七年级数学上册第五章单元测试题及答案

合集下载

浙教版数学七年级上册第5章《一元一次方程》单元测试卷【附解析】

浙教版数学七年级上册第5章《一元一次方程》单元测试卷【附解析】

浙教版七年级上册第5章《一元一次方程》单元测试卷满分100分班级__________姓名__________学号__________成绩__________一.选择题(共10小题,满分30分,每小题3分)1.已知下列方程:①x﹣2=;②3x﹣1=0;③2x=5x﹣5;④x2+2x﹣1=0;⑤x=8;⑥3x+2y=0.其中一元一次方程的个数是()A.2B.3C.4D.52.下列方程的解为x=1的是()A.3x+2=2x+3B.x+1=C.6=5﹣x D.2x﹣1=23.若a=b+2,则下面式子一定成立的是()A.a﹣b+2=0B.3﹣a=b﹣1C.2a=2b+2D.﹣=14.关于x的方程2x+5a=1的解与方程x+2=0的解相同,则a的值是()A.﹣1B.1C.D.25.方程|2x+1|=5的解是()A.2B.﹣3C.±2D.2或﹣36.要将等式﹣x=1进行一次变形,得到x=﹣2,下列做法正确的是()A.等式两边同时加B.等式两边同时乘以2C.等式两边同时除以﹣2D.等式两边同时乘以﹣27.已知一元一次方程﹣3=2x﹣1,则下列解方程的过程正确的是()A.去分母,得3(2﹣x)﹣3=2(2x﹣1)B.去分母,得3(2﹣x)﹣6=2x﹣1 C.去分母,去括号,得6﹣3x﹣6=4x﹣2D.去分母,去括号,得6+3x﹣6=2x+1 8.随着传统节日“端午节”临近,某超市决定开展“欢度端午,回馈顾客”的活动,将进价为120元一盒的某品牌粽子按标价的8折出售,仍可获利20%,则该超市该品牌粽子的标价为__元.()A.180B.170C.160D.1509.一项工程,甲单独做5天完成,乙单独做8天完成.若甲先做1天,然后甲、乙合作完成此项工作的.若设甲一共做了x天,则所列方程为()A.B.C.D.10.如图,数轴上的点O和点A分别表示0和10,点P是线段OA上一动点.点P沿O→A→O以每秒2个单位的速度往返运动1次,B是线段OA的中点,设点P运动时间为t 秒(t不超过10秒).若点P在运动过程中,当PB=2时,则运动时间t的值为()A.秒或秒B.秒或秒秒或秒C.3秒或7秒D.3秒或秒或7秒或秒二.填空题(共6小题,满分24分,每小题4分)11.若2x3k﹣5=5是一元一次方程,则k=.12.由8x=3x﹣15移项,得8x﹣3x=﹣15.在此变形中,方程两边同时加上的式子是.13.当a=时,方程解是x=1?14.解方程5(x﹣2)=6(﹣).有以下四个步骤,其中第①步的依据是.解:①去括号,得5x﹣10=3x﹣2.②移项,得5x﹣3x=10﹣2.③合并同类项,得2x=8.④系数化为1,得x=4.15.定义新运算:aƱb=a﹣b+ab,例如:(﹣4)Ʊ3=﹣4﹣3+(﹣4)×3=﹣19,那么当(﹣x)Ʊ(﹣2)=2x时,x=.16.在一张普通的月历中,相邻三行里同一列的三个日期数之和为27,则这三个数分别是.三.解答题(共6小题,满分46分)17.(6分)解下列方程(1)2x=﹣3(x+5)(2)﹣1=18.(8分)已知关于x的一元一次方程4x+2m=3x﹣1,(1)求这个方程的解;(2)若这个方程的解与关于x的方程3(x+m)=﹣(x﹣1)的解相同,求m的值.19.(6分)某学校安排学生住宿,若每室住7人,则有10人无法安排;若每室住8人,则恰好空出2个房间.这个学校的住宿生有多少人?20.(8分)某班级想购买若干个篮球和排球,某文具店篮球和排球的单价之和为35元,篮球的单价比排球的单价的2倍少10元.(1)求篮球和排球的单价各是多少元;(2)该文具店有两种让利活动,购买时只能选择其中一种方案.方案一:所有商品打7.5折销售;方案二:全场购物每满100元,返购物券30元(不足100元不返券),购物券全场通用,若该班级需要购买15个篮球和10个排球,则哪一种方案更省钱,并说明理由.21.(9分)已知:如图,点A、点B为数轴上两点,点A表示的数为a,点B表示的数为b,a与b满足|a+4|+(b﹣8)2=0.动点P从点A出发,以2个单位长度/秒的速度沿数轴向右运动,同时动点Q从点B出发,以1个单位长度/秒的速度沿数轴向右运动.(1)直接写出a、b的值,a=,b=;(2)设点P的运动时间为t秒,当t为何值时,P、Q两点相距20个单位长度;(3)若在运动过程中,动点Q始终保持原速度原方向,动点P到达原点时,立即以原来的速度向相反的方向运动.设点P的运动时间为t秒,当t为何值时,原点O分线段PQ为1:3两部分.22.(9分)根据绝对值定义,若有|x|=4,则x=4或﹣4,若|y|=a,则y=±a,我们可以根据这样的结论,解一些简单的绝对值方程,例如:|2x+4|=5解:方程|2x+4|=5可化为:2x+4=5或2x+4=﹣5当2x+4=5时,则有:2x=1,所从x=当2x+4=﹣5时,则有:2x=﹣9;所以x=﹣故,方程|2x+4|=5的解为x=或x=﹣(1)解方程:|3x﹣2|=4;(2)已知|a+b+4|=16,求|a+b|的值;(3)在(2)的条件下,若a,b都是整数,则a•b的最大值是(直接写结果,不需要过程).参考答案一.选择题(共10小题,满分30分,每小题3分)1.解:①x﹣2=,是方式方程;②3x﹣1=0,是一元一次方程;③2x=5x﹣5,是一元一次方程;④x2+2x﹣1=0,是一元二次方程;⑤x=8,是一元一次方程;⑥3x+2y=0,是二元一次方程.故选:B.2.解:A、把x=1代入方程3x+2=2x+3得:左边=3+2=5,右边=2+3=5,左边=右边,所以x=1是方程3x+2=2x+3的解,故本选项符合题意;B、x+1=,解得:x=﹣,所以x=1不是方程x+1=的解,故本选项不符合题意;C、6=5﹣x,解得:x=﹣1,所以x=1不是方程6=5﹣x的解;D、2x﹣1=2,解得:x=1.5,所以x=1不是方程2x﹣1=2的解,故本选项不符合题意;故选:A.3.解:∵a=b+2,∴a﹣b﹣2=0,所以A选项不成立;∵a=b+2,∴3﹣a=3﹣b﹣2=1﹣b,所以B选项不成立;∵a=b+2,∴2a=2b+4,所以C选项不成立;∵a=b+2,∴﹣=1,所以D选项成立.故选:D.4.解:由x+2=0,得x=﹣2;把x=﹣2代入2x+5a=1得:﹣4+5a=1,解得a=1.故选:B.5.解:根据题意,原方程可化为:2x+1=5或2x+1=﹣5,解得x=2或x=﹣3,故选:D.6.解:将等式﹣x=1进行一次变形,等式两边同时乘以﹣2,得到x=﹣2.故选:D.7.解:去分母得3(2﹣x)﹣6=2(2x﹣1)去括号得,6﹣3x﹣6=4x﹣2,移项得,﹣3x﹣4x=﹣2﹣6+6合并同类项得,﹣7x=﹣2,系数化为1得x=,故选:C.8.解:设该超市该品牌粽子的标价为x元,则售价为80%x元,由题意得:80%x﹣120=20%×120,解得:x=180.即该超市该品牌粽子的标价为180元.故选:A.9.解:设甲一共做了x天,由题意得:+=,故选:B.10.解:①当0≤t≤5时,动点P所表示的数是2t,∵PB=2,∴|2t﹣5|=2,∴2t﹣5=﹣2,或2t﹣5=2,解得t=或t=;②当5≤t≤10时,动点P所表示的数是20﹣2t,∵PB=2,∴|20﹣2t﹣5|=2,∴20﹣2t﹣5=2,或20﹣2t﹣5=﹣2,解得t=或t=.综上所述,运动时间t的值为秒或秒秒或秒.故选:B.二.填空题(共6小题,满分24分,每小题4分)11.解:∵2x3k﹣5=5是一元一次方程,∴3k﹣5=1,解得k=2,故答案为:2.12.解:由8x=3x﹣15移项,得8x﹣3x=﹣15,在此变形中,方程两边同时加上的式子是﹣3x.故答案为:﹣3x.13.解:把x=1代入原方程,得+=1,去分母,得:2(a﹣1)+3(1+a)=6,去括号,得:2a﹣2+3+3a=6,移项、合并同类项,得:5a=5,系数化为1,得:a=1,故答案为:1.14.解:第①步去括号的依据是:乘法分配律.故答案是:乘法分配律.15.解:∵aƱb=a﹣b+ab,(﹣x)Ʊ(﹣2)=2x,∴﹣x+2+2x=2x,解得x=2.故答案为:2.16.解:设三个数中最小的数为x,则另外两个数分别为(x+7),(x+14),依题意,得:x+x+7+x+14=27,解得:x=2,∴x+7=9,x+14=16.故答案为:2,9,16.三.解答题(共6小题,满分46分)17.解:(1)2x=﹣3(x+5),去括号,得:2x=﹣3x﹣15,移项,得:2x+3x=﹣15,合并同类项,得:5x=﹣15,系数化为1,得:x=﹣3;(2)﹣1=,去分母,得:3(5y﹣1)﹣18=2(4y﹣7),去括号,得:15y﹣3﹣18=8y﹣14,移项,得:15y﹣8y=3+18﹣14,合并同类项,得:7y=7,系数化为1,得:y=1.18.解:(1)移项,得4x﹣3x=﹣1﹣2m,所以x=﹣1﹣2m;(2)去括号,得3x+3m=﹣x+1,移项,得4x=1﹣3m解得x=由于两个方程的解相同,∴﹣1﹣2m=即﹣4﹣8m=1﹣3m解,得m=﹣1答:m的值为﹣1.19.解:设这个学校的有x间宿舍,由题意可知:7x+10=8(x﹣2),解得:x=26,∴这个学校的住宿生为:8×24=192,答:这个学校的住宿生有192人.20.解:(1)设排球的单价是x元,则篮球的单价是(2x﹣10)元,依题意,得:x+2x﹣10=35,解得:x=15,∴2x﹣10=20.答:篮球的单价是20元,排球的单价是15元.(2)选择方案一更省钱,理由如下:选择方案一所需费用为(20×15+15×10)×=337.5(元);选择方案二所需最低费用为20×15+15×10﹣×3=360(元).∵337.5<360,∴选择方案一更省钱.21.解:(1)依题意有:a+4=0,b﹣8=0,解得:a=﹣4;b=8;(2)AB=8﹣(﹣4)=12,依题意有2x﹣x=12+20,解得x=32;(3)①3(4﹣2t)=8+t,解得:t=;②3(2t﹣4)=8+t,解得:t=4;③2t﹣4=3(8+t),解得:t=﹣28(舍去).故当t为秒或4秒时,原点O分线段PQ为1:3两部分.故答案为:﹣4,8.22.解:(1)解方程:|3x﹣2|=43x﹣2=4或3x﹣2=﹣4解得x=2或x=﹣,故方程|3x﹣2|=4的解为x=2,x=﹣;(2)已知|a+b+4|=16,a+b+4=16或a+b+4=﹣16解得a+b=12或a+b=﹣20所以|a+b|=12或20,答:|a+b|的值为12或20;(3)在(2)的条件下,若a,b都是整数,a+b=12或a+b=﹣20,根据有理数乘法法则可知:当a=﹣10,b=﹣10时,a•b取得最大值,最大值为100.答:a•b的最大值是100.故答案为100.。

浙教版七年级上册数学 第五章一元一次方程单元测试卷(含答案)

浙教版七年级上册数学 第五章一元一次方程单元测试卷(含答案)

浙教版七上数学第五章一元一次方程一、选择题1.下列方程中,是一元一次方程的是( )A.x2−4x=3B.3x−1=x2C.x+2y=1D.xy−3=52.下列等式变形正确的是( )A.若a=b,则a+c=b−c B.若ac=bc,则a=bC.若a=b,则ac=bcD.若(m2+1)a=(m2+1)b,则a=b3.已知关于x的方程8−3x=ax的解是x=−2,则a的值为( )A.1B.7C.52D.−74.把方程3x+2x−13=3−x+12去分母正确的是( )A.18x+2(2x−1)=18−3(x+1)B.3x+(2x−1)=3−(x+1)C.18x+(2x−1)=18−(x+1)D.3x+2(2x−1)=3−3(x+1)5.若x=1是关于x的方程3x−2m=1的解,则m的值是( )A.−1B.1C.−2D.36.如图,数轴上依次有A,B,C三点,它们对应的数分别是a,b,c,若BC=2AB=6,a+b+c=0,则点C对应的数为( )A.4B.5C.6D.87.如图,是2024年1月的月历,任意选取“十”字型中的五个数(比如图中阴影部分),若移动“十”字型后所得五个数之和为115,那么该“十”字型中正中间的号数为( )A.20B.21C.22D.238.《九章算术》中有如下问题:“以绳测井,若将绳三折测之,绳多四尺;若将绳四折测之,绳多一尺.问绳长、井深各几何?”其题意是:用绳子测量水井深度,如果将绳子折成三等份,那么每等份绳长比水井深度多四尺;如果将绳子折成四等份,那么每等份绳长比水井深度多一尺.问绳长和井深各多少尺?设绳长为x尺,则根据题意,可列方程为( )A.x3+4=x4+1B.x3−4=x4−1C.x3−1=x4−4D.x3−4=x4+19.如图,线段AB=24cm,动点P从A出发,以2cm/s的速度沿AB运动,M为AP的中点,N为BP的中点.以下说法正确的是( )①运动4s后,PB=2AM;②PM+MN的值随着运动时间的改变而改变;③2BM−BP的值不变;④当AN=6PM时,运动时间为2.4s.A.①②B.②③C.①②③D.②③④10.有一组非负整数:a1,a2,…,a2022.从a3开始,满足a3=|a1−2a2|,a4=|a2−2a3|,a5=|a3−2 a4|,…,a2022=|a2020−2a2021|.某数学小组研究了上述数组,得出以下结论:①当a1=2,a2=4时,a4=6;②当a1=3,a2=2时,a1+a2+a3+⋯+a20=142;③当a1=2x−4,a2=x,a5=0时,x=10;④当a1=m,a2=1(m≥3,m为整数)时,a2022=2020m−6059.其中正确的结论个数有( )A.1个B.2个C.3个D.4个二、填空题11.由a=b,得ac =bc,那么c应该满足的条件是 .12.如果方程3x m+1+2=0是关于x的一元一次方程,那么m的值是 .13.如果|x+8|=5,那么x= .14.若关于x的方程5x-1=2x+a的解与方程4x+3=7的解互为相反数,则a= .15.对于非零自然数a和b,规定符号⊗的含义是:a⊗b=m×a+b2×a×b(m是一个确定的整数).如果1⊗4=2⊗3,那么3⊗4等于 16.人民路有甲乙两家超市,春节来临之际两个超市分别给出了不同的促销方案:甲超市购物全场8.8折.乙超市购物①不超过200元,不给予优惠;②超过200元而不超过600元,打9折;③超过600元,其中的600元仍打9折,超过600元的部分打8折.(假设两家超市相同商品的标价都一样)当标价总额是 元时,甲、乙两家超市实付款一样.三、解答题17.解方程:(1)3x+5=2(x+4)(2)3x−14=1−x+8618.已知a-2(4-x)=5a是关于x的方程,且与方程6-x=x+32有相同的解.(1)求a的值.(2)求多项式8a2−2a+7−5的值.若两个一元一次方程的解相差1,则称解较大的方程为另一个方程的“后移方程”例如:方程x−2=0是方程x−1=0的“后移方程”19.判断方程2x+1=0是否为方程2x+3=0的“后移方程”;20.若关于x的方程3(x−1)−m=m+32是关于x的方程2(x−3)−1=3−(x+1)的“后移方程”,求m的值.21.一项工程,甲队独做10ℎ完成,乙队独做15ℎ完成,丙队独做20ℎ完成,开始时三队合作,中途甲队另有任务,由乙、丙两队完成,从开始到工程完成共用了6ℎ,问甲队实际工作了几小时?22.将连续奇数1,3,5,7,9,…排列成如下的数表:(1)设中间数为x,用式子表示十字框中五个数之和.(2)十字框中的五个数之和能等于2024吗?若能,请写出这五个数;若不能,请说明理由.23.用A,B两种型号的机器生产相同的产品,产品装入同样规格的包装箱后运往仓库.已知每台B型机器比A型机器一天多生产2件产品,3台A型机器一天生产的产品恰好能装满5箱,4台B型机器一天生产的产品恰好能装满7箱.每台A型机器一天生产多少件产品?每箱装多少件产品?下面是解决该问题的两种方法,请选择其中的一种方法,完成分析填空和解答.【方法一】分析:设每箱装x件产品,则3台A型机器一天共生产①▲)件产品,4台B型机器一天共生产( ▲)件产品,再根据题意列方程.【方法二】分析:设每台A型机器一天生产x件产品,则每台B型机器一天生产(x+2)件产品,3台A型机器一天共生产(①▲)件产品,4台B型机器一天共生产(②▲)件产品,再根据题意列方程.解:设每箱装x 件产品.答:(写出完整的解答过程)解:设每台A 型机器一天生产x 件产品答:(写出完整的解答过程)24.如图,点A 、B 、C 、D 在数轴上,点A 表示的数是−3,点D 表示的数是9,AB =2,CD =1.(1)线段BC =______.(2)若点B 以每秒1个单位长度的速度向右匀速运动,同时点C 以每秒2个单位长度的速度向左匀速运动,运动t 秒后,BC =3,求t 的值.(3)若线段AB 以每秒1个单位长度的速度向左匀速运动,同时线段CD 以每秒2个单位长度的速度向左匀速运动,M 是AC 中点,N 为BD 中点,运动t 秒后(0<t <9),求线段MN 的长度.答案解析部分1.【答案】B2.【答案】D3.【答案】D4.【答案】A5.【答案】B6.【答案】B7.【答案】D8.【答案】B9.【答案】D10.【答案】B11.【答案】c≠012.【答案】013.【答案】-13或-314.【答案】-415.【答案】111216.【答案】75017.【答案】(1)x=3(2)x=−1 1118.【答案】(1)解:6-x=x+32,去分母得:12-2x=x+3,移项合并得:-3x=-9,解得:x=3,把x=3代入a-2(4-x)=5a得:a-2=5a,解得:a=-1 2.(2)解:当a=-12时,原式=-2【答案】19.方程2x+1=0是方程2x+3=0的后移方程20.m=521.【答案】解:设三队合作时间为xh,乙、丙两队合作为(6−x)ℎ,总工程量为1,由题意得:(110+115+120)x+(115+120)(6−x)=1,解得:x=3,答:甲队实际工作了3小时22.【答案】(1)解:设中间数为x,则另4个数分别为x−16、x+16、x−2、x+2,所以十字框中五个数之和为x+(x−16)+(x+16)+(x−2)+(x+2)=5x.(2)解:设中间的数为x,依题意可得:5x=2024,解得:a=404.8因为a=404.8不是整数,与题目的a是奇数不符,所以5数之和不能等于2024.23.【答案】解:【方法一】①设每箱装x件产品,则3台A型机器一天共生产3x件产品,4台B型机器一天共生产7x件产品,依题意列方程,得5x3+2=7x4,解得:x=24,故5x3=40,即每台A型机器一天生产40件产品,每箱装24产品.【方法二】设每台A型机器一天生产x件产品,则每台B型机器一天生产(x+2)件产品,3台A型机器一天共生产3x件产品,4台B型机器一天共生产4(x+2)件产品,依题意列方程,得3x5=4(x+2)7,解得:x=40,故3x5=24,即每台A型机器一天生产40件产品,每箱装24产品. 24.【答案】(1)9(2)2或4(3)3 2。

浙教版七年级数学上册《第五章一元一次方程》章节检测卷-带参考答案

浙教版七年级数学上册《第五章一元一次方程》章节检测卷-带参考答案

浙教版七年级数学上册《第五章一元一次方程》章节检测卷-带参考答案学校:___________班级:___________姓名:___________考号:___________一、选择题1.下列方程是一元一次方程的是( )A .y =2x −1B .x −1=0C .x 2=9D 。

2.下列利用等式的基本性质变形错误的是( )A .若x −2=7,则x =7+2B .若−5x =15,则x =−3C .若13x =9,则x =3D .若2x +1=6,则2x =53.若x =2是关于x 的方程x −a =0的解,则a 的值是( )A .2B .1C .−1D 。

4.由x 2−y3=1可以得到用x 表示y 的式子是( )A .y =3x−22B .y =32x −12C .y =3−32x D 。

5.解方程x−13=1−3x+16,去分母后正确的是( )A .2x −1=1−(3x +1)B 。

C .2(x −1)=6−(3x +1)D 。

6.我国明代珠算家程大位的名著《直指算法统宗》里有一道算题:“一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?”意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完,试问大、小和尚各多少人?设小和尚有x 人,依题意列方程得( )A .x3+3(100−x )=100 B 。

C .x3−3(100−x )=100 D 。

7.下列方程的变形中,正确的是( )A .方程3x −2=2x +1,移项,得3x −2x =−1+2;B .方程3−x =2−5(x −1),去括号,得3−x =2−5x −1;C .方程23x =32,未知数系数化为1,得x =1;D .方程x−12−x 5=1化成5(x −1)−2x =10。

8.将6 块形状、大小完全相同的小长方形,放入长为m,宽为n的长方形中,当两块阴影部分A,B 的面积相等时,小长方形其较短一边长的值为()A.m6B.m4C.n6D。

第五章 相交线与平行线 - 人教版七年级数学上册单元测试题(含答案)

第五章  相交线与平行线 - 人教版七年级数学上册单元测试题(含答案)

人教版七年级数学上册单元测试题第五章 相交线与平行线学校:___________姓名:___________班级:___________考号:___________一、(共30分,每小题3分)单选题1.下列说法中错误的是( )A .同一个角的两个邻补角是对顶角B .对顶角相等,相等的角是对顶角C .对顶角的平分线在一条直线上D .α∠的补角与α∠的和是180︒ 2.如图,已知15180∠+∠=︒,则图中与1∠相等的角有( )A .4,5,8∠∠∠B .2,6,7∠∠∠C .3,6,7∠∠∠D .4,6,7∠∠∠ 3.如图,直线AB ,CD 相交于点O ,OE ⊥CD 于点O ,⊥AOC =36°,则⊥BOE =( )A .36°B .64°C .144°D .54° 4.如图,若////,//,AB CD EF BC AD AC 为BAD ∠的平分线,则与AOF ∠相等的角有( )个.A.2B.3C.4D.55.下列图形中,线段PQ能表示点P到直线l的距离的是().A.B.C.D.6.在下图中,1∠和2∠是同位角的是()A.(1)、(2)B.(1)、(3)C.(2)、(3)D.(2)、(4)7.已知:如图,AB⊥DE,⊥E=65°,则⊥B+⊥C⊥的度数是()A.135°B.115°C.65°D.35°8.探照灯、锅形天线、汽车灯以及其它很多灯具都与抛物线形状有关,如图所示是一探照灯灯碗的纵剖面,从位于O点的灯泡发出的两束光线OB、OC经灯碗反射以后平行射出.如果图中⊥ABO=α,⊥DCO=β,则⊥BOC的度数为()A.180°﹣α﹣βB.α+βC.1(α+β)D.90°+(β﹣α)29.下列语句不是命题的是().A .两直线平行,同位角相等B .作直线AB 垂直于直线CDC .若a b =,则22a b =D .等角的补角相等10.下列现象中,属于平移现象的是( )A .方向盘的转动B .行驶的自行车的车轮的运动C .电梯的升降D .钟摆的运动二、(共30分,每小题3分)填空题11.如图,已知AB 、CD 相交于点O,OE⊥AB 于O ,⊥EOC=28°,则⊥AOD=_____度;12.如图,三条直线1l 、2l 、3l 相交于一点O ,则123∠+∠+∠=________度.13.如图AB 、CD 相交于O ,OB 平分DOE ∠,若98DOE ∠=︒,则AOC ∠的度数是_____.14.如图,将一副三角板摆成如图所示,图中1∠=________.15.如图,在甲、乙两地之间修一条笔直的公路,从甲地测得公路的走向是北偏东48°.甲、乙两地同时开工,若干天后,公路准确接通,则乙地所修公路的走向是南偏西________度.16.如图,已知AB⊥CD ,CE ,AE 分别平分⊥ACD ,⊥CAB ,则⊥1+⊥2=________.17.同一平面内的三条直线a ,b ,c ,若a⊥b ,b⊥c ,则a________c .若a⊥b ,b⊥c ,则a________c .若a⊥b ,b⊥c ,则a________c.18.把命题“同角的余角相等”改写成“如果……,那么……”的形式:_________________.19.如图,在一块长为a 米、宽为b 米的长方形地上,有一条弯曲的柏油马路,马路的任何地方的水平宽度都是2米,其他部分都是草地,则草地的面积为__________平方米.20.将直角梯形ABCD 平移得梯形EFGH ,若10,2,4HG MC MG ===,则图中阴影部分的面积为_________平方单位.三、(共40分)解答题21.(共5分)如图,A 、B 、C 三点在同一直线上,12,3D ∠=∠∠=∠,试说明 //BD CE .证明:⊥12∠=∠(已知)⊥________//________(________________)⊥D ∠=∠________(________________)又⊥3D ∠=∠(________)⊥∠________=∠________(________________)⊥//BD CE (________________).22.(共5分)如图,,,12AB BF CD BF ⊥⊥∠=∠,试说明3E ∠=∠.证明:⊥,AB BF CD BF ⊥⊥(已知)⊥ABD ∠=∠________=________︒(垂直定义)⊥________//________(________________)⊥12∠=∠(________)⊥________//________(________________)⊥//CD ________(平行于同一直线的两条直线互相平行)⊥3E ∠=∠(________________________).23.(共8分)根据语句画图,并填空⊥画80AOB ∠=︒;⊥画AOB ∠的平分线OC ;⊥在OC 上任取一点P ,画PD OA ⊥于D ,PE OB ⊥于E ;⊥画//PF OB 交OA 于F ;⊥通过度量比较,PE PD 的大小________;⊥OPF ∠=________.24.(共10分)如图所示,AC⊥BC ,DE⊥BC ,FG⊥AB ,⊥1=⊥2,求证:⊥2与⊥3互余.25.(共12分)探究题:(1)已知:三角形ABC ,求证:180A B ACB ∠+∠+∠=︒;小明同学经过认真思考,他过点C 作//CE AB ,利用添加辅助线的方法成功解决了这个问题.你能说出小明是怎么解决这个问题的吗?写出论证过程.(2)利用以上结论或方法,解决如下问题:已知:六边形ABCDEF ,满足A B C D E F ∠+∠+∠=∠+∠+∠,求证://AF CD .参考答案:1.B 2.D 3.D 4.D 5.D 6.B 7.C 8.B 9.B 10.C11.62 12.180 13.49︒ 14.120; 15.48° 16.90° 17. ⊥; ⊥; ⊥ 18.如果两个角是同一个角的余角,那么这两个角相等 19.(ab ﹣2b ) 20.36 21.,AD BE ,内错角相等,两直线平行;DBE ,两直线平行,内错角相等;已知,DBE ,3,等量代换;内错角相等,两直线平行.22.CDF ,90;,AB CD ,同位角相等,两直线平行;已知;,AB EF ,内错角相等,两直线平行;EF ;两直线平行,同位角相等.23.图见解析,PE PD =;40︒解:⊥如图:80AOB ∠=︒为所作;⊥如图:OC 为所作;⊥如图:PD 、PE 为所作;⊥如图:PF 为所作;⊥通过度量可得:PE =PD ,⊥⊥PF //OB ,⊥⊥OPF =⊥POB ,⊥⊥AOB =80°,OC 平分⊥AOB , ⊥180402COB AOB ∠=∠=⨯︒=︒ , ⊥P 在OC 上,⊥⊥POB =40°,⊥⊥OPF =⊥POB =40°.24.证明:⊥AC⊥BC ,DE⊥BC ,⊥⊥B+⊥A=90°,⊥B+⊥3=90°,⊥⊥3=⊥A ,⊥FG⊥AB ,⊥⊥1+⊥A=90°,⊥⊥1=⊥2,⊥⊥2+⊥3=90°,⊥⊥2与⊥3互余.25.(1)⊥//CE AB⊥1A ∠=∠,2B ∠=∠⊥B 、C 、D 在同一直线上⊥⊥ACB +⊥1+⊥2=180°⊥180A B ACB ∠+∠+∠=︒;(2)如图,连结,,AC FC FD ,得到⊥ABC 、⊥ACF 、⊥CDF 、⊥DEF⊥⊥B +⊥BAC +⊥ACB =⊥ACF +⊥AFC +⊥CAF =⊥FCD +⊥CDF +⊥CFD =⊥E +⊥EDF +⊥DFE =180° ⊥BAF B BCD CDE E EFA ∠+∠+∠=∠+∠+∠⊥BAC ACB ACF F F B CD CA ∠+∠+∠∠+∠+∠+=CDF EDF E CFD AFC EFD +∠+∠∠+∠+∠+∠化解得360°-⊥AFC +⊥FCD =360°-⊥FCD +⊥AFC⊥2⊥FCD =2⊥AFC则⊥FCD =⊥AFC⊥//AF CD .。

2024-2025学年人教版数学七上 第五章一元一次方程单元试卷(含答案)

2024-2025学年人教版数学七上 第五章一元一次方程单元试卷(含答案)

2024-2025学年人教版数学七上第五章一元一次方程单元试卷一、单选题1.下列方程中是一元一次方程的是()A.x+23x =1B.xy−3=0C.x2−2x=3D.2x3+x=12.在解方程3(2x−4)−(x−7)=5时,下列去括号正确的是()A.6x−4−x−7=5B.6x−4−x+7=5C.6x−12−x−7=5D.6x−12−x+7=53.方程x+2=1的解是()A.x=−1B.x=1C.x=2D.x=34.根据等式的性质,下列变形正确的是()A.如果ac=bc,那么a=b B.如果6a=3,那么a=2C.如果1−2a=3a,那么3a+2a=1D.如果2a=b,那么a=2b5.已知关于x的方程3x−m+4=0的解是x=2,则m的值为()A.2B.−10C.8D.106.一架飞机在两城间飞行,顺风航行要5.5小时,逆风航行要6小时,风速为24千米/时,设飞机无风时的速度为每小时x千米,则下列方程正确是( )A.5.5(x−24)=6(x+24)B.x−245.5=x+246C.5.5(x+24)=6(x−24)D.x+245.5=x−2467.某工程甲单独做需要8天完成,乙单独做需要12天完成,现由乙先单独做3 天,甲再参加合做,设完成此工程一共用了x天,则下列方程正确的是()A.x+312+x8=1B.x12+x−38=1C.x12+x8=1D.x+312+x−38=18.在月历上框出相邻的三个数a,b,c,若它们的和为69,则框图不可能是()A.B.C.D.9.《九章算术》中记载:“今有共买羊,人出五,不足四十五;人出七,余三.问人数、羊价各几何?”其译文为:今有人合伙买羊,若每人出5钱,还差45钱;若每人出7钱,多余3钱,问人数、羊价各是多少?若设人数为x 人,则列出的方程为( )A .5x−45=7x−3B .5x−45=7x +3C .5x +45=7x +3D .5x +45=7x−310.如图,甲、乙两动点分别从正方形ABCD 的顶点A ,C 同时沿正方形的边开始匀速运动.甲按逆时针方向运动,乙按顺时针方向运动,若乙的速度是甲的3倍,那么它们第一次相遇在AB 边上,请问它们第2024次相遇在( )A .AB 边上B .BC 边上C .CD 边上D .AD 边上二、填空题11.方程3x−6=x 的解为 .12.代数式−3x−5的值等于代数式4−6x 的值,则x = .13.下列等式变形:①若a =b ,则a +x =b +x ;②若ac =bc ,则a =b ;③若4a =3b ,则4a−3b =1;④若a b =34,则4a =3b ;⑤若2x m =3y m,则2x =3y .其中一定正确的是(填序号).14.已知方程(m +2)x n2+1+6=0是关于x 的一元一次方程,若此方程的解为正整数,且m为整数,则2m 2= .15.某商品每件标价为150元,若按标价打8折后,再降价10元销售,仍获利10元,则该商品每件的进价为.16.整理一批数据,由一人做需要40小时完成.现在计划先由一些人做2小时,再增加3人做4小时,完成这项工作的34,则先安排 人工作.17.已知数轴上A ,B 两点对应数分别为−2,4,P 为数轴上一动点,对应数为x ,若P 点到A ,B 距离和为12,则x 的值为.18.有一所寄宿制学校,开学安排宿舍时,如果每间住4人,将会空出5间,如果每间宿舍安排住3人,就有100人没有床位.设共有x 人住宿,则根据题意可列出方程:.三、解答题19.解方程(1)2x−1=−x+8;(2)x+13=1−x5.20.若关于x的方程2x+5=a的解和关于x的方程与x−43−2=12的解相同,求字母a的值.21.学校计划购买6张“双鱼”牌乒乓球桌和a副“红双喜”牌乒乓球拍(不少于6副).A、B 两家体育商品店的价格相同,球桌每张1000元,球拍每副200元.A店优惠政策是每买一张乒乓球桌,送一副球拍;B店的优惠政策为所有商品打八五折.(1)规定只能到其中一个店购买乒乓球桌和乒乓球拍,请分别用含a的代数式表示在A、B 两家体育商品店购买这些物品所需的费用,并化简.(2)若到A、B两家店购买,所需费用相等,求a的值.22.如图的长方体盒子是用大长方形硬纸片裁剪制作的,每个盒子由4个小长方形侧面和上下2个正方形底面组成,每张大长方形硬纸片可按两种方法裁剪:按A方法裁剪4个侧面;按B方法裁剪6个底面.现有112张相同的大长方形硬纸片全部用于裁剪制作这种长方体盒子,设裁剪时有x张用A方法,其余用B方法.(粘合处不计)(1)请用含x的式子分别表示裁剪出的侧面和底面的个数.(2)若裁剪出的侧面和底面恰好全部用完,则按A,B两种方法各裁剪多少张?一共能做多少个这样的长方体盒子?23.观察下面三行数−2,4,−8,16,−32,64…①−4,2,−10,14,−34,62…②3,−3,9,−15,33,−63…③(1)第①行的数的第10个数是____.(2)分别写出第②行的第n个数______,第③行的第n个数是______.(3)是否存在第②行的连续三个数的和为186?若存在,说明理由并写出这三个数;若不存在说明理由.(4)是否存在正整数k,使每行的第k个数相加的和等于−257.若存在求出值,若不存在说明理由.参考答案:1.D2.D3.A4.C5.B6.C7.B8.B9.D10.D11.x=312.313.①④⑤14.18或32或50或12815.100元16.317.−5或718.x4+5=x−100319.(1)x=3;(2)x=54.20.a=2821.(1)A、B两家体育商品店购买这些物品所需的费用分别是(200a+4800)元、(170a+5100)元;(2)1022.(1)裁剪出的侧面数为4x个,底面数为(672−6x)个(2)按A,B两种方法各裁剪84张,28张,一共能做84个这样的长方体盒子23.(1)1024(2)(−1)n⋅2n−2;(−1)n+1⋅2n+1(3)第②行存在连续三个数的和为186,这三个数分别为62,−130,254(4)不存在正整数k,使每行的第k个数相加的和等于−257。

人教版2024年七年级上册第5章《一元一次方程》单元测试 含答案

人教版2024年七年级上册第5章《一元一次方程》单元测试  含答案

人教版2024年七年级上册第5章《一元一次方程》单元测试满分100分时间90分钟一、选择题(共30分)1.下列各式中,属于方程的是()A .4(1)3+-=B .23x +C .210x -<D .215x -=2.下列各式:①236x y -=;②2430x x --=;③()2353x x +=-;④310x+=;⑤()3425x x --.其中,一元一次方程有()A .1个B .2个C .3个D .4个3.下列四个方程中,解是1x =的是()A .213x -=B .13x +=C .11x -=D .12x +=4.下列运用等式的性质变形中正确的是()A .如果a b =,则a c b c +=-B .如果23x x =,则3x =C .如果a b =,则22a bc c=D .如果22a bc c=,则a b =5.将方程4387x x +=+移项后,正确的是()A .4873x x -=+B .4837x x -=-C .8437x x -=-D .8473x x -=-6.解方程2(21)x x -+=,以下去括号正确的是()A .41x x +=-B .42x x-+=-C .41x x--=D .42x x--=7.把方程0.10.20.710.30.4x x ---=的分母化为整数的方程是()A .0.10.20.734x x --=B .127101034x x---=C .127134x x ---=D .12710134x x---=8.把一些图书分给某班学生,如果每人分3本,则余20本;如果每人分4本,则缺25本.设有x 名学生,则可列方程为()A .320425x x +=-B .320425x x +=+C .202534x x +-=D .202534x x -+=9.对于非零的两个有理数a ,b ,规定1a b b a⊗=-,若()1211x ⊗+=,则x 的值为()A .32B .13C .12D .12-10.如图,表中给出的是某月的月历,任意选取“凹”型框中的5个数(如阴影部分所示).请你运用所学的数学知识来研究,这5个数的和不可能是()A .36B .51C .78D .126二、填空题(共24分)11.已知关于x 的方程2240m x m -+-=是一元一次方程,则m 的值为.12.若3240x y --=,则用含x 的代数式表示y 为.13.如果256x +=,那么26x =,其依据是.14.若代数式35m -与32m -的值互为相反数,则m 的值是.15.某厂接受为四川灾区生产活动板房的任务,计划在30天内完成,若每天多生产6套,则25天完成且还多生产10套,问原计划每天生产多少套板房?设原计划每天生产x 套,列方程式是.16.如图,已知A ,B 两点在数轴上,点A 表示的数为10-,点B 表示的数为30,点M 以每秒3个单位长度的速度从点A 向右运动.点N 以每秒2个单位长度的速度从点O 向右运动,其中点M 、点N 同时出发,经过秒,点M 、点N 分别到原点O 的距离相等.三、解答题(共46分)17.(8分)解方程:(1)35(14)x x =--;(2)231132x x -+=-.18.(6分)已知:关于x 的方程111236x -=与()31x m m +=-有相同的解,求以y 为未知数的方程3332my m y--=的解.19.(6分)张阿姨到商场以940元购买了一件羽绒服和一条裙子.已知羽绒服打八折,裙子打六折,结果比按标价购买时共节省了360元,求张阿姨购买的羽绒服及裙子的标价.20.(8分)甲、乙两人共同承包一项工程,甲单独做30天完成,乙单独做20天完成,合同规定15天完成,否则每超过1天罚款1000元.(1)在规定时间内,甲、乙两人能否完成这项工程?(2)现两人合作了这项工程的75%,因别处有急事,必须调走1人.调走谁更合适?21.(8分)某服装批发商促销一种裤子和T恤,在促销活动期间,裤子每件定价100元,T恤每件定价50元,并向客户提供两种优惠方案:方案一:买一件裤子送一件T恤;方案二:裤子和T恤都按定价的80%付款.x>):现某客户要购买裤子30件,T恤x件(30(1)按方案一,购买裤子和T恤共需付款______(用含x的式子表示);(2)计算一下,购买多少件T恤时,两种优惠方案付款一样?x=时,你能给出一种更为省钱的购买方案吗?(3)若两种优惠方案可同时使用,当4022.(10分)如图在数轴上点A表示数a,点B表示数b,AB表示点A与点B之间的距离,且a,b满足:()2-++=.2460a b(1)求A,B两点之间的距离;(2)若在数轴上存在一点C,且3=,求点C表示的数;AC BC(3)若在原点O处放一个挡板,一个小球甲从点A处以1个单位/秒的速度向右运动;同时另一小球乙从点B处以2个单位/秒的速度也向右运动,在碰到挡板后(忽略球的大小,可看作一点)以原来的速度向相反的方向运动:设运动的时间为t(秒),求甲、乙两小球到原点的距离相等时经历的时间?参考答案一、选择题题号12345678910答案DAD DCDDACC二、填空题11.312.342x y -=13.5-;等式的基本性质114.215.()3010256x x +=+16.2或10三、解答题17.(1)解:()3514x x =--去括号得:3514x x =-+,移项得:3451x x -=-,合并同类项得:4x -=,系数化为1得:4x =-.(2)231132x x -+=-去分母得:()()223316x x -=+-,去括号得:46336x x -=+-,移项得:63364x x --=--,合并同类项得:97x -=-,系数化为1得:79x =.18.解:111236x -=,移项合并得:1122x =,解得:1x =,关于x 的方程111236x -=与()31x m m +=-有相同的解,∴将1x =代入方程()31x m m +=-,可得()311m m +=-,解得:2m =-,将2m =-代入3332my m y--=,可得322332y y +--=,去分母得:()()232323y y +=--,去括号得:6469y y +=--,移项合并得:1312y =-,系数化1得:1213y =-19.解:按标价购买羽绒服及裙子总价为9403601300+=(元)设张阿姨购买的羽绒服的标价为x 元/件,则裙子的标价为(1300)x -元/条.由题意,得()0.80.61300940x x +-=,解得800x =.当800x =时,1300500x -=.答:张阿姨购买的羽绒服的标价为800元/件,裙子的标价为500元/条.20.(1)解:设甲、乙两人合作完成此项工程需x 天.则13020x x +=,解得12x =.因为1215<,所以在规定时间内,甲、乙两人能完成这项工程;(2)解:设两人合作a 天完成工程的75%.则330204a a +=解得9a =.若调走甲,则乙还需115420÷=(天);若调走乙,侧甲还需117.5430÷=(天).因为9514+=(天)15<天,97.516.5+=(天)15>天,所以调走甲更合适.21.(1)解:根据题意得()100305030501500x x ⨯+-=+,故按方案一,购买裤子和T 恤共需付款()501500x +;(2)按方案一,购买裤子和T 恤共需付款()100305080%402400x x ⨯+⨯=+,根据题意得,501500402400x x +=+,解得90x =,答:购买90件T 恤时,两种优惠方案付款一样;(3)能,用方案一购买裤子30件,送T 恤30件,再用方案二购买10件T 恤,共需付款()3010050403080%3400⨯+⨯-⨯=(元),∴共需付款3400元.22.(1)解:∵()22460a b -++=,∴240a -=,60b +=,∴2a =,6b =-,∴A 、B 两点之间的距离628=--=;(2)设数轴上点C 表示的数为c ∴2AC c =-,6BC c =--∵3AC BC =,∴236c c -=--,解得4c =-或10c =-,即数轴上点C 表示的数为4-或10-,(3)乙球到挡板的时间623t =÷=秒,当03t ≤≤时,乙球没有到挡板,此时甲球到原点的距离为2t +,乙球到原点的距离为62t -,由甲、乙两小球到原点的距离相等可得622t t -=+,解得43t =;当3t >时,乙球到挡板并返回,此时甲球到原点的距离为2t +,乙球到原点的距离为26t -,由甲、乙两小球到原点的距离相等可得262t t -=+,解得8t =,符合题意;综上所述,当43t =或8秒时,甲、乙两小球到原点的距离相等.。

苏科版七年级数学上册第五章《走进图形世界》(难题)单元测试(有答案)

苏科版七年级数学上册第五章《走进图形世界》(难题)单元测试(有答案)

2020七上第五章《走进图形世界》(难题)单元测试班级:___________姓名:___________得分:___________一、选择题1.如图所示,该几何体的俯视图是A. B.C. D.2.下图中各图形经过折叠后可以围成一个棱柱的是A. B. C. D.3.如图所示的支架一种小零件的两个台阶的高度和宽度相等,则它的左视图为A. B. C. D.4.如图为一根圆柱形的空心钢管,它的主视图是A. B. C. D.5.有一个盛有水的圆柱体玻璃容器,它的底面半径为10cm,容器内水的高度为12cm,把一根半径为2cm的玻璃棒垂直插入水中,容器里的水升高了A. 2cmB.C. 1cmD.6.竖直放置的正四棱柱即底面是水平放置的,用水平面去截得的截面的形状是A. 长方形B. 正方形C. 梯形D. 截面形状不定7.用两块完全相同的长方体搭成如图所示几何体,这个几何体的主视图是A. B. C. D.8.下列各图中,是四棱柱的侧面展开图的是A. B. C. D.9.某几何体由若干个大小相同的小正方体搭成,其主视图与左视图如图所示,则搭成这个几何体的小正方体最少有A. 3个B. 5个C. 7个D. 9个10.如图,已知一个正方体的六个面上分别写着6个连续整数,且相对面上两个数的和相等,图中所能看到的数是1,3和4,则这6个整数的和是A. 9B. 9或15C. 15或21D. 9,15或21二、填空题11.流星划破夜空,留下美丽的弧线,这说明了_____________;钟表的秒针旋转一周时,形成一个圆面,说明了_________________;12.如图1是边长为18cm的正方形纸板,截掉阴影部分后将其折叠成如图2所示的长方体盒子已知该长方体的宽是高的2倍,则它的体积是______.13.如图,一个正方体,6个面上分别写着6个连续的整数,且每个相对面上的两个数之和相等,如图所示,你能看到的数为9、12、13,则六个整数之和为______ .14.老师用10个的小正立方体摆出一个立体图形,它的正视图如图所示,且图中任两相邻的小正立方体至少有一棱边共享,或有一面共享.老师拿出一张的方格纸如图,请小荣将此10个小正立方体依正视图摆放在方格纸中的方格内,请问小荣摆放完后的左视图有______种.小正立方体摆放时不得悬空,每一小正立方体的棱边与水平线垂直或平行15.圆柱的侧面展开图是相邻两边长分别是6,的长方形,那么这个圆柱的体积等于_____.16.如图是一个正方体的平面展开图,每一个面上写一个整数,并且每两个对面所写数的和都相等。

北师大版数学七年级上 第5章 一元一次方程 单元测试卷 (含解析)

北师大版数学七年级上 第5章 一元一次方程 单元测试卷 (含解析)

七年级(上)数学第5章一元一次方程单元测试卷一.选择题(共10小题)1.下列方程中是一元一次方程的是A.B.C.D.2.方程的解是A.B.C.D.3.要将等式进行一次变形,得到,下列做法正确的是A.等式两边同时加B.等式两边同时乘以2C.等式两边同时除以D.等式两边同时乘以4.下列解方程去分母正确的是A.由,得B.由,得C.由,得2D.由,得5.若单项式与的和仍是单项式,则方程的解为A.B.23C.D.296.某商贩在一次买卖中,以每件135元的价格卖出两件衣服,其中一件盈利,另一件亏损,在这次买卖中,该商贩A.不赔不赚B.赚9元C.赔18元D.赚18元7.小明在做解方程作业时,不小心将方程中的一个常数污染,被污染的方程是□,小明想了想后翻看了书后的答案,此方程的解是,然后小明很快补好了这个常数,这个常数应是A.B.C.D.28.为了提倡节约用水,采用“阶梯水价”收费办法:每户用水不超过5方,每方水费元,超过5方,每方加收2元,小张家今年3月份用水11方共交水费56元,根据题意列出关于的方程,正确的是A.B.C.D.9.如图所示,两人沿着边长为的正方形,按的方向行走,甲从点以的速度、乙从点以的速度行走,当乙第一次追上甲时,将在正方形的边上.A.B.C.D.10.我们知道,无限循环小数都可以转化为分数.例如:将转化为分数时,可设,则,解得,即.仿此方法,将化成分数是A.B.C.D.二.填空题(共8小题)11.若是关于的一元一次方程,则的值为.12.已知关于的方程的解是,则的值为.13.如果关于的方程和的解相同,那么.14.某项工作甲单独做12天完成,乙单独做8天完成,若甲先做2天,然后甲、乙合作完成此项工作,则甲一共做了天.15.一家服装店将某种服装按成本提高后标价,又以八折优惠卖出,结果每件仍获利36元,这种服装每件的成本为.16.一个两位数的十位数字与个位数字的和是9.如果把这个两位数加上63,那么恰好成为原两位数的个位数字与十位数字对调后组成的两位数,则原两位数是.17.有一列数,按一定规律排列成1、、16、、,其中某相邻三个数的和是,那么这三个数中最大的数是.18.如图,在数轴上,点,表示的数分别是,10.点以每秒2个单位长度从出发沿数轴向右运动,同时点以每秒3个单位长度从点出发沿数轴在,之间往返运动,设运动时间为秒.当点,之间的距离为6个单位长度时,的值为.三.解答题(共7小题)19.解方程:(1)(2)20.小明在解方程去分母时,方程右边的漏乘了12,因而求得方程的解为,请你帮助小明求出的值,并正确解出原方程的解.21.对于有理数,定义种新运算,规定☆.(1)求3☆的值;(2)若☆☆,求的值.22.一辆客车和辆卡车同时从地出发沿同一公路同方向行驶,客车的行驶速度是60千米小时,卡车的行驶速度是40千米小时,客车比卡车早2小时经过地,、两地间的路程是多少千米?23.某工厂车间有22名工人,每人每天可以生产12个甲种零部件或15个乙种零部件,已知2个甲种零部件需要配3个乙种零部件,为使每天生产的甲、乙两种零部件刚好配套,车间应该分配生产甲种零部件和乙种零部件的工人各多少名?24.学校要购入两种记录本,其中种记录本每本3元,种记录本每本2元,且购买种记录本的数量比种记录本的2倍还多20本,总花费为460元.(1)求购买种记录本的数量;(2)某商店搞促销活动,种记录本按8折销售,种记录本按9折销售,则学校此次可以节省多少钱?25.若有,两个数,满足关系式,则称.为“共生数对“,记作.例如:当2,3满足时,则是“共生数对“.若是“共生数对“,求的值:(2)若是“共生数对“,判断是否也是“共生数对“,请通过计算说明:(3)请再写出两个不同的“共生数对”.参考答案一.选择题(共10小题)1.下列方程中是一元一次方程的是A.B.C.D.解:、该方程属于一元二次方程,故本选项不符合题意.、该方程属于分式方程,故本选项不符合题意.、该方程属于一元一次方程,故本选项符合题意.、该方程属于二元一次次方程,故本选项不符合题意.故选:.2.方程的解是A.B.C.D.解:移项得,,合并同类项得,,系数化为1,得.故选:.3.要将等式进行一次变形,得到,下列做法正确的是A.等式两边同时加B.等式两边同时乘以2 C.等式两边同时除以D.等式两边同时乘以解:将等式进行一次变形,等式两边同时乘以,得到.故选:.4.下列解方程去分母正确的是A.由,得B.由,得C.由,得2D.由,得解:、由,得,此选项错误;、由,得,此选项错误;、由,得,此选项错误;、由,得,此选项正确;故选:.5.若单项式与的和仍是单项式,则方程的解为A.B.23C.D.29解:单项式与的和仍是单项式,单项式与为同类项,即,,代入方程得:,去分母得:,去括号得:,移项合并得:,解得:,故选:.6.某商贩在一次买卖中,以每件135元的价格卖出两件衣服,其中一件盈利,另一件亏损,在这次买卖中,该商贩A.不赔不赚B.赚9元C.赔18元D.赚18元解:设盈利的衣服的进价为元,亏损的衣服的进价为元,依题意,得:,,解得:,.,该商贩赔18元.故选:.7.小明在做解方程作业时,不小心将方程中的一个常数污染,被污染的方程是□,小明想了想后翻看了书后的答案,此方程的解是,然后小明很快补好了这个常数,这个常数应是A.B.C.D.2解:设□表示的数是,把代入方程得:,解得:,即这个常数是,故选:.8.为了提倡节约用水,采用“阶梯水价”收费办法:每户用水不超过5方,每方水费元,超过5方,每方加收2元,小张家今年3月份用水11方共交水费56元,根据题意列出关于的方程,正确的是A.B.C.D.解:依题意,得:,即.故选:.9.如图所示,两人沿着边长为的正方形,按的方向行走,甲从点以的速度、乙从点以的速度行走,当乙第一次追上甲时,将在正方形的边上.A.B.C.D.解:设乙行走后第一次追上甲,根据题意,可得:甲的行走路程为,乙的行走路程,当乙第一次追上甲时,,,此时乙所在位置为:,,乙在距离点处,即在上,故选:.10.我们知道,无限循环小数都可以转化为分数.例如:将转化为分数时,可设,则,解得,即.仿此方法,将化成分数是A.B.C.D.解:设①,则②,②①得,解得,即,故选:.二.填空题(共8小题)11.若是关于的一元一次方程,则的值为1.解:根据题意可知:解得故答案为1.12.已知关于的方程的解是,则的值为.解:把代入方程得:,解得:,故答案为:.13.如果关于的方程和的解相同,那么.解:方程的解为,方程和的解相同,方程的解为,当时,,解得.故答案为:.14.某项工作甲单独做12天完成,乙单独做8天完成,若甲先做2天,然后甲、乙合作完成此项工作,则甲一共做了6天.解:设甲一共做了天,则乙做了天,根据题意得:,解得.则甲一共做了6天.故答案为:6.15.一家服装店将某种服装按成本提高后标价,又以八折优惠卖出,结果每件仍获利36元,这种服装每件的成本为300元.解:设这种服装每件的成本价是元,由题意得:,解得:,故答案为:300元.16.一个两位数的十位数字与个位数字的和是9.如果把这个两位数加上63,那么恰好成为原两位数的个位数字与十位数字对调后组成的两位数,则原两位数是18.解:设这个两位数的十位数字为,则个位数字为,由题意列方程得,,解得,,这个两位数为18.故答案为:18.17.有一列数,按一定规律排列成1、、16、、,其中某相邻三个数的和是,那么这三个数中最大的数是256.解:有一列数,按一定规律排列成1、、16、、,这列数中每个数都是前面相邻数的倍,设这三个相邻的数中的中间数为,则第一个数为,第三个数为,,解得:,,,这三个数,256,,这三个数中最大的数是256,故答案为:256.18.如图,在数轴上,点,表示的数分别是,10.点以每秒2个单位长度从出发沿数轴向右运动,同时点以每秒3个单位长度从点出发沿数轴在,之间往返运动,设运动时间为秒.当点,之间的距离为6个单位长度时,的值为秒或秒或12秒.解:点,表示的数分别是,10,,,,①当点、没有相遇时,由题意得:,解得:;②当点、相遇后,点没有到达时,由题意得:,解得:;③当点到达返回时,由题意得:,解得:;综上所述,当点,之间的距离为6个单位长度时,的值为秒或秒或12秒;故答案为:秒或秒或12秒.三.解答题(共7小题)19.解方程:(1)(2)解:(1);(2)去分母,得去括号,得移项,得合并同类项,得系数化为1,得.20.小明在解方程去分母时,方程右边的漏乘了12,因而求得方程的解为,请你帮助小明求出的值,并正确解出原方程的解.解:根据题意得:,把代入得:,解得:,方程为,去分母得:,移项合并得:,解得:.21.对于有理数,定义种新运算,规定☆.(1)求3☆的值;(2)若☆☆,求的值.解:(1)根据题中的新定义得:原式;(2)已知等式利用题中的新定义化简得:,整理得:,解得:.22.一辆客车和辆卡车同时从地出发沿同一公路同方向行驶,客车的行驶速度是60千米小时,卡车的行驶速度是40千米小时,客车比卡车早2小时经过地,、两地间的路程是多少千米?解:解:设、两地间的路程为千米,根据题意得解得答:、两地间的路程是240千米.23.某工厂车间有22名工人,每人每天可以生产12个甲种零部件或15个乙种零部件,已知2个甲种零部件需要配3个乙种零部件,为使每天生产的甲、乙两种零部件刚好配套,车间应该分配生产甲种零部件和乙种零部件的工人各多少名?解:设分配人生产甲种零部件,根据题意,得,解得:,,答:分配10人生产甲种零部件,12人乙种零部件.24.学校要购入两种记录本,其中种记录本每本3元,种记录本每本2元,且购买种记录本的数量比种记录本的2倍还多20本,总花费为460元.(1)求购买种记录本的数量;(2)某商店搞促销活动,种记录本按8折销售,种记录本按9折销售,则学校此次可以节省多少钱?解:(1)设购买种记录本本,则购买种记录表本,依题意,得:,解得:,.答:购买种记录本120本,种记录本50本.(2)(元.答:学校此次可以节省82元钱.25.若有,两个数,满足关系式,则称.为“共生数对“,记作.例如:当2,3满足时,则是“共生数对“.若是“共生数对“,求的值:(2)若是“共生数对“,判断是否也是“共生数对“,请通过计算说明:(3)请再写出两个不同的“共生数对”.解:(1)是“共生数对”,,解得:;(2)也是“共生数对”,理由:是“共生数对”,,,也是“共生数对”;(3)由,得,若时,;若时,,和是“共生数对”。

(北师大版)初中数学七年级上册 第五章综合测试试卷02及答案

(北师大版)初中数学七年级上册 第五章综合测试试卷02及答案

第五章综合测试一、选择题(共16小题;共48分)1.下列给出的x 的值,是方程625x x -=+的解的是( )A .13x =-B .1x =-C .11x =-D .113x =2.已知2x =是方程30x a -=的解,那么a 的值是( )A .6B .6-C .5D .5-3.已知2x =是关于x 的方程21x a -=的解,则a 的值是( )A .3B .3-C .7D .24.陈老师打算购买气球装扮学校“六一”儿童节活动会场,气球的种类有笑脸和爱心两种,两种气球的价格不同,但同一种气球的价格相同,由于会场布置需要,购买时以一束(4个气球)为单位,已知第一、二束气球的价格如图所示,则第三束气球的价格为().A .19B .18C .16D .155.下列计算,正确的是( )A .2222a b a b a b -+=B .3a a a -=C .325235a a a +=D .2325a a a +=6.下面是一个被墨水污染过的地方:11222x x -=-,答案显示此方程的解是1x =,被墨水遮盖的是一个常数,则这个常数是( )A .2B .2-C .1D .1-7.已知关于x 的方程2b-2240ax x +-=是一元一次方程,则a+b x 的值为( )A .2B .4-C .6D .88.某商品提价10%后,欲恢复原价,则应降价( )A .10%B .9%C .100%11D .100%99.已知0x <,且2||30x x ++=,则x 等于( )A .1-B .2-C .32-D .3-10.某通信公司自2月1日起实行新的4G 飞享套餐,部分套餐资费标准如下:套餐内包含内容套餐外资费套餐类型月费(元/月)国内数据流量(MB )国内主叫(分钟)国内流量国内主叫套餐1181000套餐22810050套餐33830050套餐448500500.29元/MB 0.19元/分钟小明每月大约使用国内数据流量200 MB ,国内主叫200分钟,若想使每月付费最少,则他应预定的套餐是()A .套餐1B .套餐2C .套餐3D .套餐411.某项工作由甲单独做3小时完成,由乙单独做4小时完成,乙单独做了1小时后,甲、乙合做完成剩下的工作,这项工作共用( )A .79小时B .97小时C .167小时D .157小时12.将下表从左到右在每个小格子中都填入一个整数,使得其中任意三个相邻格子中所填整数之和都相等,则第2 014个格子中的数位()3abc1-2A .3B .2C .0D .1-13.12张一元、五元、十元的人民币共47元,其中五元的人民币比一元的人民币少5张,那么十元的人民币有( )A .1张B .2张C .3张D .4张14.博文中学学生郊游,学生沿着与笔直的铁路线并列的公路匀速前进,每小时走4 500米,一列火车以每小时120千米的速度迎面开来,测得从车头与队首学生相遇,到车尾与队末学生相遇,共经过60秒,如果队伍长500米,那么火车长为( )米.A .2 075B .1 575C .2 000D .1 50015.用72 cm 长的铁丝做一个长方形的教具,要使宽为15 cm ,那么长是( )A .28.5 cmB .42 cmC .21 cmD .33.5 cm16.在加固某段河坝时,需要动用15台挖土、运土机械,每台机械每小时能挖土318 m 或运土312 m ,为了使挖出的土能及时运走,若安排x 台机械挖土,则可列方程为( )A .181215x x -=B .1812(15)x x =-C .123(15)x x =-D .181215x x +=二、填空题(共7小题;共35分)17.解含有括号的一元一次方程时,一般要先________,再________、________、________.18.若方程|k+1|20kx +=是关于x 的一元一次方程,则k =________.19.如图所示,已知:1:3AB AC =,:1:4AC AD =,且40AB AC AD ++=,则AB =________,BC =________,CD =________.20.若方程6mx ny +=的两个解为11x y =ìí=î及21x y =ìí=-î则n m =________.21.如图所示,两人沿着边长为90 m 的正方形,按A B C D A ®®®®L 的方向行走,甲从A 点以65 m /min 的速度、乙从B 点以75 m /min 的速度行走,当乙第一次追上甲时,将在正方形的________边上.22.如果关于x 的方程372x x a -=+的解与437x +=的解相同,那么a 的值为________.23.服装店销售某款服装,一件服装的标价为300元,若按标价的8折销售,仍可获利60元,则这款服装每件的标价比进价多________元.三、解答题(共5小题;共67分)24.求左、右圈中的“△”“□”.25.已知:1x =,1y =+2222x y xy x y +--+的值.26.园园在解方程3215a x -=(x 为未知数)时,误将“2x -”看作“2x +”,得方程的解为3x =,请求出原方程的解.27.从1月1日开始,北京市居民生活用气阶梯价格制度将正式实施,一般生活用气收费标准如下表所示,比如6口以下的户年天然气用量在第二档时,其中350立方米按32.28 /m 元收费,超350立方米的部分按32.5/m 元收费.小冬一家有五口人,他想帮父母计算一下实行阶梯价后,家里天然气费的支出情况.(1)如果他家全年使用300立方米天然气,那么需要交多少元天然气费?(2)如果他家全年使用500立方米天然气,那么需要交多少元天然气费?(3)如果他家需要交1 563元天然气费,他家用了多少立方米天然气?28.下列各式中,哪些是方程?哪些是一元一次方程?①37x =;②2()3x y +=;③11x x -=-;④0x xy -=;⑤32x x =;⑥2921x x x --+;⑦541-=;⑧23x -=;⑨219x=.第五章综合测试答案解析一、1.【答案】C 2.【答案】A 3.【答案】A 4.【答案】C【解析】设一个笑脸气球的价格是x 元,一个爱心气球的价格是y 元,根据题意得方程组:314318x y x y +=ìí+=î,所以443288x y x y x y +=ìí+=+=î,所以第三束气球的价格为222()16x y x y +=+=(元).5.【答案】A 6.【答案】D 7.【答案】D【解析】Q 关于x 的方程2b 2240ax x +--=是一元一次方程,0,21a b \=-=,解得0,3a b ==.\原方程为240x -=,解得2x =.a+b 328x \==.8.【答案】C 9.【答案】D【解析】已知0x <,则2||3230x x x x ++=-+=,解得3x =-.10.【答案】C 11.【答案】C 12.【答案】A【解析】Q 任意三个相邻格子中所填整数之和都相等,3a b a b c \++=++,解得3c =,(1)a b c b c ++=++-,解得1a =-,所以,数据从左到右依次为3,1-,b ,3,1-,b ,第9个数与第三个数相同,即2b =,所以,每3个数“3,1-,2”为一个循环组依次循环,201436711¸=¼Q ,\第2012个格子中的整数与第1个格子中的数相同,为3.13.【答案】C【解析】设一元人民币有x 张,则五元人民币为5x -张,得方程:5(5)10(125)47x x x x +-+--+=,解得7x =,易得十元人民币有3张.14.【答案】B 15.【答案】C 16.【答案】B 二、17.【答案】去括号移项合并同类项系数化为118.【答案】2-【解析】根据一元一次方程的特点可得:0,11,k k k ¹ìí+=±î解得:2k =-.19.【答案】2.5522.5【解析】设AB x =,:1:3AB AC =Q ,33AC AB x \==,:1:4AC AD =Q ,412AD AC x \==.40AB AC AD ++=Q ,31240x x x \++=,解得 2.5x =,325BC AC AB x x x \=-=-==,123922.5CD AD AC x x x =-=-==.20.【答案】16【解析】把1,1,x y =ìí=î及21x y =ìí=-î代入原方程,得626m n m n +=ìí-=î解得42m n =ìí=î则n 2416m ==.21.【答案】AD【解析】提示:设乙第一次追上甲用了x 分钟.由题意可得7565903x x -=´解得27x =.277545902´=.22.【答案】6-23.【答案】三、24.【答案】12D =,6=W.25.【答案】1x =Q 1y =(1(1x y \-=--+=-,(1xy =+1=-2222x y xy x y \+--+2()2()x y x y xy=---+2(2((1)--´-+-=7=+26.【答案】由题意可知3x =是方程3215a x +=的解,3a \=.原方程为9215x -=.解得3x =-.27.【答案】(1)2.28300684´=(元).(2)2.28350 2.5(500350)7983751173´+´-=+=(元)(3)设小冬家用了立方米天然气.15631173Q >,\小冬家所用天然气超过了500立方米.根据题意得2.28350 2.5(500350) 3.9(500)1563x ´+´-+-=即1173 3.9(500)1563x +-=.移项,得(500)390x -=.系数化1得500100x -=.移项,得600x =.答:小冬家用了600立方米天然气.28.【答案】①②③④⑤⑧⑨是方程,①③是一元一次方程.。

(必考题)初中数学七年级数学上册第五单元《一元一次方程》测试题(有答案解析)

(必考题)初中数学七年级数学上册第五单元《一元一次方程》测试题(有答案解析)

一、选择题1.如图,跑道由两个半圆部分AB ,CD 和两条直跑道AD ,BC 组成,两个半圆跑道的长都是115m ,两条直跑道的长都是85m .小斌站在A 处,小强站在B 处,两人同时逆时针方向跑步,小彬每秒跑4m ,小强每秒跑6m .当小强第一次追上小斌时,他们的位置在( )A .半圆跑道AB 上 B .半圆跑道CD 上C .直跑道AD 上 D .直跑道BC 上 2.如果x y =,那么根据等式的基本性质,下列变形一定正确的是( )A .0x y +=B .55x y =C .22x y -=+D .33y x = 3.依照以下图形变化的规律,则第n 个图形中黑色正方形的数量是2021个,则n 的值为( )……A .1347B .1348C .1349D .1350 4.一辆汽车从甲地开往乙地需要5小时,返回时每小时少行驶15千米,多用了1小时,则甲、乙两地间的距离是( )A .300千米B .450千米C .550千米D .650千米 5.某物美超市同时卖出了两种相同数量不同规格包装的牛奶A 和,B A 牛奶售价为69元,B 牛奶售价为34元,按成本计算,超市人员发现A 牛奶盈利了15%,而B 牛奶却亏损了15%,则这次超市是( )A .不赚不赔B .赚了3元C .赔了3元D .赚了15元 6.若9个工人14天完成了一件工作的35,由于任务的需要,剩下的工作要在4天内完成,则需要增加的人数是( )A .14B .13C .12D .117.把一些图书分给某班学生,如果每人分3本,则余20本;如果每人分4本,则缺25本.设有x 名学生,则可列方程为( )A .3x +20=4x -25B .3x -20=4x +25C .032x +=542x -D .203x -=254x + 8.若关于x 的方程250x a b ++=的解是3x =-,则代数式6210a b --的值为( ) A .6- B .0 C .12 D .189.小涵在2020年某月的月历上圈出了三个数a ,b ,c ,并求出了它们的和为30,则这三个数在月历中的排位位置不可能是( )A .B .C .D . 10.使得关于x 的方程44163ax x x -+-=-的解是正整数的所有整数a 的积为( ) A .21-B .12-C .6-D .12 11.甲、乙、丙三数之比是2:3:4,甲、乙两数之和比乙、丙两数之和大30,则甲数为( )A .30-B .45-C .15-D .60-12.数学课堂上,老师出示了如下例题:整理一批图书,由一个人做要40h 完成.现计划由一部分人先做4h ,然后增加2人与他们一起做8小时,完成这项工作.假设这些人的工作效率相同,具体应先安排多少人工作?设安排x 人先做4h .小亮列的方程是:48(2)14040x x ++=,其中,“440x ”表示的意思是“x 人先做4h 完成的工作量”,“8(2)40x +”表示的意思是“增加2人后,(x+2)人再做8小时完成的工作量”.小宇列的方程是:()4+82814040x ⨯+=,其中,“(48)40x +”表示的意思是( ) A .先工作的x 人前4小时和后8小时一共完成的工作量B .增加2人后,(x+2)人再做8小时完成的工作量C .增加2人后,新增加的2人完成的工作量D .x 人先做4小时完成的工作量二、填空题13.A 、B 、C 三地依次在同一直线上,B ,C 两地相距560千米,甲、乙两车分别从B ,C 两地同时出发,相向匀速行驶,行驶4小时两车相遇,再经过3小时,甲车到达C 地,然后立即调头,并将速度提高10%后与乙车同向行驶,经过一段时间后两车同时到达地A ,则A ,B 两地相距___________千米.14.服装厂生产一批学生校服,已知生产1件上衣需要布料1.5米,生产1条裤子需要布料1米.因为裤子旧得快,要求1件上衣和2条裤子配一套.生产这批校服共用了2016米布料,问共生产了多少套校服?设共生产了x 套校服,则可列方程____________. 15.王老师把几本《数学大世界》给学生们阅读.若每人3本,则剩下3本;若每人5本,则有一位同学分不到书看,只够平均分给其他几位同学.则学生与书本的数量分别是____________;16.已知23y x -=,那么263x y +-=______.17.在数轴上表示数a 的点与表示数3的点之间的距离记为3a -.若317a a ++-=,则a =____________.18.如图,在33⨯幻方中,填入9个数字,使得每行、每列、每条对角线上的三个数之和都相等.按以上规则填成的幻方中,x 的值为______.19.甲、乙两辆车同时从A 地开往B 地,速度分别为60km/h 和40km/h ,甲车到达B 地后立刻以原速返回A 地,A 、B 两地相距60km ,在乙车到达B 地之前,出发___________时,两车相距5km .20.在数的学习中,我们会对其中一些具有某种特质的数进行研究,如学习自然数时,我们研究了奇数、偶数、质数、合数等.现在我们来研究一种特殊的数——巧数.定义:若一个两位数恰等于它的各位数字之和的4倍,则这个两位数称为巧数.若一个巧数的个位数字比十位数字大3,则这个巧数是_______________.三、解答题21.(1)3313(2)(4)4⎫⎛---⨯-÷- ⎪⎝⎭; (2)解方程:3157146x x ---=. 22.先阅读下面材料,再完成任务:(材料)我们规定:若关于x 的一元一次方程ax b =的解为b a +,则称该方程为和解方程.例如;方程24x =-的解为2x =-,而242-=-+,则方程24x =-为“和解方程”. (任务)请根据上述规定解答下列问题:(1)关于x 的一元一次方程43x =-是否是“和解方程”;(只写结论)(2)已知关于x 的一元一次方程3x m =是“和解方程”,求m 的值:(3)已知关于x 的一元一次方程2x mn n -=+是“和解方程”,并且它的解是x n =-,求m ,n 的值.23.解方程:(1)348x x -+=-;(2)231128x x --+-+=. 24.蔬菜商店以40元/箱的价格从批发市场购进8箱西红柿,若以每箱西红柿净重25千克为标准,超过的千克数记为正数,不足的千克数记为负数,称重后记录为:+1,﹣3.5,+2,﹣2.5,﹣3,+2,﹣2,﹣2若把这些西红柿全部以零售的形式卖掉,商店计划共获利160元,那么在销售过程中西红柿的单价应定为每千克多少元?25.如图,甲、乙两人(看成点)分别在数轴上﹣3和5的位置,沿数轴做移动游戏,规则如下:两人先猜硬币的正反面,依据猜的对错再移动,若都猜对或都猜错,则甲向右移动1个单位,同时乙向左移动1个单位;若甲猜对乙猜错,则甲向右移动4个单位,同时乙向右移动2个单位;若甲猜错乙猜对,则甲向左移动2个单位,同时乙向左移动4个单位.(1)第一次游戏时,若甲、乙都猜对,则移动后两人相距个单位;若甲猜对乙猜错,则移动后两人相距个单位;若甲猜错乙猜对,则移动后两人相距个单位;(2)若连续(下次在上次的基础上)完成了10次移动游戏,且每次甲、乙所猜结果均为一对一错.游戏结束后,①乙会不会落在原点O处?为什么?②求甲、乙两人之间的距离.26.如图,A、B两点在一数轴上,其中点O为原点,点A对应的有理数为﹣2,点B对应的有理数为22.点A以每秒2个单位长度的速度沿数轴向右运动,设运动时间为t秒(t>0).(1)当t=2时,点A表示的有理数为,A、B两点的距离为;(2)若点B同时以每秒2个单位长度的速度向左运动,经过多少秒,点A与点B相遇;(3)在(2)的条件下,点M(M点在原点)同时以每秒4个单位长度的速度向右运动,几秒后MA=2MB?【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】设小强第一次追上小彬的时间为x秒,根据小强路程-小斌路程+AB的长度=1个跑道的全长列出方程求得x的值,再进一步判断可得.【详解】解:设小强第一次追上小彬的时间为x秒,根据题意,得:6x-4x+115=2×115+2×85,解得x=142.5,整个跑道长为2×115+2×85=400(m),小强第一次追上小彬时,小彬跑了4x=570(m),而570-400=170>115,∴他们的位置在直跑道BC 上,故选:D .【点睛】本题主要考查一了元一次方程的应用,解题的关键是理解题意找到环形跑道上路程间的相等关系:小强路程-小斌路程+AB 的长度=1个跑道的全长.2.B解析:B【分析】利用等式的性质变形得到结果,即可作出判断.【详解】解:A 、由x=y ,得到x-y=0,原变形错误,故此选项不符合题意;B 、由x=y ,得到55x y =,原变形正确,故此选项符合题意; C 、由x=y ,得到x-2=y-2,原变形错误,故此选项不符合题意;D 、由x=y ,得到3x=3y ,原变形错误,故此选项不符合题意;故选:B .【点睛】本题考查了等式的性质,熟练掌握等式的性质是解本题的关键.3.A解析:A【分析】仔细观察图形并从中找到规律,然后利用找到的规律即可得到答案.【详解】第1个图形中黑色正方形的数量是2,第2个图形中黑色正方形的数量是3,第3个图形中黑色正方形的数量是5,…发现规律:当n 为偶数时第n 个图形中黑色正方形的数量为n+2n 个; 当n 为奇数时第n 个图形中黑色正方形的数量为n+12n +个, ∵第n 个图形中黑色正方形的数量是2021个,∴当n+2n =2021时,无解;当n+12n +=2021,解得n=1347, 故选:A .【点睛】 本题考查了图形的变化类问题,解一元一次方程,解题的关键是仔细的观察图形并正确的找到规律,运用总结的规律解决问题.4.B解析:B【分析】设甲、乙两地间的距离是x 千米,根据、乙两地间的距离=返回时的速度×返回时的时间列方程求解即可.【详解】解:设甲、乙两地间的距离是x 千米,由题意得()15515x x ⎛⎫-⨯+= ⎪⎝⎭, 解得:x=450,∴甲、乙两地间的距离是450千米,故选B .【点睛】本题考查了一元一次方程的应用,解答本题的关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.5.B解析:B【分析】设A 种牛奶的进价为x 元,则可得6915%,x x -=求解x 可得A 种牛奶的盈亏情况,设B 种牛奶的进价为y 元,则3415%,y y -=- 求解y 可得B 种牛奶的盈亏情况,从而可得答案.【详解】解:设A 种牛奶的进价为x 元,则6915%,x x ∴-=1.1569,x ∴=60,x =所以A 种牛奶的进价为60元,A 种牛奶挣了9元,设B 种牛奶的进价为y 元,则3415%,y y -=-0.8534,y ∴=40,y ∴=所以B 种牛奶的进价为40元,B 种牛奶亏了6元,则这次超市挣了963-=(元).故选:.B【点睛】本题考查的是一元一次方程的应用,掌握利用“售价减去进价等于进价乘以利润率”列方程是解题的关键.6.C解析:C【分析】设剩下的工作要在4天内完成,需要增加的人数是x 人,根据工程问题的数量关系:一个人的工作效率×增加后的总人数×时间4天=135-,建立方程求出其解即可. 【详解】解:设剩下的工作要在4天内完成,需要增加的人数是x 人,由题意,得3391449155x ÷÷⨯⨯+=-()() , 解得:x=12.故选:C .【点睛】本题考查了列一元一次方程解实际问题的运用,工程问题的数量关系的运用,解答时根据工程问题的数量关系建立方程是关键.7.A解析:A【分析】可设有x 名学生,根据每人分3本总本书+剩余20本=每人分4本总本书-25,求解即可.【详解】解:设有x 名学生,根据书的总量相等可得:3x+20=4x-25,故选:A .【点睛】本题考查了一元一次方程的应用,根据该班人数表示出图书数量得出等式方程是解题关键.8.A解析:A【分析】将方程的解代回方程得56a b +=,再整体代入代数式求值即可.【详解】解:把3x =-代入原方程得650a b -++=,即56a b +=,则()62106256126a b a b --=-+=-=-.故选:A .【点睛】本题考查代数式求值和方程解的定义,解题的关键是掌握方程解的定义,以及利用整体代入的思想求值.9.D解析:D【分析】由月历表数字之间的特点可依次排除选项即可.【详解】解:由A 选项可得:7,14b a c a =+=+,∴71432130a b c a a a a ++=++++=+=,解得3a =,故不符合题意;由B 选项可得:6,12b a c a =+=+,∴61231830a b c a a a a ++=++++=+=, 解得4a =,故不符合题意;由C 选项得1,8b a c a =+=+,∴183930a b c a a a a ++=++++=+=,解得7a =,故不符合题意;由D 选项得6,14b a c a =+=+,∴61432030a b c a a a a ++=++++=+=, 解得103a =,故符合题意; 故选D .【点睛】 本题主要考查一元一次方程的应用,熟练掌握一元一次方程的应用是解题的关键. 10.B解析:B【分析】先解该一元一次方程,然后根据a 是整数和x 是正整数即可得到a 的值,从而得到答案.【详解】 解:44163ax x x -+-=- 去分母得,()()64246x ax x --=+-去括号得,64286x ax x -+=+-整理得,()46a x += ∴64x a=+, 当2a =时1x =,当1a =-时2x =,当2a =-时3x =,当3a =-时6x =,这些整数a 的积为()()()212312⨯-⨯-⨯-=-,故选:B .【点睛】本题考查了一元一次方程的解法和代数式求值,熟练掌握解一元一次方程是解题的关键. 11.A解析:A【分析】设甲数是2x ,则乙数是3x ,丙数是4x ,列出方程,解方程求得x 的值即可.【详解】解:设甲数是2x ,则乙数是3x ,丙数是4x ,则2x+3x-(3x+4x )=30解得x=-15.故2x=-30,3x=-45,4x=-60.即甲、乙、丙分别为-30、-45、-60.故选:A .【点睛】考查了一元一次方程的应用,难度不大,关键是根据题意恰当的设未知数,列出方程. 12.A解析:A【分析】根据先工作的x 人共做了(4+8)小时的工作量+后来2人8小时的工作量=1,解答即可.【详解】解:∵设安排x 人先做4h ,然后增加2人与他们一起做8小时,完成这项工作. ∴可得先工作的x 人共做了(4+8)小时,∴列式为:先工作的x 人共做了(4+8)小时的工作量+后来2人8小时的工作量=1,而x 人1小时的工作量为40x , ∴x 人(4+8)小时的工作量为(48)40x +, ∴(48)40x +表示先工作的x 人前4h 和后8h 一共完成的工作量, 故选A .【点睛】本题考查了一元一次方程的应用,是一个工作效率问题,理解一个人做要40小时完成,即一个人一小时能完成全部工作的140,这一个关系是解题的关键. 二、填空题13.760【分析】设乙车的平均速度是x千米/时根据4(甲的平均速度+乙的平均速度)=560列出方程并求得乙车的行驶平均速度;设甲车从C地到A地需要t小时则乙车从C地到A地需要(t+7)小时根据它们行驶路解析:760【分析】设乙车的平均速度是x千米/时,根据4(甲的平均速度+乙的平均速度)=560列出方程并求得乙车的行驶平均速度;设甲车从C地到A地需要t小时,则乙车从C地到A地需要(t+7)小时,根据它们行驶路程相等列出方程并求得t的值;然后由路程=时间×速度解答.【详解】解:设乙车的平均速度是x千米/时,则4(5607+x)=560.解得x=60即乙车的平均速度是60千米/时.设甲车从C地到A地需要t小时,则乙车从C地到A地需要(t+7)小时,则80(1+10%)t=60(7+t)解得t=15.所以60(7+t)-560=760(千米)故答案是:760.【点睛】此题考查了一元一次方程的应用,读懂题意,找到等量关系,列出方程是解题的关键.14.5x+2x=2016【分析】根据题意列出一元一次方程即可;【详解】设生产了x 套校服∴生产了x件上衣2x条裤子∴列方程为15x+2x=2016故答案为:15x+2x=2016【点睛】本题考查了一元一次解析:5x+2x=2016【分析】根据题意列出一元一次方程即可;【详解】设生产了x套校服,∴生产了x件上衣,2x条裤子,∴列方程为1.5x+2x=2016,故答案为:1.5x+2x=2016.【点睛】本题考查了一元一次方程的应用,正确理解题意是解题的关键;15.415【分析】设有x名学生根据分书情况列方程即可【详解】解:设有x名学生根据题意列方程得3x+3=5(x-1)解得x=4一共有书3×4+3=15(本)答:学生有4人书有15本;故答案为:415【点睛解析:4,15.【分析】设有x 名学生,根据分书情况列方程即可.【详解】解:设有x 名学生,根据题意列方程得,3x+3=5(x-1)解得,x=4,一共有书3×4+3=15(本),答:学生有4人,书有15本;故答案为:4,15.【点睛】本题考查了一元一次方程的应用,解题关键是审清题意,恰当的设未知数,找到等量关系列方程.16.-7【分析】根据可得整体代入即可【详解】解:两边同时乘-3得代入得故答案为:-7【点睛】本题考查了整体代入求代数式的值把已知方程恰当的变形然后整体代入是解题关键解析:-7.【分析】根据23y x -=,可得,369y x -+=-,整体代入即可.【详解】解:23y x -=,两边同时乘-3得,369y x -+=-,代入得,263297x y +-=-=-.故答案为:-7.【点睛】本题考查了整体代入求代数式的值,把已知方程恰当的变形,然后整体代入是解题关键. 17.5或-45【分析】对a 分三种情况讨论【详解】解:分三种情况:(1)a≥1可得:a+3+a-1=7即2a=5∴a=25;(2)-3≤a<1由题意有:a+3+1-a=7即4=7可知a 不存在;(3)a<-解析:5或-4.5【分析】对a 分三种情况讨论.【详解】解:分三种情况:(1)a≥1,可得:a+3+a-1=7,即2a=5,∴a=2.5;(2)-3≤a<1,由题意有:a+3+1-a=7,即4=7,可知a 不存在;(3)a<-3,有:-a-3+1-a=7,即-2a=9,∴a=-4.5;故答案为2.5或-4.5.【点睛】本题考查含绝对值的方程,熟练掌握绝对值的意义和一元一次方程的解法是解题关键.18.3【分析】根据题意可知每行每列每对角线上的三个数之和都相等可知4x+x+7=19+x即可解出x的值;【详解】∵每行每列每对角线上的三个数之和都相等∴4x+x+7=19+x解得x=3故答案为:3【点睛解析:3【分析】根据题意可知每行每列每对角线上的三个数之和都相等可知4x+x+7=19+x即可解出x的值;【详解】∵每行每列每对角线上的三个数之和都相等,∴ 4x+x+7=19+x,解得x=3,故答案为:3.【点睛】本题考查了有理数的加法,一元一次方程的应用,根据表格,根据每行每列每对角线上的三个数之和都相等得知4x+x+7=19+x是解题的关键.19.25或115【分析】设出发小时分情况讨论在甲车到达B地前或在甲车到达B地后返回时列出方程求解【详解】解:设出发小时在甲车到达B地前解得在甲车到达B地后返回时解得故答案是:025或115【点睛】本题考解析:25或1.15【分析】设出发x小时,分情况讨论,在甲车到达B地前或在甲车到达B地后返回时,列出方程求解.【详解】解:设出发x小时,在甲车到达B地前,x x-=,解得0.2560405x=,在甲车到达B地后返回时,x x++=⨯,解得 1.1560405602x=.故答案是:0.25或1.15.【点睛】本题考查一元一次方程的应用,解题的关键是找到等量关系列方程求解,需要注意分类讨论.20.【分析】根据题意设十位数字为x则个位上为(x+3)根据巧数的定义列出方程解方程即可【详解】解:根据题意设十位数字为x 则个位上为(x+3)则解得:∴十位上的数字是3∴个位上的数字是3+3=6∴这个巧数解析:36【分析】根据题意,设十位数字为x ,则个位上为(x+3),根据巧数的定义列出方程,解方程即可.【详解】解:根据题意,设十位数字为x ,则个位上为(x+3),则10(3)[(3)]4x x x x ++=++⨯,解得:3x =,∴十位上的数字是3,∴个位上的数字是3+3=6,∴这个巧数是36;故答案为:36.【点睛】本题考查了一元一次方程,以及巧数的定义,解题的关键是熟练掌握题意,正确列出方程进行解题.三、解答题21.(1)101;(2)1x =-.【分析】(1)实数的混合运算的顺序:先算乘方,再算乘除,最后算加减,同级运算按从左到右的顺序依次计算,有括号的先算括号里的,同时注意运算过程中可以运用运算律计算的要运算律简化计算.(2)解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1.【详解】(1)解:原式27(8)(4)(4)=---⨯-⨯-27(128)=---27128=-+101=;(2)解:去分母,可得3(31)122(57)x x --=-,去括号,得93121014--=-x x ,移项、合并同类项,得1x -=,系数化为1,得1x =-.【点睛】本题考查了实数的运算,一元一次方程的解法,熟练掌握实数混合运算的顺序,一元一次方程解法的五个基本步骤是解题的关键.22.(1)不是;(2)92m =-;(3)m 、n 的值分别是1,23 【分析】(1)先求出方程的解,再根据“和解方程”的定义判断即可;(2)先求出x=3m ,根据“和解方程”的定义得到关于m 的一元一次方程,解之即可解答; (3)根据题意列出关于二元二次方程组,解之即可求得m 、n 的值.【详解】解:(1)方程43x =-的解为x=34-, ∵34-≠﹣3+4, ∴方程43x =-不是“和解方程”; (2)方程3x m =的解为x=3m , ∵方程3x m =是“和解方程”, ∴33m m =+,解得:92m =-; (3)∵关于x 的一元一次方程2x mn n -=+是“和解方程”,并且它的解是x n =-, ∴2,22mn n mn n n mn n +-=+-=+, 解得:21,3m n ==, 即m 、n 的值分别是1、23. 【点睛】本题考查一元一次方程的解、解一元一次方程,理解“和解方程”的定义,根据定义正确列出方程,灵活应用整体的思想方法是解答的关键.23.(1)3x =;(2)177x =【分析】(1)先移项,再合并同类项,然后化系数为1解方程即可;(2)先方程两边同乘以8去分母,再去括号,然后根据(1)中方法解方程即可.【详解】解:(1)移项,得384x x --=--合并同类项,得412x -=-系数化为1,将3x =所以,原方程的解为x=3;(2)去分母,得()84231x x -+-=-+去括号,得84831x x -+-=-+移项,得43188x x +=++合并同类项,得717x =系数化为1,得177x = 所以,原方程的解为177x =. 【点睛】本题考查解一元一次方程,熟练掌握一元一次方程的解法步骤是解答的关键,注意不要漏乘.24.5【分析】求出记录数字之和,确定出总重,设在销售过程中西红柿的单价应定为每千克x 元,根据售价﹣进价=利润列出方程,求出方程的解即可得到结果.【详解】解: 25×8+(+1﹣3.5+2﹣2.5﹣3+2﹣2﹣2)=200﹣8=192(千克).故这8箱西红柿一共重192千克;设在销售过程中西红柿的单价应定为每千克x 元,根据题意得:192x ﹣40×8=160,解得:x =2.5.故在销售过程中西红柿的单价应定为每千克2.5元.【点睛】本题考查一元一次方程的应用,正数和负数,解答本题的关键是明确题意,列出相应的方程求解.25.(1)6;6;6;(2)①乙不会落在原点O 处;理由见解析;②12【分析】(1)根据题意列式计算即可;(2)①设甲猜对了n 次,则甲猜对乙猜错n 次,甲猜错乙猜对(10﹣n )次,根据题意列方程即可得到结论;②游戏结束时,得到甲的位置落在﹣3+4n ﹣2(10﹣n )=6n ﹣23处,游戏结束时,得到乙的位置落在5﹣4(10﹣n )+2n =6n ﹣35处,列式计算即可得到结论.【详解】解:(1)第一次游戏时,若甲、乙都猜对,则移动后两人相距:5-1-(-3+1)=6个单位;若甲猜对乙猜错,则移动后两人相距:5+2-(-3+4)=6个单位;若甲猜错乙猜对,则移动后两人相距:5-4-(-3-2)=6个单位;故答案为:6,6,6;(2)设甲猜对了n次,则甲猜对乙猜错n次,甲猜错乙猜对(10﹣n)次,①根据题意得,乙猜错了n次,向右移动了2n,猜对了(10﹣n)次,向左移动4(10﹣n),则5﹣4(10﹣n)+2n=0,解得:n=356,∵n=356≠整数,∴乙不会落在原点O处;②游戏结束时,甲的位置落在﹣3+4n﹣2(10﹣n)=6n﹣23处,游戏结束时,乙的位置落在5﹣4(10﹣n)+2n=6n﹣35处,∴甲、乙两人之间的距离=|(6n﹣23)﹣(6n﹣35)|=12;【点睛】本题考查一元一次方程的应用,数轴,代数式等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于常考题型.26.(1)2,20;(2)经过6秒,点A与点B相遇;(3)3秒或235秒后,MA=2MB【分析】(1)根据点A的出发点、运动速度及运动时间,可找出当t=2时点A表示的有理数,再利用数轴上两点间的距离公式可求出AB得出长;(2)当运动时间为t秒时,点A表示的有理数为2t﹣2,点B表示的有理数为﹣2t+22,由点A,B相遇,可得出关于t的一元一次方程,解之即可得出结论;(3)当运动时间为t秒时,点A表示的有理数为2t﹣2,点B表示的有理数为﹣2t+22,点M表示的数为4t,分0<t≤113及t>113两种情况考虑,根据MA=2MB,即可得出关于t的一元一次方程,解之即可得出结论.【详解】解:(1)当t=2时,点A表示的有理数为﹣2+2×2=2,∴AB=22﹣2=20.故答案为:2;20.(2)当运动时间为t秒时,点A表示的有理数为2t﹣2,点B表示的有理数为﹣2t+22,依题意得:2t﹣2=﹣2t+22,解得:t=6.答:经过6秒,点A与点B相遇.(3)当运动时间为t秒时,点A表示的有理数为2t﹣2,点B表示的有理数为﹣2t+22,点M表示的数为4t.令﹣2t+22=4t,解得:t=11 3.当0<t≤113时,4t﹣(2t﹣2)=2(﹣2t+22﹣4t),解得:t=3;当t>113时,4t﹣(2t﹣2)=2[4t﹣(﹣2t+22)],解得:t=235.答:3秒或235秒后,MA=2MB.【点睛】本题考查了一元一次方程的应用以及数轴,解题的关键是:(1)利用数轴上两点间的距离公式,求出AB的长;(2)找准等量关系,正确列出一元一次方程;(3)分0<t≤113及t>113两种情况,找出关于t的一元一次方程.。

北师大版七年级上册数学第五章一元一次方程单元测试卷(Word版,含答案)

北师大版七年级上册数学第五章一元一次方程单元测试卷(Word版,含答案)

北师大版七年级上册数学第五章一元一次方程单元测试卷一、单选题(本大题共12小题,每小题3分,共36分)1.已知a b =,根据等式的性质,可以推导出的是( )A .21a b +=+B .33a b -=-C .232a b -=D .a b c c = 2.若使方程(2)1m x +=是关于x 的一元一次方程,则m 的值是( )A .2m ≠-B .0m ≠C .2m ≠D .2m >-3.疫情无情人有情,爱心捐款传真情.某校三个年级为疫情重灾区捐款,经统计,七年级捐款数占全校三个年级捐款总数的25,八年级捐款数是全校三个年级捐款数的平均数,已知九年级捐款1916元,求其他两个年级的捐款数若设七年级捐款数为x 元,则可列方程为( )A .55191662x x x ++=B .21191653x x x ++= C .2191635x x x ++= D .25191652x x x ++= 4.若3x =是关于x 的方程5ax b -=的解,则622a b --的值为( )A .2B .8C .-3D .-85.《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架.它的代数成就主要包括开方术、正负术和方程术,其中方程术是其最高的代数成就.《九章算术》中有这样一个问题:“今有善行者行一百步,不善行者行六十步.今不善行者先行一百步,善行者追之,问几何步及之?”译文:“相同时间内,走路快的人走100步,走路慢的人只走60步.若走路慢的人先走100步,走路快的人要走多少步才能追上?(注:步为长度单位)”设走路快的人要走x 步才能追上,根据题意可列出的方程是( )A .60100100x x =-B .60100100x x =+C .10010060x x =+D .10010060x x =- 6.我国古代数学著作《孙子算经》中有这样一道题,原文如下:今有百鹿入城,家取一鹿,不尽,又三家共一鹿,适尽,问:城中家几何?大意为:今有100头鹿进城,每家取一头鹿,没有取完,剩下的鹿每3家共取一头,恰好取完,问:城中有多少户人家?在这个问题中,城中人家的户数为( )A .25B .75C .81D .907.一件夹克衫先按成本价提高70%标价,再将标价打7折出售,结果获利38元.设这件夹克衫的成本价是x 元,那么依题意所列方程正确的是( )A .70%(1+70%)x =x +38B .70%(1+70%)x =x ﹣38C .70%(1+70%x )=x ﹣38D .70%(1+70%x )=x +388.若关于x 的一元一次方程1322022x x b +=+的解为3x =-,则关于y 的一元一次方程1(1)32(1)2022y y b ++=++的解为( ) A .1y = B .=2y - C .=3y - D .4y =-9.已知关于x 的方程38132ax x x --=-有负整数解,则所有满足条件的整数a 的值之和为( ) A .11- B .26- C .28- D .30-10.已知|2|(3)58---=a a x 是关于x 的一元一次方程,则=a ( )A .3或1B .1C .3D .011.我国古代数学名著《九章算术》中记载:“今有共买物,人出八,盈三;人出七,不足四,问人数,物价各几何?”意思是现有几个人共买一件物品,每人出8钱.多出3钱;每人出7钱,差4钱.问人数,物价各是多少?若设共有x 人,物价是y 钱,则下列方程正确的是( )A .()()8374x x -=+B .8374x x +=-C .3487y y -+=D .3487y y +-= 12.某书店推出如下优惠方案:(1)一次性购书不超过100元不享受优惠;(2)一次性购书超过100元但不超过300元一律九折;(3)一次性购书超过300元一律八折.某同学两次购书分别付款80元、252元,如果他将这两次所购书籍一次性购买,则应付款( )A .288B .360C .288或316D .360或395。

北师大版七年级数学上册 第5章 一元一次方程 单元测试题(有答案)

北师大版七年级数学上册 第5章 一元一次方程 单元测试题(有答案)

北师大版七年级数学上册第5章一元一次方程单元测试题一.选择题(共10小题)1.下列所给条件,不能列出方程的是()A.某数比它的平方小6B.某数加上3,再乘以2等于14C.某数与它的的差D.某数的3倍与7的和等于292.若x=1是ax+2x=3方程的解,则a的值是()A.﹣1B.1C.﹣3D.33.方程2x﹣4=﹣2x+4的解是()A.x=2B.x=﹣2C.x=1D.x=04.下列等式变形,正确的是()A.由6+x=7得x=7+6B.由3x+2=5x得3x﹣5x=2C.由2x=3得x=D.由﹣1=1得x﹣5=15.方程8﹣|x+3|=﹣2的解是()A.x=10B.x=7C.x=﹣13D.x=7或x=﹣136.某商贩在一次买卖中,以每件135元的价格卖出两件衣服,其中一件盈利25%,另一件亏损25%,在这次买卖中,该商贩()A.不赔不赚B.赚9元C.赔18元D.赚18元7.某汽车队运送一批货物,若每辆汽车装4吨,则还剩下8吨装不下;若每辆汽车装4.5吨,则恰好装完.该车队运送货物的汽车共有多少辆?设该车队运送货物的汽车共有x辆,则可列方程为()A.4x+8=4.5x B.4x﹣8=4.5xC.4x=4.5x+8D.4(x+8)=4.5x8.如果关于x的方程3x+2a=12和方程3x﹣4=2(x﹣3)的解相同,那么与a互为倒数的数是()A.3B.9C.D.9.如图所示,两人沿着边长为90m的正方形,按A→B→C→D→A…的方向行走,甲从A点以65m/min 的速度、乙从B点以75m/min的速度行走,当乙第一次追上甲时,将在正方形的()边上.A.BC B.DC C.AD D.AB10.将正整数1至2016按一定规律排列如表:平移表中带阴影的方框,方框中三个数的和可能是()A.2000B.2019C.2100D.2148二.填空题(共8小题)11.已知|2x﹣3|=1,则x的值为.12.下面是一个被墨水污染过的方程:2x﹣=3x+,答案显示此方程的解为x=﹣1,被墨水遮盖的是一个常数,则这个常数是.13.已知关于x的方程2x+a=x﹣1的解和方程2x+4=x+1的解相同,则a=.14.下列各式中,是一元一次方程的是(填序号)①3x+6=9;②2x﹣1;③x+1=5;④3x+4y=12;⑤5x2+x=3;⑥+y=2;⑦3x+y>0.15.《九章算术》是中国古代《算经十书》最重要的一部,它的出现标志中国古代数学形成了完整的体系,其中有一道阐述“盈不足数”的问题,原文如下:今有人共买物,人出八,盈三;人出七,不足四.问人数,物价各几何?意思是说:现有一些人共同买一个物品,每人出8元,还盈余3元;第人出7元,则还差4元.问共有多少人?这个物品的价格是多少?设有x人,则根据题意可列方程.16.一艘船在水中航行,已知该船在静水中的速度为m(千米/小时),水流速度为n(千米/小时),如果该船从码头A出发,先顺流航行5小时,然后又调头逆流航行了5小时,那么最后船离A码头千米.17.有2020个数排成行,对于任意相邻的三个数,都有中间的数等于前后两数的和.如果第一个数是0,第二个数是1,那么前6个数的和是0,这2020个数的和是.18.互联网“微商”经营已成为大众创业新途径,某微信平台上一件商品标价为220元,按标价的五折销售,仍可获利10%,则这件商品的进价为元.三.解答题(共7小题)19.解方程:(1)2x+3=15(2)20.已知(m﹣2)x|m|﹣1+6=m是关于x的一元一次方程,求代数式(x﹣3)2018的值.21.如果关于x的方程3(x﹣1)﹣2(x+1)=﹣2和的解相同,求a的值.22.李明和爸爸比身高,两人站一起时,发现自己的身高只到爸爸身高的一半.他又去搬来28cm高的小板凳,发现这时到了爸爸身高的处.问李明和爸爸的身高分别为多少?23.学校要购入两种记录本,预计花费460元,其中A种记录本每本3元,B种记录本每本2元,且购买A种记录本的数量比B种记录本的2倍还多20本.(1)求购买A和B两种记录本的数量;(2)某商店搞促销活动,A种记录本按8折销售,B种记录本按9折销售,则学校此次可以节省多少钱?24.小明用8个完全相同的小长方形拼图,拼出了如图甲、乙的两种图案:图案甲是一个正方形,图案乙是一个大的长方形;图案甲的中间留下了边长是1的正方形小洞.(1)设每个小方形的宽为x,由图乙可知每个小长方形的长可表示为.(2)求小长方形的长和宽.25.定义:若线段AB上有一点P,当PA=PB时,则称点P为线段AB的中点.已知数轴上A,B 两点对应数分别为a和b,(a+2)2+|b﹣4|=0,P为数轴上一动点,对应数为x.(1)a=,b=;(2)若点P为线段AB的中点,则P点对应的数x为.若B为线段AP的中点时则P点对应的数x为.(3)若点A、点B同时向左运动,它们的速度都为1个单位长度/秒,与此同时点P从﹣16处以2个单位长度/秒向右运动.①设运动的时间为t秒,直接用含t的式子填空AP=;BP=.②经过多长时间后,点A、点B、点P三点中其中一点是另外两点的中点?参考答案与试题解析一.选择题(共10小题)1.解:设某数为x,A、x2﹣x=6,是方程,故本选项错误;B、2(x+3)=14,是方程,故本选项错误;C、x﹣x,不是方程,故本选项正确;D、3x+7=29,是方程,故本选项错误.故选:C.2.解:根据题意,将x=1代入方程ax+2x=3,得:a+2=3,得:a=1.故选:B.3.解:2x﹣4=﹣2x+4移项得,2x+2x=4+4,合并同类项得,4x=8,系数化为1,得x=2.故选:A.4.解:A、由6+x=7得x=7﹣6,不符合题意;B、由3x+2=5x得3x﹣5x=﹣2,不符合题意;C、由2x=3得x=,符合题意;D、由﹣1=1得x﹣5=5,不符合题意;故选:C.5.解:8﹣|x+3|=﹣2,10=|x+3|,x+3=10或﹣10,∴x=7或﹣13,故选:D.6.解:设盈利的衣服的进价为x元,亏损的衣服的进价为y元,依题意,得:135﹣x=25%x,135﹣y=﹣25%y,解得:x=108,y=180.∵135﹣108+(135﹣180)=﹣18,∴该商贩赔18元.故选:C.7.解:设这个车队有x辆车,由题意得,4x+8=4.5x.故选:A.8.解:解方程3x﹣4=2(x﹣3),3x﹣4=2x﹣63x﹣2x=﹣6+4x=﹣2,把x=﹣2代入3x+2a=12,可得:﹣6+2a=12,解得:a=9,所以与a互为倒数的数是,故选:C.9.解:设乙行走tmin后第一次追上甲,根据题意,可得:甲的行走路程为65tm,乙的行走路程75tm,当乙第一次追上甲时,270+65t=75t,∴t=27min,此时乙所在位置为:75×27=2025m,2025÷(90×4)=5…225,∴乙在距离B点225m处,即在AD上,故选:C.10.解:设中间数为x,则另外两个数分别为x﹣1、x+1,∴三个数之和为(x﹣1)+x+(x+1)=3x.根据题意得:3x=2019、3x=2000、3x=2100、3x=2148,解得:x=673,x=666(舍去),x=700,x=716.∵673=96×7+1,∴2019不合题意,舍去;∵700=100×7,∴2100不合题意,舍去;∵716=102×7+2,∴三个数之和为2148.故选:D.二.填空题(共8小题)11.解:|2x﹣3|=1,2x﹣3=±1,2x﹣3=1或2x﹣3=﹣1,x1=2,x2=1.故答案为:2或1.12.解:设被墨水遮盖的常数为t,则2x﹣=3x+t,把x=﹣1代入得2×(﹣1)﹣=3×(﹣1)+t,解得t=.故答案为.13.解:2x+4=x+1,2x﹣x=1﹣4,x=﹣3,把x=﹣3代入2x+a=x﹣1中得:﹣6+a=﹣3﹣1,解得:a=10,故答案为:10.14.解:①3x+6=9,是一元一次方程,符合题意;②2x﹣1,是整式,不是方程,不合题意;③x+1=5,是一元一次方程,符合题意;④3x+4y=12,是二元一次方程,不合题意;⑤5x2+x=3,是一元二次方程,不合题意;⑥+y=2,是分式方程,不合题意;⑦3x+y>0,是不等式,不合题意.故答案为:①③.15.解:设有x人,由题意,得8x﹣3=7x+4.故答案是:8x﹣3=7x+4.16.解:由题意,得船离A码头为:5(m+n)﹣5(m﹣n)=10n.故答案是:10n.17.解:由题意可得,这列数为:0,1,1,0,﹣1,﹣1,0,1,1,…,∴前6个数的和是:0+1+1+0+(﹣1)+(﹣1)=0,∵2020÷6=336…4,∴这2020个数的和是:0×336+(0+1+1+0)=2,故答案为:2.18.解:设这件商品的进价为x元,根据题意得:10%x=220×50%﹣x,0.1x=110﹣x,1.1x=110,x=100,答:这件商品的进价为100元.故答案是:100.三.解答题(共7小题)19.解:(1)移项合并得:2x=12,解得:x=6;(2)去分母得:4x+4=12﹣3+6x,移项合并得:﹣2x=5,解得:x=﹣2.5.20.解:∵(m﹣2)x|m|﹣1+6=m是关于x的一元一次方程,∴|m|﹣1=1,且m﹣2≠0.解得m=﹣2,∴﹣4x+6=﹣2,解得x=2,∴(x﹣3)2018=(2﹣3)2018=1.21.解:解方程3(x﹣1)﹣2(x+1)=﹣2得:x=3,把x=3代入方程中,解得:=1,解得:a=﹣.22.解:设李明的身高为xcm,则爸爸的身高为2xcm,根据题意,得x+28=•2x,解得:x=84,则2x=168.答:李明的身高是84cm,爸爸的身高是168cm.23.解:(1)设购买B种记录本x本,则购买A种记录表(2x+20)本,依题意,得:3(2x+20)+2x=460,解得:x=50,∴2x+20=120.答:购买A种记录本120本,B种记录本50本.(2)460﹣3×120×0.8﹣2×50×0.9=82(元).答:学校此次可以节省82元钱.24.解:(1)由题意知,每个小长方形的长为:.故答案是:.(2)依题意,得.解得x=3.答:每个小长方形的长为5,宽为3.25.解:(1)因为(a+2)2+|b﹣4|=0,所以a=﹣2,b=4.故答案为﹣2、4(2)若点P为线段AB的中点,则P点对应的数x为1.若B为线段AP的中点时,AB=BP=6,则P点对应的数x为10.故答案为1、10.(3)①AP=﹣3t+14或14﹣3t或|14﹣3t|,BP=20﹣3t或3t﹣20或|20﹣3t|.故答案为﹣3t+14或14﹣3t或|14﹣3t|、20﹣3t或3t﹣20或|20﹣3t|.②ts后,点A的位置为:﹣2﹣t,点B的位置为:4﹣t,点P的位置为:﹣16+2t当点A是PB的中点时,则﹣2﹣t﹣(﹣16+2t)=6 解得:t=当点P是AB的中点时,则﹣16+2t﹣(﹣2﹣t)=3 解得:t=当点B是PA的中点时,则﹣16+2t﹣(4﹣t)=6 解得:t=答:经过s、s、s后,点A、点B、点P三点中其中一点是另外两点的中点.。

北师大版七年级上册数学第五章单元测试卷及答案共7套

北师大版七年级上册数学第五章单元测试卷及答案共7套

第五章 一元一次方程单元测试一、选择题 (每小题2分,共20分)1、 第二十届电视剧飞天奖今年有。

部作品参赛,比去年增加了40%还多2部,设去年参赛的作品有b 部,则b 是( ) A.2-40%)D.a(1 40%12-a C. 240%)a(1B %4012++++++、a2、 某文化商场同时卖出两台电子琴,每台均卖960元,以成本计算,其中一台赢利20%,另一台亏本20%,则本次出售中商场( )A 不赔不赚B .赚 160元C .赚80元D .赔80元 3、 如果2(x +3)的值与3(1-x)的值互为相反数,那么x 等于( ) A.9 B.8 C.-9 D.-84. 13123x --=方程和下列方程的解相同的是( )A.l -(x -3)=1B.2-3(3-x )=6C.3-2(x -3)=6D.3-2(x -3)=15、 某商品进货价便宜8%,而售价保持不变,那么它的利润(按进货价而定)可由目前的x%增加到(X+10)%,则x%是( ) A.12% B.15% C .30% D.50% 6、 下列判断错误的是( )A.若a =b ,则ac -3=bc -3B.若x =2,则x 2=2xC.若a =b ,则1122+=+c bc a D.若ax =bx ,则a=b 7、 两个正方形,大正方形的边长比小正方形的边长多3厘米,大正方形的周长是小正方形周长的2倍,两个正方形的面积分别是( )·A.4平方厘米和1平方厘米B.16平方厘米和二平方厘米C.36平方厘米和9平方厘米D.5平方厘米和1平方厘米8、 某商场将彩电按原价提高40%,然后在广告上写“大酬宾,8折优惠”,结果每台彩电仍获利270元,那么每台彩电原价是( ) A.2150元 B.2200元 C.2250元 D.2300元9、 小明在公路上行走,速度是每时6千米,一辆车身长20米的汽车从背后驶来,并从小明身旁驶过,驶过小明身旁的时间为15秒,则汽车的行驶速度是( ). A.54千米/时 B.60千米/时 C.72千米/时 D.66千米/时 10、某人按定期2年向银行储蓄了1500元,假设年利率为3%(不计复利),到期支取时,利息所得税(税率为20%),此人实得利息为( ). A.72元 B.36元 C.72元 D.1572元 二.填空题(每小题2分,共20分) 11、已知3xm 214-=-2x+1是关于x 的一元一次方程,那么m=_______13、若2x 3-2+2k=4是关于x 的一元一次方程,则方程的解x= _______ 14、|2x -4y|+(y+3z)4=0, 则yx zy x 4532-+-=_______________-15、如果关于x 的方程337=+kx 的解是x=2,则k=_______ 16、关于x 的方程(k +2)x -l 二0的解是1,则k=_________ 17、在公式v=v 0+at 中,已知v=40, v 0= 15,a=5, 则t=__________ 18、小刚比小明大2岁,他们的岁数和是24,那么小刚是_______岁19、小青与父亲下棋,共下10盘.小青胜一盘记2分,负一盘记-l 分(若和棋重下),若小青得5分,则小青胜________盘20、我国政府为解决老百姓看病难的问题,决定下调药品价格.某种药品在1999年涨价30%后,2001年降价70%至a 元,则这种药品在1999年涨价前的价格为____元三、解方程:(每题3分,共12分)21、⑴解方程:22x 331x 2 232141-=+=-⑵x⑴解方程:0)01-(x 514)(x 21=++ ⑴653)(4x 31)3x 4(21-=+++四、解答下列各题22、若 a ,b 为定值,关于x 的一次方程2,6bx-x 32=+-x ka 无论 k 为何值时,它的解总是1,求a ,b 的值.(5分)23、学校准备添置一批课桌椅,原订购60套,每套100元.店方表示如果多购,可以优惠结果校方购了72套,每套减价3元,但店方获得同样多的利润,求每套课桌椅的成本(5 分)24.中国民航规定:乘坐飞机普通舱的旅客一人最多可免费携带20千克行李,超过部分每千克按飞机票价的1.5%购买行李票,一位乘坐普通舱的旅客付了81元的行李费,他所乘航班的机票为1080元.这个旅客携带了多少千克的行李?(7分)25.从甲地到乙地,公共汽车原需行驶7时,开通高速公路后,车速平均每时增加了20千米,只需5时即可到达.求甲、乙两地的路程.(6分).26、父亲现在的年龄是儿子的2倍,当父亲38岁时,儿子10岁,现在父子俩各是多少岁?(5分)27.在一次数学测验中,小明认为自己可以得满分,不料卷子发下来一看得了96分,原是由于粗心把一个题目答案的十位数字与个位数字写颠倒了,结果自己的答案比正确答案大36,而正确答案的个位数字是十位数字的2倍,正确答案是多少?(6分)28.在一个底面直径为5cm,高为18cm的圆柱形瓶内装满水,再将瓶内的水倒人一个底面直径是6cm,高是10cm的圆柱形玻璃杯中,能否完全装下?若装不下,那么瓶内水还剩多高?若未能装满,求杯内水面离杯口的距离.(7分)29、小王每天去体育场晨练,每次都见到一位田径队的叔叔也在锻炼,两人沿400米跑步每次总是小王跑2圈的时间叔叔跑3圈,一天,两人在同地反向而跑,小明看了一下记时表发现隔了32秒两人第一次相遇,求两人的速度;第二天小王打算和叔叔在同地同向而跑,看叔叔隔多少时间再次与他相遇.你能先帮小王预测一下吗?(7分)参考答案 一、选择题1、C 2.D 3.A 4.C 5,B 6.D 7.C 8.C 9.A 10.C 二、填空题11.6 12. 1 13、 3114、1 15 、-116、2 17、5 18、13 19、5 20.39100a三.解答题21. ⑴x=8 ⑴x=1.6 ⑴ x=0 ⑴x=-1 四.解答下列各题 22、 a=0 , b=11 23、 82元24、 25千克 26、350千米 27、父亲56岁 儿子28岁 28、4829、装不下,瓶内水还剩3.6㎝高 30、5米/秒和7.5米/秒;160分钟第五章 一元一次方程单元测试一、选择题:(每题3分,共18分) 1.下列等式变形正确的是 ( ) A.如果s =12ab,那么b = 2sa; B.如果12x = 6,那么x = 3 C.如果x - 3 = y - 3,那么x - y = 0; D.如果mx = my,那么x = y2. 方程12x - 3 = 2 + 3x 的解是 ( ) A.-2;B.2;C.-12; D.123.关于x 的方程(2k -1)x 2 -(2k + 1)x + 3 = 0是一元一次方程, 则k 值为 ( ) A.0B.1C.12D.24.已知:当b = 1,c = -2时,代数式ab + bc + ca = 10, 则a 的值为( ) A.12B.6C.-6D.-125.下列解方程去分母正确的是( )A.由1132x x--=,得2x - 1 = 3 - 3x;B.由232124x x ---=-,得2(x - 2) - 3x - 2 = - 4C.由131236y y y y +-=--,得3y + 3 = 2y - 3y + 1 - 6y;D.由44153x y +-=,得12x - 1 = 5y + 206.某件商品连续两次9折降价销售,降价后每件商品售价为a 元,则该商品每件原价为( )A.0.92aB.1.12aC.1.12a D.0.81a二、填空题:(每空3分,共36分)7.x = 3和x = - 6中,_______ _是方程x - 3(x + 2) = 6的解. 8.若x = -3是方程3(x - a) = 7的解,则a = ________.9.若代数式213k--的值是1,则k = _________. 10.当x = ________时,代数式12x -与113x +-的值相等.11. 5与x 的差的13比x 的2倍大1的方程是__________.12. 若4a -9与3a -5互为相反数, 则a 2 - 2a + 1的值为_________.13.一次工程,甲独做m 天完成,乙独做比甲晚3天才能完成,甲、乙二人合作需要_______天完成.14.解方程132x-=,则x=_______. 15.三个连续偶数的和为18,设最大的偶数为 x, 则可列方程______.16.甲水池有水31吨,乙水池有水11吨,甲池的水每小时流入乙池2吨,x 小时后, 乙池有水________吨 ,甲池有水_______吨 , ________小时后,甲池的水与乙池的水一样多.三、解方程:(每题5分,共20分)17.70%x+(30-x)×55%=30×65% 18.511241263xx x +--=+;19.1122(1)(1)223x x x x ⎡⎤---=-⎢⎥⎣⎦; 20.432.50.20.05x x ---=.四、解答题:(共46分) 21.(做一做,每题4分,共8分) 已知2y+ m = my - m. (1)当 m = 4时,求y 的值.(2)当y = 4时,求m 的值.22.王强参加了一场3000米的赛跑,他以6米/秒的速度跑了一段路程,又以4 米/秒的速度跑完了其余的路程,一共花了10分钟,王强以6米/ 秒的速度跑了多少米? (8分)23. 一个三位数,它的百位上的数比十位上的数的2倍大1,个位上的数比十位上的数的3倍小1.如果把这个三位数的百位上的数字和个位上的数字对调,那么得到的三位数比原来的三位数大99,求这个三位数。

北师大版2024新版七年级数学上册《第五章 一元一次方程》单元测试及答案

北师大版2024新版七年级数学上册《第五章 一元一次方程》单元测试及答案

…○………………内………………○………………装………………○………………订………………○………………线………………○…………………○………………外………………○………………装………………○………………订………………○………………线………………○………………… 学校:______________姓名:_____________班级:_______________考号:______________________北师大版2024新版七年级数学上册 《第五章 一元一次方程》单元测试及答案(满分:100分 时间:100分钟)题号 一 二 三 总分 分数一、选择题(每小题3分,共30分)1.下列各方程中,属于一元一次方程的是( ) A.20x y += B.2320x x ++= C.1232x x-=+D.10x +=2.如果ma mb =,那么下列等式中不一定成立的是( ) A.11ma mb +=+ B.33ma mb -=- C.1122ma mb-=-D.a b =3.已知方程33x m x +=-的解为1x =-,则m 的值为( ) A.13 B.7 C.-10 D.-134.解一元一次方程11(1)123x x +=-时,去分母正确的是( )A.3(1)12x x +=-B.2(1)13x x +=-C.2(1)63x x +=-D.3(1)62x x +=- 5.如图,在编写数学谜题时,“口”内要求填写同一个数字,若设“口”内数字为x .则列出方程正确的是( )A.3252x x ⨯+=B.3205102x x ⨯+=⨯C.320520x x ⨯++=D.3(20)5102x x ⨯++=+ 6.某商店有两个进价不同的计算器都卖了80元,其中一个盈利60%,另一个亏本20%,在这次买卖中,这家商店( )A.不赔不赚B.赚了10元C.赔了10元D.赚了50元 7.已知12211,536y x y x =-+=-,若1220y y +=,则x =( )A.-30B.-48C.48D.30 8.解方程20.250.10.10.030.02x x-+=时,把分母化为整数,得( )A.200025101032x x -+=B.20025100.132x x -+=C.20.250.10.132x x -+=D.20.250.11032x x -+=9.一根竹竿插入到池塘中,插入池塘淤泥中的部分占全长的15,水中部分是淤泥中部分的2倍多1米,露出水面的竹竿长1米,设竹竿的长度为x 米,则可列出方程为( ) A.12155x x x++=B.121155x x x+++=C.121155x x x++-=D.12155x x +=10.方程13153520052007x x xx++++=⨯的解是x =()A.20062007B.20072006C.20071003D.10032007二、填空题(每小题3分,共24分)11.如果1x =是关于x 的方程5270x m +-=的根,则m 的值是________. 12.根据条件:“x 的2倍与5的差等于15”列出方程为________.13.若0x =是方程200120023x a x -=+的解,那么代数式22a -+=________. 14.一份数学试卷,只有25个选择题,做对一题得4分,做错一题倒扣1分,某同学做了全部试卷,得了70分,他一共做对了________……○………………内………………○………………装………………○………………订………………○………………线………………○… 此卷只装订不密封……○………………外………………○………………装………………○………………订………………○………………线………………○…道题.15.如果关于x 的方程51763x -=与81142||22x x m -=++的解相同,那么m 的值是________.16.如图,长方形ABCD 是一个游乐场的平面示意图,AB=22,AD=26,它是由6个正方形拼成的长方形,则中间阴影部分的正方形的边长是________.17.规定:用{m }表示大于m 的最小整数,例如:{2.6}3,{8}9,{4.9}4==-=-;用[m ]表示不大于m 的最3182x x -+=大整数,例如:7[3,[4]4,[ 1.5]22=-=--=-.如果整数x 满足关系式:2[]5{2}29x x --=,则x =________.18.一列方程如下排列:1142x x -+=的解是2x =;2162x x -+=的解是3x =;的解是4x =;…;利用根据观察得到的规律,写出解是7x =的方程是________.三、解答题(共46分) 19.(6分)解方程: (1)15(75)2(53)x x x --=+-; (2)221153x x x ---=-.20.(7分)已知关于x 的方程3210x m -+=与22m x -=的解互为相反数,试求这两个方程的解及m 的值.21.(7分)若关于x 的方程231x -=和32x k k x -=-有相同的解,求k 的值.22.(8分)小丽在商店花18元买了苹果和橘子共6千克,已知苹果每千克3.2元,橘子每千克2.6元,小丽买了苹果和橘子各有多少千克?23.(8分)为了拓展销路,商店对某种照相机的售价做了调整,按原价的8折出售,此时的利润率为14%,若此种照相机的进价为1200元,问该照相机的原售价是多少元?…○………………内………………○………………装………………○………………订………………○………………线………………○…………………○………………外………………○………………装………………○………………订………………○………………线………………○………………… 学校:______________姓名:_____________班级:_______________考号:______________________24.(10分)如图,将一条数轴在原点O 和点B 处各折一下,得到一条“折线数轴”.图中点A 表示-11,点B 表示10,点C 表示18,我们称点A 和点C 在数轴上相距29个长度单位.动点P 从点A 出发,以2个长度单位/秒的速度沿着“折线数轴”的正方向运动,从点O 运动到点B 期间速度变为原来的一半,之后立刻恢复原速;同时,动点Q 从点C 出发,以1个长度单位/秒的速度沿着数轴的负方向运动,从点B 运动到点O 期间速度变为原来的两倍,之后也立刻恢复原速.设运动的时间为t 秒.问:(1)动点P 从点A 运动至C 点需要多少时间? (2)P ,Q 两点相遇时,求出相遇点M 所对应的数是多少; (3)求当t 为何值时,P ,O 两点在数轴上相距的长度与Q ,B 两点在数轴上相距的长度相等.参考答案1.D2.D3.B4.D5.D6.B7.B8.B9.B 10.C 11.1 12.2515x -= 13.-7 14.19 15.2± 16.217.-8 18.61142x x -+= 19.【解析】(1)去括号得:1575253x x x -+=+-,移项合并同类项得:63x =-,解得:12x =-;(2)去分母得:153610515x x x -+=--,移项合并同类项得:226x =-,解得:13x =-.20.【解析】3210x m -+=,解得:213m x -=,22m x -=,解得:22m x -=,根据题意得:212032m m --+=,去分母得:42630m m -+-=,解得:4m =-,两方程的解分别为-3,3.21.【解析】解方程231x -=得2x =,解方程32x k k x -=-得37x k =,因为两方程有相同的解,所以327k =,解得143k =.22.【解析】设小丽买了苹果x 千克,橘子(6x -)千克.由题意得:3.2 2.6(6)18x x +⨯-=,解得:4x =,所以62x -=.答:小丽买了苹果4千克,橘子2千克.23.【解析】设该照相机的原售价是x 元,根据题意得:0.81200(114%)x =⨯+,解得:1710x =.答:该照相机的原售价是1710元.24.【解析】(1)点P 运动至点C 时,所需时间1121018219.5t =÷+÷+÷=(秒). 答:动点P 从点A 运动至C 点需要19.5秒.(2)由题可知,P ,Q 两点相遇在线段OB 上于M 处,设OM=x.则112181(10)2x x ÷+÷=÷+-÷,x =5.答:M 所对应的数为5.(3)P ,O 两点在数轴上相距的长度与Q ,B 两点在数轴上相距的长度相等有4种可能:①动点Q 在CB 上,动点P 在AO 上,则:8112t t -=-,解得:3t =.②动点Q 在CB 上,动点P 在OB 上,则:8( 5.5)1t t -=-⨯,解得: 6.75t =. ③动点Q 在BO 上,动点P 在OB 上,则:2(8)( 5.5)1t t -=-⨯,解得:10.5t =. ④动点Q 在OA 上,动点P 在BC 上,则:102(15.5)1310t t +-=-+,解得:18t =.综上所述:t 的值为3,6.75,10.5或18.。

人教版七年级数学上册《第五章一元一次方程》章节检测卷-带含答案

人教版七年级数学上册《第五章一元一次方程》章节检测卷-带含答案

人教版七年级数学上册《第五章一元一次方程》章节检测卷-带含答案学校:___________班级:___________姓名:___________考号:___________一、选择题1.下列方程中,解为x=3的方程是()A.y−3=0B.x+2=1C.2x−2=3D.2x=x+32.下列变形符合方程的变形规则的是()A.若2x−3=7,则2x=7−3B.若3x−2=x+1,则3x−x=1−2C.若−3x=5,则x=5+3D.若−1x=1,则x=−443.已知x=1是方程x+m=3的解,则m的值是()A.1 B.2 C.−2D.34.小丽同学在做作业时,不小心将方程2(x﹣3)﹣■=x+1中的一个常数污染了,在询问老师后,老师告诉她方程的解是x=9,请问这个被污染的常数■是()A.4 B.3 C.2 D.15.甲、乙两个工程队共同承接了某村“煤改气”工程,甲队单独施工需10天完成,乙队单独施工需15天完成.若甲队先做5天,剩下部分由两队合做,则完成该工程还需要()A.8天B.5天C.3天D.2天6.红星中学初三②班十几名同学毕业前和数学老师合影留念,一张彩色底片要0.6元,扩印一张相片0.5元,每人分一张,免费送老师一张(由学生出钱),每个学生交0.6元刚好,相片上共有多少人()A.13个B.12个C.11个D.无法确定7.某校社团活动课中,手工制作社的同学用一种彩色硬纸板制作某种长方体小礼品的包装盒,每张硬纸板可制作盒身12个,或制作盒底18个,1个盒身与2个盒底配成一套.现有28张这种彩色硬纸板,要使盒身和盒底刚好配套,若设需要x张做盒身,则下列所列方程正确的是( )A.18(28−x)=12x B.18(28−x)=2×12xC.18(14−x)=12x D.2×18(28−x)=12x8.在如图所示的三阶幻方中,填写了一些数、式子和汉字(其中每个式子或汉字都表示一个数),若每一横行,每一竖列,以及每条对角线上的3个数之和都相等,则“诚实守信”这四个字表示的数之和为()A.20B.21C.30D.31二、填空题9.若x=2是方程3x−2a=5的解,则a=.10.当x= 时,代数式3−2x2与2−x3互为相反数.11.甲乙两城市相距420千米,客车与轿车分别从甲乙两城市同时出发,相向而行.已知客车每小时行70千米,轿车每小时行110千米,经过小时客车与轿车相距60千米.12.小军在解关于x的方程2−2x3=3x−m7+3去分母时,方程右边的3未乘21,由此求得方程的解为x=1423,则这个方程的正确的解应为.13.小红在一家文具店买了一种大笔记本4个和一种小笔记本6个,共用了62元.已知她买的这种大笔记本的单价比这种小笔记本的单价多3元,则该文具店中这种大笔记本的单价为元.三、计算题14.解方程:(1)5x−14=7−2x;(2)x−22−3−x5=4四、解答题15.已知x=2是方程ax−4=0的解(1)求a的值;(2)检验x=3是不是方程2ax−5=3x−4a的解.16.一六三学校六、七、八年级参加春游的师生一共有900人,租一辆45座的小客车租金为250元,租一辆60座的大客车租金为300元.如果租用的大客车比小客车多1辆,恰好坐满.(1)需要租用的大客车和小客车各多少辆?(2)应付租金多少元?17.定义:如果两个一元一次方程的解之和为1,我们就称这两个方程为“美好方程”.例如:方程2x−1=3和x+1=0为“美好方程”.(1)请判断方程4x−(x+5)=1与方程−2y−y=3是否互为“美好方程”;(2)若关于x方程12023x−1=0与12023x+1=3x+k是“美好方程”,求关于y的方程12023(y+2)+1=3y+k+6的解.18.小明每天早晨在8时前赶到离家1千米的学校上学.一天,小明以80米/分的速度从家出发去学校,5分钟后,小明爸爸发现小明的语文书落在家里,于是,立即以180米/分的速度去追赶.问:(1)小明爸爸出发多少时间后追上小明?(请用列方程的方法解)(2)追上小明时,他们距离学校还有多远?19.希腊数学家丢番图(公元3--4世纪)的墓碑上记载着:“他生命的六分之一是幸福的童年;再活了他生命的十二分之一,两颊长起了细细的胡须;他结了婚,又度过了一生的七分之一;再过五年,他有了儿子,感到很幸福;可是儿子只活了他父亲全部年龄的一半;儿子死后,他在极度悲痛中度过了四年,也与世长辞了.”根据以上信息,请你求出:(1)丢番图的寿命;(2)儿子死时丢番图的年龄.参考答案1.D2.D3.B4.C5.C6.B7.B8.B9.1210.13811.2或8312.x=−213.814.(1)解:5x−14=7−2x5x+2x=7+147x=21x=3;(2)解:x−22−3−x5=45(x−2)−2(3−x)=405x−10−6+2x=407x=40+167x=56x=8.15.(1)a=2;(2)不是16.(1)解:设租小客车x辆,大客车(x+1)辆45x+60(x+1)=900解得:x=8x+1=8+1=9辆答:租小客车8辆,大客车9辆;(2)解:250×8+300×9=4700(元)答:应付租金4700元.17.(1)方程4x−(x+5)=1与方程−2y−y=3互为“美好方程”.(2)−2024.18.(1)解:设爸爸追上小明用了x 分则由题意可得:5×80+80x=180x解得x=4答:小明爸爸出发4分钟后能追上小明;(2)解:1000-4×180=280(米)答:追上小明时,他们距离学校的距离为280米.19.(1)84岁;(2)80岁。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第五章 元 次方程单元测试卷若1 (y + 1)与3— 2y 互为相反数,则y 等于()3二、填空题:(每题3分,共27分)11 .设某数为x ,若它的3倍比这个数本身大 2,则可列出方程1 .卜面的等式中,是一兀一次方程的为( )A. 3x + 2y = 0B. 3+ m = 10 C . 1 2 + -x=xD . a 2= 162 .下列结论中,正确的是()A. 由5十x = 13,可得 x = 13 - 5B.由 5 x = 3 x + 7, 可得 5 x + 3 x = 7 C .由9 x =— 4,可得 x =— — D .由 45 x = 8 -2x , 可得 5 x + 2 x = 83 .下列方程中,解为 x =2的方程是()A.3x = x + 3 B. —x + 3 = 0 C 2x = 6D . 5x — 2= 8K +1------ =x — 5K -14 .解方程- 时,去分母得( )、选择题:(每题3分,共30 分) 4 (x + 1)= x — 3 (5x — 1) A. B . x + 1 = 12x — (5x —1)班级姓名 学号得分C . 3(x + 1)= 12x — 4(5x — 1)D . 3(x + 1)= x — 4(5x — 1)5. A. B.6. 关于 y 的方程 A.B.-88 77 3y + 5 = 0与3y + 3k = 1的解完全相同,则k 的值为() 3 4D .—-C . 27. 父亲现年 程是()4332岁,儿子现年5岁,x 年前,父亲的年龄是儿子年龄的 10倍,则x 应满足的方 A. 32 — x = 5 — x B. 32 — x = 10(5 — x) C . 32 — x = 5 X 10D . 32+ x = 5X 10&小华在某月的月历中圈出几个数36,那么这个数阵的形式可能是A. B . 某商品的售价比原售价降低了 15%现售价是34元,那么原来的售价是() 28 元B . 32 元C . 36 元10 .用72cm 长的铁丝做一个长方形的教具 9. A. D . 40 元,要使宽为15cm,那么长是()A. 28. 5cmB . 42cmC . 21cmD . 33. 5cm,算出这三个数的和是 C .12. 将方程3x —7=- 5x + 3变形为3x + 5x = 3 + 7,这个变形过程叫做: 1时,代数式与一y + 5的值相等.13.当y =4- - I14. _________________________________ 若2 与—互为倒数,则x = .315. 三个连续奇数的和是75,则这三个数分别是______________ .16. 一件商品的成本是200元,提高30%后标价,然后打九折销售,则这件商品的利润为________ 元.17. 若x = —3是关于x的方程3x—a= 2x+ 5的解,贝U a的值为 _______ .18. 单项式—3a x+ 1b4与9a2x—1b4是同类项,贝V x = _________________ .19. 一只轮船在A、B两码头间航行,从A到B顺流需4小时,已知A、B间的路程是80千米,水流速度是2千米/时,则从B返回A用__________ 小时.三、解答题:(共43分)20. (每个3分,共9分)解方程:5x+ 2= 7x—8 5 (x + 8)— 5 = 6 (2x —7)521. (3分)一个数的5与4的和等于最大的一位数,求这个数622. (5分)把500元钱按照3年定期存教育储蓄,如果到期可以得到本息和共540.5元,那么这3年定期教育储蓄的年利率是多少?23. (5分)初一.2班第一小组同学去苹果园参加劳动,休息时工人师傅摘苹果分给同学,若每人3个还剩余9个;若每人5个还有一个人分4个,试问第一小组有多少学生?共摘了多少个苹果?24. (5分)一队学生去校外进行军事野营训练,他们以6千米/时的速度行进,在他们走了一段时间后,学校要将一个紧急通知传给队长,通讯员从学校出发,以10千米/时的速度按原路追上去,用了15分钟追上了学生队伍,问通讯员出发前,学生走了多少时间?25. (5分)某商店将某种品牌的DVD按进价提高35%然后打出“八折酬宾,外送50元出租车费”的广告,结果每台DVD仍可获利166元,那么每台DVD的进价是多少元?26. (11分)下图的数阵是由77个246:8 1 O 1 2 1 4偶数排成:1吕301 :=: 2 &4 O2 &T N44<1曰 4 S50 S2曰45(1)图中平行四边形框内的4个2 1 <1^1 1 <1 6 1 <1 S 1 5 0 1 n尸1S<1数有什么关系?个数怎样表示?(3)小红说4个数的和是415,你能求出这4个数吗?(4)小明说4个数的和是420,存在这样的4个数吗?若存在,请求出这4个数.(2)在数阵图中任意作一类似(1)中的平行四边形框,设其中一个数为x,那么其他3第五章一元一次方程参考答案:一、选择题:1.B 2.D 3.D 4.C 5.B 6.C 7.B 8.B 9.D 10.C二、填空题:11.3X —x = 2 12.移项13.92 14.9 15.23 25 27 16.34 17. —8 18.219.5三、解答题:2 520.5 11 —21.解:设这个数为x,根据题意得:x+ 4= 9 解得x= 65 622. 解:设这3年定期教育储蓄的年利率是x,根据题意得:500 + 500x X 3= 540.5 解得x=2.7%所以这3年定期教育储蓄的年利率是 2.7%.23. 解:设第一小组有x名学生,那么共摘了( 3x+ 9)个苹果,根据题意得:3x + 9= 5 (x —1)+ 4解得x= 5则3x+ 9= 24 (个) 所以第一小组有5名学生,共摘了24个苹果.15 1524. 解:设通讯员出发前,学生走了x小时,根据题意得:6 (x +竺)=10X 15解得x60 601 1= 小时=10分钟所以通讯员出发前,学生走了10分钟.6 625. 解:设每台DVD的进价是x元,根据题意得:(1 + 35% x X 80%- 50 = 166 解得x = 200 所以每台DVD的进价是200元.26. (1)横差2竖差14斜差10 (2 )设x表示最小的一个数,那么其他3个数分别表示为x+ 2 x + 12 x + 14 (3)不能若设最小一个数为y,那么其他3个数分别表示为y+ 2 y + 12 y + 14 所以y + y + 2 + y+ 12+ y + 14= 415 解得4y = 387 得不到y 的整数值,所以4个数的和不可能是415. (4)存在若设最小一个数为z,那么就有z + z + 2 + z+ 12+ z + 14= 420 解得4z= 392 即z = 98 所以这 4 个数分别是98 100 110 112.第五单元一元一次方程章末测试题(提高卷)一、 选择题: (每题3分,共30分)1. 下列说法中,正确的是( ) A .方程是等式B .等式是方程C .含有字母的式子是方程D .不含字母的方程是等式 2. 下列方程变形正确的是()A.由 3 ( x — 1) — 5 (x — 2)= 0,得 2x = — 7B.由 x + 1 = 2x — 3,得 x — 2x = — 1 — 35.若代数式三 的值是2,则x 的值是(111. 若, 与—一互为倒数,则x 等于412. 若方程2x — 3 = 3x — 2+ k 的解是x = 2,那么k 的值为 ________ . 13. 月历上,若一个竖列上相邻的三个数的和是54,则这三个数分别为 ______________x 1C.由 2 —亍=1,得 3x — 2= 1D.2由 2x = 3,得 x =33.若代数式3a 4b 2x与3x — 1 40.2b a能合成一项,则 x 的值是( A. 1B.1C.2D.04.如果3kx — 2= 6k + x 是关于 x 的一元一次方程,则( )A . k 是任意有理数 B. k 是不等于0的有理数C . k 是不等于- 3 的整数D . k 是不等于-的数3A. 0.756.某商品提价 A. 10%B. 1.75 C . 1.5 D . 3.510%后,欲恢复原价,则应降价(100 0/C . %B. 9%7.某服装商店同时卖出两套服装,每套均卖 套亏本20%则这次服装商店())型%9168元,以成本计算,其中一套盈利20%另D . A.不赚不赔 B.赚37.2元C .8. 一个三位数,3个数位上的数字和是 15, 字赚14元 D .赔14元百位上的数字比十位上的数字小1,个位上的数)A. 345B. 357 C . 456D . 9.已知关于x 的方程ax — 4 = 14x + a 的解是 567x = 2,贝Ua 的值是(A. 24 B .— 24 C . 32 10.某人在1999年12月存入人民币若干元, 后将缴纳利息税72元,则他存入的人民币为( D . —32 年利率为2.25%,税率为利息的20% 一年到期 A. 3600 元B. 16000 元 C . 360 兀D . 1600元二、填空题: (每题3分,共24 分)14. ___________________________________________________________ 若x = 1是关于x的方程m灶n= p的解,则(n—p)2006= ____________________________________ .15.800元的七折价是_______ 元,______ 元的八折价是720元.7 I g16. 如果方程』1D与」 2 的解相同,则m的值为_______ .17. 已知方程〔m+1)慕岡十是关于x的一元一次方程,则m= ______________ .18. 甲乙两人开展学习竞赛,甲每天做5道数学题,乙每天做8道数学题,若甲早开始了3天,那么乙_____ 天后和甲做的题目一样多.三、解答题:(共46分)19. 解方程:(每个4分,共16分)-3( x + 3)= 24- ! _ -- ;.'-— (200 + x) —— (300 —x)= 300 X —10 10 2520. (5分)据了解,个体服装销售要高出进价的20%方可盈利,一销售老板以高出进价的60%标价,如果一件服装标价240元,那么:(1)进价是多少元?(2)最低售价多少元时, 销售老板方可盈利?21. (5分)某甲、乙、丙三个圆柱形容器,甲的内径是20厘米,高32厘米;乙的内径是30厘米,高32厘米;丙的内径是40厘米,甲、乙两容器中都注满了水.问:如果将甲、乙两容器中的水全部倒入丙容器而使水不溢出来,丙容器至少要多高?22. (5分)某剧团为“希望工程”募捐组织了一次义演,共卖出800张票,成人票1张9元,学生票 1 张6 元,共筹得票款6180 元,问成人票与学生票各售出多少张?23. (5分)敌我相距14 千米,得知敌军于1小时前以每小时4千米的速度逃跑,现在我军以每小时7千米的速度追击敌军,在距敌军0.6 千米处向敌军开火,48 分钟将敌军全部歼灭。

相关文档
最新文档