人教版高中数学必修3 第二章211简单随机抽样教学设计
人教版高中数学必修三 第二章 统计简单随机抽样教案_高一数学教案
简单随机抽样教案_高一数学教案自主学习学习目标1.理解并掌握简单随机抽样的概念、特点和步骤.2.掌握简单随机抽样的两种方法.自学导引1.总体与个体一般把所考察对象的某一数值指标的________________看作总体,构成总体的____________作为个体,从总体中抽出若干个体所组成的集合叫做________.2.随机抽样在抽样时要保证每一个个体都____________,每一个个体被抽到的机会是________,满足这样的条件的抽样是随机抽样.3.简单随机抽样一般地,从元素个数为N的总体中____________抽取容量为n的样本,如果每一次抽取时总体中的各个个体有________的可能性被抽到,这种抽样方法叫做简单随机抽样,这样抽取的样本叫做________________.4.常用的简单随机抽样方法有________和____________.对点讲练知识点一简单随机抽样的概念例1下列抽取样本的方法是简单随机抽样吗?为什么?(1)从无限多个个体中抽取50个个体作为样本.(2)箱子里共有100个零件,今从中选取10个零件进行检验,在抽样操作时,从中任意地拿出一个零件进行质量检验后再把它放回箱子里.(3)从50个个体中一次性抽取5个个体作为样本.点评判定的依据是简单随机抽样的四个特点.“一次性”抽取和“逐个”抽取形式不同,但是不影响个体被抽到的可能性.而“一次性”抽取不符合简单随机抽样的定义,因而(3)不是简单随机抽样.变式迁移1下面的抽样方法是简单随机抽样吗?为什么?(1)某班有40名同学,指定个子最高的5名同学参加校篮球赛;(2)一儿童从玩具箱中的20件玩具中随意拿出一件来玩,玩后放回再拿出一件,连续玩了5件;(3)从一批2 000个灯泡中逐个抽取20个进行质量检查.知识点二抽签法的应用例2某单位支援西部开发,现从报名的18名志愿者中选取6名组成志愿小组到西藏工作3年.请用抽签法设计抽样方案.点评抽签法注意:一是编号;二是搅拌均匀;三是依次抽取.变式迁移2从20名学生中抽取5名进行问卷调查,写出抽取样本的过程.知识点三随机数表法的应用例3设某校共有100名教师,为了支援西部教育事业,现要从中随机抽出12名教师组成暑期西部讲师团,请写出利用随机数表法抽取该样本的步骤.点评利用随机数表法抽取个体时,关键是事先确定以表中的哪个数(哪行哪列)作为起点,以及读数的方向,向左、向右、向上或向下都可以,同时,读数时结合编号特点进行读取,编号为两位,则两位、两位地读取,编号为三位数,则三位、三位地读取,如果出现重号则跳过,接着读取.变式迁移3要从某汽车厂生产的 3 000辆汽车中随机抽取10辆进行测试.请选择合适的抽样方法,并写出抽样过程.抽签法与随机数表法的相同点与不同点相同点:(1)抽签法和随机数表法都是简单随机抽样的方法,并且要求被抽取样本的总体的个体数有限;(2)抽签法和随机数表法都是从总体中逐个地进行抽取,都是不放回抽样.不同点:(1)抽签法相对于随机数表法简单,随机数表法较抽签法稍麻烦一点;(2)随机数表法更适用于总体中的个体数较多的时候,而抽签法适用于总体中的个体数相对较少的情况,所以当总体中的个体数较多时,应当选用随机数表法,这样可以节约大量的人力和制作号签的成本与精力.课时作业一、选择题1.我校期中考试后,为了分析高一年级1 220名学生的学习成绩,从中随机抽取了50名学生的成绩单,就这个问题来说,下面说法中正确的是() A.1 220名学生是总体B.每个学生是个体C.50名学生是所抽取的一个样本D.样本容量是502.在简单随机抽样中,某个个体被抽中的可能性是()A.与第几次抽样有关,第1次抽中的可能性要大些B.与第几次抽样无关,每次抽到的可能性都相等C.与第几次抽样有关,最后一次抽中的可能性大些D.与第几次抽样无关,每次都是等可能的抽取,但各次抽取的可能性不一样3.下列调查中属于抽样调查的是()①每隔10年进行一次人口普查②某商品的质量优劣③某报社对某个事情进行舆论调查④高考考生的查体A.②③B.①④C.③④D.①②4.下列抽样实验中,用抽签法方便的是()A.从某厂生产的3 000件产品中抽取600件进行质量检验B.从某厂生产的两箱(每箱15件)产品中抽取6件进行质量检验C.从某厂生产的3 000件产品中抽取10件进行质量检验D.从甲乙两厂生产的两箱(每箱15件)产品中抽取6件进行质量检验5.用随机数表进行抽样有以下几个步骤:①将总体中的个体编号;②获取样本号码;③选定开始的数字.这些步骤的先后顺序应为()A.①②③B.①③②C.③②①D.③①②二、填空题6.福利彩票的中奖号码是从1~36中选出7个号码来按规则确定中奖情况,这种从36个中选出7个号码的抽样方法是________.7.从总数为N的一批零件中抽取一个容量为30的样本,若每个零件被抽取的可能性为25%,则N为________.8.我班有50名学生,学号从01到50,数学老师在上统计课时,运用随机数表法选取5名学生提问.老师首先选定随机数表中的第21行第29个数2开始提问,然后向右走,到头后从下一行返回,即下一行是从左向右,再下一行从右开始,如果不在50以内则跳过去,那么被提问的5名学生是________________.附:随机数表的第21行第21个数开始到第22行的第10个数 (44227884260433460952)68079706577457256576…三、解答题9.现要在20名学生中抽取5名进行问卷调查,试写出抽取样本的过程.10.某个车间工人已加工一种轴100件,为了了解这种轴的直径,要从中抽出10件在同一条件下测量,如何采用简单随机抽样的方法抽取上述样本?第二章统计§2.1随机抽样2.1.1简单随机抽样自学导引1.全体构成的集合每一个元素样本2.可能被抽到均等的3.不放回地相同简单随机样本4.抽签法随机数表法对点讲练例1解(1)不是简单随机抽样,因为被抽取的样本的总体的个数是无限的而不是有限的.(2)不是简单随机抽样,因为它是有放回地抽样.(3)不是简单随机抽样,因为它是一次性抽取,而不是“逐个”抽取.变式迁移1解(1)不是简单随机抽样,因为这不是等可能抽样;(2)不是简单随机抽样,因为它是有放回抽样;(3)满足简单随机抽样的四个特点,故是简单随机抽样.例2解按抽签法的一般步骤进行设计.第一步:将18名志愿者编号,号码为1,2, (18)第二步:将号码分别写在一张纸条上,揉成团,制成号签;第三步:将所有号签放入一个箱子中,充分搅匀;第四步:依次取出6个号码,并记录其编号;第五步:将对应编号的志愿小组成员选出.变式迁移2 解 (1)先将20名学生进行编号,从1编到20;(2)把号码写在形状、大小均相同的号签上;(3)将号签放在某个箱子中进行充分搅拌,然后依次从箱子中取出5个号签,按这5个号签上的号码对应学生,即得样本.例3 解 其步骤如下:第一步:将100名教师进行编号:00,01,02, (99)第二步:给出的随机数表中是5个数一组,使用各个5位数组的前2位,从各数组中任选一个前2位小于或等于99的数作为起始号码、例如从第1行的第3组数开始.第三步:依次向右读可以得到40,48,60,16,29,61,43,27,26,84,78,39.第四步:以上号码对应的12名教师就是要抽取的对象.变式迁移3 解 第一步:将3 000辆汽车编号,号码是0000,0001, (2999)第二步:给出的随机数表中是5个数一组,使用各个5位数组中的前4位,从各数组中任选一个前4位小于或等于2999的数作为起始号码,例如从第二行的第4组数开始;第三步:依次向右读,可以得到2691,2778,2037,2104,1290,2881,1212,2298,1321,2624.课时作业1.D [总体、个体、样本都是学生的成绩,样本容量为50.]2.B [简单随机抽样每个个体被抽取的可能性相等.]3.A4.B5.B6.抽签法7.120解析 ∵30N =0.25,∴N =120.8.26 04 33 46 09解析 用随机数法进行抽样,关键是弄清所选定的起始数码和读数的方向,还要弄清编号的位数与随机数表的构成.9.解 (1)先将20名学生进行编号,编号为1,2, (20)(2)把号码写在形状、大小均相同的号签上;(3)将号签放在某个箱子中充分搅拌,使之均匀,然后依次从箱子中抽取5个号签,于是和这5个号签上的号码对应的5名学生就构成了一个样本.10.解 有两种方法:方法一 (抽签法)将100个轴进行编号1,2,…,100,并做好大小、形状相同的号签,分别写上这100个数,可将这些号签放在一起,并进行均匀搅拌,接着依次抽取10个号签,然后测量这10个号签对应的轴的直径.方法二(随机数表法)将100个轴进行编号00,01,…,99,据课本上的随机数表,如取第6行第2组数开始选取10个,13,57,74,32,98,55,42,59,66,36,然后测量这10个编号对应的轴的直径.。
人教B版《高中数学》必修三第二章《简单随机抽样》教学设计
人教B版《高中数学》必修三第二章《简单随机抽样》教学设计一、教学背景分析本节课是人教B版《高中数学》必修三第二章的第一课时-----简单随机抽样.其主要内容是介绍简单随机抽样的概念以及如何实施简单随机抽样.数理统计学包括两类问题,一类是如何从总体中抽取样本,另一类是如何根据对样本的整理、计算和分析,对总体的情况作出一种推断.可见,抽样方法是数理统计学中的重要内容.简单随机抽样作为一种简单的抽样方法,又在其中处于一种非常重要的地位.因此它对于学习后面的其它较复杂的抽样方法奠定了基础,同时它强化对概率性质的理解,加深了对概率公式的运用.因此它起到了承上启下的作用,在教材中占有重要地位.二、学生学情分析本节课是在学生初中已学习了统计初步知识的基础上,系统学习统计的基本方法,体验统计思想的第一课时.本节课通过结合具体的实际问题情景,使学生认识到随机抽样的必要性和重要性,进而分析得到简单随机抽样的定义、常用实施方法.这些活动的实施就是想引导学生从现实生活或其它学科中提出具有一定价值的统计问题,初步形成运用统计的思想和方法(用数据说话)来思考问题和解决问题的习惯.。
从知识的应用价值来看,重视数学知识的应用和关注人文内涵是新教材的显著特点.丰富的生活实例为学生用数学的眼光看待生活,体验生活即数学的理念,体验用算法思想解决模式化问题的作用,有助于学生对统计思想和方法的掌握,增加学生的感性认识.。
三、教学目标与目标解析【知识与技能】1.理解随机抽样的必要性和重要性2.理解简单随机抽样的概念3.掌握抽签法、随机数表法的一般步骤【过程与方法】在解决统计问题的过程中,学会用简单随机抽样中的抽签法和随机数表法从总体中抽取样本【情感、态度与价值观】1.让学生感受数学就在我们身边,体验做数学游戏的过程和乐趣,从而激发学生学数学的兴趣2.通过安排学生游戏试验、分组讨论、提升学生合作交流、互助提高的团队意识四、教学重点、难点重点:简单随机抽样的定义,抽样方法,各种方法适用情况,及对比难点:简单随机抽样中的等可能性及简单随机抽样的特点,随机数表法应用。
高中数学 第二章 统计 211 简单随机抽样学案 新人教A版必修3 学案
简单随机抽样授课日期: 某某: 班级: 编号:一、学习目标:1、知识与技能:(1)正确理解随机抽样的概念,掌握抽签法、随机数表法的一般步骤;(2)正确理解系统抽样的概念;掌握系统抽样的一般步骤;(3)正确理解系统抽样与简单随机抽样的关系;2、过程与方法:(1)能够从现实生活或其他学科中提出具有一定价值的统计问题;(2)在解决统计问题的过程中,学会用简单随机抽样的方法从总体中抽取样本。
3、情感态度与价值观:通过对现实生活和其他学科中统计问题的提出,体会数学知识与现实世界及各学科知识之间的联系,认识数学的重要性。
二、学习重、难点:重点:概念的理解,步骤的掌握。
难点:对样本随机性的理解。
三、学法指导:1.研读学习目标,回顾所学知识,独立完成学案,课上积极参与,主动展示,通过合作学习完成学习目标。
2.掌握总体、个体、样本、样本容量的概念。
3.小班、重点班完成100%,平行班完成90%。
四、知识:1.假设你作为一名食品卫生工作人员,要对某食品店内的一批小包装饼干进行卫生达标检验,你准备怎样做?2.从5万多名考生中随机抽取500名学生的成绩,用他们的平均成绩去估计所有考生的平均成绩,指出:_______________是总体,_______________是个体,_______________是总体的一个样本,样本容量是_______________。
五.学习过程:一.简单随机抽样A问题1:(1)什么是简单随机抽样?(2)简单随机抽样有几种?(3)简单随机抽样的特点是什么?B例1:下面的抽样方法是简单随机抽样吗?为什么?(1)从无限多个个体中抽取100个个体作样本;(2)从20个零件中一次性抽出3个进行质量检查;(3)一儿童从玩具箱中的20个玩具中随意拿出一件来玩,玩后放回再拿出一件,连续玩了5件;(4)某班45名同学,指定个子最高的5名同学参加学校组织的某项活动.A问题2:什么是抽签法?说明:抽签法的步骤:第一步:将总体的所有N个个体从0到(N-1)编号;第二步:准备N个号签分别标上这些编号,将号签放在容器中搅拌均匀后,每次抽取一个号签,不放回地连续取n次;第三步:将取出的n个号签上的所对应的n个个体作为样本。
人教版高中数学必修三2.1.1《简单随机抽样》教学设计
2.1.1简单随机抽样(1课时)一、教学目标:1、正确理解简单随机抽样概念,会用抽签法、随机数表法从总体中抽取样本。
2、让学生经历简单随机抽样的过程,培养学生对数据的处理能力。
3、通过对现实生活和其他学科中统计问题的提出,体会教学知识与现实世界及各学科之间的联系,认识数学的重要性。
重点:简单随机抽样的概念,抽签法几随机数表法的特点和操作步骤。
难点:灵活应用简单随机抽样法从总体中抽取样本。
二、教学过程一、随机抽样1、新课引入教师:问如何将老师手里的糖果分给班级里的同学?设计意图:通过实例让学生感受到抽样的合理性很重要,激发学生学习的热情.学生:像某些舞台效果一样,直接抓一大把扔下来,谁接到就是谁的。
教师:演示并提出问题,每个同学得到糖的机会相等吗?学生:不相等。
教师:那就意味着这种方法不合理。
若老师手里只有6块糖如何分配让每个人心里都舒服呢?这就是本节课要研究的问题。
首先阅读教材49页前4段,并回答屏幕上的问题。
2、引例1:某校高中学生900人,校医务室想对全校学生身高情况作一次调查,为了不影响正常的教学活动,如何调查?准备抽出50人作为调查对象,你能帮医务室设计一个抽取方案吗?设计意图:通过实例重温统计学中的几个相关概念。
3、重温统计学中的几个概念:总体、个体、样本、样本容量4、抽样的必要性:教师提问1 :为了了解全校高中生的身高情况,需要将全校所有高中生逐一进行检查吗?教师提问2 :要测试灯泡的寿命,需要将所有的灯泡逐一检查吗?设计意图:通过两个问题说明当样本容量非常大,或具有破坏性时有必要用样本估计总体,从而引出统计学基本思想。
5、抽样原则:教师提问:在教材开始的问题中能否从高一年级选出50名学生的身高作为样本来估计全校高中学生的身高呢?设计意图:通过学生回答引出抽样原则和随机抽样的概念。
教师:与学生一起总结并板书。
随机抽样:抽样时每一个个体都可能被抽到,每一个个体被抽到的机会是均等的,满足这样条件的抽样是随机抽样。
人教版高中数学必修3第二章统计-《2.1.1简单随机抽样》教案
2.1.1 简单随机抽样整体设计教学分析教材是以探究一批小包装饼干的卫生是否达标为问题导向,逐步引入简单随机抽样概念.并通过实例介绍了两种简单随机抽样方法:抽签法和随机数法.值得注意的是为了使学生获得简单随机抽样的经验,教学中要注意增加学生实践的机会.例如,用抽签法决定班里参加某项活动的代表人选,用随机数法从全年级同学中抽取样本计算平均身高等等.三维目标1.能从现实生活或其他学科中推出具有一定价值的统计问题,提高学生分析问题的能力. 2.理解随机抽样的必要性和重要性,提高学生学习数学的兴趣.3.学会用抽签法和随机数法抽取样本,培养学生的应用能力.重点难点教学重点:理解随机抽样的必要性和重要性,用抽签法和随机数法抽取样本.教学难点:抽签法和随机数法的实施步骤.课时安排1课时教学过程导入新课抽样的方法很多,某个抽样方法都有各自的优越性与局限性,针对不同的问题应当选择适当的抽样方法.教师点出课题:简单随机抽样.推进新课新知探究提出问题(1)在1936年美国总统选举前,一份颇有名气的杂志(Literary Digest)的工作人员做了一次民意测验.调查兰顿(ndon)(当时任堪萨斯州州长)和罗斯福(F.D.Roosevelt)(当时的总统)中谁将当选下一届总统.为了了解公众意向,调查者通过电话簿和车辆登记簿上的名单给一大批人发了调查表(注意在1936年电话和汽车只有少数富人拥有).通过分析收回的调查表,显示兰顿非常受欢迎,于是此杂志预测兰顿将在选举中获胜.实际选举结果正好相反,最后罗斯福在选举中获胜,其数据如下:你认为预测结果出错的原因是什么?由此可以总结出什么教训?(2)假设你作为一名食品卫生工作人员,要对某食品店内的一批小包装饼干进行卫生达标检验,你准备怎样做?显然,你只能从中抽取一定数量的饼干作为检验的样本.那么,应当怎样获取样本呢?(3)请总结简单随机抽样的定义.讨论结果:(1)预测结果出错的原因是:在民意测验的过程中,即抽取样本时,抽取的样本不具有代表性.1936年拥有电话和汽车的美国人只是一小部分,那时大部分人还很穷.其调查的结果只是富人的意见,不能代表穷人的意见.由此可以看出,抽取样本时,要使抽取出的样本具有代表性,否则调查的结果与实际相差较大.(2)要对这批小包装饼干进行卫生达标检查,只能从中抽取一定数量的饼干作为检验的样本,用样本的卫生情况来估计这批饼干的卫生情况.如果对这批饼干全部检验,那么费时费力,等检查完了,这批饼干可能就超过保质期了,再就是会破坏这批饼干的质量,导致无法出售.获取样本的方法是:将这批小包装饼干,放入一个不透明的袋子中,搅拌均匀,然后不放回地摸取(这样可以保证每一袋饼干被抽到的可能性相等),这样就可以得到一个样本.通过检验样本来估计这批饼干的卫生情况.这种抽样方法称为简单随机抽样.(3)一般地,设一个总体含有N个个体,从中逐个不放回地抽取n个个体作为样本(n≤N),如果每次抽取时总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫做简单随机抽样.最常用的简单随机抽样方法有两种:抽签法和随机数法.提出问题(1)抽签法是大家最熟悉的,也许同学们在做某种游戏,或者选派一部分人参加某项活动时就用过抽签法.例如,高一(2)班有45名学生,现要从中抽出8名学生去参加一个座谈会,每名学生的机会均等.我们可以把45名学生的学号写在小纸片上,揉成小球,放到一个不透明袋子中,充分搅拌后,再从中逐个抽出8个号签,从而抽出8名参加座谈会的学生.请归纳抽签法的定义.总结抽签法的步骤.(2)你认为抽签法有什么优点和缺点?当总体中的个体数很多时,用抽签法方便吗?(3)随机数法是利用随机数表或随机骰子或计算机产生的随机数进行抽样.我们仅学习随机数表法即利用随机数表产生的随机数进行简单随机抽样的方法.怎样利用随机数表产生样本呢?下面通过例子来说明.假设我们要考察某公司生产的500克袋装牛奶的质量是否达标,现从800袋牛奶中抽取60袋进行检验.利用随机数表抽取样本时,可以按照下面的步骤进行.第一步,先将800袋牛奶编号,可以编为000,001, (799)第二步,在随机数表中任选一个数.例如选出第8行第7列的数7(为了便于说明,下面摘取了附表1的第6行至第10行.)16 22 77 94 39 49 54 43 54 82 17 37 93 23 78 87 35 20 96 43 84 26 34 91 6484 42 17 53 31 57 24 55 06 88 77 04 74 47 67 21 76 33 50 25 83 92 12 06 7663 01 63 78 59 16 95 55 67 19 98 10 50 71 75 12 86 73 58 07 44 39 52 38 7933 21 12 34 29 78 64 56 07 82 52 42 07 44 38 15 51 00 13 42 99 66 02 79 5457 60 86 32 44 09 47 27 96 54 49 17 46 09 62 90 52 84 77 27 08 02 73 43 28第三步,从选定的数7开始向右读(读数的方向也可以是向左、向上、向下等),得到一个三位数785,由于785<799,说明号码785在总体内,将它取出;继续向右读,得到916,由于916>799,将它去掉.按照这种方法继续向右读,又取出567,199,507,…,依次下去,直到样本的60个号码全部取出.这样我们就得到一个容量为60的样本.请归纳随机数表法的步骤.(4)当N=100时,分别以0,3,6为起点对总体编号,再利用随机数表抽取10个号码.你能说出从0开始对总体编号的好处吗?(5)请归纳随机数表法的优点和缺点.讨论结果:(1)一般地,抽签法就是把总体中的N个个体编号,把号码写在号签上,将号签放在一个容器中,搅拌均匀后,每次从中抽取一个号签,连续抽取n次,就得到一个容量为n的样本.抽签法的步骤是:1°将总体中个体从1—N编号;2°将所有编号1—N写在形状、大小相同的号签上;3°将号签放在一个不透明的容器中,搅拌均匀;4°从容器中每次抽取一个号签,并记录其编号,连续抽取n次;5°从总体中将与抽取到的签的编号相一致的个体取出.(2)抽签法的优点是简单易行,缺点是当总体的容量非常大时,费时、费力,如果标号的签搅拌得不均匀,会导致抽样不公平.因此说当总体中的个体数很多时,用抽签法不方便.这时用随机数法.(3)随机数表法的步骤:1°将总体中个体编号;2°在随机数表中任选一个数作为开始;3°规定从选定的数读取数字的方向;4°开始读取数字,若不在编号中,则跳过,若在编号中则取出,依次取下去,直到取满为止;5°根据选定的号码抽取样本.(4)从0开始编号时,号码是00,01,02,…,99;从3开始编号时,号码是003,004,…,102;从6开始编号时,号码是006,007,…,105.所以以3,6为起点对总体编号时,所编的号码是三位,而从0开始编号时,所编的号码是两位,在随机数表中读数时,读取两位比读取三位要省时,所以从0开始对总体编号较好.(5)综上所述可知,简单随机抽样有操作简便易行的优点,在总体个数不多的情况下是行之有效的.但是,如果总体中的个体数很多时,对个体编号的工作量太大,即使用随机数表法操作也并不方便快捷.另外,要想“搅拌均匀”也非常困难,这就容易导致样本的代表性差.应用示例例1 某车间工人加工一种轴共100件,为了了解这种轴的直径,要从中抽取10件轴在同一条件下测量,如何采用简单随机抽样的方法抽取样本?分析:简单随机抽样有两种方法:抽签法和随机数表法,所以有两种思路.解法一(抽签法):①将100件轴编号为1,2, (100)②做好大小、形状相同的号签,分别写上这100个号码;③将这些号签放在一个不透明的容器内,搅拌均匀;④逐个抽取10个号签;⑤然后测量这10个号签对应的轴的直径的样本.解法二(随机数表法):①将100件轴编号为00,01,…99;②在随机数表中选定一个起始位置,如取第22行第1个数开始(见教材附录1:随机数表);③规定读数的方向,如向右读;④依次选取10个为68,34,30,13,70,55,74,77,40,44,则这10个号签相应的个体即为所要抽取的样本.点评:本题主要考查简单随机抽样的步骤.抽签法的关键是为了保证每个个体被抽到的可能性相等而必须搅拌均匀,当总体中的个体无差异,并且总体容量较小时,用抽签法;用随机数表法读数时,所编的号码是几位,读数时相应地取连续的几个数字,当总体中的个体无差异,并且总体容量较多时,用抽签法.变式训练1.下列抽样的方式属于简单随机抽样的有____________.(1)从无限多个个体中抽取50个个体作为样本.(2)从1 000个个体中一次性抽取50个个体作为样本.(3)将1 000个个体编号,把号签放在一个足够大的不透明的容器内搅拌均匀,从中逐个抽取50个个体作为样本.(4)箱子里共有100个零件,从中选出10个零件进行质量检验,在抽样操作中,从中任意取出一个零件进行质量检验后,再把它放回箱子.(5)福利彩票用摇奖机摇奖.解析:(1)中,很明显简单随机抽样是从有限多个个体中抽取,所以(1)不属于;(2)中,简单随机抽样是逐个抽取,不能是一次性抽取,所以(2)不属于;很明显(3)属于简单随机抽样;(4)中,抽样是放回抽样,但是简单随机抽样是不放回抽样,所以(4)不属于;很明显(5)属于简单随机抽样.答案:(3)(5)2.要从某厂生产的30台机器中随机抽取3台进行测试,写出用抽签法抽样样本的过程.分析:由于总体容量和样本容量都较小,所以用抽签法.解:抽签法,步骤:第一步,将30台机器编号,号码是01,02, (30)第二步,将号码分别写在一张纸条上,揉成团,制成号签.第三步,将得到的号签放入不透明的袋子中,并充分搅匀.第四步,从袋子中依次抽取3个号签,并记录上面的编号.第五步,所得号码对应的3台机器就是要抽取的样本.例2 人们打桥牌时,将洗好的扑克牌随机确定一张为起始牌,这时按次序搬牌时,对任何一家来说,都是从52张牌中抽取13张牌,问这种抽样方法是否是简单随机抽样?解:简单随机抽样的实质是逐个地从总体中随机抽取样本,而这里只是随机确定了起始张,其他各张牌虽然是逐张起牌,但是各张在谁手里已被确定,所以不是简单随机抽样.点评:判断简单随机抽样时,要紧扣简单随机抽样的特征:逐个、不放回抽取且保证每个个体被抽到的可能性相等.变式训练现在有一种“够级”游戏,其用具为四副扑克,包括大小鬼(又称为花)在内共216张牌,参与人数为6人并坐成一圈.“够级”开始时,从这6人中随机指定一人从已经洗好的扑克牌中随机抽取一张牌(这叫开牌),然后按逆时针方向,根据这张牌上的数字来确定谁先抓牌,这6人依次从216张牌中抓取36张牌,问这种抓牌方法是否是简单随机抽样?解:在这里只有抽取的第一张扑克牌是随机抽取的,其他215张牌已经确定,即这215张扑克牌被抽取的可能性与第一张扑克牌可能性不相同,所以不是简单随机抽样.知能训练1.为了了解全校240名学生的身高情况,从中抽取40名学生进行测量,下列说法正确的是()A.总体是240B.个体C.样本是40名学生D.样本容量是40答案:D2.为了了解所加工一批零件的长度,抽测了其中200个零件的长度,在这个问题中,200个零件的长度是()A.总体B.个体C.总体的一个样本D.样本容量答案:C3.一个总体中共有200个个体,用简单随机抽样的方法从中抽取一个容量为20的样本,则某一特定个体被抽到的可能性是____________.1答案:104.为了检验某种产品的质量,决定从40件产品中抽取10件进行检查,如何用简单随机抽样抽取样本?解:方法一(抽签法):①将这40件产品编号为1,2, (40)②做好大小、形状相同的号签,分别写上这40个号码;③将这些号签放在一个不透明的容器内,搅拌均匀;④连续抽取10个号签;⑤然后对这10个号签对应的产品检验.方法二(随机数表法):①将40件产品编号,可以编为00,01,02,…,38,39;②在随机数表中任选一个数作为开始,例如从第8行第9列的数5开始,;③从选定的数5开始向右读下去,得到一个两位数字号码59,由于59>39,将它去掉;继续向右读,得到16,将它取出;继续下去,又得到19,10,12,07,39,38,33,21,随后的两位数字号码是12,由于它在前面已经取出,将它去掉,再继续下去,得到34.至此,10个样本号码已经取满,于是,所要抽取的样本号码是16,19,10,12,07,39,38,33,21,34.拓展提升现有一批编号为10,11,…,99,100,…,600的元件,打算从中抽取一个容量为6的样本进行质量检验.如何用随机数法设计抽样方案?分析:重新编号,使每个号码的位数相同.解:方法一:第一步,将元件的编号调整为010,011,012,...,099,100, (600)第二步,在随机数表中任选一数作为开始,任选一方向作为读数方向.比如,选第6行第7个数“9”,向右读.第三步,从数“9”开始,向右读,每次读取三位,凡不在010—600中的数跳过去不读,前面已经读过的也跳过去不读,依次可得到544,354,378,520,384,263.第四步,以上这6个号码所对应的6个元件就是所要抽取的对象.方法二:第一步,将每个元件的编号加100,重新编号为110,111,112,...,199,200, (700)第二步,在随机数表中任选一数作为开始,任选一方向作为读数方向.比如,选第8行第1个数“6”,向右读.第三步,从数“6”开始,向右读,每次读取三位,凡不在110—700中的数跳过去不读,前面已经读过的也跳过去不读,依次可得到630,163,567,199,507,175.第四步,这6个号码分别对应原来的530,63,467,99,407,75.这些号码对应的6个元件就是要抽取的对象.课堂小结1.简单随机抽样是一种最简单、最基本的抽样方法,简单随机抽样有两种选取个体的方法:放回和不放回,我们在抽样调查中用的是不放回抽样,常用的简单随机抽样方法有抽签法和随机数法.2.抽签法的优点是简单易行,缺点是当总体的容量非常大时,费时、费力,又不方便,如果标号的签搅拌得不均匀,会导致抽样不公平,随机数表法的优点与抽签法相同,缺点是当总体容量较大时,仍然不是很方便,但是比抽签法公平,因此这两种方法只适合总体容量较小的抽样类型.3.简单随机抽样每个个体入样的可能性都相等,均为Nn ,但是这里一定要将每个个体入样的可能性、第n 次每个个体入样的可能性、特定的个体在第n 次被抽到的可能性这三种情况区分开来,避免在解题中出现错误.作业课本本节练习2、3.。
高中数学必修三《简单随机抽样》同步教案
高中数学必修三《简单随机抽样》同步教案高中数学必修三《简单随机抽样》同步教案高中数学必修三《简单随机抽样》教学设计(一)教学目标:知识与技能:理解统计学需要解决的问题、抽样的必要性,简单随机抽样的概念,掌握简单随机抽样的两种方法;过程与方法:通过对生活中的实例分析、解决,体验简单随机抽样的科学性及其方法的可靠性,培养分析问题,解决问题的能力;情感、态度、价值观:通过身边事例研究,体会抽样调查在生活中的应用,培养抽样思考问题意识,养成良好的个性品质。
(二)教学重点、难点重点:掌握简单随机抽样常见的两种方法(抽签法、随机数表法)难点:理解简单随机抽样的科学性,以及由此推断结论的可靠性(三)教学基本思路一、设置情境引入:师:从这节课开始我们来学习新的一章——统计,当我们把这两个字键入“百度”或“google”的搜索栏内,呈现给我们的第一个词条就是“中华人民共和国国家统计局”(如右图)看来国家专门设置了一个统计部门,在主页上我们看到:3月份全国居民消费价格同比上涨8.3%城市上涨8.0%(如右下图),这当然是统计出的结论,关于统计你还知道那些例子吗?生:学生回答。
师:统计的例子有很多,如:产品的合格率、农作物的产量、产品的销售量、某地的气温、就业状况、电视台的收视率、我国是世界上的第13个贫水国,人均淡水占有量排世界第109位、我国土地沙漠化问题非常严重,全国沙漠化土地面积已超过174000平方公里,并以每年3400平方公里的速度扩张。
这些都是统计出来的。
可见统计是大量存在的,是与我们的日常生活息息相关,而且它反映了某种规律,而这种规律对我们来说是非常重要的,可以通过它来更好的指导我们去生活。
设计意图:让学生充分理解到统计的重要性,与现实生活联系在一起,数学来源于生活,激发学生的求知欲望。
师:统计前提得有数据,你知道这些数据是怎么来的吗?通过调查获得的。
怎么调查?是对考察对象进行全面调查还是抽样调查?带着这个问题咱们看下面的笑话:妈妈:“儿子,帮妈妈买盒火柴去。
高中数学人教A版必修三2.1.1【教学设计】《简单随机抽样》
《简单随机抽样》(1)以探究具体问题为导向,引入简单随机抽样的概念,引导学生从现实生活或其他学科中提出具有一定价值的统计问题;在解决统计问题的过程中,学会用简单随机抽样的方法从总体中抽取样本。
(2)正确理解简单随机抽样的概念,掌握抽签法及随机数法的步骤,并能灵活应用相关知识从总体中抽取样本。
(3)通过对现实生活中实际问题进行简单随机抽样,感知应用数学知识解决实际问题的方法。
1、知识与技能:(1)正确理解随机抽样的概念,掌握抽签法、随机数表法的一般步骤。
2、过程与方法:(1)能够从现实生活或其他学科中提出具有一定价值的统计问题;(2)在解决统计问题的过程中,学会用简单随机抽样的方法从总体中抽取样本。
3、情感态度与价值观:通过对现实生活和其他学科中统计问题的提出,体会数学知识与现实世界及各学科知识之间的联系,认识数学的重要性。
【教学重点】简单随机抽样的概念,抽签法及随机数法的操作步骤。
【教学难点】对样本随机性的理解。
抽签纸,图表等。
(一)知识回顾统计学:研究客观事物的数量特征和数量关系,它是关于数据的搜集、整理、归纳和分析方法的科学。
统计的基本思想:用样本估计总体,即通常不直接去研究总体,而是通过从总体中抽取一个样本,根据样本的情况去估计总体的相应情况。
数理统计所要解决的问题是如何根据样本来推断总体?总体、个体、样本、样本容量的概念:总体:所要考察对象的全体。
个体:总体中的每一个考察对象。
样本:从总体中抽取的一部分个体叫做这个总体的一个样本。
样本容量:样本中个体的数目。
(二)新课导入在1936年美国总统选举前,一份颇有名气的杂志的工作人员做了一次民意测验,调查兰顿和罗斯福中谁将当选下一届总统。
为了了解公众意向,调查者通过电话簿和车辆登记簿上的名单给一大批人发了调查表(在1936年电话和汽车只有少数富人拥有),通过分析收回的调查表,显示兰顿非常受欢迎。
于是此杂志预测兰顿将在选举中获胜。
实际选举结果正好相反,最后罗斯福在选举中获胜。
人教版数学必修三2.1.1《简单随机抽样》教学设计
《2.1.1简单随机抽样》教学设计
一.教学目标:
1.知识与技能:
(1)能从现实生活或其他学科中提出具有一定价值的统计问题;结合具体实际问题情境,理解随机抽样的必要性和重要性,参与解决统计问题的过程中,理解简单随机抽样;会用简单随机抽样从总体中抽取样本;
(2)通过学习本小节知识,提高学生对统计的认识,提高学生应用材料知识解决实际问题的能力. 2.过程与方法
(1)通过案例进行,引导学生根据实际问题的需求合理选择不同方法,合理选取样本;通过探索、研究、归纳、总结形成本章较为科学的知识网,并掌握知识之间的联系;
(2)让学生可以运用所求知识方法去解决问题;体会统计思维与确定性思维的差异;注意统计结果的随机性,是可能犯错的,进行辩证唯物主义思想教育,数学应用意识教育和数学审美教育、提高学习数学的积极性.
3.情感与价值观
(1)现代社会,让学生们了解数学应用的广泛性;增强学生的社会实践能力;培养学生解决问题的能力,结合教学内容培养学生学习数学的兴趣以及“用数学”的意识,激励学生勇于创新;
(2)强化学生的注意力与新旧知识的联系,树立学生求真的勇气和自信心.
二.教学重点、难点
重点:统计学知识的渗透与应用,简单随机抽样的定义、抽样方法;
难点:简单随机抽样的定义和特点.
三.教学方法
从学生的认知规律出发,通过大量的视频数据资料,进行启发、诱导、探索,运用讲授法、讨论法、多媒体等充分调动学生的积极性,发挥学生的主导作用,在讲授过程中要善于解疑、设疑、激疑.。
人教版数学必修三211简单随机抽样教案
编号:教案数学必修3. 2.1.12.1.1简单随机抽样(教案)每一个学生的视力是个体;教学目标:抽取的15000名学生的视力是样本;二、教学目标:【知识与技能】 15000 是样本容量。
(1)理解什么是简单随机抽样;会用简单随机抽样从总体中抽取样本。
)通过学习本小节知识,提高学生对统计的认识,提高学生应用教材知识解决实际问题的能2(力。
【过程与方法】通过几个实例让学生对普查与抽查进行区分与优缺点总结。
(1)通过探索、研究、归纳、总结形成本章较为科学的知识网,并掌握知识之间的联系。
提高学习数学的积极性。
数学应用意识教育和数学审美教育、(2)进行辨证唯物主义思想教育,【情感、态度与价值观】 1)结合教学内容培养学生学习数学的兴趣以及“用数学”的意识,激励学生勇于创新。
()强化学生的注意力及新旧知识的联系,树立学生求真的勇气和自信心。
(2 3)通过安排学生游戏试验、分组讨论、,提升学生合作交流、互助提高的团队意识。
(课型:新课。
设置问题情境:如何科学地抽取样本?使得样本能比较准确地反映总体。
教具与学具:多媒体、学生课前做好的签。
引出随机抽样定义:使得每个个体被抽取的机会均等合理、公平,满足这样条件的抽样称为随教学设计:机抽样。
重点“随机”的含义。
一、新课导入课堂从辽沈战役中林彪通过收集数据生擒廖耀湘说起,历史是如此,那阅读与思考:一个著名的案例(数时代变革为DT信息科技么我们现在生活在一个数字化时代(马云说当今的时代已经从IT()(1)你认为预测结果出错的原因是什么?据科技)时代,我们时刻都在和数据打交道,引出统计学相关概念。
(2)学生从中得出什么结论?通过预习案展示验收学生预习效果1、统计学是干什么的?统计是研究如何合理收集、整理、分析数据的学科,它可以为人们制定决策提供依据。
、统计的两个核心内容是什么?2 ()、用样本估计总体2(1()、收集数据普查、抽样调查)、统计的基本思想方法是什么?3用样本估计总体。
人教A版数学必修三教案:§2.1.1简单随机抽样 (2)
第二章统计本章教材分析现代社会是信息化的社会,数字信息随处可见,因此专门研究如何收集、整理、分析数据的科学——统计学就备受重视.统计学是研究如何收集、整理、分析数据的科学,它可以为人们制定决策提供依据.在客观世界中,需要认识的现象无穷无尽.要认识某现象的第一步就是通过观察或试验取得观测资料,然后通过分析这些资料来认识此现象.如何取得有代表性的观测资料并能够正确地加以分析,是正确地认识未知现象的基础,也是统计所研究的基本问题.本章主要介绍最基本的获取样本数据的方法,以及几种从样本数据中提取信息的统计方法,其中包括用样本估计总体分布、数字特征和线性回归等内容.从义务教育阶段来看,统计知识的教学从小学到初中分为三个阶段,在每个阶段都要学习收集、整理、描述和分析数据等处理数据的基本方法,教学目标随着学段的升高逐渐提高.在义务教育阶段的统计与概率知识的基础上,《课程标准》要求通过实际问题及情境,进一步介绍随机抽样、样本估计总体、线性回归的基本方法,了解用样本估计总体及其特征的思想,体会统计思维与确定性思维的差异;通过实习作业,较为系统地经历数据收集与处理的全过程,进一步体会统计思维与确定性思维的差异.本章教学时间约需7课时,具体分配如下(仅供参考):2.1.1 简单随机抽样约1课时2.1.2 系统抽样约1课时2.1.3 分层抽样约1课时2.2.1 用样本的频率分布估计总体分布约1课时2.2.2 用样本的数字特征估计总体的数字特征约1课时2.3 变量间的相关关系约1课时本章复习约1课时§2.1 随机抽样§2.1.1 简单随机抽样一、教材分析教材是以探究一批小包装饼干的卫生是否达标为问题导向,逐步引入简单随机抽样概念.并通过实例介绍了两种简单随机抽样方法:抽签法和随机数法.值得注意的是为了使学生获得简单随机抽样的经验,教学中要注意增加学生实践的机会.例如,用抽签法决定班里参加某项活动的代表人选,用随机数法从全年级同学中抽取样本计算平均身高等等.二、教学目标1、知识与技能:正确理解随机抽样的概念,掌握抽签法、随机数表法的一般步骤;2、过程与方法:(1)能够从现实生活或其他学科中提出具有一定价值的统计问题;(2)在解决统计问题的过程中,学会用简单随机抽样的方法从总体中抽取样本。
人教版高中数学必修三 第二章 统计“ 简单随机抽样”教学设计
“简单随机抽样”教学设计一、教学内容与内容解析1.内容:统计,简单随机抽样,抽签法,随机数表法。
2.内容解析:本节课是人教版《高中数学》第三册(选修Ⅱ)的第一章“概率与统计”中的“抽样方法”的第一课时:简单随机抽样.其主要内容是介绍简单随机抽样的概念以及如何实施简单随机抽样.数理统计学包括两类问题,一类是如何从总体中抽取样本,另一类是如何根据对样本的整理、计算和分析,对总体的情况作出一种推断.可见,抽样方法是数理统计学中的重要内容.简单随机抽样作为一种简单的抽样方法,又在其中处于一种非常重要的地位.因此它对于学习后面的其它较复杂的抽样方法奠定了基础,同时它强化对概率性质的理解,加深了对概率公式的运用.因此它起到了承上启下的作用,在教材中占有重要地位.本节课是在学生初中已学习了统计初步知识的基础上,系统学习统计的基本方法,体验统计思想的第一课时.本节课通过结合具体的实际问题情景,使学生认识到随机抽样的必要性和重要性,进而分析得到简单随机抽样的定义、常用实施方法.这些活动的实施就是想引导学生从现实生活或其它学科中提出具有一定价值的统计问题,初步形成运用统计的思想和方法(用数据说话)来思考问题和解决问题的习惯.。
本课题为“简单随机抽样”,主要学习简单随机抽样的理论与方法.从理论上讲,“简单”是指抽取的样本为“简单随机样本”,获取简单随机样本的抽样方法称为简单随机抽样.简单随机抽样要满足以下两个条件:(1)代表性,即要求样本的每个分量X i与所考察的总体X具有相同的概率分布F(X);(2)独立性,X1,X2,…,X n为相互独立的随机变量,也就是说,每个观察结果不影响其它观察结果,也不受其它观察结果的影响.当然在有限总体中,样本的各个观察结果可以是不独立的.在本节课中,要将这些关于随机抽样的理论,用浅显的例子渗透在学生的学习过程中.因此,教学的内容应侧重于如何使抽取的数据能代表总体,即抽取的样本要能反映总体的本质特征.要抓住两个特征展开,要求抽取的样本有代表性,样本的容量要适当,太大没有必要,太小不能反映总体的特征.其次,要体现独立性,在简单随机抽取时,总体中每个个体被抽到的概率是相等的,说明这种抽样的方法是独立的.抽取的样本的分布与总体分布相似度越高,样本的代表就越大.这就为后续学习三种抽样方法的形成与评价提供基础.从知识的应用价值来看,重视数学知识的应用和关注人文内涵是新教材的显著特点.丰富的生活实例为学生用数学的眼光看待生活,体验生活即数学的理念,体验用算法思想解决模式化问题的作用,有助于学生对统计思想和方法的掌握,增加学生的感性认识.。
人教版B版高一数学必修③第二章《简单随机抽样》教学设计
<四>本节小结
思考2:一个袋中装有编号为1,2,3 的同样质地的3个小球,从中逐个不放回地抽取出2个小球,在整个抽取过程中,
(1)1号小球在第一次被抽到的可能性是多少?
(2)1号个小球在第二次被抽到的可能性是多少?
思考3:一个布袋中装有编号为1,2,3,4的同样质地的小球,从中逐个不放回地抽取出2个小球,在整个抽取过程中,问:
五、教学过程
<一>复习巩固
复习巩固(一)普查和抽样调查
【练习1】在下列问题中应采用哪种方式收集数据?
(1)测试某厂生产的一批日光灯管的使用寿命.
(2)想了解葫芦岛人民对热播电视剧《人民的名义》的喜爱程度.
复习巩固(二)总体与样本
总体:考查对象的某一数值指标的全体
个体:构成总体的每一个元素
样本:从总体中抽出若干个个体所组成的集合
【练习3】下面的抽样方法是简单随机抽样吗,为什么?
(1)从无限多个个体中抽取100个个体作样本.
(2)从20个零件中一次性抽出3个进行质量检验.
(3)有100件产品,其中有5件次品,从中有放回地连抽两次检验.
(4)某班45名同学,指定个子最高的5名同学参加学校组织的某项活动.
2.简单随机抽样的实施方法:抽签法与随机数表法
三、学生学情分析
教材以“随机抽样”开篇,“简单随机抽样”是“随机抽样”的基础,“随机抽样”又是“统计学”的基础,因此,在“统计学”中,“简单随机抽样”是基础的基础.上课学生为葫芦岛市第二高中高一高二学生,该校为省级示范高中,该校学生已掌握相关概念,如“抽样” “总体”、“个体”、“样本”、“样本容量”等,具有一定基础.新教材把“统计”这部分内容编入必修部分,并且放在了概率的前面,突出了统计在日常生活中的应用,体现它在中学数学中的地位,但同时也给学生理解“等可能性”增加了难度 .
高中数学 第二章2.1.1 简单随机抽样教案 新人教版必修3
2.1.1 简单随机抽样一、三维目标:1、知识与技能:正确理解随机抽样的概念,掌握抽签法、随机数表法的一般步骤;2、过程与方法:(1)能够从现实生活或其他学科中提出具有一定价值的统计问题;(2)在解决统计问题的过程中,学会用简单随机抽样的方法从总体中抽取样本。
3、情感态度与价值观:通过对现实生活和其他学科中统计问题的提出,体会数学知识与现实世界及各学科知识之间的联系,认识数学的重要性。
二、重点与难点:正确理解简单随机抽样的概念,掌握抽签法及随机数法的步骤,并能灵活应用相关知识从总体中抽取样本。
三、教学设想:假设你作为一名食品卫生工作人员,要对某食品店内的一批小包装饼干进行卫生达标检验,你准备怎样做?显然,你只能从中抽取一定数量的饼干作为检验的样本。
(为什么?)那么,应当怎样获取样本呢?【探究新知】一、简单随机抽样的概念一般地,设一个总体含有N个个体,从中逐个不放回地抽取n 个个体作为样本(n≤N),如果每次抽取时总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫做简单随机抽样,这样抽取的样本,叫做简单随机样本。
【说明】简单随机抽样必须具备下列特点:(1)简单随机抽样要求被抽取的样本的总体个数N是有限的。
(2)简单随机样本数n小于等于样本总体的个数N。
(3)简单随机样本是从总体中逐个抽取的。
(4)简单随机抽样是一种不放回的抽样。
(5)简单随机抽样的每个个体入样的可能性均为n/N。
思考?下列抽样的方式是否属于简单随机抽样?为什么?(1)从无限多个个体中抽取50个个体作为样本。
(2)箱子里共有100个零件,从中选出10个零件进行质量检验,在抽样操作中,从中任意取出一个零件进行质量检验后,再把它放回箱子。
二、抽签法和随机数法1、抽签法的定义。
一般地,抽签法就是把总体中的N个个体编号,把号码写在号签上,将号签放在一个容器中,搅拌均匀后,每次从中抽取一个号签,连续抽取n次,就得到一个容量为n的样本。
【说明】抽签法的一般步骤:(1)将总体的个体编号。
《简单随机抽样》教学设计
《简单随机抽样》的教学设计课时:1课时,教材版本:人教B版《高中数学》必修三教材内容分析简单随机抽样是人教B版《高中数学》必修三的第二章“统计”的第一节“随机抽样”的第一课时,其主要内容是介绍简单随机抽样的概念以及如何实施简单随机抽样.从知识类型角度分析,“简单随机抽样”属于程序性知识,是一个结构清晰的动手操作程序.对它的学习要求,学生尽可能回忆有关的程序性知识.通过本节内容的学习能促进学生对“用样本估计总体”的统计思想的认识,本节知识既是初中统计知识的延伸,也是学习系统抽样、分层抽样两种抽样方法的知识与思维基础,更是落实数据分析核心素养的重要载体,因此确定本节的教学重点是:对统计思想的认识.抽样方法的提炼与归纳.“课标”的要求是能从现实生活或其他学科中提出具有一定价值的统计问题;结合具体的实际问题情境,理解随机抽样的必要性和重要性;在参与解决统计问题的过程中,学会用简单随机抽样方法从总体中抽取样本.体现了本节内容的学习要与现实生活.实际问题相联系,在问题解决的过程中获取知识.“课改”则要求教师既要以学生为主体,更要面向全体学生,以学生已有的认知经验为基础,让学生主动地参与新知的探究活动,要求通过学生的自主与合作探究,切实经历知识的发生.发展过程,体会其所蕴含的思维方法,初步形成运用统计的思想和方法来思考问题和解决问题的习惯.从教材编写角度看,本节课是在学生初中已学习了统计初步知识的基础上,系统学习统计的基本方法,体验统计思想的第一课时,本节课的内容确定为随机抽样单元引入.2.1.1简单随机抽样的教学.通过随机抽样单元引入的教学,让学生认识随机抽样的必要性和重要性,明确随机抽样的意义;通过简单随机抽样的教学,让学生理解简单随机抽样的含义与特点,归纳并掌握抽签法.随机数表法的抽样方法,能根据具体问题的特点合理选择具体的抽样方法,以提升学生的数学能力.教学目标:知识与技能:能独立(或合作)归纳抽样方法,能说明简单随机抽样的意义与特点,知道学习随机抽样的必要性和重要性,能合理选择抽样方法对简单问题进行抽样.过程与方法:通过对实际问题情境的分析体会随机抽样的必要性和重要性,通过抽签法.随机数表法的学习,培养学生的归纳概括能力,通过抽样方法的合理选择培养学生的数学优化意识.情感.态度与价值观:进一步感受统计知识在生产.生活中的广泛应用,体会统计学用样本估计总体的思维策略,强化合作意识.教学重点与难点:教学的重点:理解随机抽样的必要性和重要性,用抽签法和随机数法抽取样本.教学难点:抽签法和随机数法的实施步骤.学情分析:由于在初中已学过样本.容量.样本容量等概念,因此学生对统计的学习已具有一定的知识基础和思维基础.但是初中没有系统研究具体的抽样方法,且本节是章的起始课,特别是单元的引入内容文字量较大,要给予学生足够的信心去阅读.分析教材,随机抽样的“每一个个体被抽到的机会是均等的”等可能性是很难理解的,应引导学生充分体会.抽签法.随机数表法在教材中并没有较为明确的陈述,是通过对具体问题的解决方式呈现的,即具体的方法蕴含在问题解决的过程中,这需要教师引导学生通过小组合作的方式,逐步的归纳.概括,特别是两种方法的常用选择策略,对学生的能力要求较高,需要教师给予必要的讲解.综上分析确定本节的难点是:对“随机抽样的必要性.重要性及等可能性”的理解,抽签法.随机数表法的归纳.概括与选择.突破策略为:教师引导学生分析多个具体实例;给足时间让学生在独立思考的基础上再充分合作交流;让学生代表展示其思维过程,强化全体学生对思维过程的感悟;教师在学生展示思维过程的基础上再进行提升与点拨.教学策略分析教学中遵循“学生为主体,教师为主导,问题解决为主线”的指导思想,给学生创设自主探究.合作交流的时间与空间,引导学生经历数学知识再发现的过程,让学生在参与中获取知识,发展思维,感悟数学.在知识内容的处理方面,增加了三个实际问题情境,通过分析问题的解决策略,让学生重点体会用样本估计总体及随机抽样的必要性和重要性,促进学生的理性思维;对随机抽样的“每一个个体被抽到的机会是均等的”等可能性这一难点,教师给予必要的讲解;通过补充例题.习题,让学生充分理解抽签法.随机数表法的具体操作程序及根据问题特点合理选择具体方法.课堂教学过程中,根据学生的思维水平,首先引导同学们回顾初中所学相关知识,再自主阅读教材内容,引导学生发现学习;其次是在一定的自主探究基础上,让学生们进行充分的合作学习,归纳概括新知识,体验成功的快乐;最后是教师对学生的思维活动进行概括.提升,并对重点与难点进行适当的精讲.点拨,以提高课堂教学效率.教学模式为:情境感悟,引入新课——温故知新,获得新知——例题讲解,内化新知——成果展示,应用新知——归纳总结,完善认知.针对学生中存在的客观差异,我以发挥各数学课堂学习小组中思维水平较好的学生作用为主,尽可能给他们在课堂充分展示的机会;教师在学生自主及合作学习过程中,有针对性的进行指导,努力使全体学生在本节的学习过程中,知识与能力都能得到不同程度的提升.教学过程教学反思与评价:简单随机抽样是生活中最为常用的一种方法,最重要的特点是等可能性,应从每次抽取的个体及整个抽样过程来理解,只有通过实践才可能深入理解.大数据是当今社会出现频率最高的词汇,善于收集数据、整理数据,分析数据是当下社会一位社会人都应具备的素质,因此学好简单抽样是我们获得准确的先决条件。
人教B版数学必修3第二章第一节简单随机抽样教学设计
人教B版数学必修3第二章第一节《简单随机抽样》教学设计《简单随机抽样》,内容选自于新课程人教B版必修3第二章第一节,课时安排为一个课时。
下面我将从教材内容分析、教学目标设置、教法与学法分析和教学过程等几大方面来阐述我对这节课的分析和设计:一、教材内容分析1.教材所处的地位和作用“简单随机抽样”是“随机抽样”的基础,“随机抽样”又是“统计学”的基础,因此,在“统计学”中,“简单随机抽样”是基础的基础。
在初中学生已学过相关概念,如“抽样”“总体”、“个体”、“样本”、“样本容量”等,具有一定基础,新教材把“统计”这部分内容编入必修部分,突出了统计在日常生活中的应用,体现它在中学数学中的地位。
2. 本节主要内容是简单随机抽样及其特征;简单随机抽样的常用抽样方法—抽签法、随机数表法;两种抽样方法的步骤;两种抽样方法的相同点及区别;两种抽样方法的应用。
二、.学情分析本节课基于学生日常生活实际,加之初中学过的相关概念,学生对概念方法的理解难度不大,取样中的等概率源于生活中的公平性,学生也能很好理解,例题与实际生活联系紧密,学生本节课学习会很活跃,有利于发现问题,加之计算较少更有利解决问题。
难点是随机数表科学性的理解。
三、.教学目标设置(1)知识与技能目标:正确理解随机抽样的概念,掌握抽签法、随机数表法的一般步骤(2)过程与方法目标:(1)能够发现现实生活或其他学科中简单随机抽样统计问题(2)在解决统计问题的过程中,学会用简单随机抽样的方法从总体中抽取样本(3)情感,态度和价值观目标通过对现实生活和其他学科中统计问题的提出,体会数学知识与现实世界及各学科知识之间的联系,认识数学的重要性.四、教学的重点和难点重点:正确理解简单随机抽样的概念,掌握抽签法及随机数法的步骤难点:抽签法及随机数法两种抽样方法的实际应用五.教法与学法分析由于本节课内容实例多,信息容量大,文字多,我采用多媒体辅助教学,紧密联系生活实际,因此,在教法上我采用讨论、发现、归纳法教学;在学法上,运用生活实例,充分让学生自己分析、判断、自主学习开展合作与交流,提高学生分析归纳能力。
人教版数学必修三2.1.1《简单随机抽样》教学设计
§2.1.1简单随机抽样
一、教学目标:
【知识与技能】
正确理解随机抽样的概念,掌握抽签法、随机数表法的一般步骤.
【过程与方法】
①能够从现实生活中提出具有一定价值的统计问题;
②在解决统计问题的过程中,学会用简单随机抽样的方法从总体中抽取样本. 【情感、态度与价值观】
通过对现实生活中统计问题的提出,体会数学知识与现实生活的紧密联系,认识数学的重要性.
二、教学重点:掌握简单随机抽样常见的两种方法(抽签法、随机数表法).
三、教学难点:简单随机抽样的定义和特点.
四、教具准备:多媒体辅助教学、游戏道具
五、教学流程:
七、板书设计
简单随机抽样
一、随机抽样定义
二、简单随机抽样定义
三、基本方法
(一)抽签法
(1)编号制签
(2)搅拌均匀
(3)逐个不放回取n次
(二)随机数表法
(1)编号
(2)在随机数表上确定起始位置
及读数方向
(3)取数确定样本。
最新人教A版必修三高中数学第二章2.1.1简单随机抽样导学案
2.11 简单随机抽样1.理解并掌握简单随机抽样的定义、特点和适用范围.2.掌握两种简单随机抽样的步骤,并能用简单随机抽样方法抽取样本.1.简单随机抽样(1)定义:一般地,设一个总体含有N个个体,从中地抽取n个个体作为样本(n≤N),如果每次抽取时总体内的各个个体被抽到的机会都,就把这种抽样方法叫做简单随机抽样.(2)说明:我们所讨论的简单随机抽样都是的抽样,即抽取到某个个体后,该个体不再总体中.常用到的简单随机抽样方法有两种:(抓阄法)和.简单随机抽样具有下列特点:①简单随机抽样要求总体中的个体数N是有限的.②简单随机抽样抽取样本的容量n小于或等于总体中的个体数N③简单随机抽样中的每个个体被抽到的可能性均为n N④当总体中的个体无差异且个体数目较少时,采用简单随机抽样抽取样本.⑤逐个抽取即每次仅抽取一个个体.⑥简单随机抽样是不放回的抽样,即抽取的个体不再放回总体.【做一做1】在简单随机抽样中,某一个个体被抽中的可能性( )A.与第几次抽样有关,第一次抽中的可能性要大些B.与第几次抽样无关,每次抽中的可能性都相等.与第几次抽样有关,最后一次抽中的可能性要大些D.每个个体被抽中的可能性无法确定2.抽签法一般地,抽签法就是把总体中的N个个体,把号码写在上,将号签放在一个容器中,搅拌后,每次从中抽取号签,连续抽取n次,就得到一个容量为的样本.抽签法抽取样本的步骤:①将总体中的个体编号为1~N②将所有编号1~N写在形状、大小相同的号签上.③将号签放在一个不透明的容器中,搅拌均匀.[]④从容器中每次抽取一个号签,并记录其编号,连续抽取n次.⑤从总体中将与抽取到的签的编号相一致的个体取出.操作要点是:编号、写签、搅匀、抽取样本.【做一做2】抽签法中确保样本代表性的关键是( )A.编号B.制签、搅拌均匀.逐一抽取D.抽取不放回3.随机数法随机数法即利用随机数表、随机数骰子或计算机产生的随机数进行抽样.这里仅介绍随机数表法.用随机数表法抽取样本的步骤:①将总体中的个体.②在随机数表中数作为开始.③规定一个方向作为从选定的数读取数字的.④开始读取数字,若不在编号中,则,若在编号中则,依次取下去,直到取满为止.(相同的号只计一次)⑤根据选定的号码抽取样本.操作要点是:编号、选起始数、读数、获取样本.虽然产生随机数的方法很多,但在高中数中,仅习用随机数表产生随机数抽样,即随机数表法.【做一做3】用随机数表法进行抽样,有以下几个步骤:①将总体中的个体编号;②获取样本号码;③选定随机数表开始的数字,这些步骤的先后顺序应该是.(填序号)答案:1.(1)逐个不放回相等(2)不放回放回抽签法随机数法【做一做1】 B 在简单随机抽样中,每一个个体被抽中的可能性都相等,与第几次抽样无关.2.编号号签均匀一个n【做一做2】 B3.①编号②任选一个③方向④跳过取出【做一做3】①③②1.抽样的必要性剖析:由样本估计总体是统计的基本思想,其原因是:(1)有些试验具有破坏性,只能研究其样本而不能研究总体.例如,检验一批钢筋的强度,不能把这批钢筋全部拉断.考察产品的寿命和食品的质量问题等也是这样.(2)在现实生活中,由于资金、时间有限,人力、物力不足,再加上不断变化的环境条件,做普查是不可能的,也是不必要的.如调查城市居民出行情况.(3)当总体是连续或无限时,直接研究是不可能的.例如对大气环境污染情况的分析.(4)由于受随机因素的影响,即便直接研究总体,得到的结果也是一个近似值,同研究样本得到的结果差不多.例如天气预报等.(5)某些特殊总体,要求具有相当资格的调查员才能进行,为此只能采用抽样调查,例如对某技术方面总体的调查.[]总体:统计中所考察对象的全体叫总体;个体:总体中的每一个考察对象叫个体;样本:从总体中抽取的一部分个体叫做样本;样本容量:样本的个体的数目叫做样本容量;总体容量:总体的个体的数目叫做总体容量.2.应用随机数表法抽取样本时,对总体中的个体进行编号的方法剖析:利用随机数表法抽取样本的关键是对所有个体的编号的位数要一致;若不一致,需先调整到一致再进行抽样.例如当总体中有100个个体时,为了操作简便可以选择从00开始编号,那么所有个体的编号都用两位数字表示即可,即00~99号.如果选择从1开始编号,那么所有个体的号码都必须用三位数字表示,比如001~100很明显每次读两个数字要比每次读三个数字节省时间.3.抽签法与随机数法的异同点剖析:相同点:(1)都是简单随机抽样,并且要求被抽取样本的总体所含的个体是有限的;(2)都是从总体中逐个地、不放回地抽取.不同点:(1)抽签法比随机数法简单;(2)随机数法更适用于总体中的个体数较多的时候,而抽签法适用于总体中的个体数相对较少的情况,所以当总体中的个体数较多时,应当选用随机数法,这样可以节约大量的人力和制作号签的成本.题型一如何选择简单随机抽样【例题1】下列问题中,最适合用简单随机抽样方法的是( )A.某电影院有32排座位,每排有40个座位,座位号是1~40有一次报告会坐满了听众,报告会结束以后为听取意见,要留下32名听众进行座谈B.从10台冰箱中抽出3台进行质量检查.某校有在编人员160人.其中行政人员16人,教师112人,后勤人员32人.教育部门为了了解他们对校机构改革的意见,要从中抽取一个容量为20的样本D.某乡农田有山地8 000亩,丘陵12 000亩,平地24 000亩,洼地4 000亩,现抽取农田480亩估计全乡农田平均产量反思:如果一个总体满足下列两个条件,那么可用简单随机抽样抽取样本:①总体中的个体之间无差异;②总体中的个体数不多.题型二抽签法的应用【例题2】某大为了支援西部教育事业,现从报名的18名志愿者中选取6人组成志愿小组,请用抽签法确定志愿小组成员,并写出抽样步骤.分析:(编号)→(制签)→(搅匀)→(抽签)→(成样)反思:利用抽签法抽取样本时应注意以下问题:[]①编号时,如果已有编号(如号,标号等),可不必重新编号.②号签要求大小、形状完全相同.③号签要搅拌均匀.④要逐一不放回地抽取.题型三随机数表法的应用【例题3】某车间工人加工了一批零件共40件,为了了解这批零件的质量情况,要从中抽取10件进行检验,如何采用随机数表法抽取样本?写出抽样步骤.[]反思:在随机数表法抽样的过程中要注意:①编号要求位数相同.②第一个数字的抽取是随机的.③读数的方向是任意的,且事先定好.题型四易错辨析【例题4】某工厂的质检人员对生产的100件产品,采用随机数表法抽取10件进行检查,对100件产品采用下面的编号方法:①1,2,3, (100)②001,002,003,…,100;③00,01,02,…,99其中最恰当的序号是.错解:因为是对100件产品编号,则编号为1,2,3,…,100,所以①最恰当.错因分析:用随机数表法抽样时,如果所编号码的位数不相同,那么无法在随机数表中读数,因此,所编号码的位数要相同.答案:【例题1】 B 根据简单随机抽样的特点进行判断.A项中的总体容量较大,用简单随机抽样法比较麻烦;B项中的总体容量较小,用简单随机抽样法比较方便;项中,由于校各类人员对这一问题的看法可能差异很大,不宜采用简单随机抽样法;D项中,总体容量较大,且各类田地的产量差别很大,也不宜采用简单随机抽样法.【例题2】解:抽样步骤是:第一步,将18名志愿者编号,号码是01,02, (18)第二步,将号码分别写在同样的小纸片上,揉成团,制成号签;第三步,将得到的号签放入一个不透明的袋子中,并充分搅匀;第四步,从袋子中依次抽取6个号签,并记录上面的编号;第五步,与所得号码对应的志愿者就是志愿小组的成员.【例题3】解:抽样步骤是:第一步,先将40件零件编号,可以编为00,01,02,…,38,39第二步,在随机数表中任选一个数作为开始,例如从教材附表的随机数表中的第8行第9列的数5开始.为便于说明,我们将随机数表中的第6行至第10行摘录如下:16 22 77 94 39 49 54 43 54 82 17 37 93 23 78 87 35 20 96 43 84 26 34 91 6484 42 17 53 31 57 24 55 06 88 77 04 74 47 67 21 76 33 50 25 83 92 12 06 7663 01 63 78 59 16 95 55 67 19 98 10 50 71 75 12 86 73 58 07 44 39 52 38 7933 21 12 34 29 78 64 56 07 82 52 42 07 44 38 15 51 00 13 42 99 66 02 79 5457 60 86 32 44 09 47 27 96 54 49 17 46 09 62 90 52 84 77 27 08 02 73 43 28第三步,从选定的数5开始向右读下去,得到一个两位数字号码59,由于59>39,将它去掉;继续向右读,得到16,将它取出;继续下去,又得到19,10,12,07,39,38,33,21,随后的两位数字号码是12,由于它在前面已经取出,将它去掉,再继续下去,得到34至此,10个样本号码已经取满,于是,所要抽取的样本号码是16,19,10,12,07,39,38,33,21,34与这10个号码对应的零件即是抽取的样本个体.【例题4】正解:只有编号时数字位数相同,才能达到随机等可能抽样.所以①不恰当.②③的编号位数相同,都可以采用随机数表法,但②中号码是三位数,读数费时,所以③最恰当.1.下列抽样方法是简单随机抽样的是( )A.从50个零件中一次性抽取5个做质量检验B.从50个零件中有放回地抽取5个做质量检验.从整数集中逐个抽取10个分析奇偶性D.运动员从8个跑道中随机抽取一个跑道2.为了检验某种产品的质量,决定从1 001件产品中抽取10件进行检查,用随机数表法抽取样本的过程中,所编的号码的位数最少是位.3.从60件产品中抽取5件进行检查,请用抽签法抽取产品,并写出抽样过程.4.有一批机器,编号为1,2,3,…,112请用随机数表法抽取10台入样,并写出抽样过程.5.现在有一种游戏,其用具为四副扑克,包括大小鬼(又称为王)在内共216张牌,参与人数为6人,并围成一圈.游戏开始时,从这6人中随机指定一人从已经洗好的扑克牌中随机抽取一张牌(这叫开牌),然后按逆时针方向,根据这张牌上的数字确定抓牌的先后,这6人依次从216张牌中抓取36张牌,问这种抓牌的方法是否是简单随机抽样?答案:1.D A项中是一次性抽取5个,不是逐个抽取,则A项不是简单随机抽样;B项中是有放回抽取,则B项也不是简单随机抽样;项中整数集是无限集,总体容量不是有限的,则项也不是简单随机抽样;很明显D项是简单随机抽样.2.四由于所编号码的位数和读数的位数要一致,因此所编号码的位数最少是四位.从0000到1000,或者是从0001到1001等.3.解:抽签步骤:第一步,将60件产品编号,号码是01,02,…,60;[§§]第二步,将号码分别写在同样的纸条上,揉成团,制成号签;第三步,将号签放入不透明的袋子中,并充分搅匀;第四步,从袋子中依次抽取5个号签,并记录上面的编号;第五步,与所得号码对应的产品就是要抽取的对象.4.解:各机器的编号位数不一致,用随机数表直接读数不方便,需将编号进行调整.第一步,将原的编号调整为001,002,003, (112)第二步,在随机数表中任选一数作为开始,任选一方向作为读数方向.比如,选第9行第7个数“3”,向右读;第三步,从“3”开始向右读,每次读取三位,凡不在001~112中的数跳过去不读,前面已经读过的也跳过去不读,依次可得到074,100,094,052,080,003,105,107,083,092;第四步,对应原编号74,100,94,52,80,3,105,107,83,92的机器就是要抽取的对象.5.分析:根据简单随机抽样的特点判断.解:简单随机抽样的实质是逐个地从总体中随机抽取样本,而这里只是随机确定了起始的牌,其他各张牌虽然是逐张抓牌,但是各张在谁手里已被确定,只有抽取的第一张扑克牌是随机抽取的,其他215张牌已经确定,即这215张扑克牌被抽取的可能性与第一张扑克牌被抽取的可能性不相同,所以不是简单随机抽样.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.知识与技能:理解简单随机抽样的概念,掌握抽签法、随机数表法的一般步骤。
2.过程与方法:学会利用简单随机抽样的方法从总体中抽取样本,进而解决现实生活中的统计问题。
3.情感态度与价值观:通过对现实生活问题的提出,体会数学知识与现实生活之间的联系,感受数学的重要性。
教学重点
正确理解简单随机抽样概念及运用简单随机抽样方法从总体中抽取样本
学生总结
加深知识印象
6.课后作业
P51.练习A2 P52.练习B2
认真完成作业
巩固练习
7.板书设计
2.1.1简单随机抽样
定义:抽样方法:1.抽签法课
特点:2.随机数表法
2.随机数表法:利用随机数生成器生成一张随机数表如下:
48 62 85 00 89 38 85 56 98 82 27 76 17 39 03 69 27 49 87 20 41 57 17 94 13 53 66 60 89 12 48 39 53 26 16 34 90 56 36 40 57 93 17 23 28 49 19 51 76 99 00 62 07 96 13 29 90 19 23 64 38 65 96 45 26
定义:一般地,从元素个数为N的总体中不放回地抽取容量为n的样本,如果每一次抽取时总体中的各个个体有相同的可能性被抽到,这种抽样方法叫做简单随机抽样。这样抽取的样本,叫做简单随机样本。
简单随机抽样的实施方法:
1.抽签法:用小字条把每个同学的学号写下来放到盒子里,均匀搅拌,然后随机从中逐个抽出5个学号,被抽到学号的同学即为取可乐人抽签法一般步骤:(1)编号(2)制签(3)搅匀(4)抽签(5)取出个体
教学设计
教学题目
必修三第二章2.1.1简单随机抽样
课程类型
新授课
课时
一课时
教材分析
简单随机抽样是随机抽样的基础,随机抽样又是统计学的基础,因此在统计学中,简单随机抽样是基础的基础,本节课是初中统计知识的延伸,同
时又是学习其他后续统计知识的基础。
学情分析
学生在初中统计知识的基础上,对简单随机抽样方法已有初步认识,因此本节内容学生易于接受。
学生认真听老师讲解操作过程,记录随机数表法的一般步骤。
利用同一个实例分别运用两种简单随机抽样方法进行抽样,让学生更好的区别开两种方法的步骤。
3.拓展延伸
思考:根据你们的理解,说一说简单随机抽样的主要特点。
(1)总体的个体数有限;
(2)样本的抽取时逐个进行的,每次只抽取一个个体;
(3)抽取的样本不放回,样本中无重复个(4)每个个体被抽到的机会都相等,可能性均为n/N,抽样具有公平性;
(3)继续向右读取两位数,由于69大于60,跳过这组数不取,继续向右读,得到27作为第2名同学的代号。读到的两位数不大于60且不与前面的取出的数重复,就把它取出,否则就跳过不取,取到一行末尾时转到下一行从左到右继续读数,直到得出5个代号。
随机数表法的一般步骤:(1)将总体的个体编号;(2)在随机数表中选择开始数字;(3)读数获取样本号码。
教学难点
掌握抽签法及随机数表法的一般步骤
教学方法
在初中统计的基础上引导学生进一步学习简单随机抽样
教学手段
多媒体教学
教学过程设计
教学步骤教师活动学生源自动设计意图1.问题引入
生活中统计无处不在,例如想检测某河水是否被污染、某产品的质量、某电视台的收视率等,同学们想一想怎么进行调查?很明显这些问题都没有必要对研究对象进行全面调查,通常都是调查总体的一部分来了解总体的情况,那么如何从总体中进行抽样呢?是本节课要学习的内容。
学生分组进行讨论,选出代表汇报发现的特点。
提高学生探究问题的能力,加深学生对知识的理解与掌握。
4.课堂练习
1.从160个零件中抽取容量为20的一个样本,每个个体被抽到的概率为()
A.1/160 B.1/20 C.1/80 D.1/8
2.对总数为N的一批零食,抽取一个容量为30的样本,若每个零食被抽取的概率为0.25,则N等于()
A.100 B. 150 C.120 D.200
3.预从500个零件中抽取80个零件进行质量检验,请你分别描述一下用抽签法和随机数表法进行抽样的步骤。
学生认真思考问题,积极踊跃回答。
通过练习了解学生对本节课知识的掌握情况。
5.课堂小结
本节课主要学习简单随机抽样方法概念及抽签法与随机数表法的步骤,简单随机抽样是不放回且等概率的抽样方法。
学生积极思考问题,踊跃加入本次讨论,认真解读概念。
学生认真思考抽取过程,记录抽签方法的一般步骤。
通过学生感兴趣的例子,激发学生学习兴趣,让学生理解简单随机抽样的概念。
通过具体实例便于学生对抽签法步骤的理解。
步骤如下:(1)对全班60名同学进行编号,可编为01,02,03…60.
(2)在随机数表中任选一个数开始,例如第二行第3列的数0开始向右读数,得到一个两位数03,由于03小于60说明号码03在总体内,将它取出,作为第一名同学的代号。
学生认真思考,积极讨论。
通过生活中的实际例子引出本节课的内容,激发学生好奇心。
2.讲授新课
例1.今天天气比较热,老师请同学们喝可乐,需要从班级的60名同学中选5名同学下课去超市取可乐,第一次抽取时全班每人被抽取的概率都是均等的1/60,第二次抽取时,余下的59名同学每人都有1/59被抽到的可能性,第三次抽取,余下的58名同学每人都有1/58被抽到的可能性,第四次抽取,余下的57名同学每人都有1/57被抽到的可能性,那么第五次抽取,余下的56名同学每人都有1/56被抽到的可能性,也就是说,每次抽取时各个同学都有相同的可能性被抽到。