预应力钢绞线坐标
预应力钢绞线要求规范
预应力钢绞线规预应力钢绞线规预应力砼连续梁结构整体性好、大跨度,减少桥面伸缩缝个数,在高速公路和城市快速路工程中得到广泛应用。
本文就几座预应力砼连续梁桥谈一下长束预应力质量控制的几个关键因素。
一、预应力钢绞线安装预应力钢束的孔道位置、钢绞线是否发生缠绞现象是质量控制的关键。
孔道位置不准确,改变了结构受力状态,如果曲线孔道标高变化段不圆顺还会增大预应力孔道摩阻损失,因此孔道位置准确与否直接关系到施工的预应力度能否与设计的预应力度相吻合,对结构安全和工程使用阶段是否会产生裂缝都有很深的影响。
多根钢绞线如果缠绞在一起,拉时各根钢绞线受力不均匀,增大了钢绞线之间的摩阻,造成预应力损失加大。
实际施工中很多施工单位并不重视这些细部工作,固定钢束的井字架位置不准确或不按照规和设计规定的间距布设,必然造成钢束位置与设计不符、有的还会在曲线变化段产生急弯(半径太小)或孔道局部偏差过大。
目前仍有小部分队伍使用人工进行穿束,尤其对多根钢绞线的长束重量很大,人工穿束费时费力,容易造成工人转动钢束穿进,使钢绞线互相缠绞在一起。
市某快速干道(高架桥)工程四标段共有九联连续梁,施工时固定钢束用的井字架间距为1米,梁高1.6米,因此竖弯变化量不大,间距满足要求,但是施工时由于工人工作不认真使井子架坐标不准确,并且采用人工穿束,束长在100米到120米不等。
拉时发现大部分钢束的伸长值与理论伸长值不符(有的比理论值少11%),拉过程中经常听到部钢束缠绞在一起后被拉开的声音,当时立即对设备进行检定,在设备没有问题的情况下设计单位、监理单位和施工单位开始对问题进行分析,其中钢绞线计算伸长值时采用实测弹性模量,μ、κ取值按规推荐值。
设计单位对结构进行重新验算,最后确定在保证拉力的情况下,伸长值误差保证在12%以,无疑降低了结构安全系数。
二、预应力钢绞线拉1、拉控制应力与伸长值拉控制应力能否达到设计规定值直接影响预应力效果,因此拉控制应力是拉中质量控制的重点,拉控制应力必须达到设计规定值,但是不能超过设计规定的最大拉控制应力。
GB/T 5224-1995预应力混凝土用钢绞线
预应力混凝土用钢绞线GB/T 5224-1995国家技术监督局1995-10-10批准1996-03-01实施前言本标准是根据国际标准ISO 6934—1:1991(E)与ISO 6934—4:1991(E),对GB 5224—85进行修定的,技术内容等效采用ISO 6934—4:1991(E).本标准在GB 5224—85的基础上,增加了1×2,1×3两种结构钢绞线,1×7结构钢绞线也按ISO 6934—4:1991(E)分成“标准型"和“模拔型”,提高了强度级别,同时也保留了某些重点用户的专用产品,重新制定了伸长率试验方法,并对电接头做了新的规定.本标准从生效之日起,代替GB 5224—85,但GB 5224-85可延长三年使用。
本标准的附录A、附录B都是标准的附录。
本标准由中华人民共和国冶金工业部提出。
本标准冶金工业部信息标准研究院归口.本标准由天津市预应力钢丝一厂,新华金属制品有限公司负责起草.本标准主要起草人:吴汝霖、段建华、彭继民、王芳、翟巧玲、封文华.本标准1985年7月18日首次发布。
1 范围本标准规定了预应力混凝土用钢绞线的尺寸、外形、重量、技术要求、试验方法、检验规则、包装、标志和质量证明书等。
本标准适用于由圆形断面钢丝捻成的做预应力混凝土结构、岩土锚固等用途的钢绞线。
2 引用标准下列标准所包含的条文,通过在本标准中引用而构成为本标准的条文。
本标准出版时,所示版本均为有效。
所有标准都会被修订,使用本标准的各方应探讨、使用下列标准最新版本的可能性.GB 228—87 金属拉伸试验方法GB/T 5223-1995 预应力混凝土用钢丝3 分类、代号3.1 预应力钢绞线按捻制结构分为:分类结构用两根钢丝捻制的钢绞线1×2用三根钢丝捻制的钢绞线1×3用七根钢丝捻制的钢绞线1×73.2 预应力钢绞线按其应力松弛性能分为:应力松弛级别代号Ⅰ级松弛ⅠⅡ级松弛Ⅱ4 尺寸、外形、重量及允许偏差4.1 预应力钢绞线的截面形状如图1、图2、图3所示.图1 1×2结构钢绞线图2 1×3结构钢绞线图3 1×7结构钢绞线Dg—钢绞线直径,mm;d0-中心钢丝直径,mm;d-外层钢丝直径,mm;A—1×3结构钢绞线测量尺寸,mm注:图1、图2、图3预应力钢绞线截面图。
预应力钢绞线施工常见问题及其处理方案
预应力钢绞线施工常见问题及其处理方案作者:齐栋李涌来源:《建筑遗产》2013年第13期摘要:预应力钢绞线施工在我国各类桥梁施工中有着广泛应用,但在施工中有时会遇到钢绞线伸长量不足、滑丝、断丝、锚下开裂等情况,本文结合贵广铁路桂林北至定江左右客车联络线特大桥现浇梁施工提出了对预应力钢绞线施工中常见问题的处理方案,对确保预应力结构安全使用、最大限度发挥结构设计功能和使用寿命提供了经验。
关键词:预应力;钢绞线;常见问题;处理方案1 工程概况贵广铁路桂林北至定江左右客车联络线特大桥采用(62+104+62)m连续梁跨桂海高速公路,采用2-68m系杆拱跨桂黄公路。
本桥连续梁采用挂篮悬臂灌注法施工,系杆拱采用先梁后拱的施工方式,梁部采用支架现浇。
在现浇梁预应力钢绞线施工过程中出现了个别张拉束钢绞线伸长量不足、滑丝、断丝、锚下开裂等情况。
这些问题如不能有效预防和处置将直接关系到预应力筋的整体受力和梁体寿命,因此必须对这些质量问题进行分析,采取有效处理方案来保证工程质量。
2 预应力钢绞线伸长量不足2.1预应力张拉情况2-68m系杆拱梁部纵向预应力束采用9-15.2钢绞线,塑料波纹管成孔,内径70mm,外径83mm。
预应力束布置在顶、底板内,共设通长束51束,采用250吨张拉千斤顶单端张拉。
设计要求预应力张拉采用张拉力与伸长量双控,以张拉力为主,实际伸长量与设计伸长量差值控制在6%以内。
在张拉到底板束编号为N11-3左束时,张拉过程中听到了“嘭、嘭”的声音,结果发现钢绞线伸长量为211mm,仅为设计伸长量423mm的一半。
2.2原因分析造成钢绞线伸长量不足的原因很多,有千斤顶标定不准确或预应力管道定位不准确的原因,有预应力管道漏浆、堵塞的原因,有钢绞线缠绕增大摩阻力力的原因,有时也有可能设计计算使用的钢绞线的弹模值与实际使用的弹模值不相同的的原因,因此应及时分析原因,现从以下因素逐步排查寻找原因。
2.2.1检查张拉设备标定千斤顶及其配套的油表均在有效标定范围内,为保险起见,重新对千斤顶及配套油表进行标定,标定结果显示同原标定结果基本相同,可以排除是千斤顶和油表的问题。
17·8预应力钢绞线技术参数
17·8预应力钢绞线技术参数1. 导言预应力钢绞线是一种普遍应用于工程建设中的材料,其技术参数对于工程项目的安全性和耐久性至关重要。
本文将围绕17·8预应力钢绞线的技术参数展开讨论。
2. 17·8预应力钢绞线概述17·8预应力钢绞线是一种具有高强度和良好延展性的材料,广泛用于桥梁、建筑和水利工程等领域,用于增强混凝土构件的承载能力。
其主要材质为优质的高强度低松劲度的钢丝,经过预应力成型,其技术参数对于工程项目的质量和安全具有重要的影响。
3. 技术参数在17·8预应力钢绞线的应用中,其技术参数是至关重要的一环。
主要包括以下几个方面:- 强度参数:包括抗拉强度、屈服强度等。
这些参数直接影响着预应力钢绞线在工程中的承载能力和抗拉能力。
- 延展性参数:包括伸长率等。
良好的延展性能可以保证预应力钢绞线在受力过程中不易断裂,具有较高的安全性。
- 相对弹性模量:这是一个重要的弹性参数,可以反映预应力钢绞线在受力变形过程中的性能表现。
- 粘结性能参数:预应力钢绞线与混凝土的粘结性能对于工程结构的耐久性和安全性至关重要,需要进行严格的检测和评估。
4. 技术参数的重要性技术参数的重要性不言而喻。
它们直接影响着预应力钢绞线在工程中的实际表现,对于工程项目的安全性和耐久性具有决定性的作用。
合格的技术参数可以保证预应力钢绞线在工程中发挥最佳的作用,提高工程的质量和安全指数。
5. 技术参数的检测与评估为了保证17·8预应力钢绞线的技术参数符合要求,需要进行严格的检测与评估。
这包括对其强度、延展性、弹性模量以及与混凝土的粘结性能等进行全面的测试和分析,确保其达到国家标准和工程要求。
6. 结语17·8预应力钢绞线的技术参数对于工程项目的质量和安全具有重要的意义。
通过严格的检测与评估,确保其符合要求,可以有效提高工程结构的安全性和耐久性,对于工程建设具有重要的意义。
【精选】预应力钢束的布置
预应力钢束的布置 1)跨中截面及锚固端截面的钢束位置①.对于跨中截面,在保证布置预留管道构造要求的前提下,尽可能使钢束群重心的偏心距大些。
本算例采用内径70mm ,外径77mm 的预留铁皮波纹管,根据《公预规》9.1.1条规定,管道至梁底和梁侧净距不应小于3cm 及管道直径1/2。
根据《公预规》9.4.9条规定,水平净距不应小于4cm 及管道直径的0.6倍,在竖直方向可叠置。
根据以上规定,跨中截面的细部构造如图2-12所示。
由此可直接得出钢束群重心至梁底距离为:cm0.182)0.92(12.55.12=++=p a②.对于锚固端截面,钢束布置通常考虑下述两个方面:一是预应力钢束合力重心尽可能靠近截面形心,是截面均匀受压;二是考虑锚头布置的可能性,以满足张拉操作方便的要求。
为使施工方便,全部3束预应力钢筋均锚于梁端,如图2-12所示。
钢束群重心至梁底距离为:cm5931409550=++=p a图2-12 钢束布置图(尺寸单位:cm )a ) 预制梁端部;b ) 钢束在端部的锚固位置;c ) 跨中截面钢束位置2)其它截面钢束位置及倾角计算 ①钢束弯起形状、弯起角及其弯曲半径采用直线段中接圆弧线段的方式弯曲;为使预应力钢筋的预加力垂直作用于锚垫板,N1、N2和N3弯起角05.7=θ;各钢束的弯起半径为:mm R N 800001=;mm R N 250002=;mm R N 250003=。
由图2-12 a )可得锚固点到支座中心的水平距离xi a 为:cm 2535)tan7-(50-72a x321====x x a a②钢束各控制点位置的确定以N3号钢束为例,其起弯布置如图2-13所示。
图2-13 曲线预应力钢筋布置图(尺寸单位:mm )由0cot θ⋅=c L d 确定导线点距锚固点的水平距离mm 28485.7cot )125500(=⨯-= d L由)2/tan(02θ⋅=R L b 确定弯起点至导线点的水平距离 mm 163975.3tan 2500002=⨯=b L所以弯起点至锚固点的水平距离为mm 4486163928482=+=+=b d w L L L则弯起点至跨中截面的水平距离为mm L x w k 10204448614690)2502/29380(=-=--=根据圆弧切线的性质,图中弯止点沿切线方向至导线点的距离与弯起点至导线点的水平距离相等,所以弯止点至导线点的水平距离为mm 16255.7cos 1639cos 0021=⨯=⋅=θb b L L故弯止点至跨中截面的水平距离为mm 13468)1639162510204()(21=++=++b b k L L x同理可以计算N1、N2的控制点位置,将各钢束的控制参数汇总与表2-12。
钢绞线应力应变关系
5.预应力钢材应力—应变曲线和应力松弛(1) 应力—应变曲线碳素钢丝或钢绞线均属硬钢,其应力—应变曲线见下图。
当钢丝拉伸到超过比例极限σ p ( 习惯上采用残余应变为0.01% 时的应力) 后,σ-ε 关系呈非线性变化,没有明显的屈服点。
当钢丝拉伸超过σ 0.2 ( 残余应变为0.2%) 后,应变ε 增加较快;当拉伸至最大应力σ b 时,应变ε 继续发展,在σ-ε 曲线上呈现为一水平段,然后断裂。
(2) 应力松弛应力松弛是指钢材受到一定的张拉力之后,在长度保持不变的条件下,钢材的应力随时间的增长而降低的现象,其降低值称为应力松弛损失。
产生应力松弛的原因主要是由于金属内部位错运动使一部分弹性变形转达化为塑性变形引起的。
预应力钢材的松弛试验,应按国际预应力混凝土协会 (FIP) 等单位编制的《预应力钢材等温松弛试验实施规程》进行。
试件的初应力取0.6 σ b 、 0.7 σ b 和 0.8 σb ,环境温度为20 ± 1 ℃ ,在松弛试验机上分别读出不同时间的松弛损失率,试验应持续 1000h或持续一个较短的期间推算至1000h 的松弛率。
下图示出预应力钢丝和热处理钢筋的应力松弛试验算据,其松弛率与时间、钢种、温度的关系如下:①应力松弛初期发展较快,第一小时相当于1000h的15%~35%,以后逐渐减慢。
钢丝应力松弛损失率R t = A lgt+ B ,与时间t有较好的对数线性关系。
一年松弛损失率相当于1000h的12.5倍,50年松弛损失率为1000h的1.725倍;②钢丝和钢绞线的应力松弛率比热处理钢筋和精轧螺纹钢筋大;③初应力大,松弛损失也大。
当σi>0.7σb 时,松弛损失率明显增大,呈非线性变化;④随着温度的升高,松弛损失率急剧增加。
根据国外试验资料,40°C时1000h松弛损失率约为20°的1.5倍。
预应力钢材的应力松弛试验数据①一次张拉程序0→ σ i ;②超张拉程序;③超张拉程序0→1.03σi减少松弛损失的措施为:a. 采取超张拉程序比一次张拉程序0→ σ i,可关少松弛损失10%;也可采用0→1.03 σ i 超张拉程序,松弛损失率虽然增大了,但剩余预应力仍比0→ σ i 程序大。
预应力混凝土用钢绞线
预应力混凝土用钢绞线1 范围本标准规定了预应力混凝土用钢绞线的分类、尺寸呢、外形、质量及允许偏差、技术要求、试验方法、检验规则、包装、标志和质量证明书等。
本标准适用于由冷拉光园钢丝及刻痕钢丝捻制的用于预应力混凝土结构的钢绞线(以下简称钢绞线)。
2 规范性引用文件下列文件中的条款通过本标准的引用而成为本标准的条款。
凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否使用这些文件的最新版本。
凡是不注日期的引用文件,其最新版本适用于本标准。
GB/T 228 金属材料室温拉伸试验方法GB/T 5223 预应力混凝土用钢丝GB/T 10120—1996 金属应力松弛试验方法GB/T 175005 钢及钢产品交货一般技术要求YB/T 146 预应力钢丝及钢绞线用热轧盘条YB/T 170 制丝用非合金钢盘条3 术语和定义下列术语和定义适用于本标准3.1标准型钢绞线standard strand由冷拉光园钢丝捻制成的钢绞线。
3.2刻痕钢绞线indented strand由刻痕钢丝捻制成的钢绞线。
3.3模拔型钢绞线compact strand捻制后再经冷拔成的钢绞线。
3.4公称直径nominal diameter钢绞线外接圆直径的名义尺寸。
3.5稳定化处理stabilizing treatment为减少应用时的应力松弛,钢绞线在一定张力下进行的短时热处理。
4 分类和标记4.1 分类与代号钢绞线按结构分为5类,其代号为:用两根钢丝捻制的钢绞线1×2用三根钢丝捻制的钢绞线1×3用三根刻痕钢丝捻制的钢绞线1×3 I用七根钢丝捻制的标准型钢绞线1×7用七根钢丝捻制又经过模拔的钢绞线(1×7)C4.2 标记4.2.1 标记内容按本标准交货的产品标记应包括下列内容:预应力钢绞线,结构代号,公称直径,强度级别,标准号。
后张法钢绞线理论伸长值计算公式说明及计算示例
后张法钢绞线理论伸长值计算公式说明及计算示例后张法预应力钢绞线在张拉过程中,主要受到以下两方面的因素影响:一是管道弯曲影响引起的摩擦力,二是管道偏差影响引起的摩擦力,导致钢绞线张拉时,锚下控制应力沿着管壁向梁跨中逐渐减小,因而每一段的钢绞线的伸长值也是不相同的。
《公路桥梁施工技术规范》(JTJ 041-2000)中关于预应筋伸长值的计算按照以下公式:ΔL=(1)Pp=(2)式中:ΔL—各分段预应力筋的理论伸长值(mm);Pp—各分段预应力筋的平均张拉力,注意不等于各分段的起点力与终点力的平均值(N);L—预应力筋的分段长度(mm);Ap—预应力筋的截面面积(mm2);Ep—预应力筋的弹性模量(Mpa);P—预应力筋张拉端的张拉力,将钢绞线分段计算后,为每分段的起点张拉力,即为前段的终点张拉力(N);θ—从张拉端至计算截面曲线孔道部分切线的夹角之和,分段后为每分段中各曲线段的切线夹角和(rad);x—从张拉端至计算截面的孔道长度,整个分段计算时x等于L(m);k—孔道每束局部偏差对摩擦的影响系数(1/m),管道弯曲及直线部分全长均应考虑该影响;μ—预应力筋与孔道壁之间的磨擦系数,只在管道弯曲部分考虑该系数的影响。
从公式(1)可以看出,钢绞线的弹性模量Ep是决定计算值的重要因素,它的取值是否正确,对计算预应力筋伸长值的影响较大。
Ep的理论值为Ep=(1.9~1.95)×105Mpa,而将钢绞线进行检测试验,弹性模量则常出现Ep’=(1.96~2.04)×105Mpa的结果,这是由于实际的钢绞线的直径都偏粗,而进行试验时并未用真实的钢绞线面积进行计算,采用的是偏小的理论值代入公式进行计算,根据公式Ep=可知,若Ap 偏小,则得到了偏大的Ep ’值,虽然Ep ’并非真实值,但将其与钢绞线理论面积相乘所计算出的ΔL 却是符合实际的,所以要按实测值Ep ’进行计算。
公式(2)中的k 和μ是后张法钢绞线伸长量计算中的两个重要的参数,这两个值的的大小取决于多方面的因素:管道的成型方式、力筋的类型、表面特征是光滑的还是有波纹的、表面是否有锈斑,波纹管的布设是否正确,偏差大小,弯道位置及角度等等,各个因素在施工中的变动很大,还有很多是不可能预先确定的,因此,摩擦系数的大小很大程度上取决于施工的精确程度。
钢绞线伸长量的计算方法
(一)结构设计形式第五联现浇预应力箱梁采用单箱三室直腹板断面,梁高1.6m,混凝土设计标号为C50。
纵向预应力束采用低松弛钢绞线配OVM15-15型锚具和OVM15-15L型连接器,钢绞线N1、N2、N3、N7、N8、N9采用单端张拉,N4、N5、N6采用双端张拉,横向预应力束采用低松弛钢绞线配OVM15-15型锚具和OVM15-15P型固定P锚,钢绞线N1、N2采用单端张拉。
(二)后张法钢绞线理论伸长值计算公式说明及计算示例后张法预应力钢绞线在张拉过程中,主要受到以下两方面的因素影响:一是管道弯曲影响引起的摩擦力,二是管道偏差影响引起的摩擦力,导致钢绞线张拉时,锚下控制应力沿着管壁向梁跨中逐渐减小,因而每一段的钢绞线的伸长值也是不相同的。
《公路桥梁施工技术规范》(JTJ 041-2000)中关于预应筋伸长值的计算按照以下公式:ΔL=(1)Pp=(2)式中:ΔL—各分段预应力筋的理论伸长值(mm);Pp—各分段预应力筋的平均张拉力,注意不等于各分段的起点力与终点力的平均值(N);L—预应力筋的分段长度(mm);Ap—预应力筋的截面面积(mm2);Ep—预应力筋的弹性模量(Mpa);P—预应力筋张拉端的张拉力,将钢绞线分段计算后,为每分段的起点张拉力,即为前段的终点张拉力(N);θ—从张拉端至计算截面曲线孔道部分切线的夹角之和,分段后为每分段中各曲线段的切线夹角和(rad);x—从张拉端至计算截面的孔道长度,整个分段计算时x等于L(m);k—孔道每束局部偏差对摩擦的影响系数(1/m),管道弯曲及直线部分全长均应考虑该影响;μ—预应力筋与孔道壁之间的磨擦系数,只在管道弯曲部分考虑该系数的影响。
从公式(1)可以看出,钢绞线的弹性模量Ep是决定计算值的重要因素,它的取值是否正确,对计算预应力筋伸长值的影响较大。
Ep的理论值为Ep=(1.9~1.95)×105Mpa,而将钢绞线进行检测试验,弹性模量则常出现Ep’=(1.96~2.04)×105Mpa的结果,这是由于实际的钢绞线的直径都偏粗,而进行试验时并未用真实的钢绞线面积进行计算,采用的是偏小的理论值代入公式进行计算,根据公式Ep=可知,若Ap偏小,则得到了偏大的Ep’值,虽然Ep’并非真实值,但将其与钢绞线理论面积相乘所计算出的ΔL却是符合实际的,所以要按实测值Ep’进行计算。
预应力钢束的估算与布置
预应力束布置
预应力束布置的具体规定
(3)后张法预应力混凝土构件,其预应力管道的混 凝土保护层厚度,应符合《公路桥规》的下列要求: 直线形预应力钢筋的最小混凝土保护层厚度不应小于 钢筋公称直径,后张法构件预应力直线形钢筋不应小 于管道直径的1/2且应满足下表规定:
(4)预应力钢筋弯起点的确定: a)从受剪考虑,应提供一部分抵抗外荷载剪力的预
剪力。但实际上,受弯构件跨中部分的肋部混凝土已 足够承受荷载剪力,因此一般是根据经验,在跨径的 三分点到四分点之间开始弯起。
b)从受弯考虑,由于预应力钢筋弯起后,其重心线 将往上移,使偏心距变小。即预加力弯矩将变小。因 此,应满足预应力钢筋弯起后的正截面的抗弯承载力 要求。预应力钢筋束的弯起点尚应考虑斜截面抗弯承 载力要求。即保证钢筋束弯起后斜截面上的抗弯承载 力,不低于斜截面顶端所在的正截面抗弯承载力。
(4)按计算需要设置预拱度时,预留管道也应同时 起拱。
预应力束布置
预应力束布置的注意事项 (1)应选择适当的预应力束的型式与锚具型式 (2)应力束的布置要考虑施工的方便 (3)预应力束的布置,既要符合结构受力的要求,又
要注意在超静定结构体系中避免引起过大的结构次 内力。
(4) 预应力束的布置,应考虑材料经济指标的先进性 (5) 预应力束应避免合用多次反向曲率的连续束 (6) 预应力束的布置,不但要考虑结构在使用阶段的
预应力束布置
预应力束布置的具体规定
后张法构件
(1)在靠近端支座区段横向对称弯起,尽可能沿梁端 面均匀布置,同时沿纵向可将梁腹板加宽。在梁端部
附近,设置间距较密的纵向钢筋和箍筋。并符合T形 和箱形梁对纵向钢筋和箍筋的要求。
预应力砼用钢绞线
预应力砼用钢绞线1.现行标准:GB/T 5224-2014本标准代替GB/T5224-2003《预应力混凝土用钢绞线》,与GB/T5224-2003相比主要技术内容变化如下:—增加了19丝钢绞线类别、规格、强度级别;—增加了7丝钢绞线的规格;—规定了最大力的最大值,取消供方每一次交货批钢绞线的实际强度不能高于其抗拉强度级别200MPa;—将松弛试验初始力由特征最大力百分比改为实际最大力百分比,增加如无特殊要求只进行初始为70%实际最大力Fma的松弛试验,取消原初始力为60%最大力的要求;—0.2%屈服力F po.2值由不小于整根钢绞线公称最大力Fm的90%改为应在整根钢绞线实际最大力Fma的88%~95%范围内;—增大了部分规格钢绞线的盘径,增加重量偏差要求;—增加了钢绞线特征值附录。
本标准使用重新起草法参考ISO 6934-4;1991《预应力混凝土用钢第4 部分:钢绞线》编制,与ISO 6934 第4 部分的一致性程度为非等效,主要差异如下:—增加了强度级别,调整了规格;—增加了刻痕钢绞线品种;—调整了屈强比范围;—规定了最大力的最大值;—增加了附录A。
2.1分类与代号钢绞线按结构分为8类。
其代号为:1)用两根钢丝捻制的钢绞线1X22)用三根钢丝捻制的钢绞线1X33)用三根刻痕钢丝捻制的钢绞线1X3I4)用七根钢丝捻制的标准型钢绞线1X75)用六根刻痕钢丝和一根光圆中心钢丝捻制的钢绞线1X7I6)用七根钢丝捻制又经模拔的钢绞线(1X7)C7)用十九根钢丝捻制的1+9+9西鲁式钢绞线1X19S8)用十九根钢丝捻制的1+6+6/6瓦林吞式钢绞线1X19W4.2 标记4.2.1 标记内容按本标准交货的产品标记应包含下列内容:a)预应力钢绞线;b)结构代号;c)公称直径;d)强度级别;e)标准编号。
4.2.2 标记示例示例1:公称直径为15.20mm,抗拉强度为1860MPa的七根钢丝捻制的标准型钢绞线标记为:预应力钢绞线1X7-15.20-1860-GB/T 5224—2014示例2:公称直径为8.70mm,抗拉强度为1720MPa的三根刻痕钢丝捻制的钢绞线标记为:预应力钢绞线1X3I-8.70-1720-GB/T 5224—2014钢丝捻制又经模拔的钢绞线标记为:预应力钢绞线(1X7)C-12.70-1860-GB/T 5224—2014示例4:公称直径为21.8mm,抗拉强度为1860MPa的十九根钢丝捻制的西鲁式钢绞线标记为:预应力钢绞线1X19S-21.80-1860-GB/T 5224—20145订货内容按本标准订货的合同应包含以下主要内容:a)本标准编号;b)产品名称;c)强度级别;d)结构代号;e)钢绞线尺寸、长度(或盘径)及重量(或数量、或盘重);f)用途;g)其他要求。
预应力砼用钢绞线
预应力砼用钢绞线1.现行标准:GB/T 5224-2014本标准代替GB/T5224-2003《预应力混凝土用钢绞线》,与GB/T5224-2003相比主要技术内容变化如下:—增加了19丝钢绞线类别、规格、强度级别;—增加了7丝钢绞线的规格;—规定了最大力的最大值,取消供方每一次交货批钢绞线的实际强度不能高于其抗拉强度级别200MPa;—将松弛试验初始力由特征最大力百分比改为实际最大力百分比,增加如无特殊要求只进行初始为70%实际最大力Fma的松弛试验,取消原初始力为60%最大力的要求;—%屈服力值由不小于整根钢绞线公称最大力Fm的90%改为应在整根钢绞线实际最大力Fma的88%~95%范围内;—增大了部分规格钢绞线的盘径,增加重量偏差要求;—增加了钢绞线特征值附录。
本标准使用重新起草法参考 ISO 6934-4;1991《预应力混凝土用钢第4 部分:钢绞线》编制,与ISO 6934 第 4 部分的一致性程度为非等效,主要差异如下:—增加了强度级别,调整了规格;—增加了刻痕钢绞线品种;—调整了屈强比范围;—规定了最大力的最大值;—增加了附录 A。
分类与代号钢绞线按结构分为8类。
其代号为:1)用两根钢丝捻制的钢绞线 1X22)用三根钢丝捻制的钢绞线 1X33)用三根刻痕钢丝捻制的钢绞线 1X3I4)用七根钢丝捻制的标准型钢绞线 1X75)用六根刻痕钢丝和一根光圆中心钢丝捻制的钢绞线1X7I6)用七根钢丝捻制又经模拔的钢绞线 (1X7)C7)用十九根钢丝捻制的1+9+9西鲁式钢绞线 1X19S8)用十九根钢丝捻制的1+6+6/6瓦林吞式钢绞线 1X19W标记标记内容按本标准交货的产品标记应包含下列内容:a)预应力钢绞线;b)结构代号;c)公称直径;d)强度级别;e)标准编号。
标记示例示例 1:公称直径为,抗拉强度为1860MPa的七根钢丝捻制的标准型钢绞线标记为:预应力钢绞线T 5224—2014示例 2:公称直径为,抗拉强度为1720MPa的三根刻痕钢丝捻制的钢绞线标记为:预应力钢绞线T 5224—2014钢丝捻制又经模拔的钢绞线标记为:预应力钢绞线(1X7)T 5224—2014示例4:公称直径为,抗拉强度为1860MPa的十九根钢丝捻制的西鲁式钢绞线标记为:预应力钢绞线T 5224—20145订货内容按本标准订货的合同应包含以下主要内容:a)本标准编号;b)产品名称;c)强度级别;d)结构代号;e)钢绞线尺寸、长度(或盘径)及重量(或数量、或盘重);f)用途;g)其他要求。
预应力钢绞线参数及计算公式汇总
预应力钢绞线参数及计算公式汇总参数:钢绞线抗拉强度标准值fpk=1860Mpa,弹性模量:Ep=1。
95*105Mpa,松弛率为2.5%,公称直径¢s=15。
2mm,钢绞线面积A=140mm2,管道采用预埋金属波纹管成孔且壁厚不小于0。
3mm.预应力筋平均张拉力按下式计算:p p=(p(1—e-(kx+µØ)))/kx+µØ式中:p p—-—预应力筋平均张力(N)。
p----—预应力筋张拉端的张拉力(N)。
X——--—从张拉端至计算截面的孔道长度(m)。
Ø—-—-—从张拉端至计算截面曲线孔道部分切线的夹角之和(rad)。
K—-———孔道每米局部偏差对摩擦的影响系数,参见附表G—8.µ-----预应力筋与孔道比壁的摩擦系数,参见附表G—8。
注:e=2。
71828,当预应力筋为直线时p p= p。
预应力筋的理论伸长值△L(mm)可按下式计算;△L =(p p *L)/A p*Ep式中:p p--—--预应力筋的平均张拉力(N),直线筋取张拉端的拉力,两端张拉的曲线筋,计算方法见上式.L---—---预应力筋的长度(mm)。
A p-—-——预应力筋的截面面积(mm²).Ep-—-—-—预应力筋的弹性模量(N/ mm²)。
附表G—8 系数K及µ值表注意事项:预应力筋张拉时,应先调整到初应力σ0该初应力宜为张拉控制应力σcom的10%~15%。
伸长值应从初应力时开始量测。
力筋的实际伸长值除量测的伸长值外,必须加上初应力以下的推算伸长值。
对后张法构件,在张拉过程中产生的弹性压缩值一般可省略。
预应力张拉实际伸长值△L(mm)=△L1+△L2式中:△L1-从预应力至最大张拉应力间的实测伸长值(mm)△L2—初应力以下的推算伸长值(MM),可采用相邻级的伸长值.。
预应力砼用钢绞线
预应力砼用钢绞线预应力砼用钢绞线1.现行标准:GB/T 5224-2014本标准代替GB/T5224-2003《预应力混凝土用钢绞线》,与GB/T5224-2003相比主要技术内容变化如下:—增加了19丝钢绞线类别、规格、强度级别;—增加了7丝钢绞线的规格;—规定了最大力的最大值,取消供方每一次交货批钢绞线的实际强度不能高于其抗拉强度级别200MPa;—将松弛试验初始力由特征最大力百分比改为实际最大力百分比,增加如无特殊要求只进行初始为70%实际最大力Fma的松弛试验,取消原初始力为60%最大力的要求;—0.2%屈服力F po.2值由不小于整根钢绞线公称最大力Fm的90%改为应在整根钢绞线实际最大力Fma的88%~95%范围内;—增大了部分规格钢绞线的盘径,增加重量偏差要求;—增加了钢绞线特征值附录。
本标准使用重新起草法参考 ISO 6934-4;1991《预应力混凝土用钢第4 部分:钢绞线》编制,与ISO 6934 第 4 部分的一致性程度为非等效,主要差异如下:—增加了强度级别,调整了规格;—增加了刻痕钢绞线品种;—调整了屈强比范围;—规定了最大力的最大值;—增加了附录 A。
2.1分类与代号钢绞线按结构分为8类。
其代号为:1)用两根钢丝捻制的钢绞线 1X22)用三根钢丝捻制的钢绞线 1X33)用三根刻痕钢丝捻制的钢绞线 1X3I4)用七根钢丝捻制的标准型钢绞线 1X75)用六根刻痕钢丝和一根光圆中心钢丝捻制的钢绞线1X7I6)用七根钢丝捻制又经模拔的钢绞线(1X7)C7)用十九根钢丝捻制的1+9+9西鲁式钢绞线1X19S8)用十九根钢丝捻制的1+6+6/6瓦林吞式钢绞线 1X19W4.2 标记4.2.1 标记内容按本标准交货的产品标记应包含下列内容:a)预应力钢绞线;b)结构代号;c)公称直径;d)强度级别;e)标准编号。
4.2.2 标记示例示例 1:公称直径为15.20mm,抗拉强度为1860MPa的七根钢丝捻制的标准型钢绞线标记为:预应力钢绞线1X7-15.20-1860-GB/T 5224—2014示例 2:公称直径为8.70mm,抗拉强度为1720MPa的三根刻痕钢丝捻制的钢绞线标记为:预应力钢绞线1X3I-8.70-1720-GB/T 5224—2014钢丝捻制又经模拔的钢绞线标记为:预应力钢绞线(1X7)C-12.70-1860-GB/T 5224—2014示例4:公称直径为21.8mm,抗拉强度为1860MPa的十九根钢丝捻制的西鲁式钢绞线标记为:预应力钢绞线1X19S-21.80-1860-GB/T 5224—20145订货内容按本标准订货的合同应包含以下主要内容:a)本标准编号;b)产品名称;c)强度级别;d)结构代号;e)钢绞线尺寸、长度(或盘径)及重量(或数量、或盘重);f)用途;g)其他要求。
预应力钢绞线规范标准[详]
预应力钢绞线规范预应力钢绞线规范预应力砼连续梁结构整体性好、大跨度.减少桥面伸缩缝个数.在高速公路和城市快速路工程中得到广泛应用。
本文就几座预应力砼连续梁桥谈一下长束预应力质量控制的几个关键因素。
一、预应力钢绞线安装预应力钢束的孔道位置、钢绞线是否发生缠绞现象是质量控制的关键。
孔道位置不准确.改变了结构受力状态.如果曲线孔道标高变化段不圆顺还会增大预应力孔道摩阻损失.因此孔道位置准确与否直接关系到施工的预应力度能否与设计的预应力度相吻合.对结构安全和工程使用阶段是否会产生裂缝都有很深的影响。
多根钢绞线如果缠绞在一起.张拉时各根钢绞线受力不均匀.增大了钢绞线之间的摩阻.造成预应力损失加大。
实际施工中很多施工单位并不重视这些细部工作.固定钢束的井字架位置不准确或不按照规范和设计规定的间距布设.必然造成钢束位置与设计不符、有的还会在曲线变化段产生急弯(半径太小)或孔道局部偏差过大。
目前仍有小部分队伍使用人工进行穿束.尤其对多根钢绞线的长束重量很大.人工穿束费时费力.容易造成工人转动钢束穿进.使钢绞线互相缠绞在一起。
沈阳市某快速干道(高架桥)工程四标段共有九联连续梁.施工时固定钢束用的井字架间距为1米.梁高1.6米.因此竖弯变化量不大.间距满足要求.但是施工时由于工人工作不认真使井子架坐标不准确.并且采用人工穿束.束长在100米到120米不等。
张拉时发现大部分钢束的伸长值与理论伸长值不符(有的比理论值少11%).张拉过程中经常听到内部钢束缠绞在一起后被拉开的声音.当时立即对设备进行检定.在设备没有问题的情况下设计单位、监理单位和施工单位开始对问题进行分析.其中钢绞线计算伸长值时采用实测弹性模量.μ、κ取值按规范推荐值。
设计单位对结构进行重新验算.最后确定在保证张拉力的情况下.伸长值误差保证在12%以内.无疑降低了结构安全系数。
二、预应力钢绞线张拉1、张拉控制应力与伸长值张拉控制应力能否达到设计规定值直接影响预应力效果.因此张拉控制应力是张拉中质量控制的重点.张拉控制应力必须达到设计规定值.但是不能超过设计规定的最大张拉控制应力。
装配式梁桥梁体预制及安装施工工艺方法要求(全面)
装配式梁桥梁体预制及安装施工工艺方法要求9、梁体预制本标段有25米、35米、40米三种形式后张预应力T梁,施工工艺流程如下:工艺方法要求如下:①台座设置:对原地面进行清理、整平,碾压密实达到路基基底处理的要求.为保证梁平面位置的准确性,模板支立和混凝土振捣时,梁的横向不发生移位,采用混凝土底座.台座主要由3米米厚钢板6厘米厚木板、混凝土支墩、混凝土底座及混凝土基础构成.钢板和木板作为制梁底模;混凝土支墩用来加固木底模;间隙用来穿法兰、螺栓,以加固两侧底侧模.台座顶面按设计要求设置预拱度 ,预拱度值按二次抛物线进行布设.②龙门吊设置:龙门吊走行轮采用双轮对电力牵引,可用作移梁、混凝土吊装和支立、拆除模板;上部用4片单层六四式军用梁,两片一组,中间拉开80厘米,在六四梁跨中用加强型三角及弦杆以提高抗弯能力;立柱采用八三轻墩杆件,结构形式为2×4式;吊梁滑轮组起吊能力设计为50吨、70吨、80吨三种形式龙门吊.③钢筋、钢绞线加工安装:采用钢筋切割机切断、弯筋机弯制成型,就地在梁台座处进行绑扎.在台座上精确放样,设置梁底预埋钢板,并放置与梁体同标号的砼垫块,以使钢筋与台座隔离.先绑扎马蹄部分纵向主筋和箍筋,后绑扎竖向和纵向腹筋.在绑扎时为提高骨架的稳定性和刚度 ,用钢管或Φ28钢筋作三角支撑,用Φ12钢筋加强腹板刚度 .钢绞线采用冷切割机械按照设计图纸下料,人工编束、穿束.④预应力孔道:制孔采用金属波纹管,在使用前进行仔细检查,确保波纹管没有锈包裹、油污、泥土、撞击、压痕、裂口等影响使用的问题.波纹管的安装以底模为基准,按预应力钢绞线曲线坐标直接量出相应点的高度 ,标在钢筋上,定出波纹管位置,将钢筋托架焊牢定位在箍筋上,用铁丝扎牢波纹管,直线段75厘米一道定位筋,曲线段加密,以防止在施工过程中发生位置改变.当波纹管的安装与钢筋发生妨碍时,调整钢筋位置,以保证预应力管道位置的准确.特别应注意使锚下垫板与预应力孔道中心保持垂直.在波纹管接头部位及其与锚垫板喇叭接头处,采取有效措施,保证其密封,严防漏浆.锚垫板,喇叭管及螺旋筋采用厂家供应的定型产品.⑤模板制作与安装:预制梁底模采用3米米钢模板,外模根据梁体外形尺寸和经计算所需要的刚度与强度 ,用钢材在标准加工厂制作.模板安装采用龙门吊完成,自中间向两端进行,调模时,由于模板比较规则,吊线垂靠模板底角的三角形木楔逐块调整竖直,模内尺寸由两端模板调整好后,中间模板依次对齐.立模顺序:涂脱模剂——粘接缝止浆海绵条——安装侧模——安装端模⑥砼的灌注:浇注混凝土前,对模板进行全面检查,确保波纹管,锚垫板,喇叭管,螺旋筋等位置准确,定位牢固.同时检查伸缩缝、护栏、支座等预埋件及预留泄水孔的位置和数量.砼在拌合站内集中拌制,运输车运输,输送泵或龙门吊提升灌注,平板式、插入式及附着式振捣器振捣.砼浇筑时采用从两端向中间同时对称、倾斜分层、一次到顶连续灌注的方法.砼经1:1斜坡向前推进做到斜向分层,分层厚度不大于30厘米,由于两端波纹管弯起,混凝土不宜下落,塌落度要控制在6~8厘米左右.另外应加强振动锚垫板部位使之密实,而且波纹管下面混凝土应加强振动,以免出现隔离缝.浇注顺序:马蹄部位——马蹄至最上层波纹管范围——腹板——桥面板.上面四部砼的浇筑均由两端向梁中部浇注,马蹄至波纹管范围的砼浇注完成后,即可拆除附着式振动器向梁中间移动以节约振动器.混凝土的振捣,以振动棒与附着式振动器相配合,在梁的两端布置在马蹄与弯起孔道部位,梁的中部振动器布置在马蹄,腹板以插入式振动棒为主.砼浇筑过程中应注意以下事项:a.下料要均匀、连续,不宜集中猛投而造成挤塞.在钢筋、孔道密集部位可短时间开动插入式振捣器辅助下料.b.砼的振捣:附着式振动器频率必须一致,以避免产生干扰,减小振动力.振捣器按梅花型布置,以便振捣均匀.振捣的时间以砼不再明显下沉,无气泡上升,砼表面出现均匀的薄层水泥浆为止,宜短时多次开动振动器,以减小振捣器的损坏.振捣的同时,应配合插钎排气.c.浇注过程中随时检查砼拌和质量,混凝土掺适量的减水剂,严格控制水灰比,以避免过大的收缩、徐变,保证砼的质量.d.每片梁作试件三组,标准养护作为梁体砼强度检验的依据,另做三组与梁体同条件养护试件,作为梁体拆模、张拉、吊装等工序强度控制的依据.e.在混凝土浇筑过程中应避免振捣棒触击波纹管使其破裂,造成堵塞事故.砼的养护:根据当地气候和梁体预制的工期安排,养护采用草袋覆盖洒水养护.根据试块抗压强度及混凝土性质对梁体洒水养护至少14天,梁体养护期间,使混凝土外露面处于润湿状态,直至达到规范规定要求.模板拆除:当梁体达到设计强度的 50%后,即可拆除模板.拆模时,自两端向中间进行,先将法兰螺栓卸掉,然后打掉落模木楔,通过挂于龙门吊上的倒链并用大锤配合将模板拆除,两侧同步进行.拆模时,严防碰撞梁体,并采取支撑措施,以免梁体倾倒.⑦预应力张拉:待梁体砼预制14天且强度达到100%后,40米T梁采用YCW250型千斤顶,25米T梁、35米T采用YCW150型千斤顶梁张拉.配精度 1.5级60米pa压力表.预应力张拉以应力控制为主,张拉伸长值校核,实际伸长值与理论伸长值之差控制在6%以内为合格,否则暂停张拉,待查明原因采取措施加以调整后,方可继续张拉.张拉采用两端张拉,对称分批进行,待终拉控制应力稳定后,锚固.张拉注意事项:a.张拉前检查梁体混凝土是否达到张拉强度 ,锚垫板下砼是否密实.清除锚垫板上的混凝土,并检查是否与孔道垂直,如超过3米米,则需加扁垫板补平,在锚垫板上标出锚杯安放位置.b.计算张拉吨位下的钢绞线理论伸长值计算按有关规定执行.编束时,保持每根钢绞线之间平行,不缠绕,每隔1.0~1.5米用20号铁丝绑扎一道,在每束的两端2.0米范围内保证绑扎间距不大于50厘米.c.张拉前对下列数据进行测定,锚口摩阻、孔道摩阻损失、混凝土强度及弹性模量.d.预应力钢绞线采用应力控制方法张拉时,应校核预应力钢绞线的伸长值,预应力钢绞线的实际伸长值,宜在初应力为10%σ时开始量测,但必须加上初con应力以下的推算伸长值,并扣除混凝土构件在张拉过程中的弹性压缩值.e.张拉顺序遵循对称分批的原则.(持荷2米in锚固).f.张拉程序 0—初应力—σcong.锚具用锚杯和夹片使用前应进行硬度试验;千斤顶、油泵、压力表按要求作定期校验;张拉系统使用前进行标定,张拉力按标定曲线取值或按回归方程计算h.张拉前认真检查张拉系统,做到安全可靠,千斤顶后禁止站人,并制定详细的安全措施.⑧压浆:管道压浆在预应力钢筋张拉完成和监理工程师同意压浆后立即进行,一般不超过14天.压浆设备为BW—250型压浆泵,砂浆搅拌机拌水泥浆,水泥浆标号不低于50号.压浆前检查、冲洗预应力孔道,并排除积水,用压缩空气吹干管道.灰浆要过筛,储放在浆桶内,低速搅拌并保持足够数量,使每根孔道压浆能一次连续完成.搅拌好的灰浆从灰浆泵由最低压浆孔压入水泥浆.压浆要缓慢、均匀,直至另一端有原浆冒出后封闭,最大压力状态稳定5分钟,压浆完毕后清除锚具表面污物.封端时,先凿毛洗净,布筋立模浇筑砼.⑨吊运:当梁体砼达到吊装要求时,吊运至存梁场.主梁吊运按兜托梁底起吊法考虑,不设吊环.吊点位置距梁端不大于1.0米,预制T梁横向刚度较小 ,吊运过程中平行匀速移动,倾斜角小于5度 ,防止出现扭偏.⑩存梁:在存梁处两端部位浇筑片石砼台座做梁支点,放梁.梁存放好后将梁的横隔板上的钢筋电焊在一起,至少点焊三处,以增加其横向稳定性,待吊梁时再行割断分离,每片梁的两侧加方木斜腿支撑.预制梁板存放不超过2个月,以免供度过大,预制梁板与现浇段结合部在砼终凝前彻底凿毛.10、预制梁架设、安装⑴T梁架设:根据本工程桥梁结构物地形及水文条件,计划在积善特大桥三明台、邵武台和下村特大桥邵武台安排三台江西南昌生产的 EBJ150型架桥机桥进行架设,待桥梁二、三队完成施工任务后再分别架设张坑和老虎坑大桥的 T梁.架设前,检测支座垫石顶面标高、平整度等项目,放出梁板端线、边线、支座位置十字线等,并复核锚栓孔位置,各项指标合格后,进行梁板架设.架设完毕,检测梁顶标高、位置及中线偏位等,超出规范规定的 ,必须进行调整.EBJ150型架桥机架梁施工工艺为:铺设轨道→拼装架桥机→前移落支腿→喂梁→天车吊梁→纵向移梁→落梁→横移梁→安装支座→落梁→松绳→结束.工艺方法要求如下:①铺设轨道送梁轨道轨枕用普通木枕,从预制厂直铺到桥头架桥机腹中,43型钢轨用夹板连接好,轨道要平顺.②组拼架桥机在轨道上铺设架桥机大梁,加固联结,并拼组加固框架和横连接系杆件.在大梁上拼装横梁,横梁上铺轨道,安装轨道桁车,并组拼电动慢速绞车.轨道桁车安装双轨缘接片.之后安装滑车组.起高架桥机,安装走行天车,并将大梁与走行车联为一体.经试运转后,吊重物试验,检查各部构造.③架桥机对位架桥机行走到位后,伸臂到1号墩顶,安装前腿再检查走行桁车吊钩是否到位.④架梁作业送梁到架桥机腹中,横梁后退,桁车把梁吊起向前运行,在向前运行时,把梁横移到预架梁位置.架梁顺序从两边向中间对称架设,架完一孔梁,绑扎钢筋浇筑绞缝砼,使整孔梁连接成整体后,再进行下一孔梁架设.自架桥机架完单幅一孔梁后,移动架桥机到下一孔位置进行架梁.当桥的单幅架完后,将架桥机移到邻幅,重复架梁.⑤拆除架桥机按与拼装顺序相反的顺序进行.11、T梁连续预制T梁安装就位后,将梁端部、横隔板侧面进行拉毛并清洗干净,以使新、老混凝土结合良好.按图纸规定连接梁端伸出钢筋及横隔板钢筋,布置墩顶部位梁的负弯矩区钢筋,连接墩顶部预应力筋的波纹管,安装预应力钢筋.浇筑梁端连续缝及横隔板混凝土,并进行养生,砼强度达到规定强度后,进行负弯矩区钢筋的预应力张拉和孔道压浆.①端部及横隔板施工施工前,将梁端部、横隔板侧面进行拉毛并清洗干净,以使新、老混凝土结合良好,连接连接区钢筋,绑扎横向钢筋,并设置接头板波纹扁管(负弯矩区采用70×22米米波纹扁管,事先在梁体预制时预埋,浇筑连续接头段时将对应的波纹管连接并作好防漏处理),立模,在日温度最低时,浇筑砼.②湿接缝砼施工采用吊模法,连续端0.2L范围内的梁板湿接缝砼先行浇注.③负弯矩张拉.0.2L范围内的梁板湿接缝砼强度达到100%设计强度后,进行梁体负弯矩预应力张拉,预应力筋张拉采用YC25千斤顶单根张拉.最后浇筑跨中剩余范围内梁板湿接缝砼.12、桥面铺装及附属⑴桥面铺装梁体连续完成后,进行砼桥面铺装施工.为了使铺装层与梁体结合好,梁顶已在现浇时拉毛.施工时只需清除表面浮皮,用水冲洗干净并安装好泄水管,绑扎桥面钢筋,最后浇筑桥面砼.桥面砼采用拌和站拌和,振动梁、平板式振动器振捣等常规方法进行施工.⑵防撞墙防撞墙施工放样直线段每10米一个点,曲线段视曲线半径的大小确定控制点的间距,保证线型.调整预埋筋,按设计要求接长钢筋,支立模板,安放预埋件,浇注砼.要特别注意底部砼的振捣,避免出现蜂窝、麻面.内、外侧模板采用定形钢模,加固方法是在桥面上预埋钢筋,通过预埋筋和支撑限位块固定.模板接缝用双面胶密封,以防漏浆,预埋件的位置和标高用经纬仪和水平仪精确定位,固定牢靠.⑶泄水管的安装在防撞墙和桥面砼施工时预留泄水管安装孔,在防水层施工前安装泄水管铸铁件.一般段在桥半幅的外侧设置铸铁泄水管,桥梁位于超高段时,泄水管设置在超高段内侧.⑷伸缩缝安装预制梁施工时,将伸缩缝预埋筋埋入梁体,间距、位置符合设计图纸要求.伸缩缝的安装严格按厂家和有关标准规定的工艺、标准进行,安装温度应符合设计要求.伸缩缝安装前对需湿接部分的砼表面凿毛处理,把伸缩缝安装在指定位置,调整至设计标高,最后按设计要求绑扎伸缩缝锚固钢筋,浇筑部分结构砼.。
预应力砼用钢绞线
预应力砼用钢绞线1.现行标准:GB/T 5224-2014本标准代替GB/T5224-2003《预应力混凝土用钢绞线》,与GB/T5224-2003相比主要技术内容变化如下:—增加了19丝钢绞线类别、规格、强度级别;—增加了7丝钢绞线的规格;—规定了最大力的最大值,取消供方每一次交货批钢绞线的实际强度不能高于其抗拉强度级别200MPa;—将松弛试验初始力由特征最大力百分比改为实际最大力百分比,增加如无特殊要求只进行初始为70%实际最大力Fma的松弛试验,取消原初始力为60%最大力的要求;—0.2%屈服力F po.2值由不小于整根钢绞线公称最大力Fm的90%改为应在整根钢绞线实际最大力Fma的88%~95%范围内;—增大了部分规格钢绞线的盘径,增加重量偏差要求;—增加了钢绞线特征值附录。
本标准使用重新起草法参考 ISO 6934-4;1991《预应力混凝土用钢第4 部分:钢绞线》编制,与ISO 6934 第 4 部分的一致性程度为非等效,主要差异如下:—增加了强度级别,调整了规格;—增加了刻痕钢绞线品种;—调整了屈强比范围;—规定了最大力的最大值;—增加了附录 A。
2.1分类与代号钢绞线按结构分为8类。
其代号为:1)用两根钢丝捻制的钢绞线 1X22)用三根钢丝捻制的钢绞线 1X33)用三根刻痕钢丝捻制的钢绞线 1X3I4)用七根钢丝捻制的标准型钢绞线 1X75)用六根刻痕钢丝和一根光圆中心钢丝捻制的钢绞线1X7I6)用七根钢丝捻制又经模拔的钢绞线(1X7)C7)用十九根钢丝捻制的1+9+9西鲁式钢绞线1X19S8)用十九根钢丝捻制的1+6+6/6瓦林吞式钢绞线 1X19W4.2 标记4.2.1 标记内容按本标准交货的产品标记应包含下列内容:a)预应力钢绞线;b)结构代号;c)公称直径;d)强度级别;e)标准编号。
4.2.2 标记示例示例 1:公称直径为15.20mm,抗拉强度为1860MPa的七根钢丝捻制的标准型钢绞线标记为:预应力钢绞线1X7-15.20-1860-GB/T 5224—2014示例 2:公称直径为8.70mm,抗拉强度为1720MPa的三根刻痕钢丝捻制的钢绞线标记为:预应力钢绞线1X3I-8.70-1720-GB/T 5224—2014钢丝捻制又经模拔的钢绞线标记为:预应力钢绞线(1X7)C-12.70-1860-GB/T 5224—2014示例4:公称直径为21.8mm,抗拉强度为1860MPa的十九根钢丝捻制的西鲁式钢绞线标记为:预应力钢绞线1X19S-21.80-1860-GB/T 5224—20145订货内容按本标准订货的合同应包含以下主要内容:a)本标准编号;b)产品名称;c)强度级别;d)结构代号;e)钢绞线尺寸、长度(或盘径)及重量(或数量、或盘重);f)用途;g)其他要求。
曲线预应力钢绞线夹角计算
曲线预应力钢绞线夹角计算
曲线预应力钢绞线的夹角计算可以通过以下公式来计算:
夹角(α)= arctan ((L1 - L2) / R)
其中,L1为曲线外侧的较长一侧钢绞线的长度,L2为曲线内侧的较短一侧钢绞线的长度,R为曲线半径。
这个计算公式基于以下假设:
1. 钢绞线是理想弹性体,没有发生塑性变形。
2. 钢绞线张力的分布是均匀的。
3. 夹角α是钢绞线的切线偏角。
请注意,这个计算公式只适用于简单的弯曲曲线,不适用于复杂的曲线形状。
复杂曲线形状的钢绞线夹角计算需要使用更复杂的方法。