0 00 0 0
12 0 0 0 18 0
M6×7= -3 0 0 0 0 14 0
数据结构第五章 数组与广义表
压缩存储方法:只需要存储下三角 (含对角线)上的元素。可节省一 半空间。
可以使用一维数组Sa[n(n+1)/2]作为n阶对称矩阵A的存 储结构,且约定以行序为主序存储各个元素,则在Sa[k]和矩
阵元素aij之间存在一一对应关系: (下标变换公式)
i(i+1)/2 + j 当i≥j k = j(j+1)/2 + i 当i<j
q = cpot[col];
T.data[q].i = M.data[p].j; T.data[q].j = M.data[p].i; T.data[q].e = M.data[p].e; ++cpot[col]; }
分析算法FastTransposeSMatrix的时间 复杂度:
for (col=1; col<=M.nu; ++col) … … for (t=1; t<=M.tu; ++t) … … for (col=2; col<=M.nu; ++col) … … for (p=1; p<=M.tu; ++p) … …
//对当前行中每一个非零元
处
brow=M.data[p].j;
理
if (brow < N.nu ) t = N.rpos[brow+1];
M
else { t = N.tu+1 }
的
for (q=N.rpos[brow]; q< t; ++q) { ccol = N.data[q].j; // 乘积元素在Q中列号
一、三元组顺序表
对于稀疏矩阵,非零元可以用三元组表示, 整个稀疏矩阵可以表示为所有非零元的三元组所 构成的线性表。例如:
数据结构串、数组和广义表知识点总结
数据结构串、数组和广义表知识点总结
数据结构是计算机科学中研究数据如何组织、存储、管理和操作的学科。
三个常见的数据结构串、数组和广义表都是用于存储和操作数据的。
1. 串:
- 串是由0个或多个字符组成的有限序列。
它是一维数组的特例。
- 串的操作包括插入、删除、修改和查找等常见操作。
- 串可以通过数组、链表或动态分配的内存来实现。
2. 数组:
- 数组是一种线性数据结构,它由一组连续的内存空间组成,
存储相同类型的数据。
- 数组的操作包括插入、删除、修改和查找等常见操作。
- 数组的访问时间复杂度为O(1),但插入和删除的时间复杂度
较高。
3. 广义表:
- 广义表是由若干元素组成的有序集合,每个元素可以是原子
或者是一个广义表。
- 广义表可以通过链表来实现,每个节点包含两个指针,一个
指向元素,一个指向下一个节点。
- 广义表的操作包括插入、删除、修改和查找等常见操作。
- 广义表可以表示任意层次的嵌套结构,具有灵活性和扩展性。
总结:
- 串、数组和广义表都是常见的数据结构,用于存储和操作数据。
- 串是字符的有限序列,可以通过数组或链表来实现。
- 数组是一维线性数据结构,存储相同类型的数据,具有常数时间复杂度的访问操作。
- 广义表是由元素组成的有序集合,可以通过链表来实现,能够表示任意层次的嵌套结构。
《数据结构与算法》第五章-数组和广义表学习指导材料
《数据结构与算法》第五章数组和广义表本章介绍的数组与广义表可视为线性表的推广,其特点是数据元素仍然是一个表。
本章讨论多维数组的逻辑结构和存储结构、特殊矩阵、矩阵的压缩存储、广义表的逻辑结构和存储结构等。
5.1 多维数组5.1.1 数组的逻辑结构数组是我们很熟悉的一种数据结构,它可以看作线性表的推广。
数组作为一种数据结构其特点是结构中的元素本身可以是具有某种结构的数据,但属于同一数据类型,比如:一维数组可以看作一个线性表,二维数组可以看作“数据元素是一维数组”的一维数组,三维数组可以看作“数据元素是二维数组”的一维数组,依此类推。
图5.1是一个m行n列的二维数组。
5.1.2 数组的内存映象现在来讨论数组在计算机中的存储表示。
通常,数组在内存被映象为向量,即用向量作为数组的一种存储结构,这是因为内存的地址空间是一维的,数组的行列固定后,通过一个映象函数,则可根据数组元素的下标得到它的存储地址。
对于一维数组按下标顺序分配即可。
对多维数组分配时,要把它的元素映象存储在一维存储器中,一般有两种存储方式:一是以行为主序(或先行后列)的顺序存放,如BASIC、PASCAL、COBOL、C等程序设计语言中用的是以行为主的顺序分配,即一行分配完了接着分配下一行。
另一种是以列为主序(先列后行)的顺序存放,如FORTRAN语言中,用的是以列为主序的分配顺序,即一列一列地分配。
以行为主序的分配规律是:最右边的下标先变化,即最右下标从小到大,循环一遍后,右边第二个下标再变,…,从右向左,最后是左下标。
以列为主序分配的规律恰好相反:最左边的下标先变化,即最左下标从小到大,循环一遍后,左边第二个下标再变,…,从左向右,最后是右下标。
例如一个2×3二维数组,逻辑结构可以用图5.2表示。
以行为主序的内存映象如图5.3(a)所示。
分配顺序为:a11 ,a12 ,a13 ,a21 ,a22,a23 ; 以列为主序的分配顺序为:a11 ,a21 ,a12 ,a22,a13 ,a23 ; 它的内存映象如图5.3(b)所示。
数组与广义表
其中:1) 矩阵Am×n看成n个列向量的线性表
2) 每个列向量:αj=(a1j, a2j, a3j, …, amj )(0≤j ≤n-1) 3) ai,j在列方向上有一个前驱ai-1,j, 有一个后继ai+1,j
• 或者,可以看成是一个线性表:A=(a0,a1,……,am-1)
• 其中每个数据元素aj是一个行向量形式的线性表: A
}ADT Array
• • • N维数组含有元素的个数: b1 × b2 × … × bn 第i维的长度: bi 元素下标(j1 , j2, … ,jn),0 ≤ ji ≤ bi -1
5.1 数组示例:
数组的定义
a00 a01 …….. a10 a11 …….. am-1,n-1 …….. a0,n-1 a1,n-1 am-1,n-1
1 2 … i-1 aij
*(A.base + off) = e;
return OK; }
5.3 矩阵的压缩存储 特殊矩阵和稀疏矩阵
特殊矩阵:矩阵中很多值相同的元素并且它们的分布 有一定的规律。 稀疏矩阵:矩阵中有很多零元素。 压缩存储的基本思想是: ⑴ 为多个值相同的元素只分配一个存储空间;
⑵ 对零元素不分配存储空间。
5.3.1 3 6 4 7 8
普通高等教育“十一五”国家级规划教材
设一个系统中二维数组采用行序为主的存储方式,已知二 维数组a[10][8]中每个元素占用四个存储单元,且第一 个数据元素地址是1000,求a[4][5]的存储地址?
解: Loc(a[4][5])=Loc(a[0][0])+(i*m+j)*k =1000+(4*8+5)*4 =1148
L:每个数据元素占用的存储单元
数据结构(数组和广义表)习题与答案
1、以行序优先顺序存储数组A[5][5];假定A[0][0]的地址为1000, 每个元素占4个字节,下标变量A[4][3]的地址是____。
A.1069B.1092C.1023D.1046正确答案:B2、数组a[1..6][1..5] (无0行0列)以列序优先顺序存储,第一个元素a[1][1]的地址为1000,每个元素占2个存储单元,则a[3][4]的地址是____。
A.1040B.1026C.1046D.1038正确答案:A3、设有一个5行4列的矩阵A,采用行序优先存储方式,A[0][0]为第一个元素,其存储地址为1000,A[2][2]的地址为1040,则A[3][0]的地址为_________。
A.1048B.1024C.1096D.1060正确答案:A4、设有一个10行10列的矩阵A,采用行序优先存储方式,存储全部数据需要400个字节的空间。
如果A[0][0]为第一个元素,其存储地址为1000,则A[3][6]的地址为_________。
A.1036B.1144C.1014D.10565、设有一个10行10列的矩阵A,采用行序优先存储方式。
如果A[0][0]为第一个元素,其存储地址为1000,A[2][3]的存储地址为1069,则存储一个元素需要的单元数是_________。
A.4B.1C.2D.3正确答案:D6、不能够对数据元素进行随机访问的物理结构是_________。
A.三元组顺序表B.对称矩阵的压缩存储C.三对角矩阵的压缩存储D.数组的顺序存储正确答案:A7、对特殊矩阵采用压缩存储的目的主要是_________。
A.表达变得简单B.去掉矩阵中的多余元素C.对矩阵元素的存储变得简单D.减少不必要的存储空间正确答案:D8、对n*n的对称矩阵进行压缩存储,需要保存的数据元素的个数是_________。
A.nB.n(n+1)/2C.n2D.n(n+1)9、设10*10的对称矩阵下三角保存SA[1..55]中,其中A[1][1]保存在SA[1]中,A[5][3] 保存在SA[k]中,这里k等于_________。
第5章演示
对称矩阵的压缩存储
(2)压缩存储: ③数组Sa中的元素与矩阵元素aij存在着一一对应的 关系。 假设数组元素Sa[k]中存放的是矩阵元素aij,则它们 之间的对应关系实质上就是下标值k和i、j之间的对应 关系。
对称矩阵的压缩存储的下标转换公式为:
i(i-1)/2+(j-1),当i>=j k= j(j-1)/2+(i-1),当i<j
稀疏矩阵
3、稀疏矩阵的存储结构 (2)算法:将矩阵M转置为矩阵T
M.data M.data[1] 1 2 12 M.data[2] 1 3 9 M.data[3] 3 M.data[4] 3 M.data[5] 4 M.data[6] 5 M.data[7] 6 M.data[8] 6 1 6 3 -3 14 24 T.data T.data[1] 1 3 -3 T.data[2] 1 6 15
稀疏矩阵的三元组表表示法节约了存储空间, 实现了压缩存储。
稀疏矩阵
注意:
稀疏矩阵 唯一 三元组表
不唯一
解决办法:在三元表的基础上,再引入总行数、 总列数和非零元素总个数即可。
稀疏矩阵
3、稀疏矩阵的存储结构 (1)三元组顺序表 以顺序存储结构表示的三元组表。 三元组类型定义: typedef struct { int i,j; elemtype e; }Triple;
5.4 广义表的定义
二、表示 (1)用关系定义表示; (2)用图表示。 说明: ①广义表是一个多层次结构; ②广义表之间可以共享; ③广义表可以递归定义; ④表头可以为原子或子表;表尾只能为子表; ⑤( )与( ( ) )不同。
5.4 广义表的定义 A =( ) B =(e) C =(a, (b,c,d)) D =(A, B, C) E =(a, E) F =(( ))
第8章 数组和广义表
第8章数组和广义表[能力要求](1)计算机基础知识:掌握线性表的概念以及顺序表和链表的基本操作。
(2)分析问题:针对具体的问题,要能够运用线性表去进行分析,逐步找到解决问题的方法。
(3)具有概念化和抽象化能力:针对具体的应用和实际的问题,能够运用线性表对问题进行抽象,提取它的逻辑结构和存储结构。
(4)发现问题和表述问题:在具体的工程中,能够发现工程中涉及到顺序表和链表的问题,并能够明确表述。
(5)建模:在具体的工程中,能够使用线性表进行建模,设计合理的数据结构和相应的算法。
(6)解决方法和建议:在具体工程应用中,发现了关于线性表的问题,要能够解决问题,并提出合理的建议。
(7)定义功能、概念和结构:使用线性表这种逻辑结构处理一些具体问题,实现系统的功能。
(8)设计过程的分段与方法:采取不同的阶段去设计(概念设计、详细设计)一个具体的线性表的应用项目。
(9)软件实现过程:了解系统中各个模块中的关于线性表的设计;讨论算法(数据结构、控制流程、数据流程);使用编程语言实施底层设计(编程)。
8.1知识点:数组的定义和顺序存储一、选择题1①常对数组进行的两种基本操作是()。
A.建立与删除 B.索引和修改C.对数据元素的存取和修改D.查找与索引2①下面说法中,不正确的是()。
A.数组是一种线性结构B.数组是一种定长的线性表结构C.除了插入与删除操作外,数组的基本操作还有存取、修改、检索和排序等D.数组的基本操作有存取、修改、检索和排序等,没有插入与删除操作3②数组A中,每个元素的长度为3个字节,行下标I从1到8,列下标J从1到10,从首地址SA开始连续存放在存储器内,该数组占用的字节数为()。
A.80 B.100 C.240 D.2704②在二维数组A[9][10]中,每一个数组元素A[i][j] 占用3个存储空间,所有数组元素相继存放于一个连续的存储空间中,则存放该数组至少需要的存储空间是()。
A. 80 B.100 C.240 D.2705②设有一个n*n的对称矩阵A,将其下三角部分按行存放在一个一维数组B中,A[0][0]存放于B[0]中,那么第I行的对角元素A[I][I]存放于B中()处。
数据结构第5章
第5章:数组和广义表 1. 了解数组的定义;填空题:1、假设有二维数组A 6×8,每个元素用相邻的6个字节存储,存储器按字节编址。
已知A 的起始存储位置(基地址)为1000,则数组A 的体积(存储量)为 288 B ;末尾元素A 57的第一个字节地址为 1282 。
2、三元素组表中的每个结点对应于稀疏矩阵的一个非零元素,它包含有三个数据项,分别表示该元素的 行下标 、 列下标 和 元素值 。
2. 理解数组的顺序表示方法会计算数组元素顺序存储的地址;填空题:1、已知A 的起始存储位置(基地址)为1000,若按行存储时,元素A 14的第一个字节地址为 (8+4)×6+1000=1072 ;若按列存储时,元素A 47的第一个字节地址为 (6×7+4)×6+1000)=1276 。
(注:数组是从0行0列还是从1行1列计算起呢?由末单元为A 57可知,是从0行0列开始!) 2、设数组a[1…60, 1…70]的基地址为2048,每个元素占2个存储单元,若以列序为主序顺序存储,则元素a[32,58]的存储地址为 8950 。
答:不考虑0行0列,利用列优先公式: LOC(a ij )=LOC(a c 1,c 2)+[(j-c 2)*(d 1-c 1+1)+i-c 1)]*L 得:LOC(a 32,58)=2048+[(58-1)*(60-1+1)+32-1]]*2=8950选择题:( A )1、假设有60行70列的二维数组a[1…60, 1…70]以列序为主序顺序存储,其基地址为10000,每个元素占2个存储单元,那么第32行第58列的元素a[32,58]的存储地址为 。
(无第0行第0列元素)A .16902B .16904C .14454D .答案A, B, C 均不对 答:此题(57列×60行+31行)×2字节+10000=16902( B )2、设矩阵A 是一个对称矩阵,为了节省存储,将其下三角部分(如下图所示)按行序存放在一维数组B[ 1, n(n-1)/2 ]中,对下三角部分中任一元素a i,j (i ≤j), 在一维数组B 中下标k 的值是:A .i(i-1)/2+j-1B .i(i-1)/2+jC .i(i+1)/2+j-1D .i(i+1)/2+j3、从供选择的答案中,选出应填入下面叙述 ? 内的最确切的解答,把相应编号写在答卷的对应栏内。
数据结构数组与广义表知识点总结
数据结构数组与广义表知识点总结数组是一种线性数据结构,可以存储多个相同类型的元素。
它的特点是元素的大小固定,并且在内存中是连续存储的。
数组的访问方式是通过下标来访问,下标从0开始。
数组可以在编程中应用于各种情况,比如存储一组数字、一组字符串等。
广义表是一种扩展的线性数据结构,可以存储不同类型的元素。
它由元素和表构成,其中表可以是空表、原子或子表。
广义表可以递归定义,即子表可以包含更多的子表。
广义表的访问方式是通过递归来访问,可以对表的元素进行遍历和操作。
在数据结构中,数组和广义表都有自己的特点和用途,下面对它们的知识点进行总结:1.数组的特点及应用:-数组是一种线性数据结构,可以存储多个相同类型的元素。
-数组的内存分配是连续的,可以通过下标来访问元素。
-数组的大小固定,一旦定义后不能改变。
-数组的访问速度快,可以通过下标直接访问元素。
-数组适合用于存储一组相同类型的数据,比如一组数字、一组字符串等。
-数组的应用场景包括但不限于:排序算法、查找算法、图像处理、矩阵运算等。
2.数组的操作和常用算法:-初始化:可以直接赋值或使用循环初始化数组。
-访问元素:通过下标访问元素,下标从0开始。
-修改元素:直接通过下标修改元素的值。
-插入元素:需要移动插入位置之后的元素。
-删除元素:需要移动删除位置之后的元素。
-查找元素:可以使用线性查找或二分查找等算法。
-排序算法:比如冒泡排序、选择排序、插入排序等。
-数组还有一些常用的属性和方法,比如长度、最大值、最小值等。
3.广义表的特点及应用:-广义表是一种扩展的线性数据结构,可以存储不同类型的元素。
-广义表由元素和表构成,表可以是空表、原子或子表。
-广义表可以递归定义,即子表可以包含更多的子表。
-广义表的访问方式是通过递归遍历和操作。
-广义表适合存储一组不同类型的数据,比如存储学生信息、函数调用栈等。
-广义表的应用场景包括但不限于:函数式编程、树的表示、图的表示等。
数据结构第五章
5.3.1 特殊矩阵
是指非零元素或零元素的分布有一定规律的矩阵。
1、对称矩阵 在一个n阶方阵A中,若元素满足下述性质: aij = aji 0≦i,j≦n-1 则称A为对称矩阵。
对称矩阵中的元素关于主对角线对称,故只 要存储矩阵中上三角或下三角中的元素,这样, 能节约近一半的存储空间。
2013-7-25 第4章 18
5.3 矩阵的压缩存储
在科学与工程计算问题中,矩阵是一种常用 的数学对象,在高级语言编制程序时,常将 一个矩阵描述为一个二维数组。 当矩阵中的非零元素呈某种规律分布或者矩 阵中出现大量的零元素的情况下,会占用许 多单元去存储重复的非零元素或零元素,这 对高阶矩阵会造成极大的浪费。 为了节省存储空间,我们可以对这类矩阵进 行压缩存储:
5.2 数组的顺序表示和实现 由于计算机的内存结构是一维的, 因此用一维内存来表示多维数组,就必 须按某种次序将数组元素排成一列序列 ,然后将这个线性序列存放在存储器中 。 又由于对数组一般不做插入和删除 操作,也就是说,数组一旦建立,结构 中的元素个数和元素间的关系就不再发 生变化。因此,一般都是采用顺序存储 的方法来表示数组。
即为多个相同的非零元素只分配一个存储空间; 对零元素不分配空间。
课堂讨论: 1. 什么是压缩存储? 若多个数据元素的值都相同,则只分配一个元素值的 存储空间,且零元素不占存储空间。 2. 所有二维数组(矩阵)都能压缩吗? 未必,要看矩阵是否具备以上压缩条件。 3. 什么样的矩阵具备以上压缩条件? 一些特殊矩阵,如:对称矩阵,对角矩阵,三角矩阵, 稀疏矩阵等。 4. 什么叫稀疏矩阵? 矩阵中非零元素的个数较少(一般小于5%)
通常有两种顺序存储方式:
⑴行优先顺序——将数组元素按行排列,第i+1个行 向量紧接在第i个行向量后面。以二维数组为例,按 行优先顺序存储的线性序列为: a11,a12,…,a1n,a21,a22,…a2n,……,am1,am2,…,amn 在PASCAL、C语言中,数组就是按行优先顺序存 储的。 ⑵列优先顺序——将数组元素按列向量排列,第j+1 个列向量紧接在第j个列向量之后,A的m*n个元素按 列优先顺序存储的线性序列为: a11,a21,…,am1,a12,a22,…am2,……,an1,an2,…,anm 在FORTRAN语言中,数组就是按列优先顺序存储的。
大学数据结构课件--第5章 数组和广义表
a 32 a 33 a 34 0 0
a 43 a 44 a 45 0
a 54 a 55 a 56 a 65 a 66
5.3.2 稀疏矩阵
稀疏矩阵的存储:如何表示非零元素的位置信息 1. 三元组表:每个元素用一个三元组(i,j,v)来表示。 i j v
0 1 6 1 1 6 2 3 8 12 9
2
3 4 5 6 7 8
2
5.2 数组的顺序表示和实现
a00 a00 a10 a01 存储单元是一维结构,而数组是个多维结构 , …… …… 则用一组连续存储单元存放数组的数据元素就有 am-1,0 a0,n-1 个次序约定问题。 a01 a10
a11
……
a11
……
二维数组可有两种存储方式: am-1,1 a1,n-1
……
K=
i*n-i(i-1)/2+j-i n(n+1)/2
当 i≤j 当i>j
0 a11 ... a1n-1 ... ... ... ... 0 0 0 an-1n-1
当i ≤ j时,a[i][j]是非零元素, a[i][j]前面有i行,共有n+(n-1)+(n-2)+…(n-(i-1))
=i(n+[n-(i-1)])/2=i*n-i(i-1)/2个元素,a[i][j]前面有j列,共j-i个非零元素,
A m× n
( a10 a11 … a1,n-1 )
=
注:
( … … …… ) ( am-1,0 am-1,2 … am-1,n-1 ) ( ( ( (
① 数组中的元素都具有统一的类型; ② 数组元素的下标一般都具有固定的上界和下界,即数组一旦 被定义,它的维数和维界就不再发生改变; ③ 数组的基本操作简单:初始化、销毁、存取元素和修改元素值
数据结构(C)严蔚敏(数组与广义表)PPT课件
a00
Am×n
=
a10 ...
am-1,0
a01 a11 ...
am-1,1
a02 a12 ...
am-1,2
... a0,n-1
...
a1,n-1
... ...
... am-1,n-1
Data Structure
03.12.2020
Page 5
按行序为主序存放
0
1
n-1
Am×n
=
a00 a10 ...
a00
Am×n
=
a10 ...
am-1,0
a01 a11 ...
am-1,1
a02 a12 ...
am-1,2
... a0,n-1
...
a1,n-1
... ...
... am-1,n-1
列向量
a00
Am×n
=
a10 ...
am-1,0
a01 a11 ...
am-1,1
a02 a12 ...
初始条件:A 是 n 维数组,e 为元素变量,随后是 n 个下标值。 操作结果:若各下标不超界,则e赋值为所指定的A的元素值,并返回OK。
Assign(&A, e, index1, ..., indexn)
初始条件:A 是 n 维数组,e 为元素变量,随后是 n 个下标值。 操作结果:若下标不超界,则将 e 的值赋给A中指定下标的元素。
a00 a10 ……. am-1,1 a01 a11 …….. am-1,1 ………. a0,n-1 a1,n-1 …….. am-1 ,n-1
Page 7
按行序为主序存放
0
Am×n
数据结构数组和广义表
数据结构05数组与广义表数组与广义表可以看做是线性表地扩展,即数组与广义表地数据元素本身也是一种数据结构。
5.1 数组地基本概念5.2 数组地存储结构5.3 矩阵地压缩存储5.4 广义表地基本概念数组是由相同类型地一组数据元素组成地一个有限序列。
其数据元素通常也称为数组元素。
数组地每个数据元素都有一个序号,称为下标。
可以通过数组下标访问数据元素。
数据元素受n(n≥1)个线性关系地约束,每个数据元素在n个线性关系地序号 i1,i2,…,in称为该数据元素地下标,并称该数组为n维数组。
如下图是一个m行,n列地二维数组A矩阵任何一个元素都有两个下标,一个为行号,另一个为列号。
如aij表示第i行j列地数据元素。
数组也是一种线性数据结构,它可以看成是线性表地一种扩充。
一维数组可以看作是一个线性表,二维数组可以看作数据元素是一维数组(或线性表)地线性表,其一行或一列就是一个一维数组地数据元素。
如上例地二维数组既可表示成一个行向量地线性表: A1=(a11,a12,···,a1n)A2=(a21,a22, ···,a2n)A=(A1,A2, ···,Am) ············Am=(am1,am2, ···,amn)也可表示成一个列向量地线性表:B1=(a11,a21,···,am1)B2=(a12,a22, ···,am2)A=(B1,B2, ···,Bm) ············Bn=(a1n,a2n, ···,amn)数组地每个数据元素都与一组唯一地下标值对应。
数据结构第五章 数组和广义表
一、课程内容5.1 多维数组(1课时)数组的定义数组(Arrays)是由一组类型相同的数据元素构造而成的。
它的每个元素由一个值和一组下标确定。
二维数组An1n2…nm的每个元素ai1i2…im都属于m个向量,最多可以有m个直接前趋和m个直接后继。
数组的顺序存储结构数组的顺序存储结构指的是用一组连续的存储单元依次存放数组元素。
行优先顺序行优先顺序:将数组元素按行向量排列,第i+1个行向量紧接在第i个行向量后面。
行优先顺序规定为先排最右的下标,从右向左,最后排最左下标。
列优先顺序列优先顺序:将数组元素按列向量排列,第j+1个列向量紧接在第j个列向量之后。
列优先顺序规定为先排最左下标,从左向右,最后排最右下标。
二维数组Amn按“行优先顺序”存储在内存中,假设每个元素占d个存储单元,则aij的地址计算函数为:LOC(aij)=LOC(a11)+[(i-1)×n+j-1]×d 对应C语言的二维数组:DataType A[m][n];数组A[m][n]的两个下标的下界均为0,上界分别为m-1、n-1,每个数据元素占k个存储单元,二维数组中任一元素a[i,j]的存储位置可由下列公式确定。
loc[i,j]=loc[0,0]+( n * i + j ) * k其中,loc[0,0]是A[0][0]的存储位置,它是该二维数组的起始地址。
loc[i,j]是A[i][j]的存储位置。
这个式子确定了C语言的二维数组元素的位置和下标的关系。
5.2 矩阵的压缩存储(1课时)压缩存储:即为多个相同的非零元素只分配一个存储空间,对零元素不分配空间。
所谓特殊矩阵(Special Matrices)是指非零元素或零元素的分布有一定规律的矩阵。
几种特殊矩阵的压缩存储:对称矩阵在一个n阶方阵A中,若元素满足下述性质:aij=aji0≤i,j≤n-1则称A为对称矩阵。
如图所示:存储元素为:{1,5,0,1,8,9,3,0,2,5,7,0,6,1,3},共15个。
数据结构05数组和广义表11
2021/11/8
12
设有m×n二维数组Amn,下面我们看按元素的下标求其 地址的计算:
以“行为主序”的分配为例:设数组的基址为LOC(a11), 每个数组元素占据l个地址单元,那么aij 的物理地址可用一 线性寻址函数计算:
LOC(aij) = LOC(a11) + ( (i-1)*n + j-1 ) * l 在C语言中,数组中每一维的下界定义为0,则:
(1) 取值操作:给定一组下标,读其对应的数据元素。
(2) 赋值操作:给定一组下标,存储或修改与其相对应的
数据元素。
我们着重研究二维和三维数组,因为它们的应用是广泛的,
尤其是二维数组。
2021/11/8
9
5.1.3 数组的存储结构
• 通常,数组在内存中被映象为向量,即用向量作为数组的 一种存储结构,这是因为内存的地址空间是一维的,数组的行 列固定后,通过一个映象函数,则可根据数组元素的下标得到 它的存储地址。
• 任一数据元素的存储地址可由公式算出:
Loc(a i,j)=loc(a 0,0)+(i*n+j)*L
– 以列序为主序的顺序存储
• 在以列序为主序的存储方式中,数组元素按列向量排列, 即第j+1个列向量紧接在第j个列向量之后, 把所有数组 元素顺序存放在一块连续的存储单元中。
• 任一数据元素的存储地址可由公式算出
–Loc(a i,j)=loc(a c1,c2)+[(j-c1)*(d1-c1+1)+(i-c1)]*L
2021/11/8
8
5.1.2 数组的基本操作
数组一旦被定义,它的维数和维界就不再改变。因此,除了 结构的初始化和销毁之外,数组的基本操作一般不会含有元素 的插入或删除等操作,数组只有访问数组元素和修改元素值的 操作。
数据结构第五章 数组和广义表
5.3.1
特殊矩阵
1、对称矩阵 在一个n阶方阵A中,若元素满足下述性质: aij = aji 1≤i,j≤n 则称A为对称矩阵。 a11 1 5 1 3 7 a21 a 22 5 0 8 0 0 a31 a32 a33 1 8 9 2 6 ……………….. 3 0 2 5 1 an 1 a n 2 a n 3 …a n n 7 0 6 1 3
第5章
数组和广义表
5.1 数组的定义
5.2 数组的顺序表示和实现
5.3 矩阵的压缩存储
5.3.1 特殊矩阵
5.3.2 稀疏矩阵
5.4 广义表的定义
5.1 数组的定义
数组-----线性表的扩展 A =(a0,a1,a2,…,an-1)
a00 a10 ┇ Am×n= ai0 ┇ am-1,0 a01 … a0j … a11 … a1j … ┇ ai2 … aij … ┇ am-1,2 … am-1,j … a0,n-1 a1,n-1 ai,n-1 am-1,n-1 α0 α1 ┇ Am×n= α i ┇ α m-1
Assign( &A, e, index1, ..., indexn) 赋值操作 初始条件:A是n维数组,e为元素变量,随后是n个下标值。 操作结果:若下标不超界,则将e的值赋给所指定的A的元 素,并返回OK。 对于数组来说一旦维数确定了,每个元素的下标确定了, 那么整个数组就确定了,这样的一个数组结构除了能改变 某元素的值,其他的不能再改变。
5.2 数组的顺序表示和实现
数组类型特点: 1) 只有引用型操作,没有加工型操作; 2) 数组是多维的结构,而存储空间是一个一维的结构。 有两种顺序映象的方式。
有两种顺序映像方法: 1)以行序为主序(行优先,先行后列):先存储行号较小 的元素,行号相同者先存储列号较小的元素;
数据结构讲义第5章-数组和广义表
5.4 广义表
5)若广义表不空,则可分成表头和表尾,反之,一对表头和表尾 可唯一确定广义表 对非空广义表:称第一个元素为L的表头,其余元素组成的表称 为LS的表尾; B = (a,(b,c,d)) 表头:a 表尾 ((b,c,d)) 即 HEAD(B)=a, C = (e) D = (A,B,C,f ) 表头:e 表尾 ( ) TAIL(B)=((b,c,d)),
5.4 广义表
4)下面是一些广义表的例子; A = ( ) 空表,表长为0; B = (a,(b,c,d)) B的表长为2,两个元素分别为 a 和子表(b,c,d); C = (e) C中只有一个元素e,表长为1; D = (A,B,C,f ) D 的表长为4,它的前三个元素 A B C 广义表, 4 A,B,C , 第四个是单元素; E=( a ,E ) 递归表.
以二维数组为例:二维数组中的每个元素都受两个线性关 系的约束即行关系和列关系,在每个关系中,每个元素aij 都有且仅有一个直接前趋,都有且仅有一个直接后继. 在行关系中 aij直接前趋是 aij直接后继是 在列关系中 aij直接前趋是 aij直接后继是
a00 a01 a10 a11
a0 n-1 a1 n-1
a11 a21 ┇ a12 a22 ┇ ai2 ┇ … amj … amn … aij … ain … … a1j a2j … … a1n a2n β1 β2 ┇ βi ┇ βm
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
算法的改进之处:对A数组的扫描存在着浪费现象,即n次扫描 中每次都要检查t个元素,实际并不需要。因为:每次需要扫描 的A的元素在减少,凡在某遍扫描中已转置到B中去的A的元素 以后就不需要再扫描了。
若一个mn阶稀疏矩阵具有t个非零元素,则用t+1个三 元组来存储,其中第一个三元组分别用来给出稀疏矩阵的总 行数m、总列数n 以及非零元素的总个数t ;第二个三元组 到第 t+1 个三元组按行序为主序的方式依次存储t个非零元 素。
15 0 0 22 0 -15
0 11 3 0 0 0
A=
0 0
0 0
North China Electric Power University
(2)B数组中元素的生成不是顺序的而是跳跃式的
即转换按数组A中行的顺序进行,但转换后的元素在B中 不是连续存放,而是将它放入它在B中最终应占据的位置。
Num[n]:存放矩阵N中各行非0元素的个数; Pot[n]:存放矩阵N中各行第一个非0元素在数组B中应占的位置.
例如 :
(1,1,15)表示第1行、第1列、值为15的元素。 (1,4,22)表示第1行、第4列、值为22的元素。 (1,6,-15)表示第1行、第6列、值为-15的元素。
( m, n, t )
其中,m, n, t 分别表示稀疏矩阵的总的行数、
总的列数与非零元素的总个数。
North China Electric Power University
a11 a12 … a1n
A= a21 a22 … a2n
… … ……
am1 am2 … amn
类似地, 一个三维数组可以看成是数据元素为二维数组的线性表 一个n维数组可视为其数据元素为n-1维数组的线性表。
North China Electric Power University
★数组的顺序存储分配
0 -6 0 000
0 0
91 0 0 0 0 0
0 0 28 0 0 0
A[6][6]
66 8 1 1 15 1 4 22 1 6 -15
B= 2 2 11
2 33 3 4 -6 5 1 91 6 3 28
B[9][3]
3) 矩阵的转置
15 0 0 22 0 11 3 0
M= 0 0 0 -6
0000 91 0 0 0
{ k=
i(i-1)/2+j
j(j-1)/2+i
当i≥j时 当i < j时
North China Electric Power University
2)对角矩阵的压缩存储
若一个矩阵中,值非0的元素对称地集中在主对 角线两旁的一个带状区域中(该区域之外的元素都为 0元素),称这样的矩阵为对角矩阵。
0元素
North China Electric Power University
15 0 0 0 91 0
0 11 0 0 0 0
N=
0 3 0 0 0 28 22 0 -6 0 0 0
000000
-15 0 0 0 0 0
1] 2] 3]
B[0, 6 6 8
B[1, 1 1 15
B[2, 1 5 91
B=
void transmat(A,B);
if (A[p][2]==col )
{
{ B[q][1]=A[p][2];
(m,n,t)=(A[0][1],A[0][2],A[0][3]); B[q][2]=A[p][1];
B[0][1],B[0][2],B[0][3])=(n,m,t); B[q][3]=A[p][3];
North China Electric Power University
数据结构
Data Structure
华北电力大学计算机系
(Dept. of Computer , North China Electric Power University)
North China Electric Power University
0 0 28 0
0 -15 00 00 00 00 00
1] 2] 3]
A[0, 6 6 8
A[1, 1 1 15
A[2, 1 4 22
A=
A[3, 1 A[4, 2
6 -15 2 11
A[5, 2 3 3
A[6, 3 4 -6
A[7, 5 1 91
A[8, 6 3 28
表示稀疏矩阵M的三列的二维数组
if (t!=0)
q=q+1;
{ q=1;
}
for(col=1; col<=n; col++) }
for(p=1;p<=t; p++)
算法的评价
North China Electric Power University
1.空间开销:3*(t+1),当t<1/3*(m*n)时,所需存储量比按矩 形结构存储的二维数组要少。
间,而对0元素一般情况下不分配存储空间。
A=
a11 a12 a13 … … a1n a21 a22 a23 … … a2n …… …… am1 am2 am3 … … amn
A[m][n]
传统做法
North China Electric Power University
1)对称矩阵的压缩存储
一个n 阶矩阵A的元素满足性质 aij = aji 1≤i, j≤n
0元素 传统做法:定义一个二维数组 B[n][n]
North China Electric Power University
例. 三对角矩阵的压缩存储
B[n][n] =
b11 b12 b21 b22 b23
b32 b33 b34
0元素
0元素
bn-1n bnn-1 bnn
非零元素的个数为3n-2
North China Electric Power University
B[n][n] =
b11 b12 b21 b22 b23
b32 b33 b34
0元素
0元素
bn-1n bnn-1 bn n
b11 b12 b21
k=1
2
3
b22 ... ... bij ... ... bnn
4
... ...
3n-2
B中任一非零元素 bij 与V[k] 之间存在对应关系:
k = 2 i + j – 2 i=[k/3]+1 j=k-2(i-1)
A[m][n] =
a11 a12 a13 … … a1n a21 a22 a23 … … a2n
…… …… am1 am2 am3 … … amn
a11 . . . a1n a21 . . . a2n a31 . . . aij . . . amn
……
第1行
第2行
North China Electric Power University
North China Electric Power University
2)列序为主序分配方式
A[m][n]=
a11 a12 a13 … … a1n a21 a22 a23 … … a2n
…… …… am1 am2 am3 … … amn
a11 . . . am1 a12 . . . am2 a13 . . . aij . . . amn
则称矩阵A为n 阶对称矩阵。
A[1:n, 1:n] =
a11 a12 a13 … … a1n a21 a22 a23 … … a2n a31 a32 a33 … … a3n …… …… an1 an2 an3 … … ann
传统做法: 定义一个二维数组 A[n][n ]
A[n][n] =
North China Electric Power University
第四章 数组和广义 表 ★ 数组的逻辑结构
★ 数组的顺序存储分配 ★ 矩阵的压缩存储 ★ 稀疏矩阵 ★ 广义表
★数组的逻辑结构
North China Electric Power University
一个二维数组的类型定义如下:
ElemType A[m][n];
数组可表示为:
它可以看成是由m个行向量或 n个列向量组成的线性表。也即, 二维数组可以看成是一种推广的 线性表,这种线性表的每一个数 据元素本身也是一个线性表。
传统做法:定义一个二维数组 A[6][6]
North China Electric Power University
2)稀疏矩阵的三元组表示 三元组: ( i, j, value )
15 0 0 22 0 -15 0 11 3 0 0 0 0 0 0 -6 0 0 00 000 0 91 0 0 0 0 0 0 0 28 0 0 0
a11 a12 a13 … … a1n a21 a22 a23 … … a2n a31 a32 a33 … … a3n …… …… an1 an2 an3 … … ann
V a11 a21 a22 ... ... aij ... ... ann
k=1
2
3
... ...
n*(n+1)/2
A中任意一元素aij与V[k] 之间存在对应关系:
Loc(aij) = Loc(a11) + (j1)mk + (i1)k
= Loc(a11) + [ (j1)m+(i1) ]k