自主招生数学试题及答案

合集下载

2024初升高自主招生数学试卷(四)及参考答案

2024初升高自主招生数学试卷(四)及参考答案

2024初升高自主招生数学模拟试卷(四)一、选择题1.将4046减去它的,再减去余下的,再减去余下的,再减去余下的,…依此类推,直至最后减去余下的则最后余下的数为()A.4B.3C.2D.12.若正实数a,b,c满足不等式组则a,b,c的大小关系为()A.b<a<cB.b<c<aC.c<b<aD.c<a<b3.若实数a,b满足等式2a-b=2a2-2则a b=()A. C. D.44.在Rt△ABC中,∠ABC=90°,AB=2,BC=33,点D是平面内一动点,且上ADB=30°,连CD,则CD长的最大值是()A.8B.9C.10D.115.已知三个实数x1,x2,x3它们中的任何一个数加上其余两数积的6倍总等于7,则这样的三元数组(x1,x2,x3)共有组()A.3B.4C.5D.66.如图,在Rt△ABC中,∠BAC=90°,sin B=45,点D是边BC的中点,以AD为底边在其右侧作等腰△ADE,使∠ADE=∠B,连CE,则CEBC ()A.65 B.56 C.58 D.5127.四边形ABCD 中,AC ,BD 是其两对角线,△ABC 是等边三角形,AD =6,BD =10,CD =8,则∠ADC =()A.30°B.45°C.60°D.75°二、填空题8.已知19个连续整数的和为380,则紧接在这19个数后面的21个连续偶数的和是__.9.已知x =54-,则(2x +1)(x +1)(2x +3)(x +2)=.10.在实数范围内因式分解:a 2-2b 2+3c 2-ab +bc +4ca =.11.在平面直角坐标系xOy 中,点A (4,0),B (4,),连OB ,AB ,若线段OB ,AB 分别交双曲线(0k y k x =>,0)x >于点D ,E (异于点B ),若DE 丄OB ,则k 的值为.12.把两个半径为8和一个半径为9的圆形纸片放在桌面上,使它们两两相外切,若要用一个圆形纸片把这三个圆形纸片完全盖住,则这个大圆形纸片的最小半径等于.13.在菱形ABCD 中,∠A =60°,点E ,F 分别在边AD ,AB 上,将△AEF 沿着EF 对折,使点A 恰好落在对角线BD 上的点G ,若DG =4,BG =6,则△AEF 的面积等于.14.对于任意不为0的实数a ,b ,c 定义一种新运算“#”:①a #a =1;②a #(b #c )=(a #b )c ,则关于x 的方程(x 2)#2=x +4的根为.三、解答题15.回答下列问题:(1)解方程:x =(x 2+4x 一3)2+4x 2+16x 一15;(2)求所有的实数a ,使得关于x 的方程x 2-(2a -1)x +4a -3=0的两根均为整数.16.如图,点E是正方形ABCD的边CD上一动点(异于C,D),连BE,以BE为对角线作正方形BGEF,EF与BD交于点H,连AF.(1)求证:A,F,C三点共线;(2)若CE:DE=1:2,求DHBH的值.17.在平面直角坐标系xOy中,抛物线C1:y=ax2+bx+c(a>0)经过点(0,-3)和(4,-11),且在x轴上截得的线段长为(1)求抛物线C1的解析式;(2)已知点A在抛物线C1上,且在其对称轴右侧,点B在抛物线C1的对称轴上,若△OAB是以OB为斜边的等腰直角三角形,求点A的坐标;(3)将抛物线C1向左平行移动3个单位得到抛物线C2,直线y=kx(k≠0)与C2交于E,F两点,直线2y xk=-与C2交于G,H两点,若M,N分别为线段EF和线段GH的中点,连接MN.求证:直线MN过定点.18.如图,等边△ABC内有一动点D,△CDE是等边三角形(点B,E在直线AC两侧),直线BD与直线AE交于点F.(1)判断∠AFC的大小是否为定值?若是定值,求出其大小;若不是定值,请说明理由.(2)若AB=5,CD=3,求线段AF长的最小值.参考答案1.答案:C解析:令,第二次余下的数为,,.故选:C.2.答案:B解析:由题意可得,因a ,b ,c 均为正实数,于是因此,故选:B.3.答案:A,根据非负性可知,所以故选:A.4.答案:B解析:要使长取到最大,则点C 与点D 位于直线两侧.延长到点E ,使4046=11211123323a a a ⎛⎫⨯-=⨯= ⎪⎝⎭13111,4434a a ⎛⎫⨯-=⨯= ⎪⎝⎭ 1202211114046220232023202220232023a a ⎛⎫⨯-=⨯==⨯= ⎪⎝⎭117,531326c abc c a a b c a ⎧<++<⎪⎪⎪<++<⎨⎪⎪⎪⎩11753132,6153,4a b c c a b c a c a b b ++⎧<<⎪⎪++⎪<<⎨⎪++⎪<<⎪⎩711133356a b c c ++>>>>>>b c a <<(21)20a b -+-=1,22a b ==b a =CD AB CB BE =连,则,,于是点D 在以为直径的圆上(与E 在直线同侧),设圆心为O ,则,当C ,O ,D 三点共线时,长取到最大,最大值为,故选:B.5.答案:C 解析:由条件知①-②得,,所以或.当时,代入③得,又代入①得,消去得,解得于是,或.当,解得或故选:C.6.答案:D解析:由条件知,,所以,所以,又公共,所以,所以也是等腰三角形,于是发现,故选:D.7.答案:A解析:以为一边在四边形外作等边,连,则可证,所以,又,,于是,所以,故选:A.AE 30AEB ∠=︒4AE =AE AB 7OC ==CD 729+=12321331267,67,,67,x x x x x x x x x +=⎧⎪+=⎨⎪+=⎩①②③()()123160x x x --=12x x =316x =12x x =23267x x +=22367x x x +=3x ()()()222161670x x x --+=2x =()()123,,1,1,1x x x =1141,,666⎛⎫ ⎪⎝⎭777,,666⎛⎫--- ⎪⎝⎭3x =121274136x x x x +==1216416x x ⎧=⎪⎪⎨⎪=⎪⎩12x x ⎧=⎪⎪⎨⎪⎪⎩AD BD DC ==B BAD ADE ∠=∠=∠//DE AB CDE B ADE ∠=∠=∠DE ADE CDE ≌△△CDE △CDE BAD ∽△△11552236BC CD AB AB ===⨯=15226CE BD ==⨯=CD ABCD CDE △AE BCD ACE ≌△△10BD AE ==6AD =8DE =222AD DE AE +=90ADE ∠=︒906030ADC ∠=-=︒︒︒8.答案:1050解析:设19个连续整数中最小的整数是,则最大的整数是,,解得,所以紧接在这19个数后面的21个连续偶数分别为30,32,34,,70,.9.答案:42解析:由条件得,又.10.答案:解析:利用待定系数法或双十字相乘法.解析:由条件知,设,则,,又,,所以,,于是于,所以(舍)或12.答案:18解析:要使大圆形纸片的半径最小,只需这个大圆形纸片与三个小圆形纸片均内切,设最小半径大小为r ,则,解得.解析:作于点P ,设,则,,,,n 18n +380=11n = 1050=22540x x +-=()()()()()()()()211232212123x x x x x x x x ⎡⎤⎡⎤++++=++++⎣⎦⎣⎦()()222522536742x x x x =++++=⨯=()()23a b c a b c ++-+:OB y =()D t 2k =2OD t =8OB =60AOB ∠=︒82BD t =-60BED ∠=︒DE =BE =AE ==E ⎛ ⎝k =2=4=t =k =222(8)8(915)r r -=++-18r =FP BD ⊥BP x =PF =2BF x =PF =102AF GF x ==-在中,,即,解得所以14.答案:4或-2解析:令,因,由得,令,由得,于是,所以,解方程得两根分别为4或-2.15.答案:(1)解析:(1)原方程可化为令,则原方程可化为,于是,整理得,所以于是或,当时,,解得当时,,解得综上,原方程的根为(2)不妨设两根为,,则根据韦达定理可知,,于是,所以6PG x=-Rt PFQ △222PF PG GF +=2223(6)(102)x x x +-=-x =AF =AE =AEF △b c a ==#1a a =()()###a b c a b c =#1a a =c b =()()###a b c a b c =()()###a b b a b b =()##1a b b a a ==#a b =)2#2x x =+4x =+x ==()()222434433x x x x x =+-++--243x x t +-=243x t t =+-()224343x t t t x x -=+--+-()2250x t x t -+-=()()50x t x t -++=x t =50x t ++=x t =2330x x +-=x =50x t ++=2520x x ++=x =x =x =1x ()212x x x ≤1221x x a +=-1243x x a =-()121221x x x x -+=-()()12223x x --=因,为整数,,于是,也为整数,且,所以或,当时,解得,此时当时,解得,此时16.答案:(1)见解析解析:证明:(1)在正方形和正方形中,所以,即,所以,所以,又,所以A ,F ,C 三点共线(2)因,设,则,,因,,公共,所以,于是即,解得所以17.答案:(1)(2)或1x 2x 12x x ≤12x -22x -1222x x -≤-122123x x -=⎧⎨-=⎩122321x x -=-⎧⎨-=-⎩122123x x -=⎧⎨-=⎩1235x x =⎧⎨=⎩a =122321x x -=-⎧⎨-=-⎩1211x x =-⎧⎨=⎩12a =ABCD BGEF 45ABD FBE ∠=∠=BE BF==ABD DBF FBE DBF ∠-∠=∠-∠ABF DBE ∠=∠ABF DBE ∽△△45BAF BDC ∠=∠=︒45BAC ∠=︒:1:2CE DE =CE t =2DE t =BD =BE =45BEH BDE ∠=∠=︒DBE ∠BEH BDE ∽△△=2BE BD BH =⋅210t BH =⋅BH =DH BD BH =-=-==263y x x =--()7,4()6,3-(3)解析:(1)由条件可知又,解得所以抛物线的解析式为.(2)当点A 在x 轴上方时,过点A 作轴于点P ,过点B 作直线的垂线,垂足为点Q ,因,,所以,又,,所以,于是.设,则,所以,解得,所以点同理当点A 在x 轴下方时,可求得,综上所述,点A 的坐标为或.(3)由条件知,联立得,于是点,同理可得,设,则,解得所以,其过定点.18.答案:(1)的大小是定值,定值大小为,理由见解析()0,1316411,c a b c ⎧⎪=-⎪⎪++=-⎨=0a >163a b c =⎧⎪=-⎨⎪=-⎩1C 263y x x =--AP x ⊥AP 90OAP BAQ ∠+∠=︒90OAP AOP ∠+∠=︒AOP BAQ ∠=∠OA AB =90OPA AQB ∠=∠=︒OAP ABQ ≌△△AP BQ =()2,63A m m m --3m >2633m m m --=-7m =()7,4A ()6,3A -()7,4()6,3-22:12C y x =-212y kx y x =⎧⎨=-⎩2120x kx --=2,22k k M ⎛⎫ ⎪⎝⎭212,N k k ⎛⎫- ⎪⎝⎭:MN y px q =+222221k k p q p q kk ⎧=+⎪⎪⎨⎪=-+⎪⎩p q ⎧=⎪⎨⎪=⎩22:1k MN y x k-=+()0,1AFC ∠120︒(2)解析:(1)的大小是定值,定值大小为,理由如下:在等边和等边中,,,,于是,即,所以,所以,所以C ,D ,F ,E 四点共圆,所以,于是(2)由(1)知,所以A,F ,C ,B 四点共圆.若最大,则最小.当时,最大,因,,所以,由(1)得,,于是在和中,,所以,所以,于是所以线段长的最小值为.4AFC ∠120︒ABC △CDE △AC BC =CE CD =60ACB DCE CDE ∠=∠=∠=︒ACB ACD DCE ACD ∠-∠=∠-∠ACE BCD ∠=∠ACE BCD ≌△△BDC AEC ∠=∠60CFE CDE ∠=∠=︒180********AFC CFE ∠=-∠=︒-=︒︒︒12060180AFC ABC ︒∠+︒+∠==︒CBF ∠AF CD BF ⊥CBF ∠5AB =3CD =4BD ==ACE BCD ≌△△4AE BD ==90AEC BDC ∠=∠=︒Rt CEF △Rt CDF △CE CD =CF CF=Rt Rt CEF CDF ≌△△30ECF DCF ∠=∠=︒EF =4AF AE EF =-=-AF 4。

高校自招数学试题及答案

高校自招数学试题及答案

高校自招数学试题及答案一、选择题(每题4分,共40分)1. 下列哪个数是无理数?A. 0.33333…(循环)B. πC. √2D. 1答案:B、C2. 已知函数f(x) = 2x - 3,求f(5)的值。

A. 7B. 4C. 1D. 2答案:A3. 若a > b > 0,下列不等式中正确的是:A. a^2 > b^2B. a + b > 2√(ab)C. a/b > b/aD. a^3 > b^3答案:D4. 已知等差数列的首项为1,公差为2,求第10项的值。

A. 19C. 17D. 16答案:A5. 圆的半径为5,求圆的面积。

A. 25πB. 50πC. 75πD. 100π答案:B6. 已知三角形ABC,∠A = 90°,AB = 3,AC = 4,求BC的长度。

A. 5B. 6C. 7D. 8答案:A7. 函数y = x^2 - 4x + 4的顶点坐标是什么?A. (2, 0)B. (-2, 0)C. (2, 4)D. (-2, 4)答案:A8. 已知正弦函数sin(x)的周期为2π,求余弦函数cos(x)的周期。

B. 2πC. 4πD. 8π答案:B9. 根据勾股定理,直角三角形的斜边长度是两直角边长度的平方和的平方根。

设a和b是直角边,c是斜边,下列哪个表达式是正确的?A. c = √(a^2 + b^2)B. a = √(c^2 + b^2)C. b = √(c^2 - a^2)D. c = √(b^2 - a^2)答案:A10. 已知一个数列的前三项为1, 1, 2,且每一项都是前两项的和,求第5项的值。

A. 4B. 5C. 6D. 7答案:C二、填空题(每题4分,共20分)11. 根据二项式定理,展开式(a + b)^3的通项公式是________。

答案:T_{r+1} = C_{3}^{r}a^{3-r}b^{r}12. 如果一个函数是奇函数,那么f(-x)等于________。

2024年广东省深圳中学自主招生数学试题及答案

2024年广东省深圳中学自主招生数学试题及答案

2024年广东省深圳中学自主招生数学试卷一、填空题:本题共15小题,每小题3分,共45分。

1.______.2.方程在的正解为______.3.等腰的底边AC长为30,腰上的高为24,则的腰长为______.4.已知实数m,n满足,且,则______.5.若x为全体实数,则函数与的交点有______个.6.若,,则______.7.K为内一点,过点K作三边的垂线KM,KN,KP,若,,,,,则______.8.已知a,b,c,令a,b,c的最小值为,已知,若的最大值为M,则______.9.已知正方形OBAC,以OB为半径作圆,过A的直线交于M,Q,交BC与P,R为PQ中点,若,,则______.10.若a,b,c,d,e为两两不同的整数,则的最小值为______.11.PA,PB分别为和的切线,连接AB交于C交于D,且,已知和的半径分别为20和24,则______.12.已知a,b,c正整数,且只要则,设m的最小值为为最简分数,则______.13.对于任意实数x,y,定义运算符号*,且有唯一解,满足,,则______.14.已知正整数A,B,C且,满足,则______.15.等腰三角形边长均为整数,其的面积在数值上是周长的12倍,则所有可能的等腰三角形的腰长之和为______.答案和解析1.【答案】54【解析】解:,故答案为:利用同底数幂的乘法法则,有理数的混合运算法则进行计算,即可解答.本题考查了有理数的混合运算,同底数幂的乘法,准确熟练地进行计算是解题的关键.2.【答案】【解析】解:首先,考虑方程的两边统一分母.给定的方程是:,通过通分,我们可以将左边的两个分数合并为一个分数:,展开并化简分母和分子:分母:,分子:,于是原方程简化为:,进一步简化得到:,移项并除以假设,得:,解这个二次方程得到x的值:,,方程的正解为故答案为:根据解无理方程的步骤求解即可.本题考查无理方程,解题的关键是掌握无理方程的解题方法.3.【答案】【解析】解:等腰的底边AC长为30,腰上的高为24,的腰长为,故答案为:根据等腰三角形的性质和勾股定理即可得到结论.本题考查了等腰三角形的性质,熟练掌握等腰三角形的性质是解题的关键.4.【答案】50【解析】解:由题意可知,m,是方程的两个根,,即,,故答案为:由两个方程的形式可知,m,是方程的两个根,根据根与系数的关系得到与n的数量关系并代入计算即可.本题考查考查根与系数的关系、绝对值,确定m,是方程的两个根、掌握根与系数的关系是解题的关键.5.【答案】2【解析】解:方法①:,当时,,联立方程组,,整理,得,解得:,;当时,,联立方程组,,整理,得,解得:,,交点有2个.故答案为:方法②:图象法,在同一坐标系中画两个函数的图象.如图,两函数的交点有2个.根据二次函数的性质,分和两种情况把两函数解析式整理成一般形式,求x的值,确定交点个数即可.本题考查了二次函数的性质,利用分类讨论的思想,解题关键是根据x的取值范围去掉绝对值符号,整理成一般形式求解.6.【答案】0【解析】解:,,,所以故答案为:利用“代1”法将进行变形处理即可求得答案.本题主要考查了分式的化简求值,解题的技巧性在于“1”的巧妙应用.7.【答案】12【解析】解:连接AK、BK、CK,于点M,于点N,于点P,,,,,,,,,,,,,,,,,故答案为:连接AK、BK、CK,由,得,,,求得,,,可推导出,则,于是得到问题的答案.此题重点考查勾股定理的应用,正确地作出辅助线并且求得,,是解题的关键.8.【答案】14【解析】解:由题意,令,,,由,解得:,由,解得:,由,解得:,直线与直线的交点为,直线与的交点为,直线与的交点为,当时,,当时,,当时,,当时,,即,当时,;当时,;当时,;当时,综上所述,,即的最小值为,,故答案为:根据题意,令,,,联立方程组可求得直线与直线的交点为,直线与的交点为,直线与的交点为,再分情况进行分析:当时,;当时,;当时,;当时,进而求出M的值,即可得出答案.本题考查了一次函数与二元一次方程组,解二元一次方程组,熟练掌握一次函数与二元一次方程组,解二元一次方程组的方法是解题的关键.9.【答案】【解析】解:过P作直径FN,延长CO交于E,连MC、ME、MN、正方形ABOC,,为直径,,,又,,,,,正方形ABOC,,,又,≌,由得由得,即,,,,,,,故答案为:过P作直径FN,延长CO交于E,先证明,故再证明,故最后证明≌,故再换算即可.本题考查了正方形综合题,运用正方形性质,结合相似是解题关键.10.【答案】5【解析】解:,b,c,d为两两不同的整数,,,,,,的最小值为:故答案为:根据题意,a,b,c,d为两两不同的整数,可得,,,,,即可得的最小值为:本题考查了整式的混合运算,完全平方公式,熟练掌握整式混合运算法则,完全平方公式是解题的关键.11.【答案】125【解析】解:作,,,,,,,,,,,PB分别为和的切线,,,,,,,∽,∽,,,,故答案为:作,,,证,证,,证∽,∽,得出,即可解答.本题考查切线的性质,垂径定理,相似三角形的判定和性质,作辅助线,构造相似三角形是解题的关键.12.【答案】3【解析】解:,,,,,,,又,,即的最大值为2,,,为最简分数,故答案为:根据题意,,,,可得,,,进而得出,结合已知可得出,即的最大值为2,即可得出m的值,即的值,根据最简分数定义,即可得出答案.本题考查了分式的加减,最简分数定义,代数式求值,掌握分式的加减运算法则,最简分数定义是解题的关键.13.【答案】0【解析】解:令,则,即,令,,故答案为:根据新定义把变成据此解答即可.本题考查了实数的运算、数与式中的新定义问题,理解“*”的规定是关键.14.【答案】832【解析】解:,,,,,,,,,若尾数为7,则在1、4、9、6、5、6、9、4、1中,,此时A、B、C三个数为9、5、1,,此时A、B、C三个数为6、5、4,,此时A、B、C三个数为8、3、2,或8、7、2,下面开始验证,,不符合题意,,不符合题意,,符合题意,,不符合题意,综上,故答案为:根据平方的尾数和特征,从而得出ABC三个数的可能,再代入验证即可.本题主要考查尾数平方的特征,利用尾数和得出A、B、C三个数的可能性是解题的关键.15.【答案】560【解析】解:如图,作于点D,设腰长,底边,则,在中,,,,,故,,,,b为整数,,或,或,或,或,,可能的腰长之和为:故答案为:根据题意将腰长和底边设出来,通过面积和周长的关系建立关于a和b的等式,再利用分式取整的计算方法求解即可.本题主要考查了等腰三角形的性质等内容,熟练掌握相关知识是解题的关键.。

2024年省示范高中自主招生素质检测数学试题及参考答案

2024年省示范高中自主招生素质检测数学试题及参考答案

学校姓名考场座位号2024年自主招生素质检测数学试题注意事项:1.本试卷满分为150分,考试时间为120分钟㊂2.全卷包括 试题卷 (4页)和 答题卡 (2页)两部分㊂3.答题一律要求用0.5m m 黑色签字笔在答题卡上规定的地方答卷,作图题使用2B 铅笔作答,考试不使用计算器㊂4.考试结束后,请将 试题卷 和 答题卡 一并交回㊂一㊁选择题:共10小题,每小题5分,共50分㊂在每小题给出的四个选项中,只有一项是符合题目要求的㊂1.由5个相同的小立方体搭成的几何体如图所示,现拿走一个小立方体,得到几何体的主视图与左视图均没有变化,则拿走的小立方体是A .①B .②C .③D .④2.黄山景色绝美,景观奇特. 五一 假期,黄山风景区进山游客近13万人,黄山景区门票旺季190元/人,以此计算, 五一 假期黄山景区进山门票总收入用科学计数法表示为A .0.247ˑ107B .2.47ˑ107C .2.47ˑ108D .247ˑ1053.下列因式分解正确的是A .2x 2+y 2+4x y =(2x +y )2B .x 3-2x y +x y 2=x (x -y )2C .x 2-(3y -1)2=(x -1+3y )(x +1-3y )D .a x 2-a y 2+1=a (x +y )(x -y )+14.已知点A (x 1,y 1),B (x 2,y 2)是抛物线y =a x 2-3x +3上两点,当a -x 1-x 2=2时,y 1=y 2,则该抛物线与坐标轴的交点个数为A .3个或0个B .3个或1个C .2个或0个D .2个5.若关于x 的不等式组x +2a <03x +a <15的解集中的任意x 的值,都能使不等式x -4<0成立,则实数a 的取值范围为A .a <-3B .a <-2C .a ȡ-2D .a ȡ36.如图,已知әA B C 中,A D 为øB A C 的平分线,A B =8,B C =6,A C =10,则D C 的值为A .10B .2C .5D .17.如图,B (-2,0),C (4,0),且B E 所在的直线与A C 垂直,øA C B -øB A O =45ʎ,连接O D ,若射线O D 上有一点M ,横坐标为6,则әB O M 的面积为A .3B .6C .23D .728.定义:用M a ,b ,c 表示这三个数的中位数,用M i n {a ,b ,c }表示这三个数的最小数.例如:M {-1,12,0}=0,M i n {-1,12,0}=-1.如果M {4,x 2,2x -1}=M i n {4,x 2,2x -1},则x 的值为A .2或-2B .1或12C .2或12D .1或529.如图,әA B C 中,A B =B C ,øB =120ʎ,E 为平面内一点,若A E =3,C E =2,则B E 的值可能为A .2.5B .3C .0.3D .0.510.如图,直线A B :y =13x +b 与反比例函数y =kx相交于点A (3,5),与y 轴交于点B ,将射线A B 绕点A 逆时针旋转45ʎ,交反比例函数图象于点C ,则点A ㊁B ㊁C 构成的三角形面积为A .12B .1110C .232D .554二㊁填空题:共4小题,每小题5分,共20分㊂11.某市为改善市容,绿化环境,计划经过两年时间,绿地面积增加44%,则这两年平均绿地面积的增长率为.12.若x 9+x 8+ +x 2+x +1=0,则x 的值为.13.定义:对于函数y =l g x (x >0),y 随x 的增大而增大,且l g 10=1,l g xy=l g x -l g y ,l g x y =l g x +l g y .若1a +5b =5,则l g a +l g b 的最大值为.14.已知二次函数y =2x 2+b x +c 图象的对称轴为直线x =34,且过点(3,10),若其与直线y =3交于A ㊁B 两点,与直线y =x +5交于P ㊁Q 两点,则P Q 2A B值为.三㊁解答题:共5题,共80分㊂解答应写出文字说明,证明过程和解题步骤㊂15.(12分)(1)若13a +25b =1,23a +35b =3,求a 2-b 2+8b -172025;(2)先化简再求值:m +2m -m -1m -2ːm -4m 2-4m +4,其中m =2s i n 30ʎ㊃t a n 45ʎ-32t a n 30ʎ.16.(12分)请按以下要求完成尺规作图.(1)如图1,菱形A B C D 中,点P 在对角线B D 上,请作出一对以B D 所在直线为对称轴的全等三角形,使交B A 于点M ,交B C 于点N ,әP B M ɸәP B N .你有几种解法?请在下图中完成;(保留必要作图痕迹,不写作法)(2)如图2,点P 是菱形A B C D 内部一点,请作出一条过点P 的直线,交射线B A ㊁射线B C 于点M ㊁N ,且B M =B N ,聪明的你肯定有多种不同作法?请在下图中完成两种作法,并选择其中一种证明:B M =B N .(保留必要作图痕迹,不写作法)17.(15分)如图,直角三角形A B C中,以直角边A B为直径作圆交A C于点D,过点D作D MʅA B于点M,E为D M的中点,连接A E并延长交B C于点F,B F=E F.(1)求证:C F=B F;(2)求t a nøD E F;(3)若D F=2,求圆的面积.18.(19分)已知四边形A B C D,A B=4,点P在射线B C上运动,连接A P.(1)若四边形A B C D为正方形,点M在A P上,且øA D M=øA P D.请判断A M㊁A P㊁A C之间数量关系,并说明理由;(2)若四边形A B C D为菱形呢?øB=60ʎ,其他条件与(1)同,则(1)中的结论还成立吗?并说明理由;(3)若四边形A B C D为正方形,将线段A P绕点P顺时针旋转90ʎ于P Q,此时D Q的最小值为多少?A Q+D Q的最小值呢?并说明理由.19.(22分)已知抛物线y=a x2+b x+c的顶点坐标为A(1,4),与x轴交点分别为点B㊁C(点B在点C 左侧),与y轴交点为D,一次函数y=k x+4(k>0)与x轴所形成的夹角的正切值为4,方程k x+4=a x2+b x+c有两个相等的实数根.(1)求该抛物线的解析式;(2)点M是该抛物线上一动点,则在抛物线对称轴上是否存在点N,使得以A㊁B㊁M㊁N为顶点的四边形为平行四边形?若存在,请求出所有满足条件的点N坐标及该平行四边形的面积;若不存在,请说明理由;(3)若将该抛物线向左平移1个单位,再向下平移4个单位得到抛物线y',点D关于x轴的对称点为D',若过点D'的直线与y'交于P㊁Q两点(点P在点Q左侧),点Q关于y轴的对称点为Q',若әP Q O与әP Q Q'面积相等,求直线P Q的解析式.2024年自主招生素质检测数学参考答案选择题:共10小题,每小题5分,满分50分㊂题号12345678910答案CBCBCABDAD填空题:共4小题,每小题5分,满分20分㊂11.20% 12.-1 13.1 14.2654.ʌ解析ɔ x 1+x 2=a -2,抛物线的对称轴x =--32a,ʑ32a =a -22⇒a 2-2a -3=0⇒(a +1)(a -3)=0⇒a 1=-1,a 2=3,ʑ①当a 1=-1时,y =-x 2-3x +3,Δ=9+12>0,与坐标轴的交点个数为3个;②当a 2=3时,y =3x 2-3x +3,Δ=9-4ˑ3ˑ3<0,与坐标轴的交点个数为1个.5.ʌ解析ɔ x <-2a ,x <15-a 3,①-2a >15-a 3,解得a <-3,ʑx <15-a 3,ȵx <4,ʑ15-a 3ɤ4,解得a ȡ3(舍去);②-2a ɤ15-a 3,解得a ȡ-3,ʑx <-2a ,ȵx <4,ʑ-2a ɤ4,解得a ȡ-2.6.ʌ解析ɔ 由角平分线定理S әA B D S әA C D =A B ㊃h A C ㊃h =45=B D D C ,ʑ45=6-D C D C ,解得D C =103.7.ʌ解析ɔ øB E O =øB A E +øA B E ,øA C B =øB A O +45ʎ,R t әB O E ʐR t әB D C ,ʑøB E O =øA C B ,ʑøA B D =45ʎ,则әA B D 为等腰直角三角形,A D =B D ,ʑR t әA E D ɸR t әB C D ,ʑA E =B C ,S әA E D =S әB C D ,ʑh 1=h 2,ʑ点D 在øA O C 的角平分线上,M (6,6),S әB O M =2ˑ62=6.8.ʌ解析ɔ 由图像知x 2=2x -1,解得x =1;或2x -1=4,解得x =52.9.ʌ解析ɔ 设B E =x ,将әA B E 绕B 点顺时针旋转120ʎ到әC B E ',C E '=A E =3,øE B E '=120ʎ,B E =B E '=x ,易得E E '=3x ,在әC E E '中,C E '-C E <E E '<C E '+C E ,即3-2<3x <2+3,解得33<x <533.10.ʌ解析ɔ 由题知,直线y =13x +b 与反比例函数y =k x相交于点A(3,5),则13ˑ3+b =5,解得b =4,k =15,法一:直线A C 与y 轴交于点M ,从M 点作直线A B 的垂线,垂足为N ,A M =(m -5)2+32,MN =(4-m )s i n θ=(4-m )310,A M =2MN ,ʑ(m -5)2+9=95(m -4)2⇒5(m -5)2+45=9(m -4)2,2m 2-11m -13=0⇒(2m -13)(m +1)=0,ʑm =132(舍)或m =-1,直线A C 的方程为y =2x -1.2x -1=15x ⇒2x 2-x -15=0⇒(2x +5)(x -3)=0,解得x 1=-52,x 2=3,ʑ点C (-52,-6),S әA B C =5ˑ(3+52)2=554.法二:易知l A B :y =13x +4,设l A C :y =k 2x +b ,由倒角公式得t a n 45ʎ=k 2-k 11+k 1k 2=k 2-131+13k 2=1,k 2-13=13k 2+1,两边平方得k 2=2或k 2=-12(舍),又l A C 过点A ,ʑl A C :y =2x -1(与y 轴交点为M ),与y =15x 联立得x C =-52,ʑS әA B C =12BM |x A -x C |=554.12.ʌ答案ɔ -1ʌ解析ɔ 若x =0,等式不成立,则x ʂ0,等式两边同乘x ,ʑx 10+x 9+x 8+ +x 2+x =0⇒x 10-1=0⇒x 10=1,解得x =ʃ1.当x =1时,等式不成立;当x =-1时,等式成立.13.ʌ解析ɔ l g a +l g b =l ga b ,即求a b 的最大值,12a +54b ȡ212a ㊃54b =258a b ,258a b ɤ5⇒a b ɤ10.14.ʌ解析ɔ 由题知,-b 4=34,解得b =-3,抛物线过点(3,10),代入数据解得c =1,抛物线y =2x 2-3x +1,当y =3时,2x 2-3x +1=3,解得x 1=-12,x 2=2,A B =52,当y =x +5时,2x 2-3x +1=x +5⇒x 2-2x -2=0⇒x 3+x 4=2,x 3x 4=-2,(x 3-x 4)2=(x 3+x 4)2-4x 3x 4=12,P Q =(1+k 2)(x 3-x 4)2=26,P Q 2A B =265.15.(12分)ʌ解析ɔ (1)13a +25b =1, ①23a +35b =3, ②①+②得a +b =4,(2分) a 2-b 2+8b -17=(a +b )(a -b )+8b -17=4a -4b +8b -17=4a +4b -17=-1,(4分)a 2-b 2+8b -17 2025=-1.(6分)(2)原式=m +2m -m -1m -2㊃(m -2)2m -4=m 2-4-(m 2-m )m (m -2)㊃(m -2)2m -4=m -4m (m -2)㊃(m -2)2m -4=m -2m,(8分)m =2ˑ12-32ˑ33=12,(10分) ʑ原式=12-212=-3.(12分) 16.(12分)ʌ解析ɔ (1)提示:作P M ㊁P N 分别垂直于A B ㊁A C ,如图1;(2分)过P 点作MN 垂直于B D ,如图2;(4分)P 作E F ʊB C A B 于点E C D 于点F E M =E P M P 交B C 于点N作法二:先作B M '=B N ',交A B 于点M ',交B C 于点N ',连接M 'N ',将直线M 'N '平移过点P ,交A B 于点M ,交B C 于点N ,即MN 为所求直线,如图4;(8分)选择作法一证明:ȵE M =E P ,ʑøE M P =øE P M ,ȵE F ʊB C ,ʑøE P M =øB NM ,ʑøE M P =øB NM ,ʑB M =B N .(12分)选择作法二证明:ȵB M '=B N ',ʑøB M 'N '=øB N 'M ',M 'N 'ʊMN ,ʑøB MN =øB M 'N ',øB NM =øB N 'M ',ʑøB MN =øB NM ,ʑB M =B N .(12分)(作法不限,合理即可)17.ʌ解析ɔ (1)ȵD M ʊB C ,ʑәA D E ʐәA C F ,әA E M ʐәA F B ,ʑA E A F =D E C F ,A E A F =E M B F,(2分) ȵD E =E M ,ʑC F =B F ;(4分)(2)取A B 的中点O ,即为圆心,连接O F ,设圆O 的半径为r ,延长A B 交D F 延长线于G ,由(1)知,F 为R t әB C D 中斜边B C 的中点,ʑD F =B F =E F ,ʑøF D E =øD E F =øA E M ,ȵøG +øG D M =øE A M +øA E M =90ʎ,则øG =øE A M ,ʑA F =F G ,在әA F G 中,F B ʅA G ,则A B =B G =2r ,A O =r ,O G =3r ,(6分)ȵO F ʊA C ,ʑO G A O =F G D F=3,即F G =3D F ,(8分) ȵD F =B F ,ʑF G =3B F ,ʑc o s øB F G =B F F G =13,ʑt a n øD E F =t a n øE D F =t a n øB F G =B G B F=22;(10分)(3)ȵD F =B F ,ʑB F =2,由(2)知,t a n øB F G =B G B F=22,ʑB G =42,(12分)ȵB G =2r ,ʑr =22.(13分)S 圆O =πr 2=8π.(15分)18.ʌ解析ɔ (1)A C 2=2A M ㊃A P .(2分)理由如下:如图1,ȵøA D M =øA P D ,øD A M =øP A D ,ʑәA D M ʐәA P D ,ʑA D A P =A M A D ,ʑA D 2=A M ㊃A P ,在正方形A B C D 中,A D =22A C,ʑ(22A C )2=A M ㊃A P ,ʑA C 2=2A M ㊃A P .(6分)(2)(1)中的结论不成立.(7分) 理由如下:如图2,ȵøA D M =øA P D ,øD A M =øP A D ,ʑәA D M ʐәA P D ,ʑA D A P =A M A D,ʑA D 2=A M ㊃A P ,ȵ在菱形A B C D 中,øB =60ʎ,则B C =A B =A C =A D ,ʑA C 2=A M ㊃A P .(11分)(3)如图3,过点Q 分别作Q E ʅB C 的延长线于点E ,Q F ʅC D 于点F ,ʑQ F =C E ,设B P =m ,A P =Q P ʑR t әA B P ɸR t әP E Q ,则B P =Q E =m ,A B =P E =4,ȵC E +P C =B P +P C =4,ʑC E =B P =m ,在R t әD F Q 中,Q F =C E =m ,D F =C D -C F =4-m ,(15分) D Q 2=D F 2+Q F 2=(4-m )2+m 2=2m 2-8m +16=2(m -2)2+8,当m =2时,D Q 取得最小值,D Q m i n =22,(17分) 分析易知Q 在C D '上运动,作D 关于C D '的对称点C ',连接Q C ',则(A Q +D Q )m i n =(A Q +Q C ')m i n =A C '=42+82=45.(19分) 19.ʌ解析ɔ (1)由题可知k =4,ʑy =4x +4(2分) 2的顶点坐标为A y =a x -12即4x +4=a (x -1)2+4⇒a x 2-(2a +4)x +a =0有两个相等的实数根,ʑΔ=(2a +4)2-4a 2=0,解得a =-1,ʑ抛物线的解析式为y =-(x -1)2+4=-x 2+2x +3;(5分)(2)设M 点坐标为(m ,-m 2+2m +3),N 点坐标为(1,n ),A (1,4),令-x 2+2x +3=0,解得x 1=-1,x 2=3,所以B (-1,0),C (3,0),(7分)若A B 为对角线,1-12=m +12,解得m =-1(舍去);若A M 为对角线,m +12=1-12,解得m =-1(舍去);若A N 为对角线,1+12=m -12,解得m =3;(9分) 4+n 2=0-m 2+2m +32,解得n =-4,此时M (3,0),N (1,-4),(10分)S ▱A B M N =4ˑ82=16;(12分) (3)由题可知,抛物线y '=-x 2,点D (0,3)关于x 轴的对称点D '(0,-3),直线P Q 过点D ',设直线P Q 的解析式为y P Q =k x -3,若k >0,如图1,S әP Q O =S әP Q Q ',则Q 'O ʊP Q ,则әQ 'H O ɸәQ H D ',所以O H =12O D '=32,H (0,-32),所以Q (62,-32),Q '(-62,-32),直线P Q 的解析式为y P Q =62x -3;(16分)若k <0,如图2,过点Q '作直线l ʊP Q ,取l 与y 轴交点M ,作O L ʅP Q 于点L ,MH ʅP Q 于点H ,所以O L ʊHM ,S әP Q O =S әP Q O ',所以O L =HM ,所以四边形O L MH 为平行四边形,则对角线互相平分,所以M (0,-6),同理,әD 'K Q ɸәM K Q ',所以D 'K =K M =12D 'M =32,所以K (0,-92),(20分) 因为点Q 的纵坐标为-92,所以Q (322,-92),直线P Q 的解析式为y P Q =-22x -3.(21分)综上,直线P Q 的解析式为y P Q =6x -3或y P Q =-2x -3.分)。

初中自主招生试卷数学答案

初中自主招生试卷数学答案

一、选择题(每题3分,共30分)1. 下列数中,不是有理数的是()A. -3/5B. √4C. 0.618D. √(-1)答案:D解析:有理数是可以表示为两个整数之比的数,包括整数、分数和有限小数。

√(-1)是虚数,不属于有理数。

2. 若a=2,b=-3,则a+b的值为()A. 5B. -1C. -5D. 0答案:C解析:a+b=2+(-3)=-1,所以选C。

3. 下列函数中,y是x的一次函数的是()A. y=2x^2-3x+1B. y=3x+4C. y=√xD. y=x^3-2x+1答案:B解析:一次函数的形式为y=kx+b,其中k和b是常数。

只有选项B符合一次函数的定义。

4. 已知三角形ABC的三个内角分别为∠A=45°,∠B=60°,则∠C的度数为()A. 45°B. 60°C. 75°D. 90°答案:C解析:三角形内角和为180°,所以∠C=180°-∠A-∠B=180°-45°-60°=75°。

5. 下列方程中,x=3是它的解的是()A. 2x+1=7B. x^2-5x+6=0C. 3x-2=7D. x^2+2x+1=0答案:A解析:将x=3代入选项A,左边=23+1=7,右边=7,左边等于右边,所以x=3是方程2x+1=7的解。

二、填空题(每题5分,共20分)6. 已知a+b=5,a-b=3,则a=(),b=()答案:a=4,b=1解析:将两个方程相加得2a=8,解得a=4;将两个方程相减得2b=2,解得b=1。

7. 已知x^2-4x+4=0,则x的值为()答案:x=2解析:这是一个完全平方公式,可以分解为(x-2)^2=0,解得x=2。

8. 已知直角三角形ABC中,∠C=90°,AB=10,BC=6,则AC的长度为()答案:AC=8解析:根据勾股定理,AC^2=AB^2-BC^2,代入AB=10,BC=6,得AC^2=100-36=64,所以AC=8。

数学自主招生试题答案

数学自主招生试题答案

数学自主招生试题答案一、选择题1. 已知函数f(x) = ax^2 + bx + c在点x=1取得极小值,且该点为函数的唯一极值点。

若a>0,求b与c的关系。

答案:根据题意,函数f(x)在x=1处取得极小值,因此一阶导数f'(x)在x=1处为0。

首先求导数f'(x) = 2ax + b。

将x=1代入得f'(1) =2a + b = 0。

又因为x=1是唯一极值点,根据二次函数的性质,其判别式Δ = b^2 - 4ac必须小于0。

将f'(1) = 0代入得Δ = (2a)^2- 4a*c = 4a^2 - 4ac < 0。

由于a>0,可以化简得ac < 0,即b与c的关系为c < 0。

2. 已知一个等差数列的前三项分别为a-2,a,a+2,求该数列的前n项和公式。

答案:设等差数列的首项为a1,公差为d。

根据题意,有a1 = a - 2,a2 = a,a3 = a + 2。

由于是等差数列,有a2 = a1 + d,a3 = a2 + d。

将已知条件代入得a = a1 + d,a + 2 = a1 + 2d。

解这个方程组得a1 = a - d,d = 2。

所以首项a1 = a - 2,公差d = 2。

根据等差数列前n项和公式Sn = n/2 * (2a1 + (n-1)d),代入a1和d的值,得到Sn = n/2 * (2(a - 2) + (n-1)*2) = n/2 * (2a - 4 + 2n - 2) = n/2 * (2a + 2n - 6)。

二、填空题1. 一个圆的半径为r,求该圆的面积与周长。

答案:圆的面积公式为A = πr^2,周长公式为C = 2πr。

所以该圆的面积为πr^2,周长为2πr。

2. 已知一个三角形的三边长分别为a, b, c,且满足a^2 + b^2 =c^2,请判断该三角形的形状。

答案:根据勾股定理,如果一个三角形的三边长满足a^2 + b^2 = c^2,那么这个三角形是一个直角三角形。

自主招生考试数学卷(答案) (6)

自主招生考试数学卷(答案) (6)

A、第一象限 B、第二象限
C、第三象限 D、第四象限
24、函数 y 4sin x 3cos x 的最小值为 (
)
A .0
B .-3
C .-5
D . 13
25、已知角 的终边上有一点 P- 3, 4,则 cos (
A、0
3
B、 5
C、0.1
二、填空题:(共 30 分.)
) D、0.2
1.双曲线
D、 y sin x cos x
sin
21、若
5 13
,且
为第四象限角,则 tan
的值等于(
)
12
A、 5
12
B、 5
5
C、 12
5
D、 12
22、下列命题中正确的是(

A、第一象限角必是锐角
B、终边相同的角相等
C、相等的角终边必相同
D、不相等的角其终边必不相同
23、-870°角的终边所在的象限是( )
7、【答案】 C
【考点】复数的基本概念,复数代数形式的混合运算 【解析】【解答】解:z z + i = 2 − i 2 + 2i = 4 + 4i − 2i − 2i2 = 6 + 2i
故答案为:C
【分析】根据复数的运算,结合共轭复数的定义求解即可.
8、【答案】 B
【考点】旋转体(圆柱、圆锥、圆台)
自考本科数学卷
(满分 150 分,考试时间 120 分钟)
一、选择题:(本题共 25 小题,共 50 分)
1.对 2×2 数表定义平方运算如下:( )
a
c
b d
2
a
c
b d
a c

重点高中自主招生数学(含答案)

重点高中自主招生数学(含答案)

重点高中自主招生数学试题答案及评分标准一、选择题(本题满分30分,每小题5分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1、已知实数a 满足,则等于 (B )|2|2a a -+=a (A )0 (B )1(C )2(D )32、名同学参加夏令营活动,需要同时搭建可容纳人和人的两种帐篷,则有效搭建方案5032共有A )(A )8种 (B )9种 (C )种3、反比例函数与一次函数 1k y x -=y =B ).是的平分线,∆70,=︒120,BPC ∠=︒BD ABP ∠CE( C )BFC =( (D ) 95︒100︒5、如图,边长为1的正方形绕点逆时针旋转到正方形,图中阴影部ABCD A 30︒AB C D '''分的面积为 ( A )(A )(B1(C )(D )112D C (A)(B)(C)(D)(A)(B)(C)(D)6、四条直线围成正方形。

现掷一个均匀且各面上6,6,6,6+=-=+-=--=x y x y x y x y ABCD 标有1、2、3、4、5、6的立方体,每个面朝上的机会是均等的。

连掷两次,以面朝上的数为点P 的坐标(第一次得到的数为横坐标,第二次得到的数为纵坐标),则点落在正方形面上(含边界)P 的概率是( D )(A ) (B ) (C )(D )214397125二、填空题(本大题满分30分,每小题5分)7、若,则的值为 0 .1,x =-43221x x x ++- 10、如图,双曲线与矩形OABC 的边CB ,BA 分别交于点E ,F 且AF =BF ,连2(0)y x x=>接EF ,则△OEF 的面积为 .2311、如图矩形纸片ABCD ,AB =5cm ,BC =10cm ,CD 上有一点E ,ED =2cm ,AD 上有一点 P ,PD =3cm ,过P 作PF ⊥AD 交BC 于F ,将纸片折叠,使P 点与E 点重合,折痕与PF 交于Q 点,则PQ 的长是_____14/3_______cm .12、对于正数x ,规定,例如。

重点高中自主招生考试数学试卷精选全文

重点高中自主招生考试数学试卷精选全文

可编辑修改精选全文完整版重点高中自主招生考试数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题3分,共24分.).1.(3分)若不等式组的解集是x>3,则m的取值范围是()A.m>3 B.m≥3 C.m≤3 D.m<3解答:解:由x+7<4x﹣2移项整理得:﹣3x<﹣9,∴x>3,∵x>m,又∵不等式组的解集是x>3,∴m≤3.故选C.2.(3分)如图,在△ABC中.∠ACB=90°,∠ABC=15°,BC=1,则AC=()A.B.C.0.3 D.分析:本题中直角三角形的角不是特殊角,故过A作AD交BC于D,使∠BAD=15°,根据三角形内角和定理可求出∠DAC及∠ADC的度数,再由特殊角的三角函数值及勾股定理求解即可.解答:解:过A作AD交BC于D,使∠BAD=15°,∵△ABC中.∠ACB=90°,∠ABC=15°,∴∠BAC=75°,∴∠DAC=∠BAC﹣∠BAD=75°﹣15°=60°,∴∠ADC=90°﹣∠DAC=90°﹣60°=30°,∴AC=AD,又∵∠ABC=∠BAD=15°∴BD=AD,∵BC=1,∴AD+DC=1,设CD=x,则AD=1﹣x,AC=(1﹣x),∴AD2=AC2+CD2,即(1﹣x)2=(1﹣x)2+x2,解得:x=﹣3+2,∴AC=(4﹣2)=2﹣故选B.3.(3分)(2011•南漳县模拟)如图,AB为⊙O的一固定直径,它把⊙O分成上,下两个半圆,自上半圆上一点C作弦CD⊥AB,∠OCD的平分线交⊙O于点P,当点C在上半圆(不包括A,B两点)上移动时,点P()A.到CD的距离保持不变B.位置不变C.D.随C点移动而移动等分分析:连OP,由CP平分∠OCD,得到∠1=∠2,而∠1=∠3,所以有OP∥CD,则OP⊥AB,即可得到OP平分半圆APB.解答:解:连OP,如图,∵CP平分∠OCD,∴∠1=∠2,而OC=OP,有∠1=∠3∴∠2=∠3,∴OP∥CD,又∵弦CD⊥AB,∴OP⊥AB,∴OP平分半圆APB,即点P是半圆的中点.故选B.4.(3分)已知y=+(x,y均为实数),则y的最大值与最小值的差为()A.2﹣1 B.4﹣2C.3﹣2D.2﹣2分析:首先把y=+两边平方,求出定义域,然后利用函数的单调性求出函数的最大值和最小值,最后求差.解答:解:∵y=+,∴y2=4+2=4+2×,∵1≤x≤5,当x=3时,y的最大值为2,当x=1或5时,y的最小值为2,故当x=1或5时,y 取得最小值2,当x取1与5中间值3时,y取得最大值,故y的最大值与最小值的差为2﹣2,故选D.5.(3分)(2010•泸州)已知O为圆锥的顶点,M为圆锥底面上一点,点P在OM上.一只蜗牛从P点出发,绕圆锥侧面爬行,回到P点时所爬过的最短路线的痕迹如图所示.若沿OM将圆锥侧面剪开并展开,所得侧面展开图是()A.B.C.D.考点:线段的性质:两点之间线段最短;几何体的展开图.分析:此题运用圆锥的性质,同时此题为数学知识的应用,由题意蜗牛从P点出发,绕圆锥侧面爬行,回到P点时所爬过的最短,就用到两点间线段最短定理.解答:解:蜗牛绕圆锥侧面爬行的最短路线应该是一条线段,因此选项A和B错误,又因为蜗牛从p点出发,绕圆锥侧面爬行后,又回到起始点P处,那么如果将选项C、D 的圆锥侧面展开图还原成圆锥后,位于母线OM上的点P应该能够与母线OM′上的点(P′)重合,而选项C还原后两个点不能够重合.故选D.点评:本题考核立意相对较新,考核了学生的空间想象能力.6.(3分)已知一正三角形的边长是和它相切的圆的周长的两倍,当这个圆按箭头方向从某一位置沿正三角形的三边做无滑动的旋转,直至回到原出发位置时,则这个圆共转了()A.6圈B.6.5圈C.7圈D.8圈分析:根据直线与圆相切的性质得到圆从一边转到另一边时,圆心要绕其三角形的顶点旋转120°,则圆绕三个顶点共旋转了360°,即它转了一圈,再加上在三边作无滑动滚动时要转6圈,这样得到它回到原出发位置时共转了7圈.解解:圆按箭头方向从某一位置沿正三角形的三边做无滑动的旋转,∵等边三角形的边长是和它相切的圆的周长的两倍,∴圆转了6圈,而圆从一边转到另一边时,圆心绕三角形的一个顶点旋转了三角形的一个外角的度数,圆心要绕其三角形的顶点旋转120°,∴圆绕三个顶点共旋转了360°,即它转了一圈,∴圆回到原出发位置时,共转了6+1=7圈.故选C.点评:本题考查了直线与圆的位置关系,弧长公式:l=(n为圆心角,R为半径);也考查了旋转的性质.7.(3分)二次函数y=ax2+bx+c的图象如下图,则以下结论正确的有:①abc>0;②b <a+c;③4a+2b+c>0;④2c<3b;⑤a+b>m(am+b)(m≠1,m为实数)()A.2个B.3个C.4个D.5个解答:解:①由图象可知:a<0,b>0,c>0,abc<0,错误;②当x=﹣1时,y=a﹣b+c <0,即b>a+c,错误;③由对称知,当x=2时,函数值大于0,即y=4a+2b+c>0,正确;④当x=3时函数值小于0,y=9a+3b+c<0,且x=﹣=1,即a=﹣,代入得9(﹣)+3b+c<0,得2c<3b,正确;⑤当x=1时,y的值最大.此时,y=a+b+c,而当x=m 时,y=am2+bm+c,所以a+b+c>am2+bm+c,故a+b >am 2+bm ,即a+b >m (am+b ),正确.③④⑤正确.故选B . 8.(3分)如图,正△ABC 中,P 为正三角形内任意一点,过P 作PD ⊥BC ,PE ⊥AB ,PF ⊥AC 连结AP 、BP 、CP ,如果,那么△ABC 的内切圆半径为( )A . 1B .C . 2D .解答: 解:如图,过P 点作正△ABC 的三边的平行线,则△MPN ,△OPQ ,△RSP 都是正三角形,四边形ASPM ,四边形NCOP ,四边形PQBR 是平行四边形,故可知黑色部分的面积=白色部分的面积,又知S △AFP +S △PCD +S △BPE =,故知S △ABC =3,S △ABC =AB 2sin60°=3,故AB=2,三角形ABC 的高h=3,△ABC 的内切圆半径r=h=1.故选A .二、填空题(本大题共8小题,每小题3分,共24分) 9.(3分)与是相反数,计算=.解答:解:∵与|3﹣a ﹣|互为相反数,∴+|3﹣a ﹣|=0,∴3﹣a ﹣=0,解得a+=3,∴a+2+=3+2,根据题意,a >0,∴(+)2=5,∴+=.答案为:.10.(3分)若[x ]表示不超过x 的最大整数,,则[A ]=﹣2 .分析: 先根据零指数幂和分母有理化得到A=﹣,而≈1.732,然后根据[x ]表示不超过x的最大整数得到,[A ]=﹣2. 解答:解:∵A=++1=++1=+1=+1=﹣1﹣+1=﹣,∴[A ]=[﹣]=﹣2.故答案为﹣2.点本题考查了取整计算:[x ]表示不超过x 的最大整数.也考查了分母有理化和零指数幂.评:11.(3分)如图,M、N分别为△ABC两边AC、BC的中点,AN与BM交于点O,则=.分析:连接MN,设△MON的面积是s,由于M、N分别为△ABC两边AC、BC的中点,易知MN是△ABC的中位线,那么MN∥AB,MN=AB,根据平行线分线段成比例定理可得△MON∽△BOA,于是OM:OB=MN:AB=1:2,易求△BON的面积是2s,进而可知△BMN的面积是3s,再根据中点性质,可求△BCM的面积等于6s,同理可求△ABC的面积是12s,从而可求S△BON:S△ABC.解答:解:连接MN,设△MON的面积是s,∵M、N分别为△ABC两边AC、BC的中点,∴MN是△ABC的中位线,∴MN∥AB,MN=AB,∴△MON∽△BOA,∴OM:OB=MN:AB=1:2,∴△BON的面积=2s,∴△BMN的面积=3s,∵N是BC的中点,∴△BCM的面积=6s,同理可知△ABC的面积=12s,∴S△BON:S△ABC=2s:12s=1:6,故答案是.点评:本题考查了相似三角形的判定和性质、三角形中位线定理,解题的关键是连接MN,构造相似三角形.12.(3分)如图,已知圆O的面积为3π,AB为直径,弧AC的度数为80°,弧BD的度数为20°,点P为直径AB上任一点,则PC+PD的最小值为3.考点:轴对称-最短路线问题;勾股定理;垂径定理;圆心角、弧、弦的关系.专题:探究型.分析:先设圆O的半径为r,由圆O的面积为3π求出R的值,再作点C关于AB的对称点C′,连接OD,OC′,DC′,则DC′的长即为PC+PD的最小值,由圆心角、弧、弦的关系可知==80°,故BC′=100°,由=20°可知=120°,由OC′=OD可求出∠ODC′的度数,进而可得出结论.解答:解:设圆O的半径为r,∵⊙O的面积为3π,∴3π=πR2,即R=.作点C关于AB的对称点C′,连接OD,OC′,DC′,则DC′的长即为PC+PD的最小值,∵的度数为80°,∴==80°,∴=100°,∵=20°,∴=+=100°+20°=120°,∵OC′=OD,∴∠ODC′=30°∴DC′=2OD•cos30°=2×=3,即PC+PD的最小值为3.故答案为:3.13.(3分)从1,2,3,5,7,8中任取两数相加,在不同的和数中,是2的倍数的个数为a,是3的倍数的个数为b,则样本6、a、b、9的中位数是 5.5.分析:首先列举出所有数据的和,进而利用已知求出a,b的值,再利用中位数是一组数据重新排序后之间的一个数或之间两个数的平均数,由此即可求解.解答:解:根据从1,2,3,5,7,8中任取两数相加,可以得出所有可能:1+2=3,1+3=4,1+5=6,1+7=8,1+8=9,2+3=5,2+5=7,2+7=9,2+8=10,3+5=8,3+7=10,3+8=11,5+7=12,5+8=13,7+8=15,它们和中所有不同数据为:3,4,5,6,7,8,9,10,11,12,13,15,故是2的倍数的个数为a=5,是3的倍数的个数为b=5,则样本6、5、5、9按大小排列为:5,5,6,9,则这组数据的中位数是:=5.5,故答案为:5.5.14.(3分)由直线y=kx+2k﹣1和直线y=(k+1)x+2k+1(k是正整数)与x轴及y轴所围成的图形面积为S,则S的最小值是.分析:首先用k表示出两条直线与坐标轴的交点坐标,然后表示出围成的面积S,根据得到的函数的取值范围确定其最值即可.解答:解:y=kx+2k﹣1恒过(﹣2,﹣1),y=(k+1)x+2k+1也恒过(﹣2,﹣1),k为正整数,那么,k≥1,且k∈Z如图,直线y=kx+2k﹣1与X轴的交点是A(,0),与y轴的交点是B (0,2k﹣1)直线y=(k+1)x+2k+1与X轴的交点是C(,0),与y轴的交点是D (0,2k+1),那么,S四边形ABDC=S△COD﹣S△AOB,=(OC•OD﹣OA•OB),=[﹣],=(4﹣),=2﹣又,k≥1,且k∈Z,那么,2﹣在定义域k≥1上是增函数,因此,当k=1时,四边形ABDC的面积最小,最小值S=2﹣=.点评:本题考查了两条指向相交或平行问题,解题的关键是用k表示出直线与坐标轴的交点坐标并用k表示出围成的三角形的面积,从而得到函数关系式,利用函数的知识其最值问题.15.(3分)(2010•随州)如图,在矩形纸片ABCD中,AB=5cm,BC=10cm,CD上有一点E,ED=2cm,AD上有一点P,PD=3cm,过P作PF⊥AD交BC于F,将纸片折叠,使P点与E点重合,折痕与PF交于Q点,则PQ的长是cm.分析:过Q点作QG⊥CD,垂足为G点,连接QE,设PQ=x,根据折叠及矩形的性质,用含x的式子表示Rt△EGQ的三边,再用勾股定理列方程求x即可.解答:解:过Q点作QG⊥CD,垂足为G点,连接QE,设PQ=x,由折叠及矩形的性质可知,EQ=PQ=x,QG=PD=3,EG=x﹣2,在Rt△EGQ中,由勾股定理得EG2+GQ2=EQ2,即:(x﹣2)2+32=x2,解得:x=,即PQ=.16.(3分)(2010•随州)将半径为4cm的半圆围成一个圆锥,在圆锥内接一个圆柱(如图示),当圆柱的侧面的面积最大时,圆柱的底面半径是1cm.分析:易得扇形的弧长,除以2π也就得到了圆锥的底面半径,再加上母线长,利用勾股定理即可求得圆锥的高,利用相似可求得圆柱的高与母线的关系,表示出侧面积,根据二次函数求出相应的最值时自变量的取值即可.解答:解:扇形的弧长=4πcm,∴圆锥的底面半径=4π÷2π=2cm,∴圆锥的高为=2cm,设圆柱的底面半径为rcm,高为Rcm.=,解得:R=2﹣r,∴圆柱的侧面积=2π×r×(2﹣r)=﹣2πr2+4πr(cm2),∴当r==1cm时,圆柱的侧面积有最大值.三、解答题(72)17.(14分)已知抛物线y=﹣x2+bx+c(c>0)过点C(﹣1,0),且与直线y=7﹣2x只有一个交点.(1)求抛物线的解析式;(2)若直线y=﹣x+3与抛物线相交于两点A、B,则在抛物线的对称轴上是否存在点Q,使△ABQ是等腰三角形?若存在,求出Q点坐标;若不存在,说明理由.分析:(1)将C点坐标代入y=﹣x2+bx+c得c=b+1,联立抛物线y=﹣x2+bx+b+1与直线y=7﹣2x,转化为关于x的二元一次方程,令△=0求b的值即可;(2)直线y=﹣x+3与(1)中抛物线求A、B两点坐标,根据抛物线解析式求对称轴,根据线段AB为等腰三角形的腰或底,分别求Q点的坐标.解答:解:(1)把点C(﹣1,0)代入y=﹣x2+bx+c中,得﹣1﹣b+c=0,解得c=b+1,联立,得x2﹣(b+2)x+6﹣b=0,∵抛物线与直线只有一个交点,∴△=(b+2)2﹣4(6﹣b)=0,解得b=﹣10或2,∵c=b+1>0,∴b=2,∴抛物线解析式为y=﹣x2+2x+3;(2)存在满足题意的点Q.联立,解得或,则A(0,3),B(3,0),由抛物线y=﹣x2+2x+3,可知抛物线对称轴为x=1,由勾股定理,得AB=3,当AB为腰,∠A为顶角时,Q(1,3+)或(1,3﹣);当AB为腰,∠B为顶角时,Q(1,)或(1,﹣);当AB为底时,Q(1,1).故满足题意的Q点坐标为:(1,3+)或(1,3﹣)或(1,)或(1,﹣)或(1,1).18.(14分)有一河堤坝BCDF为梯形,斜坡BC坡度,坝高为5m,坝顶CD=6m,现有一工程车需从距B点50m的A处前方取土,然后经过B﹣C﹣D放土,为了安全起见,工程车轮只能停在离A、D处1m的地方即M、N处工作,已知车轮半经为1m,求车轮从取土处到放土处圆心从M到N所经过的路径长.分析:作出圆与BA,BC相切时圆心的位置G,与CD相切时圆心的位置P,与CD相切时圆心的位置I,分别求得各段的路径的长,然后求和即可.解答:解:当圆心移动到G的位置时,作GR⊥AB,GL⊥BC分别于点R,L.∵,∴∠CBF=30°,∴∠RGB=15°,∵直角△RGB中,tan∠RGB=,∴BR=GR•tan∠RGB=2﹣,则BL=BR=2﹣,则从M移动到G的路长是:AB﹣BR﹣1=50﹣(2﹣)﹣1=47+m,BC=2×5=10m,则从G移动到P的位置(P是圆心在C,且与BC相切时圆心的位置),GP=10﹣BL=10﹣(2﹣)=8+m;圆心从P到I(I是圆心在C,且与CD相切时圆心的位置),移动的路径是弧,弧长是:=m;圆心从I到N移动的距离是:6﹣1=5m,则圆心移动的距离是:(47+)+(8+)+5+=60+2+(m).19.(14分)如图,过正方形ABCD的顶点C在形外引一条直线分别交AB、AD延长线于点M、N,DM与BN交于点H,DM与BC交于点E,BN△AEF与DC交于点F.(1)猜想:CE与DF的大小关系?并证明你的猜想.(2)猜想:H是△AEF的什么心?并证明你的猜想.分析:(1)利用正方形的性质得到AD∥BC,DC∥AB,利用平行线分线段成比例定理得到,,从而得到,然后再利用AB=BC即可得到CE=DF;(2)首先证得△ADF≌△DCE,从而得到∠DAF=∠FDE,再根据∠DAF+∠ADE=90°得到AF⊥DE,同理可得FB⊥AE,进而得到H为△AEF的垂心.解答:解:(1)CE=DF;证明:∵正方形ABCD∴AD∥BC,DC∥AB∴,(∴∴又AB=BC∴CE=DF;(2)垂心.在△ADF与△DCE中,,∴△ADF≌△DCE(SAS),∴∠DAF=∠FDE,∵∠DAF+∠ADE=90°,∴AF⊥DE,同理FB⊥AE.H为△AEF的垂心.20.(15分)如图,已知菱形ABCD边长为,∠ABC=120°,点P在线段BC延长线上,半径为r1的圆O1与DC、CP、DP分别相切于点H、F、N,半径为r2的圆O2与PD延长线、CB延长线和BD分别相切于点M、E、G.(1)求菱形的面积;(2)求证:EF=MN;(3)求r1+r2的值.解答:(1)解:∵菱形ABCD边长为,∠ABC=120°,∴△ADC和△DBC都是等边三角形,∴菱形的面积=2S△DBC=2××(6)2=54;(2)证明:∵PM与PE都是⊙O2的切线,∴PM=PE,又∵PN与PF都是⊙O1的切线,∴PN=PF,∴PM﹣PN=PE﹣PB,即EF=MN;(3)解:∵BE与BG都是⊙O2的切线,∴BE=BG,∠O2BE=∠O2BG,O2E⊥BE,而∠EBG=180°﹣∠DBC=180°﹣60°=120°,∴∠O2BE=60°,∠EO2B=30°,∴BE=O2E=r2,∴BG=r2,∴DM=DG=6﹣r2,同理可得CF=r1,DN=DH=6﹣r1,∴MN=DM+DN=12﹣(r1+r2),∵EF=EB+BC+CF=r2+6+r1=6+(r1+r2),而EF=MN,∴6+(r1+r2)=12﹣(r1+r2),∴r1+r2=9.21.(15分)(2012•黄冈)如图,已知抛物线的方程C1:y=﹣(x+2)(x﹣m)(m>0)与x轴相交于点B、C,与y轴相交于点E,且点B在点C的左侧.(1)若抛物线C1过点M(2,2),求实数m的值;(2)在(1)的条件下,求△BCE的面积;(3)在(1)条件下,在抛物线的对称轴上找一点H,使BH+EH最小,并求出点H的坐标;(4)在第四象限内,抛物线C1上是否存在点F,使得以点B、C、F为顶点的三角形与△BCE 相似?若存在,求m的值;若不存在,请说明理由.解答:解:(1)依题意,将M(2,2)代入抛物线解析式得:2=﹣(2+2)(2﹣m),解得m=4.(2)令y=0,即(x+2)(x﹣4)=0,解得x1=﹣2,x2=4,∴B(﹣2,0),C(4,0)在C1中,令x=0,得y=2,∴E(0,2).∴S△BCE=BC•OE=6.(3)当m=4时,易得对称轴为x=1,又点B、C关于x=1对称.如解答图1,连接EC,交x=1于H点,此时BH+EH最小(最小值为线段CE的长度).设直线EC:y=kx+b,将E(0,2)、C(4,0)代入得:y=x+2,当x=1时,y=,∴H(1,).(4)分两种情形讨论:①当△BEC∽△BCF时,如解答图2所示.则,∴BC2=BE•BF.由函数解析式可得:B(﹣2,0),E(0,2),即OB=OE,∴∠EBC=45°,∴∠CBF=45°,作FT⊥x 轴于点T,则∠BFT=∠TBF=45°,∴BT=TF.∴可令F(x,﹣x﹣2)(x>0),又点F在抛物线上,∴﹣x﹣2=﹣(x+2)(x﹣m),∵x+2>0,∵x>0,∴x=2m,F(2m,﹣2m﹣2).此时BF==2(m+1),BE=,BC=m+2,又∵BC2=BE•BF,∴(m+2)2=•(m+1),∴m=2±,∵m>0,∴m=+2.②当△BEC∽△FCB时,如解答图3所示.则,∴BC2=EC•BF.∵△BEC∽△FCB∴∠CBF=∠ECO,∵∠EOC=∠FTB=90°,∴△BTF∽△COE,∴,∴可令F(x,(x+2))(x>0)又∵点F在抛物线上,∴(x+2)=﹣(x+2)(x ﹣m),∵x>0,∴x+2>0,∴x=m+2,∴F(m+2,(m+4)),EC=,BC=m+2,又BC2=EC•BF,∴(m+2)2=•整理得:0=16,显然不成立.综合①②得,在第四象限内,抛物线上存在点F,使得以点B、C、F为顶点的三角形与△BCE相似,m=+2.。

自主招生试题及答案

自主招生试题及答案

自主招生试题及答案第一部分:数学试题1. 某商场举行打折促销活动,原价为500元的商品打8折出售,求打折后的价格是多少?答案:打折后的价格为500元× 0.8 = 400元。

2. 一家餐厅每天接待平均100位客人,每位客人平均消费60元,求该餐厅每天的总收入是多少?答案:每天的总收入为100位客人× 60元/位 = 6000元。

3. 有一批货物共1600个,如果每个货物重量为0.5千克,求这批货物的总重量是多少?答案:这批货物的总重量为1600个× 0.5千克/个 = 800千克。

4. 若 a + b = 8,且 a - b = 4,求 a 和 b 的值。

答案:将两个等式相加得:2a = 12,因此 a = 6。

将第一个等式减去第二个等式得:2b = 4,因此 b = 2。

第二部分:语文试题阅读理解:请阅读下面的短文,然后回答问题。

今年暑假,我和家人一起去了海边度假。

那里的沙滩宽广而柔软,海水清澈见底。

每天早晨,我会沿着海边散步,感受着海风的呼啸和阳光的温暖。

海鸥在空中盘旋,在海面上嬉戏,生活充满了乐趣和自由。

问题1:暑假时期,我喜欢做什么?答案:沿着海边散步。

问题2:暑假时期,我所感受到的是什么?答案:海风的呼啸和阳光的温暖。

问题3:空中的什么在海面上嬉戏?答案:海鸥。

第三部分:英语试题1. 选择正确的单词填空:My sister is _______ tall girl.a) anb) a答案:b) a2. 选择正确的短语填空:I ______ English every day.a) am studyingb) study答案:b) study3. 选择正确的句子:a) I am going to the park.b) I is going to the park.答案:a) I am going to the park.第四部分:思维能力试题请根据以下数字和符号的组合,利用加、减、乘、除的运算方式,使等式成立。

2025年重点高中自主招生考试数学模拟试卷试题(含答案)

2025年重点高中自主招生考试数学模拟试卷试题(含答案)

2025重点高中自主招生数学针对性模拟试卷(本试卷满分150分,时间2小时)一、选择题(每小题6分,共60分)1.若“14人中至少有2人在同一个月过生日”这一事件发生的概率为P ,则()A.P=0B.0<P<1C.P=1P>12.下列命题中,真命题的个数是()①一组对边平行且对角线相等的四边形是矩形②对角线互相垂直且相等的四边形是菱形③两组对角分别相等的四边形是平行四边形④一组对边平行,另一组对边相等的四边形是平行四边形A.0个 B.1个 C.2个 D.3个3.方程()1112=--x x 的根共有()A.1个B.2个C.3个D.4个4.设{}d c b a ,,,max 表示d c b a ,,,中最大的数,则⎭⎫⎩⎨⎧-210,2,260tan 2,45cos 2max 0π=()A.045cos 2 B.260tan 20- C.2π D.2105.若关于x 的方程012)14(2=-+++m x m x 的两根分别为1x 、2x ,且321=+x x ,则m =()A.-1或21 B.-1或1C.21-或21 D.21-或16.如图,在△ABC 中,点D 在线段AC 上,点F 在线段BC 延长线上,BF=5CF,且四边形CDEF 是平行四边形,△BDE 与△ADE 的面积之和为7,则△ABC 面积为()A.28 B.29 C.30 D.327.用数字0,1,2,3,4可以组成没有重复数字的四位数共有()A.64个 B.72个 C.96个 D.不同于以上答案8.已知y x ,是整数,则满足方程03432=---y x xy 的数对),(y x 共有()A.4对B.6对C.8对D.12对9.如图,在△ABC 中,AC=BC=4,D 是BC 的中点,过A,C,D 三点的圆O 与AB 边相切于点A,则圆O 的半径为()A.2B.5C.214D.714410.若关于x 的方程x k x =-23有三个不同解321,,x x x ,设,321x x x m ++=则m 的取值范围为()A.2<m B.23->m C.20<<m D.223<<-m 二、填空题(每小题6分共36分)11.已知△ABC 中,BC=1,AC=2,AB=3,则△ABC 的内切圆半径为.12.若y x 、满足⎪⎪⎩⎪⎪⎨⎧=+=+2454545yx xy y x xy ,则=+y x .13.如图,在平面直角坐标系中,抛物线22--=x x y 与x 轴交于A、B 两点(点A 在点B 左边),点E 在对称轴MN 上,点F 在以点C(-1,-4)为圆心,21为半径的圆上,则AE+EF 的最小值为.14.已知直线)0(1>+=k kx y 与双曲线xy 2=交于A、B 两点,设A、B 两点的坐标分别为),(11y x A 、),(22y x B ,则=-+-)1()1(1221y x y x .15.若21≤---a x x 对任意实数x 都成立,则实数a 的取值范围是.16.已知互不相等的正整数20321,,,,a a a a 满足202420321=+++a a a a ,设d 是20321,,,,a a a a 的最大公约数,则d 的最大值为.三、解答题(共54分)17.(12分)已知实数215-=a .(1)求a a +2的值;(2)求3223111aa a a a a +++++的值.18.(12分)已知一次函数)0(1)2(<+-=k x k y 的图象与y x 、轴分别交于点A、B.(1)若2-=k ,试在第一象限内直接写出点),(y x M 的坐标,使得A、B、M 三点构成一个等腰直角三角形;(2)设O 为坐标原点,求△OAB 的面积的最小值.19.(14分)如图,已知0120=∠AOB ,PT 切圆O 于T,A、B、P 三点共线,∠APT 的平分线依次交AT、BT 于C、D,连接BC、AD.(1)求证:△CDT 为等边三角形;(2)若AC=8,BD=2,求PC 的长.20.(16分)已知函数a x a x y -+-+=3)4(2.(1)若此函数的图象与x 轴交于点)0,()0,(21x B x A 、,且2021≤<≤x x ,求a 的取值范围;(2)若20≤≤x ,求y 的最大值;(3)记a x a x x f -+-+=3)4()(2,若对于任意的40<<a ,都能找到200≤≤x ,使t x f ≥)(0,求t 的取值范围参考答案:一、选择题:1-5CBBDC6-10ACBDD 二、填空题:11、2321-+12、913、2914、-415、31≤≤-a 16、817.(1)∵215-=a ,512=+∴a ,5)12(2=+∴a .4442=+∴a a ,12=+∴a a .(3)a a -=12,12)1()1(23-=--=-=-=∴a a a a a a a a .∴原式==++++-3321112aa a a a 122222112333-+=+=++a a a a a a a .当215-=a 时,原式=353)25(2152521511522152+=++-=-+-=--+-⨯.18.(1)当2-=k 时,52+-=x y ,满足题意的M 点有3个,分别为415,415(),215,5(),25,215(321M M M .(2)易求得)21,0(),0,12(k B kA --.k kk k OB OA S OAB 2212)2112(2121--=--=⋅=∴∆,0<k ,021>-∴k ,02>-k .有均值不等式得4)2(2122=-⋅-+≥∆k kS OAB ,当且仅当k k 221-=-,即21-=k 时,等号成立.∴△ABC 的面积的最小值为4.19.(1)证明:0120=∠AOB ,06021=∠=∠∴AOB ATB .∵PT 切⊙O 于T,∴∠BTP=∠TAP.∵PC 平分∠APT,∴∠APC=∠CPT.∵∠TCD=∠TAP+∠APC,∠CDT=∠BTP+∠CPT.∴∠TCD=∠CDT=00060260180=-.∴△CDT 为等边三角形.(3)解:设CT=DT=x ,∵∠TCD=∠CDT=∠BDP,∠BPD=∠CPT,∴△PCT∽△PDB.∴BDCTPD PC =①,∵∠DTP=∠PAC,∠APC=DPT,∴△ACP∽△TDP.∴PD PC TD AC =,∴TD AC BD CT =.∴xx 82=.∴4=x (负值舍去).∴CD=DT=CT=4.由①得244=-PC PC ,解得PC=8.20.解:(1)∵0)2()3(4)4(22>-=---=∆a a a ,2≠∴a .①当a x x -==3,121时,则231≤-<a ,∴21<≤a ;②当1,321=-=x a x 时,则130<-≤a .32≤<∴a .综上所述,a 的取值范围为31≤≤a 且2≠a .(2)对称轴为直线24a x -=.分三种情况讨论:①当024<-a,即4>a 时,当2=x 时,1-=a y 为最大值.②当2240≤-≤a,即40≤≤a 时,此时y 最大值在0=x 或2=x 处取得.(ⅰ)当242024a a --≥--时,则20≤≤a .此时,当0=x 时,a y -=3为最大值;(ⅱ)当242024aa --<--时,则42≤<a ,此时,当2=x 时,1-=a y 为最大值.③当224>-a,即0<a 时,当0=x 时,a y -=3为最大值.综上所述,当2<a 时,y 的最大值为a -3;当2>a 时,y 的最大值为1-a .(3)对称轴为直线24a x -=.∵40<<a ,∴2240<-<a.∴函数a x a x x f -+-+=3)4()(21在区间⎥⎦⎤⎢⎣⎡-24,0a 上是减函数,在区间⎥⎦⎤⎢⎣⎡-2,24a 上是增函数.∴对任意的)4,0(∈a ,存在]2,0[0∈x 使得t x f ≥|)(|0可化为对任意的)4,0(∈a ,t f ≥|)0(|或t f ≥|)2(|或t af ≥-)24(有一个成立即可.即t a f f f ≥⎭⎬⎫⎩⎨⎧-max 24(||,)2(||,)0(|即可.①当242024a a --≥--时,则20≤≤a ,|)2(||)0(|f f ≥.∴a a a a f f t -=⎭⎬⎫⎩⎨⎧---=⎭⎬⎫⎩⎨⎧-≤3|2)2(||,3||24(||,)0(|max2max ,∴1)3(min =-≤a t .②当242024aa --<--时,则42≤<a ,此时,|)0(||)2(|f f >.1|4)2(||,1||24(),2(|max2-=⎭⎬⎫⎩⎨⎧---=⎭⎬⎫⎩⎨⎧-≤∴a a a a f f t .∴1)1(min =-≤a t .综上所述,t 的取值范围为1≤t .。

高校自招数学试题及答案

高校自招数学试题及答案

高校自招数学试题及答案一、选择题(每题5分,共20分)1. 若函数f(x) = ax^2 + bx + c(a ≠ 0)的图像经过点(1, 2)和(2,3),则下列哪个选项是正确的?A. a + b + c = 2B. 4a + 2b + c = 3C. a + 2b + c = 3D. 4a + b + c = 5答案:C2. 已知数列{an}是等差数列,且a1 + a2 + a3 = 12,a2 + a3 + a4 = 18,则a1 + a5的值是多少?A. 18B. 20C. 24D. 26答案:B3. 若复数z满足|z - 1| = |z + i|,则z对应的点在复平面上位于哪个象限?A. 第一象限B. 第二象限C. 第三象限D. 第四象限答案:B4. 已知函数f(x) = ln(x) + 1/x,若f(x)在区间(0, +∞)上单调递增,则实数k的取值范围是?A. k > 0B. k ≥ 1C. k ≤ -1D. k ≤ 0答案:B二、填空题(每题5分,共20分)5. 若一个圆的直径为10,则该圆的面积为_______。

答案:25π6. 已知向量a = (3, -1),b = (2, 4),则向量a与向量b的数量积为_______。

答案:57. 若函数f(x) = x^3 - 3x^2 + 2在区间[1, 2]上单调递增,则实数k的取值范围是_______。

答案:k ≤ -18. 已知等比数列{an}的前三项分别为1,2,4,则该数列的通项公式为an = _______。

答案:2^(n-1)三、解答题(每题15分,共40分)9. 已知函数f(x) = x^2 - 4x + 3,求f(x)的单调区间,并说明理由。

答案:函数f(x)的单调递增区间为[2, +∞),单调递减区间为(-∞, 2)。

理由是f(x)的导数为f'(x) = 2x - 4,令f'(x) > 0得x > 2,令f'(x) < 0得x < 2。

常州自主招生试题及答案

常州自主招生试题及答案

常州自主招生试题及答案自主招生是指高等学校根据招生计划和招生标准,在保证考生素质的前提下,由学校自行组织选拔工作的一种招生方式。

自主招生试题除了要考察学生的基础知识水平外,还需要考察学生的综合素质和创新能力。

下面为大家提供常州自主招生试题及答案供参考。

一、数学试题1. 若方程 $3^x-10 \cdot 3^{x-1}+25=0$ 有两个相等的解,则 x 的值为多少?【答案】 x=2【解析】将方程改写为 $(3^x-5)^2=0$,解得 $3^x-5=0$,由此得到$x=2$。

2. 已知 $x^2+3x+2=0$,则 $x_1^3+x_2^3$ 的值为多少?【答案】 $-4$【解析】根据题目条件可知,$x_1$ 和 $x_2$ 是方程的两个根,利用韦达定理得 $x_1+x_2=-3$,$x_1 \cdot x_2=2$。

根据立方和公式,$x_1^3+x_2^3=(x_1+x_2)^3-3x_1x_2(x_1+x_2)$,代入数值计算得$x_1^3+x_2^3=(-3)^3-3 \cdot 2 \cdot (-3)=-4$。

二、英语试题阅读理解:Once upon a time, there lived a poor farmer. Although he had little money, he was grateful for what he had and lived a happy life with his family.One day, the farmer discovered a golden egg in the nest of his old hen. He was amazed and realized that this egg was special. The next day, he found another golden egg. From then on, every morning there would be a golden egg waiting for him in the nest.The farmer became rich and began to live a luxurious life. But he became greedy and wanted all the golden eggs immediately. He thought that there must be many golden eggs inside the hen.One day, he couldn't bear it any longer and decided to kill the hen to take out all the golden eggs at once. But when he opened the hen, there was nothing inside except its organs. The farmer realized his mistake and regretted his greediness.1. How did the farmer feel when he found the first golden egg?【答案】 The farmer was amazed.2. Why did the farmer want to kill the hen?【答案】 Because he wanted to get all the golden eggs at once.三、物理试题1. 调制音频信号占据的频率范围为 20 kHz~20 MHz,信号的最小带宽为多少?【答案】 20 MHz - 20 kHz = 19980 kHz【解析】信号的最小带宽等于频率范围的差值,带宽 = 20 MHz - 20 kHz = 19980 kHz。

北大自主招生数学试题

北大自主招生数学试题

北大自主招生数学试题一、下列哪个数列不是等差数列?A. 1, 3, 5, 7, ...B. 2, 4, 8, 16, ...C. 10, 8, 6, 4, ...D. -1, 0, 1, 2, ...(答案:B)二、若复数z满足(1+i)z=2i,则z等于?A. 1-iB. 1+iC. -1+i(答案)D. -1-i三、设函数f(x) = x3 - 3x2 + 2,则f(x)的极小值点为?A. x = 0B. x = 1C. x = 2(答案)D. x = 3四、在三角形ABC中,若sinA:sinB = 3:4:5,则cosC的值为?A. 1/5B. -1/5(答案)C. 3/5D. 4/5五、已知向量a = (1, 2),b = (2, 1),则向量a与b的夹角θ的余弦值为?A. √5/5B. 2√5/5(答案)C. 1/√5D. -1/√5六、设集合A = {x | x2 - 5x + 6 = 0},B = {x | x2 - ax + a - 2 = 0},若B是A的子集,则a的取值范围是?A. a = 2或a = 3或a = 5B. a = 3或a = 5(答案)C. a = 2或a = 5D. a = 2或a = 3七、已知圆C的方程为x2 + y2 - 2x - 5 = 0,直线l的方程为2x - y - 1 = 0,则圆心C到直线l的距离为?A. √5B. 2√5/5C. √5/5(答案)D. 3√5/5八、若实数x, y满足约束条件x + y ≤ 2, x - y ≤ 1, x ≥ 0,则z = 2x + y的最大值为?A. 2B. 3C. 4D. 5(答案)九、设函数f(x) = ex - e(-x),则不等式f(x + 2) < f(1 - x)的解集为?A. (-∞, 3/2)B. (-3/2, +∞)(答案)C. (-∞, -1/2)D. (1/2, +∞)十、已知矩阵A = [1 2; 3 4],向量β = [5; 6],若向量α满足Aα = β,则α为?A. [-1; 2]B. [2; -1](答案)C. [1; 1]D. [-2; 1]。

2024初升高自主招生数学试卷(一)及参考答案

2024初升高自主招生数学试卷(一)及参考答案

—1—2024初升高自主招生数学模拟试卷(一)1.方程43||||x x x x -=实数根的个数为()A .1B .2C .3D .42.如图,△ABC 中,点D 在BC 边上,已知AB =AD =2,AC =4,且BD :DC =2:3,则△ABC 是()A .锐角三角形B .直角三角形C .钝角三角形D .等腰三角形3.已知G 是面积为24的△ABC 的重心,D 、E 分别为边AB 、BC 的中点,则△DEG 的面积为()A .1B .2C .3D .44.如图,在Rt △ABC 中,AB =35,一个边长为12的正方形CDEF 内接于△ABC ,则△ABC 的周长为()A .35B .40C .81D .845.已知2()6f x x ax a =+-,()y f x =的图象与x 轴有两个不同的交点(x 1,0),(x 2,0),且1212383(1)()1)(16)(16)a a x x a x a x -=-++----,则a 的值是()A .1B .2C .0或12D .126.如图,梯形ABCD 中,AB //CD ,AB =a ,CD =b .若∠ADC =∠BFE ,且四边形ABFE 的面积与四边形CDEF 的面积相等,则EF 的长等于()A .2a b+B .abC .2ab a b +D .222a b +—2—7.在△ABC 中,BD 平分∠ABC 交AC 于点D ,CE 平分∠ACB 交AB 于点E .若BE +CD =BC ,则∠A 的度数为()A .30°B .45°C .60°D .90°8.设23a =,26b =,212c =.现给出实数a 、b 、c 三者之间所满足的四个关系式:①2a c b +=;②23a b c +=-;③23b c a +=+;④21b ac -=.其中,正确关系式的个数是()A .1B .2C .3D .49.已知m 、n 是有理数,方程20x mx n ++=2,则m +n =.10.正方形ABCD 的边长为5,E 为边BC 上一点,使得BE =3,P 是对角线BD 上的一点,使得PE +PC 的值最小,则PB =.11.已知x y ≠,22()()3x y z y z x +=+=.则2()z x y xyz +-=.12.如图,四边形ABCD 的对角线相交于点O ,∠BAD =∠BCD =60°,∠CBD =55°,∠ADB =50°.则∠AOB 的度数为.13.两个质数p 、q 满足235517p q +=,则p q +=.14.如图,四边形ABCD 是矩形,且AB =2BC ,M 、N 分别为边BC 、CD 的中点,AM 与BN 交于点E .若阴影部分的面积为a ,那么矩形ABCD 的面积为.第12题图第14题图15.设k 为常数,关于x 的方程2223923222k k x x k x x k --+=---有四个不同的实数根,求k 的取值范围.—3—16.已知实数a 、b 、c 、d 互不相等,并且满足1111a b c d x b c d a+=+=+=+=,求x 的值.17.已知抛物线2y x =与动直线(21)y t x c =--有公共点(x 1,y 1),(x 2,y 2),且2221223x x t t +=+-.(1)求t 的取值范围;(2)求c 的最小值,并求出c 取最小值时t 的取值.—4—18.如图,已知在⊙O 中,AB 、CD 是两条互相垂直的直径,点E 在半径OA 上,点F 在半径OB 延长线上,且OE=BF ,直线CE 、CF 与⊙O 分别交于点G 、H ,直线AG 、AH 分别与直线CD 交于点N 、M .求证:1DM DN MC NC-=.参考答案。

高中自主招生考试数学试题(含答案详解)

高中自主招生考试数学试题(含答案详解)

一中自主招生考试数学试题一.选择题(共6小题,满分24分,每小题4分)1.(4分)如果关于x的方程x2﹣ax+a2﹣3=0至少有一个正根,则实数a的取值范围是()A.﹣2<a<2B.C.D.2.(4分)假期里王老师有一个紧急通知,要用电话尽快通知给50个同学,假设每通知一个同学需要1分钟时间,同学接到电话后也可以相互通知,那么要使所有同学都接到通知最快需要的时间为()A.8分钟B.7分钟C.6分钟D.5分钟3.(4分)如图是一个正方体的表面展开图,已知正方体的每一个面都有一个实数,且相对面上的两个数互为倒数,那么代数式的值等于()A.B.﹣6C.D.64.(4分)(2008•青岛)如图,把图1中的△ABC经过一定的变换得到图2中的△A′B′C′,如果图1中△ABC上点P的坐标为(a,b),那么这个点在图2中的对应点P′的坐标为()A.(a﹣2,b﹣3)B.(a﹣3,b﹣2)C.(a+3,b+2)D.(a+2,b+3)5.(4分)如图,四边形BDCE内接于以BC为直径的⊙A,已知:,则线段DE的长是()A.B.7C.4+3D.3+46.(4分)如图,张三同学把一个直角边长分别为3cm,4cm的直角三角形硬纸板,在桌面上翻滚(顺时针方向),顶点A的位置变化为A1⇒A2⇒A3,其中第二次翻滚时被桌面上一小木块挡住,使纸板一边A2C1与桌面所成的角恰好等于∠BAC,则A翻滚到A2位置时共走过的路程为()A.8cm B.8πcm C.2cm D.4πcm二.填空题(共6小题,满分24分,每小题4分)7.(4分)若x+=3,则x2+=_________.8.(4分)如图,E、F分别是平行四边形ABCD的边AB、CD上的点,AF与DE相交于点P,BF与CE相交于点Q,若S△APD=15cm2,S△BQC=25cm2,则阴影部分的面积为_________cm2.9.(4分)如图,正方形ABCD的边长为4cm,正方形AEFG的边长为1cm.如果正方形AEFG绕点A旋转,那么C、F两点之间的最小距离为_________cm.10.(4分)对于正数x,规定f(x)=,计算f()+f()+f()+…+f()+f()+f(1)+f(2)+f(3)+…+f(98)+f(99)+f(100)=_________.11.(4分)甲,乙,丙3人用擂台赛形式进行训练,每局2人进行单打比赛,另1人当裁判,每﹣局的输方去当下﹣局的裁判,而由原来的裁判向胜者挑战.半天训练结束时发现甲共打了12局,乙共打了21局,而丙共当裁判8局.那么,整个比赛的第10局的输方一定是_________.12.(4分)(2002•广州)如图所示,在正方形ABCD中,AO⊥BD,OE,FG,HI都垂直于AD,EF,GH,IJ都垂直于AO,若已知S△AIJ=1,则正方形ABCD的面积为_________.三.解答题(共6小题,满分52分)13.(6分)把几个数用大括号围起来,中间用逗号断开,如:{1,2,3},{2,7,8,19},我们称之为集合,其中的数称其为集合的元素.如果一个集合满足:当实数a是集合的元素时,实数8﹣a也必是这个集合的元素,这样的集合我们称为好的集合.(1)请你判断集合{1,2},{1,4,7}是不是好的集合;(2)请你写出满足条件的两个好的集合的例子.14.(8分)(2007•丽水)在课外活动时间,小王、小丽、小华做“互相踢踺子”游戏,踺子从一人传到另一人就记为踢一次.(1)若从小丽开始,经过两次踢踺后,踺子踢到小华处的概率是多少?(用树状图或列表法说明)(2)若经过三次踢踺后,踺子踢到小王处的可能性最小,应确定从谁开始踢,并说明理由.15.(8分)某中学为了进一步改善办学条件,决定计划拆除一部分旧校舍,建造新校舍.拆除旧校舍每平方米需80元,建造新校舍每平方米需要800元,计划在年内拆除旧校舍与建造新校舍共9000平方米,在实施中为扩大绿化面积,新建校舍只完成了计划的90%而拆除旧校舍则超过了计划的10%,结果恰好完成了原计划的拆、建总面积.(1)求原计划拆、建面积各是多少平方米?(2)若绿化1平方米需要200元,那么把在实际的拆、建工程中节余的资金全部用来绿化,可绿化多少平方米?16.(10分)如图,⊙O的直径EF=cm,Rt△ABC中,∠ACB=90°,∠BAC=30°,AB=cm.E、F、A、B 四点共线.Rt△ABC以1cm/s的速度沿EF所在直线由右向左匀速运动,设运动时间为t(s),当t=0s时,点B与点F重合.(1)当t为何值时,Rt△ABC的直角边与⊙O相切?(2)当Rt△ABC的直角边与⊙O相切时,请求出重叠部分的面积(精确到0.01).17.(10分)(2008•广东)(1)如图1,点O是线段AD的中点,分别以AO和DO为边在线段AD的同侧作等边三角形OAB和等边三角形OCD,连接AC和BD,相交于点E,连接BC.求∠AEB的大小;(2)如图2,△OAB固定不动,保持△OCD的形状和大小不变,将△OCD绕点O旋转(△OAB和△OCD不能重叠),求∠AEB的大小.18.(10分)(2008•益阳)我们把一个半圆与抛物线的一部分合成的封闭图形称为“蛋圆”,如果一条直线与“蛋圆”只有一个交点,那么这条直线叫做“蛋圆”的切线.如图所示,点A、B、C、D分别是“蛋圆”与坐标轴的交点,已知点D的坐标为(0,﹣3),AB为半圆的直径,半圆圆心M的坐标为(1,0),半圆半径为2.(1)请你求出“蛋圆”抛物线部分的解析式,并写出自变量的取值范围;(2)你能求出经过点C的“蛋圆”切线的解析式吗?试试看;(3)开动脑筋想一想,相信你能求出经过点D的“蛋圆”切线的解析式.答案与评分标准一.C ,C ,A ,C ,D ,D甲,256,二.7,40,3,,三.解:(1)集合{1,2}不是好的集合,这是因为8﹣1=7,而7不是{1,2}中的数,所以{1,2}不是好的集合,{1,4,7}是好的集合,这是因为8﹣1=7,7是{1,4,7}中的数,8﹣4=4,4也是{1,4,7}中的数,8﹣7=1,1又是{1,4,7}中的数.所以{1,4,7}是好的集合;(2)答案不唯一.集合{4}、{3,4,5}、{2,6}、{1,2,4,6,7}、{0,8}等都是好的集合.解:(1)踺子踢到小华处的概率是.树状图如下:列表法如下:小丽小王小华小王(小丽,小王)(小王,小华)小华(小华,小丽)(小华,小王)(2)小王.树状图如下:理由:若从小王开始踢,三次踢踺后,踺子踢到小王处的概率是,踢到其它两人处的概率都是,因此,踺子踢到小王处的可能性是最小.解:(1)由题意可设拆旧舍x平方米,建新舍y平方米,则答:原计划拆建各4500平方米.(2)计划资金y1=4500×80+4500×800=3960000元实用资金y2=1.1×4500×80+0.9×4500×800=4950×80+4050×800=396000+3240000=3636000∴节余资金:3960000﹣3636000=324000∴可建绿化面积=平方米答:可绿化面积1620平方米.解:(1)∵∠BAC=30°,AB=,∴BC=又∵⊙O的直径EF=,即半径为,∠ACB=90°,∴当点B运动到圆心O时,AC边与⊙O相切.(如图1所示)(1分)此时运动距离为FO=,∴t=s.(2分)当BC边与⊙O相切时(如图2所示),设切点为G.连接OG,则OG⊥BC.(3分)由已知,∠BOG=∠BAC=30°,OG=,∴BO=2.(4分)又FO=,∴BF=.(此步亦可利用相似求解,请参照给分)∴此时s.(5分)由上所述,当秒时,Rt△ABC的直角边与⊙O相切.(6分)(2)由图1,此时⊙O与Rt△ABC的重叠部分为扇形COF.(7分)由已知,∠COF=60°,∴.(8分)由图2,设AC与⊙O交于点M,此时⊙O与Rt△ABC的重叠部分为扇形OMGE加上△OAM.(9分)过点M作MN⊥OG于N,则MN=GC.由(1)可知BG=1则MN=GC=.(10分)∴,∴∠MON=25°,即∠MOE=55°.(11分)∴.(12分)又∵OM=,∴点M到AB的距离h=OM•sin∠MOE≈1.419,(13分)∴S△AOM =•OA•h≈1.229cm2此时⊙O与Rt△ABC的重叠部分的面积为S扇形OMEF+S△AOM≈2.67cm2.(14分)解:(1)如图3,∵△DOC和△ABO都是等边三角形,且点O是线段AD的中点,∴OD=OC=OB=OA,∠1=∠2=60°,∴∠4=∠5.又∵∠4+∠5=∠2=60°,∴∠4=30°.同理∠6=30°.∵∠AEB=∠4+∠6,∴∠AEB=60°.(2)如图4,∵△DOC和△ABO都是等边三角形,∴OD=OC,OB=OA,∠1=∠2=60°.又∵OD=OA,∴OD=OB,OA=OC,∴∠4=∠5,∠6=∠7.∵∠DOB=∠1+∠3,∠AOC=∠2+∠3,∴∠DOB=∠AOC.∵∠4+∠5+∠DOB=180°,∠6+∠7+∠AOC=180°,∴2∠5=2∠6,∴∠5=∠6.又∵∠AEB=∠8﹣∠5,∠8=∠2+∠6,∴∠AEB=∠2+∠6﹣∠5=∠2+∠5﹣∠5=∠2,∴∠AEB=60°.解:(1)根据题意可得:A(﹣1,0),B(3,0);则设抛物线的解析式为y=a(x+1)(x﹣3)(a≠0),又∵点D(0,﹣3)在抛物线上,∴a(0+1)(0﹣3)=﹣3,解之得:a=1∴y=x2﹣2x﹣3(3分)自变量范围:﹣1≤x≤3(4分)(2)设经过点C“蛋圆”的切线CE交x轴于点E,连接CM,在Rt△MOC中,∵OM=1,CM=2,∴∠CMO=60°,OC=在Rt△MCE中,∵MC=2,∠CMO=60°,∴ME=4∴点C、E的坐标分别为(0,),(﹣3,0)(6分)∴切线CE 的解析式为(8分)(3)设过点D(0,﹣3),“蛋圆”切线的解析式为:y=kx ﹣3(k≠0)(9分)由题意可知方程组只有一组解即kx﹣3=x2﹣2x﹣3有两个相等实根,∴k=﹣2(11分)∴过点D“蛋圆”切线的解析式y=﹣2x﹣3.(12分)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017年自主招生数学试题(分值: 100分 时间:90分钟)一、选择题(本大题共6小题,每小题5分,共30分,在每小题给出的四个选项中,只有一个选项是正确的)1、若对于任意实数a ,关于x 的方程0222=+--b a ax x 都有实数根,则实数b 的取值范围是( )A b ≤0B b ≤21-C b ≤81-D b ≤-12、如图,D 、E 分别是△ABC 的边AB 、BC 上的点,且DE ∥AC ,已知S △BDE ∶S △CDE =1∶3,则S △DOE ∶S △AOC 的值为( )A .1∶3B .1∶4C .1∶9D .1∶163、某校吴老师组织九(1)班同学开展数学活动,带领同学们测量学校附近一电线杆的高(如图所示)。

已知电线杆直立于地面上,某天在太阳光的照射下,电线杆的影子(折线BCD)恰好落在水平地面和斜坡上,在D 处测得电线杆顶端A 的仰角为300,在C 处测得电线杆顶端A 得仰角为450,斜坡与地面成600角,CD=4m ,则电线杆的高(AB)是( )A .)344(+mB .)434(-mC .)326(+mD .12m 4、如图,矩形ABCD 中,AB=8,AD=3.点E 从D 向C 以每秒1个单位的速度运动,以AE 为一边在AE 的右下方作正方形AEFG .同时垂直于CD 的直线MN 也从C 向D 以每秒2个单位的速度运动,当经过( )秒时,直线MN 和正方形AEFG 开始有公共点。

A .53 B .12 C .43 D .23(第2题图) (第3题图) (第4题图)5、如图,在反比例函数xy 2-=的图象上有一动点A ,连接AO 并延长交图象的另一支于点B ,在第一象限内有一点C ,满足AC=BC ,当点A 运动时,点C 始终在函数xky =的图象上运动,若tan ∠CAB=2,则k 的值为( )A. 2B. 4C. 6D. 86、如图,O 是等边三角形ABC 内一点,且OA=3,OB=4,OC=5.将线段OB 绕点B 逆时针旋转600得到线段O′B,则下列结论:①△AO′B 可以由△COB 绕点B 逆时针旋转600得到;②∠AOB=1500;③633AOBO'S =+四边形9364AOB AOC S S +=+△△。

其中正确的是( )A.②③④B.①②④C.①④D.①②③O'OC B A(第5题图) (第6题图)二、填空题(本大题共6小题,每小题5分,共30分) 7、已知方程组24221x y kx y k +=⎧⎨+=+⎩,且1x y -<-<0,则k 的取值范围是 。

8、一次函数b x y -=34与134-=x y 的图象之间的距离等于3,则b 的值是 。

9、如图,△ABC 中,∠ACB=900,BC=6cm ,AC=8cm ,动点P 从A 出发,以2cm/s 的速度沿AB 移动到B ,则点P 出发 s 时,△BCP 为等腰三角形。

10、已知关于x 的方程322=-+x mx 的解为正数,则m 的取值范围 。

11、如图,AC ⊥BC 于点C ,BC=4,AB=5,⊙O 与直线AB 、 BC 、CA 都相切,则⊙O 的半径等于 。

12、如图,在平面直角坐标系中,将△ABO 绕点B 顺时针旋转到△A 1BO 1的位置,使点A的对应点A 1落在直线x y 33=上,再将△A 1BO 1绕点A 1顺时针旋转到△A 1B 1O 2的位置,使点O 1的对应点O 2落在直线x y 33=上,依次进行下去…,若点A 的坐标是(0,1),点B 的坐标是(3,1),则点A 8的横坐标是 。

OBAC(第9题图) (第11题图) (第12题图)三、解答题(本大题共3小题,满分40分)13、(本题共12分) 如图,在△ABC 中,∠C=900,以AB 上一点O 为圆心,OA 长为半径的圆与BC 相切于点D ,分别交AC 、AB 于点E 、F 。

(1)若AC=6,AB=10,求⊙O 的半径;(2)连接OE 、ED 、DF 、EF ,若四边形BDEF 是平行四边形,试判断四边形OFDE 的形状,并说明理由。

AEC DF BO14、(本题共14分) (1)已知:△ABC 是等腰三角形,其底边是BC ,点D 在线段AB 上,E是直线BC 上一点,且∠DEC=∠DCE ,若∠A=600(如图①),求证:EB=AD ;(2)若将(1)中的“点D 在线段AB 上”改为“点D 在线段AB 的延长线上”,其它条件不变(如图②),(1)的结论是否成立,并说明理由;(3)若将(1)中的“若∠A=600”改为“若∠A=900”,其它条件不变,则ADEB 的值是多少?(直接写出结论,不要求写解答过程)15、(本题共14分)在平面直角坐标系中,抛物线y=ax 2-x+3(a≠0)交x 轴于A 、B 两点,交y 轴于点C ,且对称轴为直线x=-2。

(1)求该抛物线的解析式及顶点D 的坐标;(2)若点P(0,t)是y 轴上的一个动点,请进行如下探究:探究一:如图1,设△PAD 的面积为S ,令W=t•S ,当0<t <4时,W 是否有最大值?如果有,求出W 的最大值和此时t 的值;如果没有,说明理由;探究二:如图2,是否存在以P 、A 、D 为顶点的三角形与Rt △AOC 相似?如果存在,求点P 的坐标;如果不存在,请说明理由。

2017年自主招生数学试题参考答案一、选择题(本大题共6小题,每小题5分,共30分,在每小题给出的四个选项中,只有一个选项是正确的)1、C2、D3、A4、A5、D6、B 二、填空题(本大题共6小题,每小题5分,共30分)7、21<k <1; 8、-4或6; 9、2或2.5或1.4; 10、m >-6且m ≠-4; 11、2; 12、636 。

三、解答题(本大题共3小题,满分40分) 13、解:(1)连接OD ,设⊙O 的半径为r ,∵BC 切⊙O 于点D ,∴OD ⊥BC ,∵∠C=90°,∴OD ∥AC ,∴△OBD ∽△ABC ,∴,即,解得r=,∴⊙O 的半径为;(2)四边形OFDE 是菱形,∵四边形BDEF 是平行四边形,∴∠DEF=∠B , ∵∠DEF=∠DOB ,∴∠B=∠DOB ,∵∠ODB=90°,∴∠DOB+∠B=90°,∴∠DOB=60°,∵DE ∥AB ,∴∠ODE=60°, ∵OD=OE ,∴△ODE 是等边三角形,∴OD=DE ,∵OD=OF ,∴DE=OF , ∴四边形OFDE 是平行四边形,∵OE=OF ,∴平行四边形OFDE 是菱形。

14、(1)证明:作DF ∥BC 交AC 于F ,如图1所示: 则∠ADF=∠ABC ,∠AFD=∠ACB ,∠FDC=∠DCE ,∵△ABC 是等腰三角形,∠A=600,∴△ABC 是等边三角形,∴∠ABC=∠ACB=600,∴∠DBE=1200,∠ADF=∠AFD=600=∠A ,∴△ADF 是等边三角形,∠DFC=1200,∴AD=DF , ∵∠DEC=∠DCE ,∴∠FDC=∠DEC ,ED=CD , 在△DBE 和△CFD 中,由∠DEC=∠FDC ,∠DBE=∠DFC=1200,ED=CD ,∴△DBE ≌△CFD(AAS),∴EB=DF ,∴EB=AD ; (2)EB=AD 成立;理由如下:作DF ∥BC 交AC 的延长线于F ,如图2所示:同(1)得:AD=DF ,∠FDC=∠ECD ,∠FDC=∠DEC ,ED=CD ,又∵∠DBE=∠DFC=600,∴在△DBE 和△CFD 中,由∠DEC=∠FDC ,∠DBE=∠DFC ,ED=CD , ∴△DBE ≌△CFD(AAS),∴EB=DF ,∴EB=AD ;(3)ADEB=2;理由如下: 作DF ∥BC 交AC 于F ,如图3所示:同(1)得:△DBE ≌△CFD(AAS),∴EB=DF , ∵△ABC 是等腰直角三角形,DF ∥BC , ∴△ADF 是等腰直角三角形,∴DF=2AD ,∴ADDF =2,∴AD EB=2.15、解:(1)∵抛物线的对称轴为直线,∴,∴, ∴,∴;(2)探究一:当时,W 有最大值, ∵抛物线交x 轴于A 、B 两点, 交y 轴于点C ,∴, ∴, 当时,作轴于M ,则,∵, ∴,∵,∴∴当时,W 有最大值,, 探究二:存在,分三种情况: ①当时,作轴于E ,则,∴∴, ∴∵轴,轴, ∴,∴,∴ ∴,,此时,又因为,∴,∴,∴,∴当时,存在点P1,使,此时P1点的坐标为(0,2);②当时,则,∴,∴,∵,∴,∴与不相似,此时点P2不存在;③当时,以AD为直径作,则的半径,圆心O1到y轴的距离,∵,∴与y轴相离,不存在点P3,使,∴综上所述,只存在一点使与相似。

相关文档
最新文档