空间立体几何知识点

合集下载

2024年高考数学立体几何知识点总结(2篇)

2024年高考数学立体几何知识点总结(2篇)

2024年高考数学立体几何知识点总结立体几何是数学中的一个重要分支,也是高考数学中的重要内容之一。

在高考中,立体几何的知识点主要包括空间几何、立体图形的面积与体积等方面。

下面是对2024年高考数学立体几何知识点的总结,供考生参考。

一、空间几何1. 空间几何中的点、线、面的概念和性质。

点是没有长度、宽度和高度的,只有位置的大小,用字母表示。

线是由一组无限多个点构成的集合,用两个点的字母表示。

面是由无限多条线构成的,这些线共面且没有相交或平行关系。

2. 空间几何中的垂直、平行等概念和性质。

两条线在同一平面内,如果相交角为90°,则称两线垂直。

两条线没有相交关系,称两线平行。

3. 点到直线的距离的计算。

点到直线的距离等于该点在直线上的正交投影点的距离。

二、立体图形的面积与体积1. 立体图形的分类和性质。

立体图形包括球体、圆柱体、圆锥体、棱柱体、棱锥体等。

各种立体图形具有不同的性质,如球体表面上每一点到球心的距离都相等。

2. 立体图形的面积计算。

(1)球体的表面积计算公式:S = 4πr²,其中r为球的半径。

(2)圆柱体的侧面积计算公式:S = 2πrh。

(3)圆柱体的全面积计算公式:S = 2πrh + 2πr²。

(4)圆锥体的侧面积计算公式:S = πrl,其中r为圆锥底面半径,l为斜高。

(5)棱柱体的侧面积计算公式:S = ph,其中p为棱柱底面周长,h为高。

3. 立体图形的体积计算。

(1)球体的体积计算公式:V = 4/3πr³,其中r为球的半径。

(2)圆柱体的体积计算公式:V = πr²h。

(3)圆锥体的体积计算公式:V = 1/3πr²h。

(4)棱柱体的体积计算公式:V = ph。

(5)棱锥体的体积计算公式:V = 1/3Bh,其中B为底面积,h 为高。

三、立体几何的一般理论1. 点、线、面的位置关系。

在空间中,点、线、面可以相互相交、平行、垂直等。

立体几何知识点

立体几何知识点

立体几何知识点一、 平面.1. 经过不在同一条直线上的三点确定一个面.注:两两相交且不过同一点的四条直线必在同一平面内.2. 两个平面可将平面分成3或4部分.(①两个平面平行,②两个平面相交)3. 过三条互相平行的直线可以确定1或3个平面.(①三条直线在一个平面内平行,②三条直线不在一个平面内平行)[注]:三条直线可以确定三个平面,三条直线的公共点有0或1个.4. 三个平面最多可把空间分成 8 部分.(X 、Y 、Z 三个方向)二、 空间直线.1. 空间直线位置分三种:相交、平行、异面. 相交直线—共面有反且有一个公共点;平行直线—共面没有公共点;异面直线—不同在任一平面内[注]:①两条异面直线在同一平面内射影一定是相交的两条直线.(×)(可能两条直线平行,也可能是点和直线等)②直线在平面外,指的位置关系:平行或相交③若直线a 、b 异面,a 平行于平面α,b 与α的关系是相交、平行、在平面α内. ④两条平行线在同一平面内的射影图形是一条直线或两条平行线或两点.⑤在平面内射影是直线的图形一定是直线.(×)(射影不一定只有直线,也可以是其他图形)⑥在同一平面内的射影长相等,则斜线长相等.(×)(并非是从平面外一点..向这个平面所引的垂线段和斜线段)⑦b a ,是夹在两平行平面间的线段,若b a =,则b a ,的位置关系为相交或平行或异面.2. 异面直线判定定理:过平面外一点与平面内一点的直线和平面内不经过该点的直线是异面直线.(不在任何一个平面内的两条直线)3. 平行公理:平行于同一条直线的两条直线互相平行.4. 等角定理:如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等(如下图).(二面角的取值范围[) 180,0∈θ) (直线与直线所成角(] 90,0∈θ) (斜线与平面成角() 90,0∈θ) (直线与平面所成角[] 90,0∈θ)(向量与向量所成角])180,0[ ∈θ 推论:如果两条相交直线和另两条相交直线分别平行,那么这两组直线所成锐角(或直角)相等.5. 两异面直线的距离:公垂线的长度.12方向相同12方向不相同空间两条直线垂直的情况:相交(共面)垂直和异面垂直.21,l l 是异面直线,则过21,l l 外一点P ,过点P 且与21,l l 都平行平面有一个或没有,但与21,l l 距离相等的点在同一平面内. (1L 或2L 在这个做出的平面内不能叫1L 与2L 平行的平面)三、 直线与平面平行、直线与平面垂直.1. 空间直线与平面位置分三种:相交、平行、在平面内.2. 直线与平面平行判定定理:如果平面外一条直线和这个平面内一条直线平行,那么这条直线和这个平面平行.(“线线平行,线面平行”)[注]:①直线a 与平面α内一条直线平行,则a ∥α. (×)(平面外一条直线) ②直线a 与平面α内一条直线相交,则a 与平面α相交. (×)(平面外一条直线) ③若直线a 与平面α平行,则α内必存在无数条直线与a 平行. (√)(不是任意一条直线,可利用平行的传递性证之)④两条平行线中一条平行于一个平面,那么另一条也平行于这个平面. (×)(可能在此平面内)⑤平行于同一直线的两个平面平行.(×)(两个平面可能相交)⑥平行于同一个平面的两直线平行.(×)(两直线可能相交或者异面)⑦直线l 与平面α、β所成角相等,则α∥β.(×)(α、β可能相交)3. 直线和平面平行性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行.(“线面平行,线线平行”)4. 直线与平面垂直是指直线与平面任何一条直线垂直,过一点有且只有一条直线和一个平面垂直,过一点有且只有一个平面和一条直线垂直.● 若PA ⊥α,a ⊥AO ,得a ⊥PO (三垂线定理), 得不出α⊥PO . 因为a ⊥PO ,但PO 不垂直OA .● 三垂线定理的逆定理亦成立. 直线与平面垂直的判定定理一:如果一条直线和一个平面内的两条相交直线都垂直,那么这两条直线垂直于这个平面.(“线线垂直,线面垂直”)直线与平面垂直的判定定理二:如果平行线中一条直线垂直于一个平面,那么另一条也垂直于这个平面.推论:如果两条直线同垂直于一个平面,那么这两条直线平行.[注]:①垂直于同一平面....的两个平面平行.(×)(可能相交,垂直于同一条直线.....的两个平面平行)②垂直于同一直线的两个平面平行.(√)(一条直线垂直于平行的一个平面,必垂直于另一个平面)③垂直于同一平面的两条直线平行.(√)5. ⑴垂线段和斜线段长定理:从平面外一点..向这个平面所引的垂线段和斜线段中,①射影相等的两条斜线段相等,射影较长的斜线段较长;②相等的斜线段的射影相等,较长的斜线段射影较长;③垂线段比任何一条斜线段短.[注]:垂线在平面的射影为一个点. [一条直线在平面内的射影是一条直线.(×)]⑵射影定理推论:如果一个角所在平面外一点到角的两边的距离相等,那么这点在平面内的射影在这个角的平分线上P OA a四、平面平行与平面垂直.1. 空间两个平面的位置关系:相交、平行.2. 平面平行判定定理:如果一个平面内有两条相交直线都平行于另一个平面,哪么这两个平面平行.(“线面平行,面面平行”)推论:垂直于同一条直线的两个平面互相平行;平行于同一平面的两个平面平行. [注]:一平面间的任一直线平行于另一平面.3. 两个平面平行的性质定理:如果两个平面平行同时和第三个平面相交,那么它们交线平行.(“面面平行,线线平行”)4. 两个平面垂直性质判定一:两个平面所成的二面角是直二面角,则两个平面垂直.两个平面垂直性质判定二:如果一个平面与一条直线垂直,那么经过这条直线的平面垂直于这个平面.(“线面垂直,面面垂直”)注:如果两个二面角的平面对应平面互相垂直,则两个二面角没有什么关系.5. 两个平面垂直性质定理:如果两个平面垂直,那么在一个平面内垂直于它们交线的直线也垂直于另一个平面.推论:如果两个相交平面都垂直于第三平面,则它们交线垂直于第三平面.证明:如图,找O作OA、OB分别垂直于21,ll,因为ααββ⊥⊂⊥⊂OBPMOAPM,,,则OBPMOAPM⊥⊥,.6. 两异面直线任意两点间的距离公式:θcos2222mndnml+++=(θ为锐角取加,θ为钝取减,综上,都取加则必有⎥⎦⎤⎝⎛∈2,0πθ)7. ⑴最小角定理:21coscoscosθθθ=(1θ为最小角,如图)⑵最小角定理的应用(∠PBN为最小角)简记为:成角比交线夹角一半大,且又比交线夹角补角一半长,一定有4条.成角比交线夹角一半大,又比交线夹角补角小,一定有2条.成角比交线夹角一半大,又与交线夹角相等,一定有3条或者2条.成角比交线夹角一半小,又与交线夹角一半小,一定有1条或者没有.五、棱锥、棱柱.1. 棱柱.⑴①直棱柱侧面积:ChS=(C为底面周长,h是高)该公式是利用直棱柱的侧面展开图为矩形得出的.②斜棱住侧面积:lCS1=(1C是斜棱柱直截面周长,l是斜棱柱的侧棱长)该公式是利用斜棱柱的侧面展开图为平行四边形得出的.⑵{四棱柱}⊃{平行六面体}⊃{直平行六面体}⊃{长方体}⊃{正四棱柱}⊃{正方体}. {直四棱柱}⋂{平行六面体}={直平行六面体}.⑶棱柱具有的性质:图1θθ1θ2图2PαβθM ABO①棱柱的各个侧面都是平行四边形,所有的侧棱都相等;直棱柱的各个侧面都是矩形........;正棱柱的各个侧面都是全等的矩形......②棱柱的两个底面与平行于底面的截面是对应边互相平行的全等..多边形. ③过棱柱不相邻的两条侧棱的截面都是平行四边形.注:①棱柱有一个侧面和底面的一条边垂直可推测是直棱柱. (×)(直棱柱不能保证底面是钜形可如图)②(直棱柱定义)棱柱有一条侧棱和底面垂直.⑷平行六面体:定理一:平行六面体的对角线交于一点.............,并且在交点处互相平分. [注]:四棱柱的对角线不一定相交于一点.定理二:长方体的一条对角线长的平方等于一个顶点上三条棱长的平方和.推论一:长方体一条对角线与同一个顶点的三条棱所成的角为γβα,,,则1cos cos cos 222=++γβα.推论二:长方体一条对角线与同一个顶点的三各侧面所成的角为γβα,,,则2cos cos cos 222=++γβα.[注]:①有两个侧面是矩形的棱柱是直棱柱.(×)(斜四面体的两个平行的平面可以为矩形)②各侧面都是正方形的棱柱一定是正棱柱.(×)(应是各侧面都是正方形的直.棱柱才行) ③对角面都是全等的矩形的直四棱柱一定是长方体.(×)(只能推出对角线相等,推不出底面为矩形)④棱柱成为直棱柱的一个必要不充分条件是棱柱有一条侧棱与底面的两条边垂直. (两条边可能相交,可能不相交,若两条边相交,则应是充要条件)2. 棱锥:棱锥是一个面为多边形,其余各面是有一个公共顶点的三角形.[注]:①一个棱锥可以四各面都为直角三角形.②一个棱柱可以分成等体积的三个三棱锥;所以棱柱棱柱3V S h V ==.⑴①正棱锥定义:底面是正多边形;顶点在底面的射影为底面的中心.[注]:i. 正四棱锥的各个侧面都是全等的等腰三角形.(不是等边三角形)ii. 正四面体是各棱相等,而正三棱锥是底面为正△侧棱与底棱不一定相等iii. 正棱锥定义的推论:若一个棱锥的各个侧面都是全等的等腰三角形(即侧棱相等);底面为正多边形.②正棱锥的侧面积:'Ch 21S =(底面周长为C ,斜高为'h ) ③棱锥的侧面积与底面积的射影公式:αcos 底侧S S =(侧面与底面成的二面角为α) 附: 以知c ⊥l ,b a =⋅αcos ,α为二面角b l a --. c则l a S ⋅=211①,b l S ⋅=212②,b a =⋅αcos ③ ⇒①②③得αcos 底侧S S =. 注:S 为任意多边形的面积(可分别多个三角形的方法).⑵棱锥具有的性质:①正棱锥各侧棱相等,各侧面都是全等的等腰三角形,各等腰三角形底边上的高相等(它叫做正棱锥的斜高).②正棱锥的高、斜高和斜高在底面内的射影组成一个直角三角形,正棱锥的高、侧棱、侧棱在底面内的射影也组成一个直角三角形.⑶特殊棱锥的顶点在底面的射影位置:①棱锥的侧棱长均相等,则顶点在底面上的射影为底面多边形的外心.②棱锥的侧棱与底面所成的角均相等,则顶点在底面上的射影为底面多边形的外心. ③棱锥的各侧面与底面所成角均相等,则顶点在底面上的射影为底面多边形内心. ④棱锥的顶点到底面各边距离相等,则顶点在底面上的射影为底面多边形内心. ⑤三棱锥有两组对棱垂直,则顶点在底面的射影为三角形垂心.⑥三棱锥的三条侧棱两两垂直,则顶点在底面上的射影为三角形的垂心.⑦每个四面体都有外接球,球心0是各条棱的中垂面的交点,此点到各顶点的距离等于球半径;⑧每个四面体都有内切球,球心I 是四面体各个二面角的平分面的交点,到各面的距离等于半径.[注]:i. 各个侧面都是等腰三角形,且底面是正方形的棱锥是正四棱锥.(×)(各个侧面的等腰三角形不知是否全等)ii. 若一个三角锥,两条对角线互相垂直,则第三对角线必然垂直简证:A B ⊥CD ,AC ⊥BD ⇒ BC ⊥AD. 令b AC c AD a AB ===,, 得c a c b AD BC c AD a b AB AC BC -=⋅⇒=-=-=,,已知()(),0=-⋅=-⋅c a b b c a 0=-⇒c b c a 则0=⋅AD BC .iii. 空间四边形OABC 且四边长相等,则顺次连结各边的中点的四边形一定是矩形. iv. 若是四边长与对角线分别相等,则顺次连结各边的中点的四边是一定是正方形. 简证:取AC 中点'O ,则⊥⇒⊥'⊥'AC AC O B AC o o ,平面=∠⇒⊥⇒'FGH BO AC B O O 90°易知EFGH 为平行四边形⇒EFGH 为长方形.若对角线等,则EFGH FG EF ⇒=为正方形. 3. 球:⑴球的截面是一个圆面.①球的表面积公式:24R S π=.②球的体积公式:334R V π=. ⑵纬度、经度:F E HG B C DA O'O r①纬度:地球上一点P 的纬度是指经过P 点的球半径与赤道面所成的角的度数. ②经度:地球上B A ,两点的经度差,是指分别经过这两点的经线与地轴所确定的二个半平面的二面角的度数,特别地,当经过点A 的经线是本初子午线时,这个二面角的度数就是B 点的经度.附:①圆柱体积:h r V 2π=(r 为半径,h 为高) ②圆锥体积:h r V 231π=(r 为半径,h 为高) ③锥形体积:Sh V 31=(S 为底面积,h 为高) 4. ①内切球:当四面体为正四面体时,设边长为a ,a h 36=,243a S =底,243a S =侧 得a a a R R a R a a a 46342334/424331433643222=⋅==⇒⋅⋅+⋅=⋅. 注:球内切于四面体:h S R S 313R S 31V 底底侧ACD B ⋅=⋅+⋅⋅⋅=- ②外接球:球外接于正四面体,可如图建立关系式.六. 空间向量.1. (1)共线向量:共线向量亦称平行向量,指空间向量的有向线段所在直线互相平行或重合.注:①若a 与b 共线,b 与c 共线,则a 与c 共线.(×) [当0=b 时,不成立] ②向量c b a ,,共面即它们所在直线共面.(×) [可能异面]③若a ∥b ,则存在小任一实数λ,使b a λ=.(×)[与0=b 不成立]④若a 为非零向量,则00=⋅a .(√)[这里用到)0(≠b b λ之积仍为向量](2)共线向量定理:对空间任意两个向量)0(,≠b b a ,a ∥b 的充要条件是存在实数λ(具有唯一性),使b a λ=.(3)共面向量:若向量a 使之平行于平面α或a 在α内,则a 与α平行,记作a ∥α.(4)①共面向量定理:如果两个向量b a ,不共线,则向量P 与向量b a ,共面的充要条件是存在实数对x 、y 使b y a x P +=.②空间任一点...O .和不共线三点......A .、.B .、.C .,则)1(=++++=z y x OC z OB y OA x OP 是P ABC O R四点共面的充要条件.(简证:→+==++--=AC z AB y AP OC z OB y OA z y OP )1(P 、A 、B 、C 四点共面)注:①②是证明四点共面的常用方法.2. 空间向量基本定理:如果三个向量....c b a ,,不共面...,那么对空间任一向量P ,存在一个唯一的有序实数组x 、y 、z ,使c z b y a x p ++=.推论:设O 、A 、B 、C 是不共面的四点,则对空间任一点P , 都存在唯一的有序实数组x 、y 、z 使 OC z OB y OA x OP ++=(这里隐含x+y+z≠1).注:设四面体ABCD 的三条棱,,,,d AD c AC b AB ===其中Q 是△BCD 的重心,则向量)(31c b a AQ ++=用MQ AM AQ +=即证. 3. (1)空间向量的坐标:空间直角坐标系的x 轴是横轴(对应为横坐标),y 轴是纵轴(对应为纵轴),z 轴是竖轴(对应为竖坐标).①令a =(a 1,a 2,a 3),),,(321b b b b =,则),,(332211b a b a b a b a ±±±=+))(,,(321R a a a a ∈=λλλλλ332211b a b a b a b a ++=⋅ a ∥)(,,332211R b a b a b a b ∈===⇔λλλλ332211b a b a b a ==⇔0332211=++⇔⊥b a b a b a b a222321a a a ++==(a a =⇒⋅=)232221232221332211||||,cos b b b a a a b a b a b a b a b a b a ++⋅++++=⋅⋅>=< ②空间两点的距离公式:212212212)()()(z z y y x x d -+-+-=.(2)法向量:若向量a 所在直线垂直于平面α,则称这个向量垂直于平面α,记作α⊥a ,如果α⊥a 那么向量a 叫做平面α的法向量.(3)用向量的常用方法:①利用法向量求点到面的距离定理:如图,设n 是平面α的法向量,AB 是平面α的一条射线,其中α∈A ,则点B 到平面α||n A D CB②利用法向量求二面角的平面角定理:设21,n n 分别是二面角βα--l 中平面βα,的法向量,则21,n n 所成的角就是所求二面角的平面角或其补角大小(21,n n 方向相同,则为补角,21,n n 反方,则为其夹角).③证直线和平面平行定理:已知直线≠⊄a 平面α,α∈⋅∈⋅D C a B A ,,且CDE 三点不共线,则a ∥α的充要条件是存在有序实数对μλ⋅使CE CD AB μλ+=.(常设CE CD AB μλ+=求解μλ,若μλ,存在即证毕,若μλ,不存在,则直线AB 与平面相交).AB一、四面体.:1、①四面体的六条棱的垂直平分面交于一点,这一点叫做此四面体的外接球的球心; ②四面体的四个面组成六个二面角的角平分面交于一点,该点叫此四面体内接球的球心; ③四面体的四个面的重心与相对顶点的连接交于一点,这一点叫做此四面体的重心,且重心将每条连线分为3︰1;④12个面角之和为720°,每个三面角中任两个之和大于另一个面角,且三个面角和为180°.2. 直角四面体:有一个三面角的三个面角均为直角的四面体称为直角四面体,相当于平面几何的直角三角形. (在直角四面体中,记V 、l 、S 、R 、r 、h 分别表示其体积、六条棱长之和、表面积、外接球半径、内切球半径及侧面上的高),则有空间勾股定理: S 2△ABC +S 2△BCD +S 2△ABD =S 2△ACD.3. 等腰四面体:对棱都相等的四面体称为等腰四面体,好象平面几何中的等腰三角形.根据定义不难证明以长方体的一个顶点的三条面对角线的端点为顶点的四面体是等腰四面体,反之也可以将一个等腰四面体拼补成一个长方体.(在等腰四面体ABCD 中,记BC = AD =a ,AC = BD = b ,AB = CD = c ,体积为V ,外接球半径为R ,内接球半径为r ,高为h ),则有①等腰四面体的体积可表示为22231222222222c b a b a c a c b V -+⋅-+⋅-+=; ②等腰四面体的外接球半径可表示为22242c b a R ++=;③等腰四面体的四条顶点和对面重心的连线段的长相等,且可表示为22232c b a m ++=;④h = 4r.二、常用结论、方法和公式1.从一点O 出发的三条射线OA 、OB 、OC ,若∠AOB=∠AOC ,则点A 在平面∠BOC OABC D上的射影在∠BOC 的平分线上;2. 已知:直二面角M -AB -N 中,AE ⊂ M ,BF ⊂ N,∠EAB=1θ,∠ABF=2θ,异面直线AE 与BF 所成的角为θ,则;cos cos cos 21θθθ=3.立平斜公式:如图,AB 和平面所成的角是1θ,AC 在平面内,BC 和AB 的射影BA 1成2θ,设∠ABC=3θ,则cos 1θcos 2θ=cos 3θ; 4.异面直线所成角的求法:(1)平移法:在异面直线中的一条直线中选择一特殊点,作另一条的平行线;(2)补形法:把空间图形补成熟悉的或完整的几何体,如正方体、平行六面体、长方体等,其目的在于容易发现两条异面直线间的关系;7.空间距离的求法(1)两异面直线间的距离,高考要求是给出公垂线,所以一般先利用垂直作出公垂线,然后再进行计算;(2)求点到直线的距离,一般用三垂线定理作出垂线再求解;(3)求点到平面的距离,一是用垂面法,借助面面垂直的性质来作,因此,确定已知面的垂面是关键;二是不作出公垂线,转化为求三棱锥的高,利用等体积法列方程求解;8.正棱锥的各侧面与底面所成的角相等,记为θ,则S 侧cos θ=S 底;9.已知:长方体的体对角线与过同一顶点的三条棱所成的角分别为,,,γβα因此有cos 2α+cos 2β+cos 2γ=1; 若长方体的体对角线与过同一顶点的三侧面所成的角分别为,,,γβα则有cos 2α+cos 2β+cos 2γ=2;10.正方体和长方体的外接球的直径等与其体对角线长;11.欧拉公式:如果简单多面体的顶点数为V,面数为F,棱数为E.那么V+F -E=2;并且棱数E =各顶点连着的棱数和的一半=各面边数和的一半;12.柱体的体积公式:柱体(棱柱、圆柱)的体积公式是V 柱体=Sh.其中S 是柱体的底面积,h 是柱体的高.13.直棱柱的侧面积和全面积S 直棱柱侧= c (c 表示底面周长, 表示侧棱长) S 棱柱全=S 底+S 侧14.棱锥的体积:V 棱锥=Sh 31,其中S 是棱锥的底面积,h 是棱锥的高。

立体几何的全部知识点

立体几何的全部知识点

立体几何的全部知识点立体几何是九年级数学中常见的概念,属于几何学知识,包括三维空间中各种形状和投影,以及它们之间的关系,有助于我们研究物体的结构和代数运算,为物体的准确表达提供帮助。

立体几何的知识点包括:一、定义和符号:(1)体积:体积V是在某一时刻,某一物体的容积所表示的实际大小。

(2)表面积:Surface Area S 是在某一时刻,某一物体的整个表面的面积总和。

(3)立体角:立体角也称为穹顶角,它由三条相交的边组成,表示物体上某一点到其他三面所角度的总和。

(4)体积和表面积的符号分别为V和S。

二、投影:(1)正投影:正投影是指沿着平面对物体进行投影,显示物体的各面的立体效果,物体被投影到平面上,形成新的三维形体。

(2)侧投影:侧投影是把物体投影到平面上,只显示物体上与投影面垂直的一部分,不会显示其上斜角或斜面。

三、变换:(1)平移:平移是把物体移动到新位置,沿着一个给定的方向进行移动。

(2)旋转:旋转是把物体局部或整体移动到新位置,沿着一定角度和指定的锥形旋转。

(1)水平投影:水平投影指通过把物体置于水平平面上来进行投影,表达投影物作为物体的一部分的立体视觉效果。

(3)正交投影:正交投影是将物体的正面以一个给定的垂线作为视轴,把物体投影到一个直角坐标系上,以呈现其真实模样。

(4) 仿射投影:仿射投影是把物体投射到平面上,同时保留物体形状和位置的相对关系,物体经过一个仿射变换,可以在平面上表示一种实体的完整的立体形状。

五、三角形几何:(1)三角形的周长:三角形的周长是指给定三角形的三条边之和。

(3)余弦定理:余弦定理是指在一个三角形中,要么是给定三条边,要么是两条边和夹角之间存在性质,充分表示相应之间关系。

(4)余切定理:余切定理是指在一个三角形中,无论如何,两条边的余切值都是一定的。

(5)三角函数:三角函数是以这三个角的正弦、余弦和正切为变量表示的函数,三角函数可以用来求解复杂的三角形。

立体几何初步知识点全总结

立体几何初步知识点全总结

立体几何初步知识点全总结一、空间几何体的结构。

1. 棱柱。

- 定义:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的多面体叫做棱柱。

- 分类:- 按底面多边形的边数分为三棱柱、四棱柱、五棱柱等。

- 直棱柱:侧棱垂直于底面的棱柱。

正棱柱:底面是正多边形的直棱柱。

- 性质:- 侧棱都相等,侧面是平行四边形。

- 两个底面与平行于底面的截面是全等的多边形。

- 过不相邻的两条侧棱的截面(对角面)是平行四边形。

2. 棱锥。

- 定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的多面体叫做棱锥。

- 分类:- 按底面多边形的边数分为三棱锥、四棱锥、五棱锥等。

- 正棱锥:底面是正多边形,且顶点在底面的射影是底面正多边形的中心的棱锥。

- 性质:- 正棱锥各侧棱相等,各侧面都是全等的等腰三角形,各等腰三角形底边上的高相等(它叫做正棱锥的斜高)。

- 棱锥的高、斜高和斜高在底面上的射影组成一个直角三角形;棱锥的高、侧棱和侧棱在底面上的射影也组成一个直角三角形。

3. 棱台。

- 定义:用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分叫做棱台。

- 分类:由三棱锥、四棱锥、五棱锥等截得的棱台分别叫做三棱台、四棱台、五棱台等。

- 性质:- 棱台的各侧棱延长后交于一点。

- 棱台的上下底面是相似多边形,侧面是梯形。

4. 圆柱。

- 定义:以矩形的一边所在直线为轴旋转,其余三边旋转所成的曲面所围成的几何体叫做圆柱。

- 性质:- 圆柱的轴截面是矩形。

- 平行于底面的截面是与底面全等的圆。

5. 圆锥。

- 定义:以直角三角形的一条直角边所在直线为轴旋转,其余两边旋转所成的曲面所围成的几何体叫做圆锥。

- 性质:- 圆锥的轴截面是等腰三角形。

- 平行于底面的截面是圆,截面半径与底面半径之比等于顶点到截面距离与圆锥高之比。

6. 圆台。

- 定义:用一个平行于圆锥底面的平面去截圆锥,底面与截面之间的部分叫做圆台。

空间立体几何知识点归纳

空间立体几何知识点归纳

空间几何体知识点归纳1、空间几何体的结构:空间几何体分为多面体和旋转体和简单组合体⑴常见的多面体有:棱柱、棱锥、棱台;常见的旋转体有:圆柱、圆锥、圆台、球。

简单组合体的构成形式: 一种是由简单几何体拼接而成,一种是由简单几何体截去或挖去一部分而成。

⑵棱柱:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的多面体叫做棱柱。

⑶棱台:用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分,这样的多面体叫做棱台。

1、空间几何体的三视图和直观图投影:中心投影 平行投影(1)定义:几何体的正视图、侧视图和俯视图统称为几何体的三视图。

(2)三视图中反应的长、宽、高的特点:“长对正”,“高平齐”,“宽相等”2、空间几何体的直观图(表示空间图形的平面图). 观察者站在某一点观察几何体,画出的图形.3、斜二测画法的基本步骤:①建立适当直角坐标系xOy (尽可能使更多的点在坐标轴上) ②建立斜坐标系'''x Oy ∠,使'''x O y ∠=450(或1350),注意它们确定的平面表示水平平面;③画对应图形,在已知图形平行于X 轴的线段,在直观图中画成平行于X ‘轴,且长度保持不变;在已知图形平行于Y 轴的线段,在直观图中画成平行于Y ‘轴,且长度变为原来的一半;一般地,原图的面积是其直观图面积的22倍,即22S S 原图直观=4、空间几何体的表面积与体积⑴圆柱侧面积;l r S ⋅⋅=π2侧面⑵圆锥侧面积:l r S ⋅⋅=π侧面 ⑶圆台侧面积:()S r R l π=+侧面⑷体积公式:h S V ⋅=柱体;h S V ⋅=31锥体; ()13V h S S S S =+⋅+下下台体上上⑸球的表面积和体积:32344R V R S ππ==球球,.一般地,面积比等于相似比的平方,体积比等于相似比的立方。

第二章 点、直线、平面之间的位置关系及其论证1 、公理1:如果一条直线上两点在一个平面内,那么这条直线在此平面内,,A l B ll A B ααα∈∈⎧⇒⊂⎨∈∈⎩公理1的作用:判断直线是否在平面内2、公理2:过不在一条直线上的三点,有且只有一个平面。

空间几何体知识点总结

空间几何体知识点总结

空间几何体知识点总结一、点、线和面的概念在空间几何中,点、线和面是最基本的几何对象。

点是没有长度、宽度和高度的,只有位置的概念;线是由无穷多个点组成的,具有长度但没有宽度和高度;面是由无穷多条线组成的,具有长度和宽度但没有高度。

二、立体几何体的分类立体几何体是由面围成的空间几何体,根据其表面的性质和特点,可以分为以下几类:1. 平面图形的立体几何体:由平面图形在空间中沿着一定方向运动而形成。

例如,正方形拉伸成长方体,圆形拉伸成圆柱体等。

2. 柱体:具有两个平行的底面和一个连接两个底面的侧面。

根据底面的形状,柱体可以分为圆柱体、矩形柱体等。

3. 锥体:具有一个底面和一个连接底面和顶点的侧面。

根据底面的形状,锥体可以分为圆锥体、三角锥体等。

4. 球体:表面上的所有点到球心的距离都相等。

球体没有棱和面,只有一个面。

5. 圆环体:由两个或多个同心圆所构成的空间几何体。

圆环体没有顶面和底面,只有侧面。

6. 多面体:具有多个面、棱和顶点的立体几何体。

根据面的形状和数量,多面体可以分为正多面体和非正多面体。

正多面体的面都是相等的正多边形,例如正方体、正六面体等;非正多面体的面可以是不相等的多边形,例如四面体、五面体等。

三、立体几何体的特性和性质立体几何体具有以下几个重要的特性和性质:1. 体积:立体几何体的体积是指该几何体所占的空间大小。

不同几何体的体积计算公式各不相同,例如长方体的体积是底面积乘以高度,球体的体积是4/3乘以π乘以半径的立方。

2. 表面积:立体几何体的表面积是指该几何体所有面的总面积。

不同几何体的表面积计算公式各不相同,例如长方体的表面积是各个面的面积之和,球体的表面积是4乘以π乘以半径的平方。

3. 对称性:立体几何体可能具有不同类型的对称性,例如平面对称、轴对称等。

对称性可以帮助我们判断几何体的性质和解决一些几何问题。

4. 刚体性:立体几何体是刚体,即形状和大小固定不变。

在空间中进行平移、旋转和翻转等操作时,立体几何体的性质不变。

立体几何知识点归纳总结

立体几何知识点归纳总结

立体几何知识点归纳总结立体几何是数学中研究三维空间中几何形状和它们之间关系的学科。

它不仅在数学理论中占有重要地位,而且在工程、建筑、物理学等多个领域都有广泛的应用。

以下是立体几何的一些关键知识点的归纳总结:1. 空间直线与平面:立体几何的基础是理解空间中的直线和平面。

直线是一维对象,而平面是二维对象。

在空间中,直线与平面可以相交、平行或位于同一平面内。

2. 空间角:立体几何中的空间角包括直线与直线之间的角度、直线与平面之间的角度以及平面与平面之间的角度。

这些角度的测量是立体几何中的重要内容。

3. 多面体与多边形:多面体是空间中由多条边和多个面组成的封闭形状,如立方体、四面体等。

多边形是平面上的封闭形状,如三角形、矩形等。

立体几何中研究多面体的面、边、顶点以及它们之间的关系。

4. 体积与表面积:计算立体图形的体积和表面积是立体几何中的核心问题。

对于规则的几何体,如立方体、球体、圆柱体等,有固定的公式来计算它们的体积和表面积。

5. 向量:向量是具有大小和方向的量,它在立体几何中用于描述空间中的位置、运动和力。

向量运算,如向量加法、标量乘法和点积,是解决立体几何问题的重要工具。

6. 坐标系:在立体几何中,通常使用笛卡尔坐标系来确定空间中点的位置。

通过三个坐标轴(通常是x、y和z轴),可以精确地描述空间中的任何一点。

7. 对称性:立体几何中的对称性包括反射对称、旋转对称和滑移对称。

对称性是理解几何形状和它们的性质的关键。

8. 投影:在立体几何中,投影是将三维对象映射到二维平面上的过程。

这在工程图纸和建筑设计中非常重要。

9. 锥体与柱体:锥体和柱体是常见的立体几何形状。

它们由一个底面和连接底面各点到一个共同顶点的线段组成。

锥体和柱体的体积和表面积的计算是立体几何中的重要内容。

10. 曲面:曲面是立体几何中的二维表面,它们可以是平面的,也可以是弯曲的。

曲面的研究包括曲面的方程、曲面的几何性质以及曲面上的路径等。

空间立体几何高考知识点总结及经典题目

空间立体几何高考知识点总结及经典题目

空间立体几何知识点归纳:1. 空间几何体的类型(1)多面体:由若干个平面多边形围成的几何体,如棱柱、棱锥、棱台。

(2) 旋转体:把一个平面图形绕它所在的平面内的一条定直线旋转形成了封闭几何体。

如圆柱、圆锥、圆台。

2.一些特殊的空间几何体直棱柱:侧棱垂直底面的棱柱。

正棱柱:底面多边形是正多边形的直棱柱。

正棱锥:底面是正多边形且所有侧棱相等的棱锥。

正四面体:所有棱都相等的四棱锥。

3.空间几何体的表面积公式棱柱、棱锥的表面积:各个面面积之和圆柱的表面积 :222S rl r ππ=+ 圆锥的表面积:2S rl r ππ=+圆台的表面积:22S rl r Rl R ππππ=+++ 球的表面积:24S R π=4.空间几何体的体积公式 柱体的体积 :VS h =⨯底 锥体的体积 :13V S h =⨯底台体的体积 : 1)3V S S h =+⨯下上( 球体的体积:343V R π= 5.空间几何体的三视图正视图:光线从几何体的前面向后面正投影,得到的投影图。

侧视图:光线从几何体的左边向右边正投影,得到的投影图。

俯视图:光线从几何体的上面向右边正投影,得到的投影图。

画三视图的原则:长对正、宽相等、高平齐。

即正视图和俯视图一样长,侧视图和俯视图一样宽,侧视图和正视图一样高。

6 .空间中点、直线、平面之间的位置关系(1) 直线与直线的位置关系:相交;平行;异面。

(2)直线与平面的位置关系:直线与平面平行;直线与平面相交;直线在平面内。

(3)平面与平面的位置关系:平行;相交。

7. 空间中点、直线、平面的位置关系的判断(1)线线平行的判断:①平行公理:平行于同一直线的两直线平行。

②线面平行的性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。

③面面平行的性质定理:如果两个平行平面同时和第三个平面相交,那么它们的交线平行。

④线面垂直的性质定理:垂直于同一平面的两直线平行。

高中空间立体几何知识点归纳

高中空间立体几何知识点归纳

高中空间立体几何知识点归纳一、空间几何基本概念1. 空间几何的起源和发展•埃及和巴比伦的几何学•古希腊的几何学•欧几里得几何学的形成2. 空间几何的基本概念•点、线、面、体的定义•无穷远点•距离、角度、面积、体积的概念二、空间中的直线与平面1. 直线与平面的关系•直线与平面的位置关系•平面的倾斜度2. 直线与平面的相交情况•直线与平面相交•直线在平面内•直线与平面平行3. 直线与平面的距离和角度•直线与平面之间的距离•直线与平面之间的角度4. 直线与平面的投影•直线在平面上的投影•平面在直线上的投影三、立体图形的性质与计算1. 空间立体图形的分类•点、线、面、体的分类•面的形状分类•体的形状分类2. 空间立体图形的性质•面与面的位置关系•面与平面的位置关系•体与体的位置关系•面、体的倾斜度3. 空间立体图形的计算•立体图形的体积计算•立体图形的表面积计算•立体图形的重心计算四、空间向量与几何应用1. 空间向量的定义和运算•空间向量的表示方法•空间向量的加减运算•空间向量的数量积和向量积2. 空间向量在几何中的应用•平行四边形定理•共线向量定理•空间直线的垂直判定•空间平面的平行判定•空间平面的垂直判定五、空间几何的证明与推理1. 几何证明的基本思路和方法•相等关系的证明•平行关系的证明•相似关系的证明•定理的应用与推广2. 空间几何问题的解决思路•假设与设定•图形的排除法•利用性质和定理进行推理3. 空间几何证明与问题解决的典型题目•空间角的定理证明•空间图形的性质证明•空间几何问题的解题思路以上是高中空间立体几何的一些重要知识点归纳,学好这些知识,将能够帮助我们更好地理解空间中的几何关系,解决实际问题。

通过反复的练习和思考,我们可以掌握相关的计算方法和证明技巧,提高空间几何的解题能力。

同时,空间立体几何知识也是很多学科领域的重要基础,对于进一步学习和研究具有重要意义。

希望大家能够认真学习和应用这些知识,提升自己的数学素养和思维能力。

(完整版)立体几何知识点总结完整版

(完整版)立体几何知识点总结完整版

立体几何知识点【考纲解读】1、平面的概念及平面的表示法,理解三个公理及三个推论的内容及作用,初步掌握性质与推论的简单应用。

2、 空间两条直线的三种位置关系,并会判定。

3、 平行公理、等角定理及其推论,了解它们的作用,会用它们来证明简单的几何问题,掌握证明空间两直线 平行及角相等的方法。

4、 异面直线所成角的定义,异面直线垂直的概念,会用图形来表示两条异面直线,掌握异面直线所成角的范 围,会求异面直线的所成角。

5•理解空间向量的概念,掌握空间向量的加法、减法和数乘;了解空间向量的基本定理,理解空间向量坐标的概念,掌握空间向量的坐标运算 ;掌握空间向量的数量积的定义及其性质,掌握用直角坐标计算空间向量数量积公式.6•了解多面体、凸多面体、正多面体、棱柱、棱锥、球的概念•掌握棱柱,棱锥的性质,并会灵活应用,掌握球的表面积、体积公式;能画出简单空间图形的三视图, 能识别上述的三视图所表示的立体模型, 会用斜二测法画出它们的直观图•7•空间平行与垂直关系的论证 •8.掌握直线与平面所成角、二面角的计算方法,掌握三垂线定理及其逆定理,并能熟练解决有关问题 ,进一步掌握异面直线所成角的求解方法,熟练解决有关问题9•理解点到平面、直线和直线、直线和平面、平面和平面距离的概念会用求距离的常用方法(如:直接法、转 化法、向量法)•对异面直线的距离只要求学生掌握作出公垂线段或用向量表示的情况)和距离公式计算距离。

【知识络构建】<— 翅MJL 何体的峯构特征一袞间几何怀的表面锲和体枳 —I 吩间儿何体的三视图和吒现图 空何向話的槪念线性运算空间向园数呈积理和坐标运算【重点知识整合】1. 空间几何体的三视图专间儿何体空问点仁n线、平面ft置关系宀VIHI向虽与<体儿何(1) 正视图:光线从几何体的前面向后面正投影得到的投影图;(2) 侧视图:光线从几何体的左面向右面正投影得到的投影图;(3) 俯视图:光线从几何体的上面向下面正投影得到的投影图.几何体的正视图、侧视图和俯视图统称为几何体的三视图.2. 斜二测画水平放置的平面图形的基本步骤(1) 建立直角坐标系,在已知水平放置的平面图形中取互相垂直的Ox, Oy,建立直角坐标系;(2) 画出斜坐标系,在画直观图的纸上(平面上)画出对应的Ox', Oy',使/ x Oy = 45。

空间立体几何知识点

空间立体几何知识点

空间立体几何知识点1. 空间几何基础- 点、线、面在空间中的关系- 空间直角坐标系- 向量的概念与运算- 向量的加法、数乘、向量积(叉乘)、点积(内积) - 向量的模、方向余弦、单位向量- 向量方程及其应用2. 平面与直线- 平面的方程- 点法式方程- 一般式方程- 截距式方程- 直线的方程- 点向式方程- 两点式方程- 一般式方程- 投影与斜线- 平面与直线的关系- 平面内直线的方程- 平面与直线的交点- 平面与直线的夹角- 直线与直线的关系- 异面直线- 相交直线- 平行直线3. 多面体- 多面体的定义与分类- 棱柱、棱锥的结构与性质- 多面体的表面积与体积计算- 正多面体- 正四面体- 正六面体- 正十二面体、正二十面体4. 旋转体- 旋转体的定义与分类- 圆柱、圆锥、圆台的结构与性质 - 球的结构与性质- 旋转体的表面积与体积计算5. 空间曲线- 空间曲线的方程- 空间曲线的参数方程- 空间曲线的切线与法线- 螺旋线的性质与方程6. 坐标系变换与二次曲面- 坐标变换- 旋转变换- 平移变换- 二次曲面的一般方程- 常见二次曲面- 椭球面- 抛物面- 双曲面- 椭圆锥面7. 空间几何的度量- 空间中的距离公式- 点到直线、点到平面的距离- 直线与直线、直线与平面、平面与平面之间的距离- 空间角的计算- 两条直线间的夹角- 直线与平面的夹角- 两个平面间的夹角8. 空间几何的应用- 空间几何在建筑学中的应用- 空间几何在工程学中的应用- 空间几何在物理学中的应用- 空间几何在计算机图形学中的应用以上是空间立体几何的主要知识点概述。

在实际应用中,这些知识点需要通过具体的数学公式和图形来深入理解和掌握。

教学时,通常会结合图形演示、实际测量和计算练习来加深学生对空间立体几何概念的理解。

在解决具体问题时,还需要运用逻辑推理和空间想象能力,以及熟练掌握相关的数学工具和计算方法。

空间立体几何知识点总结单招考点

空间立体几何知识点总结单招考点

空间立体几何知识点总结单招考点1.立体图形的基本概念立体图形是指具有长度、宽度和高度三个方向的图形。

常见的立体图形有球体、立方体、圆柱体、圆锥体和棱柱等。

-球体是由所有到一个固定点距离相等的点组成的图形,其中心为球心,半径为球半径。

-立方体是六个面都是正方形的立体图形,它有八个顶点、十二个棱和六个面。

-圆柱体是由两个圆和其间的曲面组成的立体图形,其中底面圆的圆心与底面圆上任意一点的连线垂直于底面圆。

2.空间立体几何计算公式在解决空间立体几何问题时,我们经常需要用到一些计算公式,下面是一些常用的公式:2.1球体的体积和表面积-球体的体积公式:$V=\fr ac{4}{3}πr^3$,其中$r$为球半径。

-球体的表面积公式:$S=4πr^2$。

2.2圆柱体的体积和表面积-圆柱体的体积公式:$V=πr^2h$,其中$r$为底面圆的半径,$h$为圆柱体的高。

-圆柱体的侧面积公式:$S_s=2πr h$,其中$r$为底面圆的半径,$h$为圆柱体的高。

-圆柱体的底面积公式:$S_b=πr^2$,其中$r$为底面圆的半径。

-圆柱体的表面积公式:$S=2πr(r+h)$,其中$r$为底面圆的半径,$h$为圆柱体的高。

2.3立方体的体积和表面积-立方体的体积公式:$V=a^3$,其中$a$为立方体的边长。

-立方体的表面积公式:$S=6a^2$,其中$a$为立方体的边长。

3.空间立体几何的常见问题在单招考试中,空间立体几何也是常见的考点,下面介绍一些常见问题及解决方法:3.1判定立体图形的位置关系常见的判定立体图形位置关系的方法有以下几种:-通过对比立体图形的坐标以及相关线段和角的位置关系,判断是否存在垂直、平行和共面等关系。

-利用立体图形的几何性质,如两条直线垂直的条件、两个平面平行的条件等,来判断立体图形的位置关系。

3.2计算立体图形的体积和表面积计算立体图形的体积和表面积是空间立体几何的重要内容,可以利用前面介绍的计算公式进行计算。

空间几何体知识点总结

空间几何体知识点总结

空间几何体知识点总结一、点、线、面1. 点:点是空间的基本要素,没有长、宽、高,只有位置,用字母表示,如A、B、C等。

2. 线:由无限多个点组成的集合,是一种没有宽度只有方向的图形,分为直线和曲线两种。

- 直线:不含任何弯曲的线段,用两个点表示。

- 曲线:含有至少一段弯曲的线段。

3. 面:是由无限多个线组成的集合,是一种有长和宽但没有高度的图形,可以分为平面和曲面两种。

- 平面:没有限定的表面,如白纸的一面。

- 曲面:有曲度且没有边界的平面,常见的如球面、圆柱面等。

二、多面体1. 三棱锥和四棱锥:三棱锥和四棱锥是由底面和三个(四个)三角形面组成的几何体,具有尖顶和底部的多面体,如金字塔就是一种三棱锥。

2. 正多面体:正多面体是每个面都是正多边形的多面体,常见的有正立体角、正方体和正十二面体等。

3. 钝角多面体:钝角多面体是有一些面是钝角形的多面体,常见的有十二面体和二十面体等。

三、棱柱和棱台1. 棱柱:棱柱是以一个多边形为底面,侧面为平行四边形的几何体,根据底面形状的不同,可以分为三棱柱、四棱柱等。

2. 棱台:棱台是以一个多边形为底面,上下底面平行且相等的多面体,也根据底面形状的不同可以分为三棱台、四棱台等。

四、球面1. 球:球是一种特殊的曲面,就是一个没有边界、厚度的曲面,是由所有到一个给定点(球心)距离不大于给定半径的点的集合组成。

2. 球面积和体积:球面积和体积的计算公式分别是4πr^2和(4/3)πr^3,其中r为球的半径。

五、坐标系1. 直角坐标系:直角坐标系是用坐标轴构成的平面直角坐标系,通常用x、y轴表示,原点为坐标轴的交点,可以表示二维平面上的点。

2. 三维坐标系:三维坐标系是在直角坐标系的基础上加上z轴,表示三维空间内的点。

六、平行线、平行面、垂直线1. 平行线:平行线是两条直线在同一个平面内,且没有交点的直线。

2. 平行面:平行面是在三维空间内没有交点的两个平面。

3. 垂直线:垂直线是两条直线的夹角为90°,表示两条线在空间的相互关系。

高中数学立体几何知识点归纳总结

高中数学立体几何知识点归纳总结

高中数学立体几何知识点归纳总结一、立体几何知识点归纳 第一章 空间几何体(一)空间几何体的结构特征(1)多面体——由若干个平面多边形围成的几何体.围成多面体的各个多边形叫叫做多面体的面,相邻两个面的公共边叫做多面体的棱,棱与棱的公共点叫做顶点。

旋转体—-把一个平面图形绕它所在平面内的一条定直线旋转形成的封闭几何体.其中,这条定直线称为旋转体的轴. (2)柱,锥,台,球的结构特征 1.棱柱1。

1棱柱——有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱。

1。

2相关棱柱几何体系列(棱柱、斜棱柱、直棱柱、正棱柱)的关系:①⎧⎪⎧−−−−−→⎨⎪−−−−−→⎨⎪⎪⎩底面是正多形棱垂直于底面斜棱柱棱柱正棱柱直棱柱其他棱柱 底面为矩形侧棱与底面边长相等1.3①侧棱都相等,侧面是平行四边形;②两个底面与平行于底面的截面是全等的多边形; ③过不相邻的两条侧棱的截面是平行四边形;④直棱柱的侧棱长与高相等,侧面与对角面是矩形。

1.4长方体的性质:①长方体一条对角线长的平方等于一个顶点上三条棱的平方和;【如图】222211AC AB AD AA =++②(了解)长方体的一条对角线1AC 与过顶点A 的三条棱所成的角分别是αβγ,,,那么222cos cos cos 1αβγ++=,222sin sin sin 2αβγ++=;③(了解)长方体的一条对角线1AC 与过顶点A 的相邻三个面所成的角分别是αβγ,,,则222cos cos cos 2αβγ++=,222sin sin sin 1αβγ++=.1.5侧面展开图:正n 棱柱的侧面展开图是由n 个全等矩形组成的以底面周长和侧棱长为邻边的矩形。

1.6面积、体积公式:2S c hS c h S S h=⋅=⋅+=⋅直棱柱侧直棱柱全底棱柱底,V (其中c 为底面周长,h 为棱柱的高) 2.圆柱2。

1圆柱——以矩形的一边所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体叫圆柱。

立体几何知识点总结(全)

立体几何知识点总结(全)

立体几何知识点总结(全)垂直直线:相交成直角的直线。

三.点与平面的位置关系点在平面上:点在平面内部;点在平面外:点在平面的一侧;点在平面上方或下方:只有在三维空间中才有,点在平面上方或下方的判断需要借助向量的概念。

四.直线与平面的位置关系直线在平面上:直线的每一个点都在平面上;直线与平面相交:有且只有一个交点;直线与平面平行:没有交点,且方向与平面的法向量垂直;直线与平面垂直:直线方向与平面的法向量相同或相反。

五.平面与平面的位置关系两个平面相交:有且只有一条公共直线;两个平面平行:没有公共直线;两个平面重合:所有点都相同。

改写:一。

空间几何体的三视图在空间几何体中,正视图是指光线从几何体的前面向后面正投影得到的投影图,反映了物体的高度和长度。

侧视图是指光线从几何体的左面向右面正投影得到的投影图,反映了物体的高度和宽度。

俯视图是指光线从几何体的上面向下面正投影得到的投影图,反映了物体的长度和宽度。

三视图中反应的长、宽、高的特点有“长对正”,“高平齐”,“宽相等”。

二。

空间几何体的直观图斜二测画法的基本步骤包括建立适当的直角坐标系xOy (尽可能使更多的点在坐标轴上)、建立斜坐标系x'O'y',使x'O'y'=45(或135)以及画对应图形。

在已知图形平行于X轴的线段,在直观图中画成平行于X‘轴,且长度保持不变;在已知图形平行于Y轴的线段,在直观图中画成平行于Y‘轴,且长度变为原来的一半。

直观图与原图形的面积关系为S直观图= S原图/4.三。

空间几何体的表面积与体积圆柱侧面积为S侧面=2πr×l,圆锥侧面积为S侧面=πr×l,圆台侧面积为S侧面=πr×l+πR×l。

柱体的体积为V柱体=S×h,锥体的体积为V锥体=S×h/3,台体的体积为V台体=S上+S下+√S上×S下×h/3.球的表面积和体积分别为S=4πR2和V球=4πR3/3.正三棱锥是底面是等边三角形,三个侧面是全等的等腰三角形的三棱锥,正四面体是每个面都是全等的等边三角形的三棱锥。

空间立体几何基本知识点

空间立体几何基本知识点

空间立体几何基本知识点公理1:如果一条直线上的两点在一个平面上,那么公理2:不共线的三点推论1:直线和直线外的一点可以推论2:两条相交的直线可以推论3:两条平行直线可以公理3:如果两个不重合的平面有一个公共点,那么它们有且只有公理4:平行于同一条直线的两条直线等角定理:空间中如果两个角的两边分别对应平行,那么这两个角不同在任何一个平面内的两条直线称为直线与平面平行的判定定理:,那么这条直线和这个平面平行。

(符号语言:)平面与平面平行的判定定理:,那么这两个平面平行。

(符号语言:)线面平行的性质定理:一条直线与一个平面平行,则过这条直线的任一平面与此平面的与该直线(符号语言:)面面平行的性质定理:性质1:如果两个平面同时和第三个平面相交,那么它们的交线(符号语言:)性质2:夹在两个平行平面间的平行线段性质3:两条直线被三个平行平面所截,截得对应的线段性质4:两个平面平行,其中一个平面内的任何一条直线另一个平面性质5:经过平面外一点,有且仅有一个平面与已知平面线面垂直的判定定理:一条直线与平面内两条直线,则该直线垂直于这个平面。

(符号语言:)面面垂直的判定定理:一个平面过另一个平面的,则这两个平面垂直。

(符号语言:)面面垂直的第二判定定理:两个平行平面垂直于第三个平面,则另一个平面也垂直于线面平行的性质:垂直于同一个平面的两直线。

(符号语言:)面面垂直的性质:两个平面垂直,则一个平面内垂直于交线的直线与另一个平面(符号语言:)结论1:若两个平面垂直,过一个平面内的一点作另一个平面的垂线,垂足必在上。

结论2:如果两个平面垂直,那么经过第一个平面内的一点并且垂直于第二个平面的直线必然在内。

结论3:如果两个平面垂直,那么与其中一个平面平行的平面另一个平面。

结论4:如果两个平面垂直,那么与其中一个平面平行的直线另一个平面。

立体几何知识点总结

立体几何知识点总结
立体几何知识点总结
1、 多面体(棱柱、棱锥)的结构特征
(1) 棱柱: ①定义:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都 互相 平行,由这些面所围成的几何体叫做棱柱。
侧棱不垂直于底面
侧棱垂直于底面
棱柱
斜棱柱
底面是正多边形
直棱柱
正棱柱;
底面是平行四边形
侧棱垂直于底面
底面是矩形
如果两条相交直线和另外两条相交直线分别平行,那么这两组直线所成的 锐角(或直角)相等; (4) 射影定理(斜线长、射影长定理):从平面外一点向这个平面所引的垂线段和斜线段 中,射影相等的两条斜线段相等;射影较长的斜线段也较长;反之,斜线段相 等的射影相等;斜线段较长的射影也较长;垂线段比任何一条斜线段都短。 (5) 最小角定理:斜线与平面内所有直线所成的角中最小的是与它在平面内射影所成的角。 (6) 异面直线的判定: ①反证法; ②过平面外一点与平面内一点的直线,和平面内不过该点的直线是异面直线。 (7) 过已知点与一条直线垂直的直线都在过这点与这条直线垂直平面内。 (8) 如果—直线平行于两个相交平面,那么这条直线平行于两个平面的交线。
四棱柱
平行六面体
直平行六面体
底面是正方形
棱长都相等
长方体
正四棱柱
正方体。
②性质:Ⅰ、侧面都是平行四边形;
Ⅱ、两底面是全等多边形;
Ⅲ、平行于底面的截面和底面全等;对角面是平行四边形;
Ⅳ、长方体一条对角线长的平方等于一个顶点上三条棱的长的平方和。
(2) 棱锥: ①定义:有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面围成的几 何体 叫做棱锥;
二面角的平面角的范围: 0o 180o ;
五、距离的求法:

立体几何知识点总结

立体几何知识点总结

立体几何知识点总结立体几何知识点总结立体几何是研究空间形体的一个分支学科,它主要关注物体的形状、大小、位置以及各个部分之间的关系。

在数学中,立体几何经常与代数、几何学以及物理学等学科相结合。

本文将对立体几何的一些基本概念、性质和定理进行总结和概述。

1. 点、线、面和体在立体几何中,基本要素有点、线、面和体。

点是最基本的单位,没有长度、面积或体积,只有位置;线是由无数个点组成的,有长度但没有宽度;面是由无数个线组成的,有面积但没有厚度;体是由无数个面组成的,有体积。

2. 立体几何中的基本名词在立体几何中,有一些基本名词需要了解,如顶点、边、面和多面体等。

顶点是两条边或两个面的交点,边是连接两个顶点的线段,面是由三条或以上的线连成的封闭空间,而多面体是由若干个面组成的立体。

3. 多面体的特点多面体有一些特点,如:多面体的各个面都是平面;多面体的两个面之间的交线是边;多面体的每一个顶点周围都有若干个面相交;多面体的两个面之间的交角是面对面所对的角的两倍。

4. 立体的投影当一个立体在某个平面上投影时,我们可以观察到不同的形状。

立体的投影可以是正交投影或透视投影。

正交投影是指物体与平面之间的投影是垂直的,而透视投影是指物体与平面之间的投影不垂直。

5. 立体的表面积和体积表面积是指立体的所有面的表面积之和,而体积是指立体所占据的空间大小。

计算表面积和体积的方法因不同的立体而异。

例如,计算正方体的表面积是将六个面的面积相加,而计算正方体的体积是将边长的立方相乘。

6. 立体的相似与全等当两个立体的所有对应的边长比相等,并且对应的角度也相等时,我们称这两个立体相似。

而当两个立体的所有对应的边长和角度都相等时,我们称这两个立体全等。

7. 空间角的性质和计算空间角是指两个面所对的角,它有一些特性需要了解。

例如,空间角叠加定理指的是如果两个空间角的两个边分别相等并且在同一平面内,那么这两个空间角之和等于它们在同一平面内的共面角的对角。

高中数学立体几何知识点

高中数学立体几何知识点

高中数学立体几何知识点(大全)一、【空间几何体结构】1.空间结合体:如果我们只考虑物体占用空间部分的形状和大小,而不考虑其它因素,那么由这些物体抽象出来的空间图形,就叫做空间几何体。

2.棱柱的结构特征:有两个面互相平行,其余各面都是四边形,每相邻两个四边形的公共边互相平行,由这些面围成的图形叫做棱柱。

棱柱(1):棱柱中,两个相互平行的面,叫做棱柱的底面,简称底。

底面是几边形就叫做几棱柱。

(2):棱柱中除底面的各个面。

(3):相邻侧面的公共边叫做棱柱的侧棱。

(4):侧面与底面的公共顶点叫做棱柱的顶点棱柱的表示:用表示底面的各顶点的字母表示。

如:六棱柱表示为ABCDEF-A’B’C’D’E’F’3.棱锥的结构特征:有一个面是多边形,其余各面都是三角形,并且这些三角形有一个公共定点,由这些面所围成的多面体叫做棱锥。

棱锥4.圆柱的结构特征:以矩形的一边所在直线为旋转轴,其余边旋转形成的面所围成的旋转体叫做圆柱。

圆柱(1):旋转轴叫做圆柱的轴。

(2):垂直于轴的边旋转而成的圆面叫做圆柱的底面。

(3):平行于轴的边旋转而成的曲面叫做圆柱的侧面。

(4):无论旋转到什么位置,不垂直于轴的边都叫做圆柱侧面的母线。

圆柱用表示它的轴的字母表示,如:圆柱O’O(注:棱柱与圆柱统称为柱体)5.圆锥的结构特征:以直角三角形的一条直角边所在直线为旋转轴, 两余边旋转形成的面所围成的旋转体叫做圆锥。

圆锥(1):作为旋转轴的直角边叫做圆锥的轴。

(2):另外一条直角边旋转形成的圆面叫做圆锥的底面。

(3):直角三角形斜边旋转形成的曲面叫做圆锥的侧面。

(4):作为旋转轴的直角边与斜边的交点。

(5):无论旋转到什么位置,直角三角形的斜边叫做圆锥的母线。

圆锥可以用它的轴来表示。

如:圆锥SO(注:棱锥与圆锥统称为锥体)二、【棱台和圆台的结构特征】1.棱台的结构特征:用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分是棱台。

棱台(1):原棱锥的底面和截面分别叫做棱台的下底面和上底面。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

必修二空间几何体
一、空间几何体结构
1.空间结合体:如果我们只考虑物体占用空间部分的形状和大小,而不考虑其它因素,那么由这些物体抽象出来的空间图形,就叫做空间几何体。

2.棱柱的结构特征:有两个面互相平行,其余各面都是四边形,每相邻两个四边形的公共边互相平行,由这些面围成的图形叫做棱柱。

(图如下)
底面:棱柱中,两个相互平行的面,叫做棱柱的底面,简称底。

底面是几边形就叫做几棱柱。

侧面:棱柱中除底面的各个面.
侧棱:相邻侧面的公共边叫做棱柱的侧棱。

顶点:侧面与底面的公共顶点叫做棱柱的顶点。

棱柱的表示:用表示底面的各顶点的字母表示。

如:棱柱ABCDEF-A’B’C’D’E’F’
3.棱锥的结构特征:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的多面体叫做棱锥. (图如下)
底面:棱锥中的多边形面叫做棱锥的底面或底。

侧面:有公共顶点的各个三角形面叫做棱锥的侧面
顶点:各个侧面的公共顶点叫做棱锥的顶点。

侧棱:相邻侧面的公共边叫做棱锥的侧棱。

棱锥可以表示为:棱锥S-ABCD
底面是三角形,四边形,五边形----的棱锥分别叫三棱锥,四棱锥,五棱锥---
4.圆柱的结构特征:以矩形的一边所在直线为旋转轴,其余边旋转形成的面所围成的旋转体叫做圆柱。

圆柱的轴:旋转轴叫做圆柱的轴。

圆柱的底面:垂直于轴的边旋转而成的圆面叫做圆柱的底面。

圆柱的侧面:平行于轴的边旋转而成的曲面叫做圆柱的侧面。

圆柱侧面的母线:无论旋转到什么位置,不垂直于轴的边都叫做圆柱侧面的母线。

圆柱用表示它的轴的字母表示.如:圆柱O’O
注:棱柱与圆柱统称为柱体
5.圆锥的结构特征:以直角三角形的一条直角边所在直线为旋转轴, 两余边旋转形成的面所围成的旋转体叫做圆锥。

轴:作为旋转轴的直角边叫做圆锥的轴。

底面:另外一条直角边旋转形成的圆面叫做圆锥的底面。

侧面:直角三角形斜边旋转形成的曲面叫做圆锥的侧面。

顶点:作为旋转轴的直角边与斜边的交点
母线:无论旋转到什么位置,直角三角形的斜边叫做圆锥的母线。

圆锥可以用它的轴来表示。

如:圆锥SO
注:棱锥与圆锥统称为锥体
6.棱台和圆台的结构特征
(1)棱台的结构特征:用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分是棱台.
下底面和上底面:原棱锥的底面和截面分别叫做棱台的下底面和上底面。

侧面:原棱锥的侧面也叫做棱台的侧面(截后剩余部分)。

侧棱:原棱锥的侧棱也叫棱台的侧棱(截后剩余部分)。

顶点:上底面和侧面,下底面和侧面的公共点叫做棱台的顶点。

棱台的表示:用表示底面的各顶点的字母表示。

如:棱台ABCD-A’B’C’D’
底面是三角形,四边形,五边形----的棱台分别叫三棱台,四棱台,五棱台---
(2)圆台的结构特征:用一个平行于圆锥底面的平面去截圆锥,底面与截面之间的部分是圆台.
圆台的轴,底面,侧面,母线与圆锥相似
注:棱台与圆台统称为台体。

7.球的结构特征:以半圆的直径所在的直线为旋转轴,半圆面旋转一周形成的几何体叫做球体。

球心:半圆的圆心叫做球的球心。

半径:半圆的半径叫做球的半径。

直径:半圆的直径叫做球的直径。

球的表示:用球心字母表示。

如:球O
注意:1.多面体: 若干个平面多边形围成的几何体
2.旋转体: 由一个平面绕它所在平面内的一条定直线旋转所形成的封闭几何体。

相关文档
最新文档