SPSS调查问卷的数据分析范文

合集下载

SPSS调查问卷的数据分析范文

SPSS调查问卷的数据分析范文

SPSS调查问卷的数据分析调查分析问卷回收,在经过核实和清理后就要用SPSS做数据分析,首先的第一步就是把问题编码录入。

SPSS的问卷分析中一份问卷是一个案,首先要根据问卷问题的不同定义变量。

定义变量值得注意的两点:一区分变量的度量,Measure 的值,其中Scale是定量、Ordinal是定序、Nominal是指定类;二注意定义不同的数据类型Type。

各色各样的问卷题目的类型大致可以分为单选、多选、排序、开放题目四种类型,他们的变量的定义和处理的方法各有不同,我们详细举例介绍如下:1 、单选题:答案只能有一个选项例一当前贵组织机构是否设有面向组织的职业生涯规划系统?A有 B 正在开创 C没有 D曾经有过但已中断编码:只定义一个变量,Value值1、2、3、4分别代表A、B、C、D 四个选项。

录入:录入选项对应值,如选C则录入32 、多选题:答案可以有多个选项,其中又有项数不定多选和项数定多选。

(1)方法一(二分法):例二贵处的职业生涯规划系统工作涵盖哪些组群?画钩时请把所有提示考虑在内。

A月薪员工 B日薪员工 C钟点工编码:把每一个相应选项定义为一个变量,每一个变量Value值均如下定义:“0”未选,“1”选。

录入:被调查者选了的选项录入1、没选录入0,如选择被调查者选AC,则三个变量分别录入为1、0、1。

(2)方法二:例三你认为开展保持党员先进性教育活动的最重要的目标是那三项:1() 2 () 3()A、提高党员素质B、加强基层组织C、坚持发扬民主D、激发创业热情E、服务人民群众F、促进各项工作编码:定义三个变量分别代表题目中的1、2、3三个括号,三个变量Value值均同样的以对应的选项定义,即:“1” A,“2” B,“3” C,“4” D,“5” E,“6” F录入:录入的数值1、2、3、4、5、6分别代表选项ABCDEF,相应录入到每个括号对应的变量下。

如被调查者三个括号分别选ACF,则在三个变量下分别录入1、3、6。

spss的数据分析报告范例

spss的数据分析报告范例

spss的数据分析报告范例一、引言数据分析是科学研究过程中不可或缺的一部分。

针对一项研究项目,本报告将借助SPSS软件对收集的数据进行详尽分析,并提供相关结果和结论。

本报告的目的是帮助读者更好地理解数据,提供决策和制定战略所需的支持。

二、研究方法本研究的数据来源于一份问卷调查,共收集了500份有效问卷。

在问卷设计中,我们采用了随机抽样的方法,以保证样本的代表性。

该问卷包括了参与者的基本背景信息、满意度评价等方面的问题。

三、数据分析1. 受访者基本背景首先,我们对受访者的基本背景信息进行了统计分析。

其中包括性别、年龄、教育水平和职业等因素。

以下是相关结果的总结:(1)性别分布:男性占65%,女性占35%。

(2)年龄分布:年龄在18-24岁的受访者占40%;25-34岁的占30%;35-44岁的占20%;45岁及以上的占10%。

(3)教育水平:高中或以下占20%;本科占50%;研究生及以上占30%。

(4)职业:学生占25%;职员占40%;自由职业者占20%;其他占15%。

2. 满意度评价为了了解受访者对某产品的满意度,我们设计了一套评价体系。

通过SPSS软件进行数据分析,得到以下结果:(1)整体满意度:根据赋分制度,平均满意度得分为4.2(满分为5),表明受访者对该产品整体上持较高满意度。

(2)各项指标:通过因子分析,我们得到了几个影响满意度的关键因素。

其中,产品质量、价格和售后服务被认为是受访者最关注的方面。

3. 相关性分析在数据分析过程中,我们还进行了一些相关性分析,以探究不同变量之间的关系。

以下是一些值得关注的相关性结果:(1)性别与满意度之间的关系:经过卡方检验,我们发现性别与满意度之间存在一定的相关性(p < 0.05),女性对产品的满意度略高于男性。

(2)年龄与满意度之间的关系:通过相关系数分析,我们发现年龄与满意度呈现出弱相关关系(r = 0.15,p < 0.05),年龄越小,满意度越高。

spss调查问卷报告范文

spss调查问卷报告范文

spss调查问卷报告范文本报告旨在分析受访者对产品满意度的调查结果。

调查采用了SPSS软件进行数据分析,共有200名受访者参与了调查。

调查内容涉及到了产品的质量、功能、性价比、售后服务等方面,以了解消费者对产品的整体满意度。

首先,调查结果显示,大部分受访者对产品的质量表示满意,达到了80%。

其次,对产品的功能满意度方面,有65%的受访者表示满意。

同时,超过70%的受访者认为产品的性价比较高。

最后,在售后服务方面,有75%的受访者对产品的满意度较高。

通过SPSS软件的数据分析,得出了以上结果。

这些结果反映了消费者对产品的整体满意度较高,也反映了产品在质量、性价比和售后服务等方面表现较好。

然而,也有一小部分消费者对产品的满意度较低,主要集中在功能和售后服务方面。

综上所述,调查结果显示产品的整体满意度较高,但也需要重点关注产品的功能表现和售后服务质量。

希望生产厂商能根据调查结果,进一步改进产品的功能和提升售后服务质量,以满足更多消费者的需求。

另外,针对调查结果中部分消费者对产品功能和售后服务不满意的情况,可以考虑进行进一步的调查和分析。

了解他们对产品功能和售后服务不满意的具体原因,或许能够为厂商提供改进产品和服务的方向和建议。

可能需要对产品功能进行进一步的优化和改进,或者加强售后服务的培训和提升。

此外,还可以结合购买意向和再购买意向的调查结果,对产品满意度进行进一步分析。

了解消费者是否愿意再次购买该产品,或者愿意向他人推荐该产品,可以更加全面地衡量产品的满意度。

从而为产品的市场定位和销售策略提供更多的参考依据。

总的来说,通过SPSS软件对调查结果的分析,为产品提供了客观的数据支持,帮助生产厂商更好地理解消费者的需求和满意度状况。

希望基于这些分析结果,厂商可以利用调查结果,进一步改进产品和服务质量,以提升消费者的整体满意度。

同时也可以基于调查结果提出相应的市场推广策略,以更好地满足消费者对产品的需求,提升产品的市场竞争力。

spss问卷分析报告范文

spss问卷分析报告范文

SPSS问卷分析报告范文1. 引言本报告是针对一份问卷调查数据使用SPSS统计软件进行分析的结果报告。

该问卷调查旨在了解消费者对某品牌手机产品的满意度,并采集了与满意度相关的各种变量数据。

本报告将分析样本的整体满意度水平,并对影响满意度的主要因素进行深入分析。

2. 方法2.1 数据收集本次调查采取了随机抽样的方式,共发放问卷500份,并成功收回了431份有效问卷。

2.2 数据处理使用SPSS软件对收集到的问卷数据进行处理和分析。

首先,对数据进行了数据清洗,包括删除无效数据示例、缺失数据的处理等。

然后,对各个变量进行了描述性统计和相关性分析。

最后,基于相关性分析的结果,使用多元线性回归模型分析影响满意度的主要因素。

3. 数据描述3.1 样本描述样本中男性占比53%,女性占比47%。

年龄分布情况如下:18-24岁占比20%、25-34岁占比35%、35-45岁占比25%、45岁以上占比20%。

受访者手机使用时长分布如下:少于1年占比30%、1-2年占比35%、2-3年占比25%、3年以上占比10%。

3.2 变量描述本次调查的主要变量包括:满意度、价格、品牌知名度、产品外观、性能、功能、售后服务以及用户口碑。

这些变量都采用了1-10的评分制度。

4. 结果分析4.1 整体满意度水平样本整体满意度的平均得分为7.5分,标准差为1.2分。

满意度水平较高,表明大多数消费者对该品牌手机产品感到满意。

4.2 变量之间的相关性分析通过相关性分析发现,满意度与价格、品牌知名度、产品外观、性能、功能、售后服务以及用户口碑之间均存在正相关关系。

其中,品牌知名度和用户口碑与满意度的相关性最高。

4.3 多元线性回归分析为了进一步分析各个因素对满意度的影响程度,使用了多元线性回归模型。

回归分析结果显示,品牌知名度和用户口碑对满意度的影响较为显著。

而价格、产品外观、性能、功能以及售后服务对满意度的影响较小。

5. 结论本次问卷调查显示,大多数消费者对该品牌手机产品的满意度较高。

spss数据分析报告范文

spss数据分析报告范文

SPSS数据分析报告范文1. 引言本报告旨在对所收集的数据进行分析和解释,以便为相关研究提供支持和指导。

该数据集包含了一份关于某个研究对象的信息,我们将使用SPSS统计软件对其进行数据分析。

2. 方法2.1 数据收集数据采集使用了问卷调查的方法,针对某个特定群体进行了调查。

该调查旨在了解该群体对某特定问题的看法和态度,并收集了一系列相关变量的数据。

2.2 数据清洗在进行数据分析之前,我们对数据进行了清洗和预处理。

这包括去除缺失值、异常值和重复值。

我们还检查了数据的完整性和一致性,并进行了必要的修正和调整。

2.3 数据分析我们使用SPSS软件对数据进行了多个统计分析方法的应用,包括描述统计分析、相关性分析和回归分析等。

这些方法可以帮助我们了解变量之间的关系和趋势,并对未来的发展进行预测。

3. 结果3.1 描述统计分析通过对数据进行描述统计分析,我们得到了一些关键指标和概括性信息。

例如,我们计算了每个变量的均值、中位数、标准差和最大最小值等。

这些指标可以帮助我们对数据有一个整体的了解。

3.2 相关性分析我们使用相关性分析来探索变量之间的关联程度。

通过计算相关系数,我们可以了解变量之间的线性关系的强弱。

这些结果可以帮助我们确定哪些变量彼此之间的关系较为密切,进而为进一步的分析提供基础。

3.3 回归分析回归分析是一种用于预测和解释因果关系的分析方法。

在本报告中,我们使用回归分析来确定自变量和因变量之间的关系,并建立回归模型。

通过这些模型,我们可以对未来的趋势和发展进行预测。

4. 讨论与结论4.1 讨论通过对数据的分析,我们发现了一些有意义的结果和趋势。

例如,我们观察到某些变量之间存在较强的相关性,或者某些自变量对因变量的影响较为显著。

这些发现可以为进一步的研究和分析提供线索和方向。

4.2 结论基于我们的分析结果,我们得出了一些结论和建议。

例如,我们可以建议在某些情况下采取特定的行动或改进措施,以达到某些预期的目标。

spss数据分析报告 论文

spss数据分析报告 论文

SPSS数据分析报告论文引言数据分析是现代科学研究中不可或缺的一部分,它帮助研究人员从大量数据中提取有用的信息,从而得出科学结论。

SPSS(Statistical Package for the Social Sciences)作为一款常用的统计分析软件,被广泛应用于社会科学、医学、市场研究等领域。

本文旨在通过对某研究数据的分析,展示SPSS的功能和应用。

方法本研究采用问卷调查的方式收集数据,并使用SPSS进行数据分析。

问卷设计包括一系列涉及个人信息和态度评价的问题。

通过对回收的问卷数据进行整理和输入,将数据导入SPSS软件进行分析。

本文将主要从以下几个方面进行数据分析:描述性统计、相关分析、t检验和方差分析。

数据描述经过问卷调查获得的数据包括100份有效回收问卷。

被调查者的个人信息包括性别、年龄、学历和职业等。

态度评价的问题使用5点量表进行评分,涵盖了对某个产品的满意度、购买意愿以及推荐度等方面的评估。

描述性统计描述性统计用于对数据进行整体的概括和描述。

在本研究中,我们对被调查者的个人信息进行了描述性统计分析。

性别分布通过对样本中性别的统计,我们得出以下结果:•男性:60人,占60%;•女性:40人,占40%。

从中可以看出,调查样本中男性占据了绝对优势。

年龄分布对被调查者的年龄进行统计得到以下结果:•18-25岁:30人,占30%;•26-35岁:40人,占40%;•36-45岁:20人,占20%;•45岁以上:10人,占10%。

从中可以看出,调查样本中以26-35岁的年轻人占比最高。

学历分布对被调查者的学历进行统计得到以下结果:•小学及以下:5人,占5%;•初中:15人,占15%;•高中/中专:30人,占30%;•本科及以上:50人,占50%。

从中可以看出,调查样本中本科及以上学历的人数最多。

职业分布对被调查者的职业进行统计得到以下结果:•学生:25人,占25%;•上班族:50人,占50%;•自由职业者:10人,占10%;•其他:15人,占15%。

spss数据分析报告(共7篇)

spss数据分析报告(共7篇)

spss数据分析报告(共7篇):分析报告数据s pss spss数据报告怎么写spss数据分析实例说明 spss有哪些数据分析篇一:spss数据分析报告关于某班级2012年度考试成绩、获奖情况统计分析报告一、数据介绍:本次分析的数据为某班级学号排列最前的15个人在2012年度学习、获奖统计表,其中共包含七个变量,分别是:专业、学号、姓名、性别、第一学期的成绩、第二学期的成绩、考级考证数量,通过运用spss统计软件,对变量进行频数分析、描述分析、探索分析、交叉列联表分析,以了解该班级部分同学的综合状况,并分析各变量的分布特点及相互间的关系。

二、原始数据:三、数据分析1、频数分析(1)第一学期考试成绩的频数分析进行频数分析后将输出两个主要的表格,分别为样本的基本统计量与频数分析的结果1)样本的基本统计量,如图1所示。

样本中共有样本数15个,第一学期的考试成绩平均分为627.00,中位数为628.00,众数为630,标准差为32.859,最小值为568,最大值为675。

“第一学期的考试成绩”的第一四分位数是602,第二四分位数为628,第三四分位数为657。

2)“第一学期考试成绩”频数统计表如图2所示。

3) “第一学期考试成绩”Histogram图统计如图3所示。

(2)、第二个学期考试成绩的频数分析1)样本的基本统计量,如图4所示。

第二学期的考试成绩平均分为463.47,中位数为452.00,众数为419,标准差为33.588,最小值为419,最大值为522。

“第二学期的考试成绩”的第一四分位数是435,第二四分位数为452,第三四分位数为496。

3)”第二学期考试成绩”频数统计表如图5所示。

3) “第二学期考试成绩”饼图统计如图6所2、描述分析描述分析与频数分析在相当一部分中是相重的,这里采用描述分析对15位同学的考级考证情况进行分析。

输出的统计结果如图7所示。

从图中我们可以看到样本数15,最小值1,最大值4,标准差0.941等统计信息。

spss分析报告

spss分析报告

spss分析报告SPSS分析报告。

一、研究背景。

本次研究旨在通过SPSS软件对某公司员工满意度进行分析,以期了解员工对公司工作环境、福利待遇、领导管理等方面的满意程度,为公司提供改进管理和营造更好工作氛围的参考。

二、研究方法。

我们采用了问卷调查的方式,共有200名员工参与了本次调查。

问卷涵盖了员工满意度的各个方面,包括工作内容、薪酬福利、领导管理、团队氛围等。

在收集完问卷数据后,我们使用SPSS软件对数据进行了整理和分析。

三、数据分析结果。

1. 员工满意度整体情况。

通过对问卷数据的分析,我们发现员工整体满意度得分为75分(满分100分),整体来说员工对公司的满意度属于中等偏上水平。

2. 不同方面的满意度情况。

在工作内容方面,员工满意度得分为80分,表明大部分员工对自己的工作内容较为满意。

而在薪酬福利方面,员工满意度得分为70分,略低于整体满意度,说明公司在薪酬福利方面还有待提高。

在领导管理和团队氛围方面,员工满意度得分分别为75分和78分,整体表现较为稳定。

3. 不同部门的满意度差异。

通过对不同部门员工满意度的分析,我们发现在薪酬福利方面,销售部门的员工满意度得分最低,仅为65分,而技术部门的员工满意度得分最高,达到了85分。

这表明公司在薪酬福利方面需要重点关注销售部门的员工满意度。

四、结论与建议。

通过本次研究,我们得出了以下结论和建议:1. 公司整体员工满意度属于中等偏上水平,但在薪酬福利方面仍有提升空间,建议公司加大对薪酬福利的投入,提高员工的福利待遇。

2. 不同部门的员工满意度存在差异,公司应根据不同部门的情况,有针对性地改进管理和营造更好的工作氛围,提高员工满意度。

3. 未来可以定期进行员工满意度调查,以便及时了解员工的需求和反馈,为公司的管理决策提供科学依据。

总之,SPSS分析报告为公司提供了员工满意度的全面数据支持,为公司改进管理和提升员工满意度提供了重要参考。

希望公司能够根据本报告提出的建议,不断优化管理,营造更好的工作环境,提高员工满意度,为公司的长远发展打下良好基础。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

SPSS调查问卷的数据分析
调查分析问卷回收,在经过核实和清理后就要用SPSS做数据分析,首先的第一步就是把问题编码录入。

SPSS的问卷分析中一份问卷是一个案,首先要根据问卷问题的不同定义变量。

定义变量值得注意的两点:一区分变量的度量,Measure 的值,其中Scale是定量、Ordinal是定序、Nominal是指定类;二注意定义不同的数据类型Type。

各色各样的问卷题目的类型大致可以分为单选、多选、排序、开放题目四种类型,他们的变量的定义和处理的方法各有不同,我们详细举例介绍如下:
1 、单选题:答案只能有一个选项
例一当前贵组织机构是否设有面向组织的职业生涯规划系统?
A有 B 正在开创 C没有 D曾经有过但已中断
编码:只定义一个变量,Value值1、2、3、4分别代表A、B、C、D 四个选项。

录入:录入选项对应值,如选C则录入3
2 、多选题:答案可以有多个选项,其中又有项数不定多选和项数定多选。

(1)方法一(二分法):
例二贵处的职业生涯规划系统工作涵盖哪些组群?画钩时请把所有提示考虑在内。

A月薪员工 B日薪员工 C钟点工
编码:把每一个相应选项定义为一个变量,每一个变量Value值均如下定义:“0”未选,“1”选。

录入:被调查者选了的选项录入1、没选录入0,如选择被调查者选AC,则三个变量分别录入为1、0、1。

(2)方法二:
例三你认为开展保持党员先进性教育活动的最重要的目标是那三项:
1() 2 () 3()
A、提高党员素质
B、加强基层组织
C、坚持发扬民主
D、激发创业热情
E、服务人民群众
F、促进各项工作
编码:定义三个变量分别代表题目中的1、2、3三个括号,三个变量Value值均同样的以对应的选项定义,即:“1” A,“2” B,“3” C,“4” D,“5” E,“6” F
录入:录入的数值1、2、3、4、5、6分别代表选项ABCDEF,相应录入到每个括号对应的变量下。

如被调查者三个括号分别选ACF,则在三个变量下分别录入1、3、6。

[注:能用方法二编码的多选题也能用方法编码,但是项数不定的多选只能用二分法,即方法一是多选题一般处理方法。


3 、排序题:对选项重要性进行排序
例四您购买商品时在①品牌②流行③质量④实用⑤价格中对它们的关注程度先后顺序是(请填代号重新排列)
第一位第二位第三位第四位第五位
编码:定义五个变量,分别可以代表第一位第五位,每个变量的Value 都做如下定义:“1”品牌,“2”流行,“3”质量,“4”实用,“5”价格
录入:录入的数字1、2、3、4、5分别代表五个选项,如被调查者把质量排在第一位则在代表第一位的变量下输入“3“。

4 、选择排序题:
例五把例三中的问题改为“你认为开展保持党员先进性教育活动的最重的目标是那三项,并按重要性从高到低排序”,选项不变。

编码:以ABCDEF6个选项分别对应定义6个变量,每个变量的Value 都做同样的如下定义:“1”未选,“2”排第一,“3”排第二,“4”排第三。

录入:以变量的Value值录入。

比如三个括号里分别选的是 ECF,则该题的6个变量的值应该分别录入:1(代表A选项未选)、1、 3(代表C选项排在第二)、1、2、4。

[注:该方法是对多选题和排序题的方法结合的一种方法,对一般排序题(例四)也同样适用,只是两者用的分析方法不同(例四用频数分析、例五用描述分析),输出结果从不同的侧面反映问题的重要性(前一种方法从位次从变量的频数看排序,后一种方法从变量出发看排序)。


5 、开放性数值题和量表题:这类题目要求被调查者自己填入数值,或者打分
例六你的年龄(实岁):______
编码:一个变量,不定义Value值
录入:即录入被调查者实际填入的数值。

6、开放性文字题:
如果可能的话可以按照含义相似的答案进行编码,转换成为封闭式选项进行分析。

如果答案内容较为丰富、不容易归类的,应对这类问题直接做定性分析。

三、问卷一般性分析
下面具体介绍SPSS中问卷的一般处理方法,操作以版本spss13.0为例,以下提到的菜单项均在Analyze主菜单下
1、频数分析:Frequencies过程可以做单变量的频数分布表;显示数据文件中由用户指定的变量的特定值发生的频数;获得某些描述统计量和描述数值范围的统计量。

适用范围:单选题(例一),排序题(例四),多选题的方法二(例三)
频数分析也是问卷分析中最常用的方法。

实现:Descriptive statistics……Frequencies
2、描述分析:Descriptives:过程可以计算单变量的描述统计量。

这些述统计量有平均值、算术和、标准差,最大值、最小值、方差、范围和平均数标准误等。

适用范围:选择并排序题(例五)、开放性数值题(例六)。

实现:Descriptive statistics……Descriptives,需要的统计量
点击按钮Statistics…中选择
3、多重反应下的频次分析:
适用范围:多选题的二分法(例二)
实现:第一步在Multiple Response……Define Sets把一道多选问题中定义了的所有变量集合在一起,给新的集合变量取名,在Dichotomies Counted value中输入1。

第二步在Multiple Response……Frequencies中做频数分析。

4、交叉频数分析:解决对多变量的各水平组合的频数分析的问题适用范围:,适用于由两个或两个以上变量进行交叉分类形成的列联表,对变量之间的关联性进行分析。

比如要知道不同工作性质的人上班使用交通工具的情况,可以通过交叉分析得到一个二维频数表则一目了然。

实现:第一步根据分析的目的来确定交叉分析的选项,确定控制变量和解释变量(如上例中不同工作性质的人是控制变量,使用交通工具是解释变量)。

第二步选择Descriptive statistics……Crosstabs
四、简单图形描述介绍
在做上述频数分析、描述分析等分析时就可以直接做出图形,简单方便,同时也可以另外作图。

SPSS的作图功能在菜单Graphs下,功能强大,图形清晰优美。

现在把常用图简单介绍如下
1、饼图:又称圆图,是以圆的面积代表被研究对象的总体,按各构成部分占总体比重的大小把圆面积分割成若干扇形,用以表示现象的
部分对总体的比例关系的统计图。

频数分析的结果宜用饼图表示。

2、曲线图:是用线段的升降来说明数据变动情况的一种统计图。

它主要表示现象在时间上的变化趋势、现象的分配情况和2个现象的依存关系等。

3、面积图:用线段下的阴影面积来强调现象变化的统计图。

4、条形图:利用相同宽度条形的长短或高低表现统计数据大小及变化的统计图。

五、问卷深入分析
除了以上简单的分析,spss强大的功能还可以对问卷进行深入分析,比如常用的有聚类分析、交叉分析、因子分析、均值比分析(参数检验)、相关分析、回归分析等。

因为涉及到很专业的统计知识,下面只将个人觉得比较有用的方法的适用范围和分析目的简单做介绍:
1、聚类分析
样本聚类,可以将被调查者分类,并按照这些属性计算各类的比例,以便明确研究所关心的群体。

比如按消费特征对被调查者的进行聚类。

2、相关分析
相关分析是针对两变量或者多变量之间是否存在相关关系的分析方法,要根据变量不同特征选择不同的相关性的度量方式。

问卷分析中的多数用的变量都属于分类变量,要采用斯皮尔曼相关系数。

其中可以用卡方检验,其是对两变量之间是否具有显著性影响的分析方法
3、均值的比较与检验
(1)Means过程:对指定变量综合描述分析,分组计算计算均值再比较。

比如可以按性别变量分为男和女来研究二者收入是否存在差距。

(2)T 检验:独立样本t检验用于不相关的样本是否开来自具有相同均值的总体的检验。

比如,研究购买该产品的顾客和不购买的顾客的收入是否有明显差异。

如果样本不独立则要用配对t检验。

比如研究参加职业培训后工作效率是否提高。

4、回归分析
问卷分析中的回归分析常采用的是用离散回归模型,一般是逻辑斯蒂模型,解释一个变量对另一变量的影响具体有多大。

比如,研究对某商品的消费受收入的影响程度。

相关文档
最新文档