粗糙度全参数解说

合集下载

表面粗糙度参数的定义

表面粗糙度参数的定义

所有参数的定义依据ISO 4287—1997标准. 其中蓝色部分为最常用的参数。

Ra----轮廓的算术平均偏差(在取样长度内,被测实际轮廓上各点至轮廓中线距离绝对值的平均值)Rz----粗糙度最大峰-谷高度(在轮廓取样长度内的最大峰-谷高度)Rz(JIS)--微观不平度十点平均高度(该参数也成为ISO试点高度参数,在取样长度内,五个最大的轮廓峰和五个最大轮廓谷之间的平均高度差)Rv----最大的谷值(在取样长度内,从轮廓中线到最低的谷值)Rt----轮廓最大的高度(在取样长度内,轮廓最大的峰到最大的谷值之和,即Rt=Rp+Rv)R3y—粗糙度峰-谷高度(R3y是靠计算在每一个取样长度中,三个最高的峰与三个最深的谷之间的最小距离值:然后R3y是在取样长度内,找出这些值的最大制。

建议至少用五个取样长度来评定)R3z—平均峰-谷高度(R3z是在整个评价长度上,在每一个取样长度上的三个最高的峰和三个最深的谷之间的垂直距离的平均值)Rp----最大的峰值(在取样长度内,在平均线以上的轮廓的最大高度)Rc—轮廓要素的粗糙度平均高度(在取样长度内,轮廓要素的高度的平均值)Rda—粗糙度算术平均倾斜Slop(在取样长度内,轮廓变化速率的绝对值的算术平均)Rdq—粗糙度均方根倾斜Rku—粗糙度峰度—概率密度函数Rlo—粗糙度被测的轮廓长度(在评价长度内,轮廓表面的被测长度,是测针在测量期间,划过表面峰谷的总长度)Rmr—粗糙度材料比曲线Rpc—粗糙度峰计数Rsm—粗糙度轮廓要素的平均宽度(在取样长度内,轮廓要素之间在平均线的平均间距)Rvo—粗糙度测定体积的油保持力Rs—粗糙度局部峰的平均间距Rq—均方根粗糙度RHSC—粗糙度高点计数编辑本段粗糙度仪的技术标准和检定规程标准:国家标准:JJF 1105-2003触针式表面粗糙度测量仪校准规范美国标准: ASTM-D4414/B检定规程:JJG-2018-89表面粗糙度仪检定规程。

粗糙度参数解说范文

粗糙度参数解说范文

粗糙度参数解说范文
粗糙度参数是描述表面形貌的关键参数,它反映了零部件的精细加工
程度。

粗糙度参数是一种对表面形貌定量测量的综合参数,可以反映表面
的微弱凹凸细节,以及表面的粗糙程度、毛刺等特征,所以它被广泛用于
对工件表面质量的检测评价。

一般来说,粗糙度参数被定义为表面变形的有序统计描述,有几种常
见的粗糙度参数,它们中最主要的有:平均粗糙度Ra、值(Rz)、最大
峰值粗糙度Rt、标准偏差σq、最大至最小深度值比率(Pc)、最大隔离
度(Rx)等。

1.平均粗糙度Ra是表面平均凹凸细节的高度或深度的综合参数,它
反映的是一个表面中较小凹凸细节的总体状况。

一般情况下,它的值越小,表面越平滑,加工精度也越高。

2.Rz值是表面最大凹凸细节的深度或高度,它反映的是一个表面中
最大的凹凸细节的大小状况。

一般情况下,它的值越小,表面越平滑,加
工精度也越高。

3.Rt是表面最大凹凸细节的峰值值,它反映的是一个表面中最大的
凹凸细节的高度或深度。

一般情况下,它的值越小,表面越平滑,加工精
度也越高。

4.标准偏差σq是表面凹凸细节的平均均方差,它反映的是凹凸细节
的分布状况,可以反映表面粗糙程度。

表面粗糙度参数

表面粗糙度参数

第4章表面粗糙度4.1概述在机械加工过程中,由于切削会留下切痕,切削过程中切屑分离时的塑性变形,工艺系统中的高频振动,刀具和巳加工表面的磨擦等等原因,会使被加工零件的表面产生许多微小的峰谷,这些微小峰谷的高低程度和间距状况就称为表面粗糙度。

一、表面粗糙度的实质表面粗糙度是一种微观的几何形状误垦,通常按波距的大小分为:波距的属表面粗糙度;波距在1-lOmm间的属表面波度;波距〉10mm的属于形状误垦。

住肚it二、表面粗糙度对零件使用性能的影响1.对摩擦和磨损的影响一般地,表面越粗糙,则摩擦阻力越大,零件的磨损也越快。

2.对配合性能的影响表面越粗糙,配合性能越容易改变,稳定性越蚩。

3.对疲劳强度的影响当零件承受交变载荷时,由于应力集中的影响,疲劳强度就会降低,表面越粗糙,越容易产生疲劳裂纹和破坏。

4.对接触刚度的影响表面越粗糙,实际承载面积越小,接触刚度越低。

5.对耐腐蚀性的影响表面越粗糙,越容易腐蚀生锈。

此外,表面粗糙度还影响结合的密封性,产品的外观,表面涂层的质量,表面的反射能力等等,所以要给予充分的重视。

4.2表面粗糙度的评定一•基本术语1•轮廓滤波器把轮廓分成长波和短波成分的滤波器。

2.M虑波器确定粗糙度与波纹度成分之间相交界限的滤波器。

3•取样长度用以判别具有表面粗糙度特征的一段基准线长度。

规定和选取取样长度的目的是为了限制和削弱表面波纹度对表面粗糙度测量结果的影响。

推荐的取样长度值见表41。

在取样长度内一般应包含五个以上的轮廓峰和轮廓谷。

4.评定长度评定表面粗糙度时所必须的一段基准线长度。

为了充分合理地反映表面的特性,一般取1口=51。

5.轮廓中线m 用以评定表面粗糙度值的基准线。

(1)轮廓的最小二乘中线具有几何轮廓形状并划分轮廓的基准线。

在取样长度范围内,使被测轮廓线上的各点至该线的偏距的平方和为最小。

即:(,r Z2J(> " dx = min(2)轮廓的算术平均中线在取样长度内,将实际轮廓划分为上、下两部分,并使上、下两部分的面积相等的基准线。

表面粗糙度的主要评定参数

表面粗糙度的主要评定参数

表面粗糙度的主要评定参数表面粗糙度是表面几何特征的量化描述,它是评定物体表面的光洁程度或粗糙度的重要参数。

表面粗糙度的主要评定参数有:粗糙度高度参数、波动参数、曲率参数、光谱参数等。

1.粗糙度高度参数:用于衡量表面在垂直方向上的高度差异。

常用的参数有Ra(平均粗糙度)、Rz(十个最大峰值间距平均)和Rq (平均底部谷值深度)等。

Ra是最常用的参数,它表示单位长度上表面高度正负偏离平均值的平均值。

粗糙度高度参数描述表面的平均粗糙度水平和表面上峰谷起伏的平均水平。

2.波动参数:用于衡量表面在平行方向上的高度变化,即表面的波动性。

常用的参数有Wt(材料垂直方向上的峰谷间距离的累积概率函数平方差的开方)和Wm(表面除了比还高和比较低的部分的峰和谷外,其他部分的峰谷间距离平均值)等。

波动参数较好地反映了表面起伏的统计性质。

3.曲率参数:用于描述表面的曲率特性。

常用的参数有Rt(表面曲率的方根的平均值)和RPC(表面法线方向与某一指定方向的夹角的标准差)等。

曲率参数描述表面的弯曲性、蜂窝状程度和不规则程度。

4.光谱参数:用于描述表面的频率成分。

常用的参数有Amplitude-Peak(表面高度变化的最大峰-谷差)、Spectral-Centrod (颜色信息的分布中心)、Slope-RM(表面斜率的均方根的标准差)等。

光谱参数主要从自相关函数、功率谱或相关性配分函数得到,它用于衡量表面上各种高度波动的频率成分。

这些评定参数并不是孤立存在的,它们之间存在关联性。

评定表面粗糙度时,需要综合考虑多个参数的相互作用,以全面、准确地描述表面的粗糙度特征。

同时,不同种类的物体表面可能需要选择不同的评定参数。

例如,在工业领域,常用的评定参数是Ra和Rz;在光学领域,常用的评定参数是RPC和Amplitude-Peak。

总之,表面粗糙度的主要评定参数有粗糙度高度参数、波动参数、曲率参数和光谱参数。

通过综合考虑这些参数的结果,可以更准确、全面地描述表面的粗糙度特征,为工业生产、科学研究等领域提供有力的参考依据。

表面粗糙度的讲解

表面粗糙度的讲解

7、选用轮廓支承长度率参数时必须同时给出轮廓水平截距C值。它可 用微米或及,的百分数表示。
百分数系列如下:Ry的5、10、15、20、25、30、40、50、60、70、 80、90%。
8、轮廓的单峰(谷)S的最小间距规定为取样长度l 的1%。轮廓峰(谷、 单峰、单谷)的最小高度规定为轮廓最大高度 Ry 的10%。对 Ra、Rz 和 Ry 参数亦适用。
3.2.14 在水平位置 c 上轮廓的实体材料长度 c Ml(c) 在一个给定水平位置c上用一条平行于X 轴的线与轮廓单元相截所获
得的各段截线长度之和,见下图。
4 表面轮廓参数定义 4.1 幅度参数(峰和谷)
4.1.1 最大轮廓峰高 Pp、Rp、Wp
在一个取样长度内,最大的轮廓峰高 Zp (见图6)。
分别与轮廓滤波器λc 和 λf 的标志波长相等。原始轮廓的取 样长度 l p 则与评定长度相等。 3.1.10 评定长度 ln 用于判别被评定轮廓的X轴方向上的长度。 注:评定长度包含一个或和几个取样长度。
3.2 几何参数的术语
3.2.1 P — 参数 从原始轮廓上计算所得的参数。
3.2.2 R — 参数 从粗糙度轮廓上计算所得的参数。
Pq 、Rq 、Wq 1l Z2(x)dx
l0
依据不同情况,式中 l = lp、lr、lw 。
4.2.3 评定轮廓的偏斜度 Psk、Rsk、Wsk 在一个取样长度内纵坐标值Z(x)三次方的平均值分别与Pq、Rq和
Wq的三次方的比值。 RskR1q3[l1rl0rZ3(x)dx]
取样长度的数值和选用
1、取样长度(l)的数值从表5给出的系列中选取。
2、一般情况下,在测量Ra、Rz和Ry时推荐按表6和表7选用对应的取 样长度值,此时取样长度值的标注在图样上或技术文件中可省略。当有特 殊要求时应给出相应的取样长度值,并在图样上或技术文件 中注出。

粗糙度对比Ra、Rz、RMS、国内外标准对照

粗糙度对比Ra、Rz、RMS、国内外标准对照

表面粗糙度高度参数有3种:1. 轮廓算数平均偏差:轮廓算数平均偏差Ra是指在取样长度L内,被测轮廓上各点到基准线的距离Yi的绝对值的算数平均平均值。

2. 微观不平度十点高度:微观不平度十点高度Rz是指在取样长度L内,被测轮廓上五个最大轮廓峰高Ypi的平均值与五个最大轮廓谷底Yvi的平均值之和。

3. 轮廓最大高度:轮廓最大高度Ry是指在取样长度L内,被测轮廓的峰顶线与轮谷线之间的距离。

表征微观不平度高度特性的评定参数Ra Rz、Ry的数值愈大则表面越粗糙。

在高度评定参数中,Ra的概念颇为直观,Ra值反应实际轮廓微观几何形状特性的信息量最大,且Ra值用触针式电动轮廓仪测量比较容易。

因此对于光滑表面和半光滑表面,普遍采用Ra作为评定参数。

但受测量仪器的限制,极光滑和极粗糙的表面不能用Ra评定。

评定参数Rz的概念较为直观,Rz值通常用非接触式的光切显微镜测量。

但Rz值只反应取样长度内峰高和谷底的十个点,不能反应峰顶的尖锐和平顿的几何形状特性,因此Rz值不如Ra值反应得微观几何形状特性全面。

评定参数Ry的概念简单,Ry值得测量方便,但Ry值不及Rz、Ra值反应的微观几何形状特性全面。

Ry值与Ra、Rz值连用控制微观不平度的谷深用来评定某些不允许出现较大加工痕迹和受交变应力作用的表面。

RMS直实际就是有效值,就是一组统计数据的平方的平均值的平方根。

因为RMS系统是英制单位一般的有:RMS*25.4/1000=RA举例:RMS64 = 64*25.4/1000= RA 1.6几个常用的如下RMS250 = RA6.4RMS125 = RA3.2RMS64 = RA1.6RMS32 = RA0.8表面粗糙度外国与中国标准对照N1 ---- 0.025um;N2 ---- 0.05um; N3 ----- O.lum ;N4 ---- 0.2um;N5 ---- 0.4um ; N6 ----- 0.8um;N7 ---- 1.6um;N8 ---- 3.2um ; N9 ----- 6.3um;N10 --- 12.5um ;N11 ---- 25um日本表面粗糙度的老标准。

粗糙度参数详解..

粗糙度参数详解..
粗糙度参数教程
参考标准:ISO1302-1992 GB3503-1983
JIS B0601-2001
JIS B0632-2001 JIS B0633-2001
EQ 石飞
——2011-03-21
粗糙度的直观印象
在机械学中,粗糙度指加工表面上具有的较小间 距和峰谷所组成的微观几何形状特性。
粗糙度是什么引起的?-1
则称p(x)为X的概率密度。
4.概率密度就是单位长度,面积,体积上的概率
正态分布如何求得?
NO. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 原始数据 数据 1.00 2.00 1.00 5.00 4.00 3.00 3.00 4.00 上限值 基准值 下限值 数据计数(n) 5 3 1 8 8 图形生成原始数据 NO. x f(x)-密度 F(x)-概率 1 -5.871427842 4.16802E-09 9.86588E-10 2 -5.696499285 8.50149E-09 2.05133E-09 3 -5.609035007 1.20763E-08 2.94238E-09 4 -5.521570729 1.70925E-08 4.2057E-09 5 -5.43410645 2.41055E-08 5.99037E-09 6 -5.346642172 3.38738E-08 8.50251E-09 7 -5.259177893 4.74294E-08 1.20259E-08 8 -5.171713615 6.61709E-08 1.695E-08 9 -5.084249336 9.19865E-08 2.38067E-08 10 -4.996785058 1.27414E-07 3.33204E-08 11 -4.90932078 1.75852E-07 4.64733E-08 12 -4.821856501 2.41832E-07 6.45919E-08 13 -4.734392223 3.31372E-07 8.94616E-08 14 -4.646927944 4.52434E-07 1.23475E-07 15 -4.559463666 6.15504E-07 1.69827E-07 16 -4.471999388 8.3434E-07 2.32766E-07 17 -4.384535109 1.12692E-06 3.17922E-07 f(x)- 密度 18 -4.297070831 1.51662E-06 4.32721E-07 19 -4.209606552 2.03376E-06 5.86929E-07 20 -4.122142274 2.71743E-06 7.93328E-07 21 -4.034677995 3.61787E-06 1.06859E-06 22 -3.947213717 4.79938E-06 1.43437E-06 23 -3.859749439 6.34385E-06 1.9187E-06 24 -3.77228516 8.35522E-06 2.55768E-06 1.09648E-05 -625 -3.684820882 -4 -2 0 2 3.39767E-06 4 6 26 -3.597356603 1.43376E-05 4.49794E-06 27 概率 -3.509892325 1.86806E-05 5.93397E-06 F(x)100% 28 -3.422428046 2.42517E-05 7.80146E-06 90% 29 -3.334963768 3.13711E-05 1.02213E-05 80% 30 -3.24749949 4.04346E-05 1.33457E-05 70% 31 -3.160035211 5.19295E-05 1.73653E-05 60% 32 -3.072570933 6.64524E-05 2.25179E-05 50% 33 -2.985106654 8.47314E-05 2.90991E-05 40% 34 -2.897642376 0.00010765 3.74749E-05 30% 35 -2.810178097 0.000136277 4.80963E-05 20% 10% 36 -2.722713819 0.000171895 6.15172E-05 0% 37 -2.635249541 0.000216045 7.84142E-05 -8 -6 -4 -2 0 2 4 6 38 -2.547785262 0.000270558 9.96114E-05 39 -2.460320984 0.000337608 0.000126108

金属表面粗糙度参数表

金属表面粗糙度参数表

金属表面粗糙度参数一览表
表面粗糙度是指加工表面所具有的较小间距和微小峰谷的微观几何形状的尺寸特征。

工件加工表面的这些微观几何形状误差称为表面粗糙度。

1 表面粗糙度的评定参数
按国家标准规定,表面粗糙度的评定参数应在轮廓算术平均偏差(R a)、微观平面度十点高度(R z和轮廓最大高度(R y)项目中选取。

国家标准推荐优先选用R a。

有关R a、R z、R y参数的数值如下:
(1)轮廓算术平均偏差R a的数值,如表1所示。

表1 轮廓算术平均偏差R a的数值/μm
(2)微观平面度十点高度R z和轮廓最大高度R y的数值,如表2所示。

表2 微观平面度十点高度Rz和轮廓最大高度Ry的数值 /μm
2 表面粗糙度代(符)号
表面粗糙度代(符)号如表3所示
表3 表面粗糙度代(符)号
各级表面粗糙度的表面特征、经济加工方法及应用举例如表4所示。

表4 各级表面粗糙度的表面特征、经济加工方法及应用举例。

表面粗糙度参数

表面粗糙度参数

第4章表面粗糙度4.1 概述在机械加工过程中,由于切削会留下切痕,切削过程中切屑 分离时的塑性变形,工艺系统中的高频振动,刀具和已加工表面 的磨擦等等原因,会使被加工零件的表面产生许多微小的峰谷, 这些微小峰谷的高低程度和间距状况就称为表面粗糙度。

一、表面粗糙度的实质表面粗糙度是一种微观的几何形状误差,通常按波距的大小 分为:波距w 1mm 的属表面粗糙度;波距在1~10mm 间的属表面波度;波距〉10mm 的属于形状误差。

二、表面粗糙度对零件使用性能的影响1•对摩擦和磨损的影响一般地,表面越粗糙,则摩擦阻力越大,零件的磨损也越快。

2. 对配合性能的影响表面越粗糙,配合性能越容易改变,稳定性越差。

3. 对疲劳强度的影响当零件承受交变载荷时,由于应力集中的影响,疲劳强度就 会降低,表面越粗糙,越容易产生疲劳裂纹和破坏。

4•对接触刚度的影响 表面越粗糙,实际承载面积越小,接触刚度越低。

5•对耐腐蚀性的影响 表面越粗糙,越容易腐蚀生锈。

此外,表面粗糙度还影响结合的密封性,产品的外观,表面 涂层的质量,表面的反射能力等等,所以要给予充分的重视。

4.2表面粗糙度的评定把轮廓分成长波和短波成分的滤波器—一 .基本术语 1•2.入滤波器确定粗糙度与波纹度成分之间相交界限的滤波3•取样长度用以判别具有表面粗糙度特征的一段基准线长 度。

规定和选取取样长度的目的是为了限制和削弱表面波纹度对 表面粗糙度测量结果的影响。

推荐的取样长度值见表4-1。

在取样 长度内一般应包含五个以上的轮廓峰和轮廓谷。

4•评定长度 评定表面粗糙度时所必须的一段基准线长度。

为了充分合理地反映表面的特性,一般取 In =51。

5•轮廓中线m 用以评定表面粗糙度值的基准线。

⑴轮廓的最小二乘中线 具有几何轮廓形状并划分轮廓的基准线。

在取样长度范围内,使被测轮廓线上的各点至该线的偏距 的平方和为最小。

即:⑵轮廓的算术平均中线 在取样长度内,将实际轮廓划分为 上、下两部分,并使上、下两部分的面积相等的基准线。

第一节表面粗糙度的评定参数

第一节表面粗糙度的评定参数

❖ 1.L 2 表面粗糙度测量的基本原则

(1)测量方向
❖ 按现行标准所定义的各种粗糙度评定参数,是基于轮廓法确定数值,是在被测表面的法向截面上的 实际轮廓上进行测量的结果。由于垂直于被测表面的法向截面存在各种不同的测量方向.所以规定在垂 直于加工纹理力向的d向截面(参R图g”8)测得的结果,称作横向轮廊的表面粗糙度数值(d);在平行于加 工纹理方向的5向截面上所作的测量,称为纵向轮廓的粗糙度数值(6)。试验表明,大多数的切削加工表
2.表面粗糙度:是一种微观几何形状误差又称微观不平度。 3.表面粗糙度的产生原因:在加工过程中,刀具和零件表面
间产生磨擦、高频振动及切削时在工作表面上留下的微观 痕迹。
二.表面粗糙度的影响
❖ 表面粗糙度对机器零件的使用性能有着重要的影响,主要表 现在:
1.对摩擦和磨损的影响 2.对配合性的影响 3.对接触刚度的影响 4.对疲劳强度的影响 5.对抗腐蚀性的影响 6.对结合密封性的影响 ❖ 此外表面粗糙度还影响检验零件时的测量不确定度、零件外
1、轮廓算术平均偏差Ra
在取样长度L内,轮廓偏转距绝对值的算术平均值。
用公式表示为:
1l
Ra L 0 y(x) dx
Ra
1 n
n i 1
yi
Rz
图4-3 表面粗糙度的高度参数
2.微观不平度十点高度
❖ 在取样长度内五个最大的轮廓峰高的平均值与五个最大的轮
廓谷深的平均值之和,如图4-3所示。用公式表示为:
§4-1 表面粗糙度的评定参数
主要内容:
1、主要术语及定义 取样长度L 评定长度L
n
轮廓中线m 2、6个评定参数
3个基本、3个附加 3、一般规定
重点: 3个基本评定参数

粗糙度参数详解教学课件

粗糙度参数详解教学课件

Rp(峰数)
总结词
表示测量长度内轮廓上峰的数量。
详细描述
峰数是指在一个测量长度内,轮廓上峰的数量。它反应了表面微观不平度的散布情况,对于评估表面 的加工质量具有重要意义。
Rv(谷数)
总结词
表示测量长度内轮廓上谷的数量。
详细描述
谷数是指在一个测量长度内,轮廓上 谷的数量。与峰数一样,它反应了表 面微观不平度的散布情况,对于评估 表面的加工质量具有重要意义。
和测量。
原子力显微镜法
总结词
通过原子力显微镜视察材料表面形貌来测量表面粗糙 度。
详细描述
原子力显微镜法利用原子力显微镜视察材料表面形貌 ,通过测量表面形貌的轮廓曲线来计算表面粗糙度。 该方法具有极高的测量精度和分辨率,适用于各种材 料的表面粗糙度测量,但设备成本较高。
04
粗糙度参数对产品性能的影响
对配合精度的影响
总结词
粗糙度参数对产品配合精度具有重要影响。
详细描述
在机械配合中,表面粗糙度会影响配合件的接触面积和接触 应力散布,从而影响配合精度和稳定性。为了确保产品的高 精度和稳定性,需要根据配合要求公道选择表面粗糙度参数 。
05
粗糙度参数的优化与控制
优化目标与限制条件
优化目标
降低表面粗糙度,提高表面质量 ,减少摩擦系数,提高耐磨性等 。
粗糙度参数详解教学课件
contents
目录
• 粗糙度参数简介 • 粗糙度参数详解 • 粗糙度参数测量方法 • 粗糙度参数对产品性能的影响 • 粗糙度参数的优化与控制
01
粗糙度参数简介
定义与意义
粗糙度参数
描述表面粗糙程度的参数,用于 评估表面质量。
意义
粗糙度参数对于产品性能、耐磨 性、接触刚度等具有重要影响, 是机械工程领域中重要的质量指 标。

粗糙度全参数解说

粗糙度全参数解说

粗糙度参数解说介绍参数概述表面纹理可由与一定的纹理特性相关的参数来量化。

这些参数可按测量的特点类型,被分成几组类型。

它们是:Amplitude(幅值)Spacing(间距)Hybrid(混合)R&W(R+W)Aspheric(非球面)曲线及相关参数Rk 参数影响表面粗糙度的数字评估是三个特性长度。

它们是:取样长度,也被称为Cut-Off Length评价长度,也被称为Assessment Length或Data Length横向移动长度另外,屏幕上的帮助工具,以一个容易阅读的Exploring Surface Texture(表面形貌浏览)文本描述,其主题详细包括了什么是表面形貌及为什么必需测量它。

该文本包括用Form Talysurf仪器提供通常的表面形貌背景信息和测量仪器的特殊测针类型。

它也给出了参数的有用信息:它们的来历和使用。

对进一步更深的表面评论及其测量,可从Taylor Hobson的手册Precision 2中得到。

幅值参数这些是测量在轮廓(Z轴)的垂直位移。

这类参数包括:未滤波参数滤波的粗糙度参数滤波的波纹度参数间距参数这些参数是沿表面(X轴)对不规则间距的测量,而与不规则的幅值无关。

这类参数包括未滤波参数滤波的粗糙度参数滤波的波纹度参数混合参数指与表面不规则的幅值参数和间距参数都有关的参数(Z轴和X轴),或者规定了一个量,如面积或体积,被称作Hybrid(混合)参数。

这类参数包括:未滤波参数滤波的粗糙度参数滤波的波纹度参数曲线及相关参数这些参数是沿表面(X轴)对不规则间距的测量,而与不规则的幅值无关。

这类参数包括:原始轮廓轮廓高度幅值曲线PcPmrPmr(c)滤波的粗糙度轮廓高度幅值曲线RcRmrRmr(c)滤波的波纹度轮廓高度幅值曲线WcWmrWmr(c)R加W 参数这些参数与R和W参数相关,被定义在标准BS ISO 12085:1996里面。

这些分析包括:PtRARRxSRSARSWSAWWteWAWWx非球面分析参数这些参数与非球面形状的特殊分析有关。

表面粗糙度符号及数值说明

表面粗糙度符号及数值说明

表面粗糙度符号及其标注说明粗糙度是衡量零件表面粗糙程度的参数,它反映的是零件表面微观的几何形状误差,必需借助放大镜等进行测量。

它是由于零件加工进程中刀具与加工表面之间的摩擦、挤压和加工时的高频振动等方面的缘故造成的。

表面粗糙度对零件的工作精度、耐磨性、密封性、耐蚀性和零件之间的配合都有着直接的阻碍。

粗糙度的评定经常使用轮廓算术平均误差Ra、轮廓最大高度Ry、微观不平度十点高度Rz三个参数表示。

数值越小,零件的表面越滑腻,数值越大零件的表面越粗糙。

一、轮廓算术平均误差Ra取样长度:取样长度是指具有粗糙度几何特点的一段长度,在取样长度内应该具有几个波峰和波谷。

测量时可选5倍的取样长度作为测量长度进行测量。

Ra是指在取样长度内,轮廓偏距绝对值的算术平均值,能够表示为:关于表面粗糙度的数值和表面特点、取得方式、应用举例请参见下表。

从上图中也能够看出,粗糙度参数的数值.大体上成倍数的关系。

标注时应被选用这些数值,不能选用其他的数值。

二、轮廓最大高度Ry3、轮廓不平度十点高度Rz标注代号及意义粗糙度代号能够分为:符号,粗糙度项目及数值。

经常使用标注参数是Ra, 标注Ra时Ra能够省略,标注Rz和Ry时,在粗糙度数值前加对应的符号Rz和Ry。

标注原那么1)、在同一图样上每一表面只注一次粗糙度代号,且应注在可见轮廓线、尺寸界限、引出线或它们的延长线上,并尽可能靠近有关尺寸线。

2)、当零件的大部份表面具有相同的粗糙度要求时,对其中利用最多的一种,代(符)号,可统一注在图纸的右上角。

并加注“其余”二字。

3)、在不同方向的表面上标注时,代号中的数字及符号的方向必需以下图的规定标注。

4)、代号中的数字方向应与尺寸数字的方向一致。

5)、符号的尖端必需从材料外指向表面。

标注举例:6)、齿轮、蜗轮齿面关于齿轮、蜗轮齿面的粗糙度,应标注在表示分度圆的点画线上。

若是图形中的位置有限,粗糙度也能够引出标注或注在尺寸线的延长线上。

7)、两个表面的粗糙度要求相同,也能够一个符号利用两个指引线。

粗糙度全参数RzRmax、Rt、R3z、RPc等地定义及测量

粗糙度全参数RzRmax、Rt、R3z、RPc等地定义及测量

表面粗糙度参数Rz、Rmax、Rt、R3z、RPc等的测量在GB/T3505-2000《产品几何技术规范表面结构轮廓法表面结构术语、定义及参数》中定义了表面粗糙度幅度参数(纵坐标平均值)R a、R q、R sk、R ku和间距参数、混合参数等,虽然该标准等效采用了ISO4287:1997《几何产品规范(GPS)表面特征:轮廓法表面结构的术语、定义及参数》,但这些参数远远不能满足我国目前工业生产的需要,特别是在涉外产品中常常会提出一些非标的表面粗糙度参数的技术要求,例如R max(DIN EN ISO 4287)、RP c(prEN 10049)、R3z(Daimler Benz Standard 31007)等。

这些参数的正确测量直接影响产品符合性的判断,因此生产部门对这些参数的准确测量都有迫切的需求。

同时,对这些参数的正确认识及理解能有效地指导生产过程,在使产品技术指标满足要求的同时可有效降低生产成本。

笔者在实际工作中经常会为一些厂家测量这样的参数,如发动机冷凝管内表面的R max、R t等参数、轴类零件的RP c参数。

现结合实例对这些参数的定义和测量方法作一些说明,以供参考。

一、参数的定义1.参数R z(GB/T3505-2000)在一个取样长度lr内,最大轮廓峰高和最大轮廓谷深之和的高度如图1所示。

图1 参数R z示意图这里R z的定义和GB/T3505-1983《表面粗糙度术语表面及其参数》中的定义已经完全不同。

GB/T3505-1983中R z符号曾用于指示“不平度的十点高度”。

正在使用中的一些表面粗糙度测量仪器大多只能测量以前的参数R z。

因此,采用现行的技术文件和图样时必须小心慎重,因为用不同类型的仪器按不同的规定计算所取得的结果之间的差别,并不都是非常微小而可忽略的。

2.参数R max(DIN EN ISO 4287)参数R max与参数R zi之间有些关系,因此首先介绍R zi的定义。

粗糙度测量参数

粗糙度测量参数

粗糙度测量参数
粗糙度测量参数是用来描述物体表面粗糙程度的指标。

常见的粗糙度测量参数包括:
1. Ra(平均粗糙度):计算物体表面的平均高度偏离中心线的平均值,即表面粗糙度的平均值。

2. Rz(最大峰值高度):测量物体表面最大高度偏离中心线的高度差值,表示表面上最高的峰值。

3. Rq(均方根粗糙度):对表面偏离中心线的高度差值的平方求平均再开根号,表示表面的平均不规则度。

4. Rmax(最大峰谷高度):测量物体表面最大高度差值,即表面上最高的峰和最低的谷之间的差值。

5. Rt(峰谷高度):测量物体表面的最大高度差值,即整个表面的峰谷高度的范围。

这些参数可以通过使用表面粗糙度测量仪器进行实测得出,用于表征物体表面的粗糙度程度。

不同的测量参数适用于不同的应用领域和需求。

粗糙度全参数解说

粗糙度全参数解说

粗糙度参数解说介绍参数概述表面纹理可由与一定的纹理特性相关的参数来量化。

这些参数可按测量的特点类型,被分成几组类型。

它们是:Amplitude(幅值)Spacing(间距)Hybrid(混合)R&W(R+W)Aspheric(非球面)曲线及相关参数Rk 参数影响表面粗糙度的数字评估是三个特性长度。

它们是:取样长度,也被称为Cut-Off Length评价长度,也被称为Assessment Length或Data Length横向移动长度另外,屏幕上的帮助工具,以一个容易阅读的Exploring Surface Texture(表面形貌浏览)文本描述,其主题详细包括了什么是表面形貌及为什么必需测量它。

该文本包括用Form Talysurf仪器提供通常的表面形貌背景信息和测量仪器的特殊测针类型。

它也给出了参数的有用信息:它们的来历和使用。

对进一步更深的表面评论及其测量,可从Taylor Hobson的手册Precision 2中得到。

幅值参数这些是测量在轮廓(Z轴)的垂直位移。

这类参数包括:未滤波参数滤波的粗糙度参数滤波的波纹度参数间距参数这些参数是沿表面(X轴)对不规则间距的测量,而与不规则的幅值无关。

这类参数包括未滤波参数滤波的粗糙度参数滤波的波纹度参数混合参数指与表面不规则的幅值参数和间距参数都有关的参数(Z轴和X轴),或者规定了一个量,如面积或体积,被称作Hybrid(混合)参数。

这类参数包括:未滤波参数滤波的粗糙度参数滤波的波纹度参数曲线及相关参数这些参数是沿表面(X轴)对不规则间距的测量,而与不规则的幅值无关。

这类参数包括:原始轮廓轮廓高度幅值曲线PcPmrPmr(c)滤波的粗糙度轮廓高度幅值曲线RcRmrRmr(c)滤波的波纹度轮廓高度幅值曲线WcWmrWmr(c)R加W 参数这些参数与R和W参数相关,被定义在标准BS ISO 12085:1996里面。

这些分析包括:PtRARRxSRSARSWSAWWteWAWWx非球面分析参数这些参数与非球面形状的特殊分析有关。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

粗糙度参数解说介绍参数概述表面纹理可由与一定的纹理特性相关的参数来量化。

这些参数可按测量的特点类型,被分成几组类型。

它们是:Amplitude(幅值)Spacing(间距)Hybrid(混合)R&W(R+W)Aspheric(非球面)曲线及相关参数Rk 参数影响表面粗糙度的数字评估是三个特性长度。

它们是:取样长度,也被称为Cut-Off Length评价长度,也被称为Assessment Length或Data Length横向移动长度另外,屏幕上的帮助工具,以一个容易阅读的Exploring Surface Texture(表面形貌浏览)文本描述,其主题详细包括了什么是表面形貌及为什么必需测量它。

该文本包括用Form Talysurf仪器提供通常的表面形貌背景信息和测量仪器的特殊测针类型。

它也给出了参数的有用信息:它们的来历和使用。

对进一步更深的表面评论及其测量,可从Taylor Hobson的手册Precision 2中得到。

幅值参数这些是测量在轮廓(Z轴)的垂直位移。

这类参数包括:未滤波参数滤波的粗糙度参数滤波的波纹度参数间距参数这些参数是沿表面(X轴)对不规则间距的测量,而与不规则的幅值无关。

这类参数包括未滤波参数滤波的粗糙度参数滤波的波纹度参数混合参数指与表面不规则的幅值参数和间距参数都有关的参数(Z轴和X轴),或者规定了一个量,如面积或体积,被称作Hybrid(混合)参数。

这类参数包括:未滤波参数滤波的粗糙度参数滤波的波纹度参数曲线及相关参数这些参数是沿表面(X轴)对不规则间距的测量,而与不规则的幅值无关。

这类参数包括:原始轮廓轮廓高度幅值曲线PcPmrPmr(c)滤波的粗糙度轮廓高度幅值曲线RcRmrRmr(c)滤波的波纹度轮廓高度幅值曲线WcWmrWmr(c)R加W 参数这些参数与R和W参数相关,被定义在标准BS ISO 12085:1996里面。

这些分析包括:PtRARRxSRSARSWSAWWteWAWWx非球面分析参数这些参数与非球面形状的特殊分析有关。

这些分析包括:FigRaRtSmxSmnTiltXpXtXvRk参数这些参数从来自于粗糙度测量的材料比曲线的计算而得,并提供以下的值: 核心粗糙度深度 = Rk简化的峰高度 = Rpk简化的谷高度= Rvk这些参数被定义在BS ISO 13565 part 2: 1996里面。

长度–概述有三个与表面形貌定量评定有关的特性长度。

它们是:取样长度,也被称为Cut-Off Length(长度)评价长度也被称为Assessment(评估)Length或Data(数据)Length 移动长度取样长度, Cut-Off Length这是用来识别不规则表面粗糙度特性的参考线的长度。

取样长度是用于在测量箱移动方向识别表现测量轮廓特性的长度。

粗糙度和波纹度分析的取样长度等于所选滤波器的波长。

未滤波的(原始)轮廓的取样长度等于其评价长度。

分析长度A = 启动长度ln = 评价长度C = 结束宽余长度l = 取样长度E = 横向移动长度F = 被测表面的轮廓评价长度, 评估长度, 数据长度测量方向的移动长度包含了评价表面粗糙度参数的值,它被称为评价长度,或评估长度,或数据长度。

它可以含有一个或更多的取样长度。

横向移动长度横向移动长度是传感器沿被测表面移动的全部长度。

它通常大于评价长度,这是因为必须在每一次移动的末尾留有余量,以确保机械和电气的瞬时冲击能从测量数据中剔除。

形状参考形状参考–概述量化粗糙度的主要需提供一些与测量轮廓数据相关的基准。

在表面计量学里,我们不能测量大多数材料的直径(这属直径计量的领域),但可测量其对理想形状(如一个极佳的平面)的偏差。

因此,当进行测量和评价结果时,必须考虑表面的形状。

它一开始就把仪器调整到与表面的独特形状相适应。

然后用与代表零件理想形状(或与实际接近的近似值)的一个参考线(或几条线)来计算出测量数据。

用 Form Talysurf Series 仪器评价的参考有:最小二乘直线最小区域直线基准(仪器硬件参考)最小二乘圆弧半径,椭圆或双曲线非球面最小二乘直线最小二乘(LS)线一般被用作平均参考线。

在表面形貌分析中,最小二乘的最佳直线与评价原始轮廓的测量数据相匹配。

LS线的定位使得轮廓上偏离该线的平方和为最小。

它是通过轮廓数据而提供的唯一的参考线。

最小二乘线(LS line)的图形解释.最小二乘平均线(X-X)使得下式的和为最小。

最小区域直线 (MZ)最小区域参考定义了一对直线,这一对平行直线正好包容了整个轮廓,使得在这两条线间的距离(区域)为最小。

显示的参考线是这两条线间的平均价位置,所有的参数计算都以此为参考。

最小区域(MZ)直线的图形解释注意:该参考线适合于已往任何一种滤波器和取样长度的截取。

因此,所显示的有时令人误解。

基准(仪器硬件参考)在测量期间,来自传感器的电输出是测针的位移和与测针走过的表面相关的传感器测杆的结合。

(也就是,该信号输出是测针跟随表面轮廓和与表面相关的测杆位置改变而升降的结果)。

因此,如果输出真实的表现了表面,那么测杆必须沿与表面精确平行的直线而横向移动(因此必须消除传感器测杆的相对运动)。

通常,有两种带动传感器的方法。

它们是skid(导头)或independent datum (独力基准)。

在仪器所带的资料“Exploring Surface Texture(探究表面形貌)”中,有导头用处的论述。

一个独力的精确的直线基准,是与Form Talysurf 系列仪器的横向单元一致的。

一个独力直线基准的用处是,使得所有不规则表面的粗糙度,波纹度和形状可以被测量和分析。

测杆的垂直测量围(即,测针所允许的最大偏斜)限制了分析零件形状的围。

X-X横向基准最小二乘圆弧被测表面的半径可由与测量数据相匹配的一个圆弧而决定。

该位置使得从轮廓到该圆弧的线的偏差的平方和未最小。

然后可计算出该圆弧的半径。

其使用的原理类似于计算最小二乘直线时所讲的。

绝对最小二乘圆弧使用该选项,使得形状误差可用用户指定的参考半径来计算。

当选择LS Arc Absolute(绝对最小二乘圆弧)时,用户必须在分析对话框的形状栏里,按Form Qualifiers ox(形状限定)输入参考半径的尺寸LS半径的图形解释最小二乘圆弧(r-r)的位置使得下式的和为最小,然后可以计算出半径R,未滤波参数未滤波参数-概述原始轮廓数据(有时称为未滤波数据)含有所有被测表面的粗糙度和波纹度特性,它只随采集数据的方法和仪器的校准修正系数而改变。

这些数据真正代表什么,将取决于数据的采集方法。

影响它的几个因素是:测针顶尖的尺寸和形状。

由于测针顶尖影响着表面特性并防碍(由于其尺寸或形状)对实际轮廓表面的全面跟踪,因此需要对表面数据进行一些滤波。

当用合适的测针进行表面形貌的测量时,这种影响通常是很小的。

当测量形状时,有时需首选一个长的测针,目的是为了在分析时剔除一些表面形貌特性。

测量时用合适的刹车块或不用刹车块(与独立基准有关)。

使用刹车块的仪器仅用作测量表面形貌(粗糙度和波纹度)。

形状测量必需以一个独立的直线基准为参考。

被测表面的长度当测量一个表面的长度时,测量长度应该与实际是一样长的。

这样能得到最合适的形状,并提供足够的数据量进行精确的分析。

用Form Talysurf 系列仪器评价的未滤波参数有:Pa, Pq, Pp, Pv, Pt, Psk, Pku, Pda, Pdq, Plq, PS, PSm, Pz, Pz(JIS), Plo, Pc, Pdc, Pmr,Pmr(c), PHSC, PPc, Pvo标准BS ISO 3274:1996包含了接触(测针)仪器的名词特性。

标准ISO 4287: 1997包含了表面形貌:轮廓方法-术语,定义和表面形貌参数。

轮廓高度幅值曲线高度幅值曲线说明了在测量轮廓数据中出现相同高度的峰的频率。

从这个图可得到原始轮廓,粗糙度和波纹度的分析,这与在材料比中的分析显示是一致的。

轮廓高度幅值曲线的解释A =材料比曲线B =幅值分布曲线C =峰的幅值D =等幅值峰出现的个数。

PaPa是普遍认可的,最常用的粗糙度国际参数。

它是指在评价长度,轮廓偏离平均线的算术平均。

Pa的图形解释从数学意义讲,Pa是在全部评价长度,轮廓偏离平均线的算术平均值。

形象化说明Pa来源的方法如下:A 平均线X-X与测量数据相匹配B 在评价长度l n且在平均线以下的轮廓部分,被翻转然后放在该平均线以上。

C Pa 是在原始平均线以上,轮廓的平均高度。

Pa的局限性不同特性的表面可能产生相同的Pa值。

Pc 基础轮廓的原始平均高度。

该参数是在评价长度,基础轮廓的高度的平均值。

在评估长度,最大峰-谷距的10%被作为峰高的辨别标准,而间隔是评价长度的1%。

这些参数被定义在ISO 4287 1997 para.4.1.4中。

Pc的图形解释原始算术平均斜率是被测轮廓数据的算术平均斜率(与所选的基准线有关)。

也就是,在评价长度,轮廓变化速率绝对值的算术平均。

这里,dz/dx是轮廓的瞬时斜率。

Slope的图形解释估计轮廓局部斜率的公式,在ISO 4287中有详细说明:上述公式所用滤波器的采样间隔在ISO 3274 para 3.2.9中有规定,这里zi是第i 个轮廓点的高度,是相邻轮廓点之间的间距。

Pdc (Pdc) 选择分开轮廓的水平面是两个材料比水平面之间的垂直距离。

该参数被定义在ISO 4287 1997 para 4.5.3中。

Pdc (Pdc)的图形解释两个材料比值之间的距离(Pmr0 和 Pmr1)。

Pdq 原始均方根是在评价长度,纵坐标斜率dz/dx的均方根值。

这里,Θ是在任意点的轮廓的斜率,这些参数被定义在ISO 4287 1997 para. 4.4.1中。

请看Pda斜率的图形解释。

PHSC 原始高点计数高点计数参数量化了全部轮廓峰(在评价长度)的数量,这些峰指超过设置的与平均线平行的参考线边框之上的峰。

该参考线可被设置为在最高峰以下所选择的深度,在平均线之下或之上所选择的距离。

高点计数的图形解释A = 参考线B = 平均线ln = 评价长度D = 未计数的峰Pku-原始峰度-概率密度函数Pku (Pku)-峰度是轮廓高度幅值曲线关于评价线的形状(尖锐程度)的度量,它被评价为:在评价长度,纵坐标值Z(x)的四次方与PRq(Pq)的四次幂的商。

Pku的应用该参数很大程度上受到孤峰或孤谷的影响,并且如果被测表面的尖峰均匀地分布在平均线之上和之下,这些孤峰或孤谷可被发现。

它提供了表面轮廓的尖峰的测量,并且当考虑到表面的摩擦力时,它可被用在与偏斜参数(Psk)有关的场合。

Pku的图形解释如果表面数据的轮廓高度幅值分布曲线均匀地被高斯形状而平衡,那么该表面的Pku分析会产生一个近似三(3)的值。

相关文档
最新文档