与名师对话2021届 高三文科数学 第一轮复习资料 第二章 第九节 函数与方程
2021版高考数学一轮复习第一部分基础与考点过关第二章函数与导数学案20210807214
2021版高考数学一轮复习第一部分基础与考点过关第二章函数与导数学案20210807214第1课时函数及其表示(对应学生用书(文)、(理)9~11页)① 本节是函数部分的起始部分,以考查函数概念、三要素及表示法为主,同时考查学生在实际问题中的建模能力.②本节内容曾以多种题型显现在高考试题中,要求相对较低,但专门重要,专门是函数的解析式仍会是2021年高考的重要题型.① 明白得函数的概念,了解构成函数的要素.②在实际情境中,会依照不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数.③了解简单的分段函数,并能简单应用.1. (必修1P26练习3改编)下列对应关系中________是函数.(填序号)① A=R+,B=R,关于任意的x∈A,x→x的算术平方根;② A={1,2,3,4,5},B={0,2,4,6,8},关于任意的x∈A,x→2x;③ x→-12x,x∈R;④ x→y,其中y=|x|,x∈R,y∈R;⑤ x→y,其中y为不大于x的最大整数,x∈R,y∈Z.答案:①③④⑤解析:①③④⑤均符合函数的定义,②关于集合A中的元素5,在集合B中找不到元素与之对应.2. (必修1P26练习4改编)下列各组函数中,表示同一函数的是__________.(填序号)① y=x+1和y=x2-1x-1;② y=x0和y=1;③ f(x)=x2和g(x)=(x+1)2;④ f(x)=(x)2x和g(x)=x(x)2.答案:④解析:只有④表示同一函数,①与②中定义域不同,③是对应法则不同.3. (必修1P31习题1改编)设函数f(x)=41-x.若f(a)=2,则实数a=__________.答案:-1解析:由题意可知,f(a)=41-a=2,解得a=-1.4. (必修1P31习题8改编)已知函数f(x)由下表给出,则f(3)=__________.x 1 2 3 4f(x) -3 -2 -4 -1答案:-4解析:由表中函数值得f(3)=-4.5. (必修1P36习题3改编)已知函数f(x)在[-1,2]上的图象如图所示,则f(x)的解析式为____________.答案:f(x)=⎩⎪⎨⎪⎧x +1,-1≤x≤0,-12x ,0<x ≤2解析:观看图象,知此函数是分段函数,同时在每段上均是一次函数,利用待定系数法求出解析式.当-1≤x≤0时,f(x)=x +1;当0<x≤2时,f(x)=-x2.∴ f(x)=⎩⎪⎨⎪⎧x +1,-1≤x≤0,-12x ,0<x ≤2.1. 函数的概念(1) 函数的定义一样地,设A ,B 是两个非空的数集,假如按照某种对应法则f ,关于集合A 中的每一个元素x ,在集合B 中都有唯独的一个元素y 和它对应,如此的对应叫做从A 到B 的一个函数,通常记为y =f(x),x ∈A .(2) 函数的定义域、值域在函数y =f(x),x ∈A 中,所有的输入值x 组成的集合A 叫做函数y =f(x)的定义域;若A 是函数y =f(x)的定义域,则关于A 中的每一个x ,都有一个输出值y 与之对应.我们将所有输出值y 组成的集合称为函数的值域.(3) 函数的要素函数的构成要素:定义域、对应法则、值域.由于值域是由定义域和对应法则决定的,因此,假如两个函数的定义域和对应法则完全一致,我们就称这两个函数为相同的函数或同一函数.这是判定两函数相等的依据.2. 函数的表示方法表示函数的常用方法有列表法、解析法(解析式法)、图象法. 3. 分段函数在定义域内不同部分上,有不同的解析式,像如此的函数通常叫做分段函数.分段函数的定义域是各段自变量取值集合的并集,值域是各段上函数值集合的并集.4. 映射的概念一样地,设A ,B 是两个非空的集合,假如按某一个确定的对应关系f ,使关于集合A 中的任意一个元素x ,在集合B 中都有唯独确定的元素y 与之对应,那么就称对应f :A→B 为从集合A 到集合B 的一个映射.函数是映射,但映射不一定是函数.[备课札记], 1 函数的概念), 1) 下列集合A 到集合B 的对应关系中,是从集合A 到集合B 的映射的有________.(填序号)① A =R ,B ={y|y>0},f :x→y=|x|;② A ={x|x≥2,x ∈N *},B ={y|y≥0,y ∈N },f :x→y=x 2-2x +2; ③ A ={x|x>0},B ={y|y∈R },f :x→y=±x ;④ A ={α|α是三角形的内角},B ={y|y∈R },对应法则:y =tan α;⑤ A ={m|m∈Z },B ={y|y =0或y =1},对应法则:y =⎩⎪⎨⎪⎧0,m =2n ,n ∈Z ,1,m =2n +1,n ∈Z ;答案:②⑤解析:① 集合A 中的零元素,在集合B 中没有相应的对应元素. ② 按照对应法则,满足题设条件. ③ 一对多,不满足映射的概念.④ ∵ π2∈A ,但π2的正切值不存在,∴ 此对应不是从集合A 到集合B 的映射.⑤ ∵ 集合A 中的每一个元素在集合B 中都有唯独的元素与之对应,∴ 此对应是从集合A 到集合B 的映射.点评:判定对应是否为映射,即看A 中元素是否满足“每元有象”和“且象唯独”;但要注意:① A 中不同元素可有相同的象,即承诺多对一,但不承诺一对多;② B 中元素可无原象,即B 中元素能够有剩余.备选变式(教师专享)已知映射f :A→B,其中A =B =R ,对应法则f :x→y=-x 2+2x ,关于实数k∈B,在集合A 中不存在元素与之对应,则k 的取值范畴是________.答案:(1,+∞)解析:由题意知,方程-x 2+2x =k 无实数根,即x 2-2x +k =0无实数根.∴ Δ=4(1-k)<0,∴ k>1时满足题意., 2 函数的解析式), 2) 求下列各题中的函数f(x)的解析式. (1) 已知f(x +2)=x +4x ,求f(x);(2) 已知f ⎝ ⎛⎭⎪⎫2x +1=lg x ,求f(x); (3) 已知f(x)是二次函数,且满足f(0)=1,f(x +1)=f(x)+2x ,求f(x).解:(1) (解法1)设t =x +2(t≥2),则x =t -2,即x =(t -2)2,∴ f(t)=(t -2)2+4(t -2)=t 2-4,∴ f(x)=x 2-4(x≥2).(解法2)∵ f(x +2)=(x +2)2-4,∴ f(x)=x 2-4(x≥2).(2) 设t =2x +1,则x =2t -1,∴ f(t)=lg 2t -1,即f(x)=lg 2x -1(x>1).(3) ∵ f(x)是二次函数,∴ 设f(x)=ax 2+bx +c(a≠0). 由f(0)=1,得c =1.由f(x +1)=f(x)+2x ,得a(x +1)2+b(x +1)+1=ax 2+bx +1+2x , 整理,得(2a -2)x +a +b =0,由恒等式原理,知⎩⎪⎨⎪⎧2a -2=0,a +b =0⇒⎩⎪⎨⎪⎧a =1,b =-1,∴ f(x)=x 2-x +1. 变式训练依照下列条件分别求出f(x)的解析式. (1) f(x +1)=x +2x ;(2) 二次函数f(x)满足f(0)=3,f(x +2)-f(x)=4x +2.解:(1) 令t =x +1,∴ t ≥1,x =(t -1)2.则f(t)=(t -1)2+2(t -1)=t 2-1,即f(x)=x 2-1,x ∈[1,+∞).(2) 设f(x)=ax 2+bx +c(a≠0),∴ f(x +2)=a(x +2)2+b(x +2)+c , 则f(x +2)-f(x)=4ax +4a +2b =4x +2. ∴ ⎩⎪⎨⎪⎧4a =4,4a +2b =2.∴ ⎩⎪⎨⎪⎧a =1,b =-1. 又f(0)=3,∴ c =3,∴ f(x)=x 2-x +3., 3 分段函数), 3) 如图所示,在边长为4的正方形ABCD 上有一点P ,沿着折线BCDA由B 点(起点)向A 点(终点)移动.设P 点移动的路程为x ,△ABP 的面积为y =f(x).(1) 求△ABP 的面积与P 移动的路程间的函数解析式; (2) 作出函数的图象,并依照图象求y 的最大值.解:(1) 那个函数的定义域为(0,12),当0<x≤4时,S =f(x)=12·4·x =2x ;当4<x≤8时,S =f(x)=8;当8<x <12时,S =f(x)=12·4·(12-x)=24-2x.∴ 函数解析式为f(x)=⎩⎪⎨⎪⎧2x ,x ∈(0,4],8,x ∈(4,8],24-2x ,x ∈(8,12).(2) 其图象如图所示,由图知f max (x)=8.变式训练已知函数f(x)=⎩⎪⎨⎪⎧x 2+1,x ≥0,1,x<0,则满足不等式f(1-x 2)>f(2x)的x 的取值范畴是____________.答案:(-1,2-1)解析:函数f(x)=⎩⎪⎨⎪⎧x 2+1,x ≥0,1,x<0的图象如图所示:f(1-x 2)>f(2x)⇔⎩⎪⎨⎪⎧1-x 2>2x ,1-x 2>0,解得-1<x<2-1. 备选变式(教师专享)关于实数a 和b ,定义运算“*”:a*b =⎩⎪⎨⎪⎧a ,a -b≤1,b ,a -b>1,设函数f(x)=(x +2)*(3-x),x ∈R .若方程f(x)=c 恰有两个不同的解,则实数c 的取值范畴是________.答案:(-∞,2)解析:令x +2-(3-x)≤1,求得x≤1,则f(x)=(x +2)*(3-x)=⎩⎪⎨⎪⎧x +2,x ≤1,3-x ,x>1,画出函数f(x)的图象,如图,方程f(x)=c 恰有两个不同的解,即是函数f(x)的图象与直线y =c 有2个交点,数形结合可得c<2.专门提醒:本题要紧考查分段函数的解析式、函数的零点以及新定义问题,属于难题.已知函数零点个数(方程根的个数)求参数取值范畴的三种常用的方法:(1) 直截了当法:直截了当依照题设条件构建关于参数的不等式,再通过解不等式确定参数范畴;(2) 分离参数法:将参数分离,转化成求函数值域问题加以解决;(3) 数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解.一是转化为两个函数y =g(x),y =h(x)的图象的交点个数问题,画出两个函数的图象,其交点的个数确实是函数零点的个数,二是转化为y =a ,y =g(x)的图象的交点个数问题.1. (2020·溧阳中学周练)若x∈R ,则f(x)与g(x)表示同一函数的是________.(填序号)① f(x)=x ,g(x)=x 2;② f(x)=1,g(x)=(x -1)0;③ f(x)=(x )2x ,g(x)=x(x )2; ④ f(x)=x 2-9x +3,g(x)=x -3.答案:③解析:①中,g(x)=x 2=|x|≠x;②中,g(x)=(x -1)0=1(x≠1);③中,f(x)=(x )2x=1(x>0),g(x)=1(x>0);④中,f(x)=x 2-9x +3=x -3(x≠-3).因此填③.2. 二次函数y =f(x)=ax 2+bx +c(x∈R )的部分对应值如下表:x -4 -3 -2 -1 0 1 2 3 y 6 0 -4 -6 -6 -4 0 6则关于x 答案:[-3,2] 解析:由表格数据作出二次函数的草图,结合数据与图象即可发觉不等式f(x)≤0的解集为[-3,2].3. 为了保证信息安全传输必须使用加密方式,有一种方式其加密、解密原理如下:明文――→加密密文――→发送密文――→解密明文已知加密为y =a x-2(x 为明文、y 为密文),假如明文“3”通过加密后得到密文为“6”,再发送,同意方通过解密得到明文“3”,若同意方接到密文为“14”,则原发的明文是________.答案:44. 有一个有进水管和出水管的容器,每单位时刻进水量是一定的,设从某时刻开始,5分钟内只进水,不出水,在随后的15分钟内既进水,又出水,得到时刻x 与容器中的水量y 之间的关系如图所示.再随后,只放水不进水,水放完为止,则这段时刻内(即x≥20),y 与x 之间的函数关系是____________________.答案:y =-3x +95⎝⎛⎭⎪⎫20≤x≤953 解析:设进水速度为a 1 L/min ,出水速度为a 2 L/min ,则由题意得⎩⎪⎨⎪⎧5a 1=20,5a 1+15(a 1-a 2)=35,解得⎩⎪⎨⎪⎧a 1=4,a 2=3,则y =35-3(x -20),得y =-3x +95.当水放完,时刻为x =953 min ,又知x ≥20,故解析式为y =-3x +95⎝⎛⎭⎪⎫20≤x≤953. 5. 设函数f(x)=⎩⎪⎨⎪⎧2x -4,x >0,-x -3,x <0.若f(a)>f(1),则实数a 的取值范畴是____________.答案:(-∞,-1)∪(1,+∞)解析:由f(1)=-2,则f(a)>-2.当a>0时,有2a-4>-2,则a>1;当a <0时,-a -3>-2,则a <-1.因此实数a 的取值范畴是(-∞,-1)∪(1,+∞).6. 函数f(x)=⎩⎪⎨⎪⎧x 2-x ,x >0,12-|12+x|,x ≤0.若关于x 的方程f(x)=kx -k 至少有两个不相等的实数根,则实数k 的取值范畴是____________.答案:⎣⎢⎡⎭⎪⎫-13,1∪(1,+∞) 解析:如图,作出函数图象,y 2=kx -k 过定点(1,0),临界点⎝ ⎛⎭⎪⎫-12,12和(1,0)连线的斜率为-13,又f′(1)=1,由图象知实数k 的取值范畴是⎣⎢⎡⎭⎪⎫-13,1∪(1,+∞)., 3. 分段函数意义明白得不清致误)典例 已知实数a≠0,函数f(x)=⎩⎪⎨⎪⎧2x +a ,x<1,-x -2a ,x ≥1.若f(1-a)=f(1+a),则a 的值为__________.易错分析:(1) 误以为1-a<1,1+a>1,没有对a 进行讨论直截了当代入求解;(2) 求解过程中不记得检验所求结果是否符合要求致误.解析:当a>0时,1-a<1,1+a>1,由f(1-a)=f(1+a)可得2-2a +a =-1-a -2a ,解得a =-32,不合题意;当a<0时,1-a>1,1+a<1,由f(1-a)=f(1+a)可得-1+a -2a =2+2a +a ,解得a =-34.答案:-34专门提醒:(1) 注意分类讨论思想在求函数值中的应用,关于分段函数的求值问题,若自变量的取值范畴不确定,应分情形求解;(2) 检验所求自变量的值或范畴是否符合题意,求解过程中,求出的参数的值或范畴并不一定符合题意,因此要检验结果是否符合要求.1. 已知集合A ={a ,b ,c},B ={1,2},那么可建立从A 到B 的映射个数是______,从B 到A 的映射个数是______.答案:8 9解析:依题意,建立从A 到B 的映射,即集合A 中的每一个元素在集合B 中找到对应元素,从而从A 到B 的映射个数为23=8,从B 到A 的映射个数是32=9.因此填写答案依次为:8;9.2. 已知一个函数的解析式为y =x 2,它的值域为{1,4},如此的函数有________个. 答案:9解析:列举法:定义域可能是{1,2}、{-1,2}、{1,-2}、{-1,-2}、{1,-2,2}、{-1,-2,2}、{-1,1,2}、{-1,1,-2}、{-1,1,-2,2}.3. 若函数f(x)=xax +b,f(2)=1,又方程f(x)=x 有唯独解,则f(x)=________.答案:2x x+2解析:由f(2)=1得2 2a+b=1,即2a+b=2;由f(x)=x得xax+b=x,变形得x⎝⎛⎭⎪⎫1ax+b-1=0,解此方程得x=0或x=1-ba,∵方程有唯独解,∴1-ba=0,解得b=1,代入2a+b=2得a=12,∴ f(x)=2xx+2.4. 如图,动点P从单位正方形ABCD顶点A开始,顺次经B,C,D绕边界一周,当x表示点P的行程,y表示PA之长时,求y关于x的解析式,并求f⎝⎛⎭⎪⎫52的值.解:当P在AB上运动时,y=x(0≤x≤1);当P在BC上运动时,y=1+(x-1)2 (1<x≤2);当P在CD上运动时,y=1+(3-x)2(2<x≤3);当P在DA上运动时,y=4-x(3<x≤4). ∴ y=⎩⎪⎨⎪⎧x(0≤x≤1),1+(x-1)2(1<x≤2),1+(3-x)2(2<x≤3),4-x(3<x≤4),∴ f⎝⎛⎭⎪⎫52=52.5. 已知函数f(x)=⎩⎪⎨⎪⎧12x+1,x≤0,-(x-1)2,x>0,则不等式f(x)≥-1的解集是________.答案:[-4,2]解析:f(x)≥-1,等价于⎩⎪⎨⎪⎧x≤0,12x+1≥-1或⎩⎪⎨⎪⎧x>0,-(x-1)2≥-1,解之得-4≤x≤0或0<x≤2,即原不等式的解集是[-4,2].6. (2020·溧阳中学周测)设函数f(x)定义如下表,数列{x n}(n∈N*)满足x1=1,且关于任意的正整数n,均有x n+1=f(x n),求x2 018的值.x 1 2 3 4f(x) 2 3 4 1解:因为x1=1,因此x2=f(x1)=f(1)=2,x3=f(x2)=f(2)=3,x4=f(x3)=f(3)=4,x5=f(x4)=f(4)=1,x6=f(x5)=f(1)=2,…,不难看出数列{x n}是以4为周期的周期数列,因此x2 018=x4×504+2=x2=2.点评:通过观看一些专门的情形,来获得深刻的认识,是探究数学问题的一种重要方法,应注意学习,同时函数的表示也能够利用列表法来给出.1. 函数是专门的映射,其专门性在于集合A与B只能是非空数集,即函数是非空数集A到非空数集B的映射;而映射不一定是函数.从A到B的一个映射,A,B若不是数集,则那个映射不是函数.2. 函数是一种专门的对应,要检验给定的两个变量是否具有函数关系,只需要检验:① 定义域和对应法则是否给出;②依照给出的对应法则,自变量在定义域中的每一个值,是否都有唯独确定的函数值.3. 函数解析式的求解方法通常有:配凑法、换元法、待定系数法及消去法.用换元法求解时要专门注意新元的范畴,即所求函数的定义域;而消去法表达的方程思想,即依照已知条件再构造出另外一个等式组成方程组,通过解方程组求出f(x).第2课时函数的定义域和值域(对应学生用书(文)、(理)12~14页)①函数的定义域是研究一切函数的源头,求各种类型函数的定义域是高考中每年必考的试题.②函数的值域和最值问题也是高考的必考内容,一样可不能对值域和最值问题单独命题,要紧是结合其他知识综合考查,专门是应用题;再确实是求变量的取值范畴,要紧是考查求值域和最值的差不多方法.① 会求简单函数的定义域.②把握求函数值域与最值的常用方法.③能运用求值域与最值的常用方法解决实际问题.1. (必修1P25例2改编)函数f(x)=x-2+1x-3的定义域是____________________.答案:[2,3)∪(3,+∞)解析:要使函数有意义,x需满足⎩⎪⎨⎪⎧x-2≥0,x-3≠0,解得x≥2且x≠3.2. (必修1P26练习6(2)(4)改编)函数y=1x2-1+x+1的定义域为__________________.答案:(-1,1)∪(1,+∞)解析:依题意得⎩⎪⎨⎪⎧x2-1≠0,x+1≥0,∴ x>-1且x≠1,故函数的定义域为(-1,1)∪(1,+∞).3. 函数y=1x2+2的值域为________.答案:⎝⎛⎦⎥⎤0,12解析:∵ x2+2≥2,∴ 0<1x2+2≤12.∴ 0<y≤12.4. 若x有意义,则函数y=x2+3x-5的值域是________.答案:[-5,+∞)解析:∵ x有意义,∴ x≥0.又y=x2+3x-5=⎝⎛⎭⎪⎫x+322-94-5,函数y=x2+3x-5在[0,+∞)上单调递增,∴当x=0时,y min=-5.∴ 函数y=x2+3x-5的值域是[-5,+∞).5. 函数y=2x-1的定义域是(-∞,1)∪[2,5),则其值域是____________________.答案:(-∞,0)∪⎝⎛⎦⎥⎤12,2解析:∵ x∈(-∞,1)∪[2,5),∴ x -1∈(-∞,0)∪[1,4).当x -1∈(-∞,0)时,2x -1∈(-∞,0);当x -1∈[1,4)时,2x -1∈⎝ ⎛⎦⎥⎤12,2.1. 函数的定义域(1) 函数的定义域确实是使函数表达式有意义的所有的输入值x 组成的集合.在解决函数问题时,必须树立起“定义域优先”的观念.(2) 求定义域的步骤① 写出使函数有意义的不等式(组). ② 解不等式(组).③ 写出函数定义域(注意用区间或集合的形式写出). (3) 常见差不多初等函数的定义域 ① 分式函数中分母不等于零.② 偶次根式函数中被开方式大于或等于0. ③ 一次函数、二次函数的定义域为R .④ y =a x,y =sin x ,y =cos x 的定义域均为R .⑤ y =tan x 的定义域为{x|x≠kπ+π2,k ∈Z }.⑥ 函数f(x)=x 0的定义域为{x|x≠0}. 2. 函数的值域(1) 在函数y =f(x)中,与定义域中输入值x 对应的y 的值叫做输出值,所有输出值y 组成的集合叫做函数的值域.(2) 差不多初等函数的值域① y =kx +b(k≠0)的值域是R .② y =ax 2+bx +c(a≠0)的值域:当a>0时,值域为[4ac -b 24a,+∞);当a<0时,值域为(-∞,4ac -b24a ].③ y =kx (k≠0)的值域为{y|y≠0}.④ y =a x(a>0且a≠1)的值域是(0,+∞). ⑤ y =log a x(a>0且a≠1)的值域是R .⑥ y =sin x ,y =cos x 的值域是[-1,1]. ⑦ y =tan x 的值域是R . 3. 函数的最值一样地,设y =f(x)的定义域为A. (1) 假如存在x 0∈A ,使得关于任意的x∈A,都有f (x)≤f(x 0),那么称f(x 0)为y =f(x)的最大值,记为y max =f(x 0).(2) 假如存在x 0∈A ,使得关于任意的x∈A,都有f(x)≥f(x 0),那么称f(x 0)为y =f(x)的最小值,记为y min =f(x 0).4. 值域与最值的关系若函数y =f(x)的最大值为b ,最小值为a ,那么y =f(x)的值域必定是数集[a ,b]的子集,若f(x)能够取到[a ,b]中的一切值,那么其值域确实是[a ,b].5. 复合函数假如函数y =f(u)(u∈A),u =g(x)(x∈B,u ∈A),则y =f(g(x))叫做由函数y =f(u)(u∈A),u =g(x)(x∈B,u ∈A)合成的复合函数,u 叫做中间变量.y =f(u)(u∈A),叫做该复合函数的外层函数,而u =g(x)(x∈B)叫做该复合函数的内层函数.注意:由u =g(x)(x∈B)求出的值域一定是A.即内层函数的值域是外层函数的定义域.6. 函数解析式的表示离不开函数的定义域.[备课札记], 1 求函数的定义域), 1) (1) 已知函数f(x)的定义域是[0,2],则函数g(x)=f ⎝ ⎛⎭⎪⎫x +12+f ⎝ ⎛⎭⎪⎫x -12的定义域是__________. (2) 函数y =ln (x +1)-x 2-3x +4的定义域为____________. 答案:(1) ⎣⎢⎡⎦⎥⎤12,32 (2) (-1,1) 解析:(1) 因为函数f(x)的定义域是[0,2],因此函数g(x)=f ⎝ ⎛⎭⎪⎫x +12+f ⎝ ⎛⎭⎪⎫x -12中的自变量x 需要满足:⎩⎪⎨⎪⎧0≤x+12≤2,0≤x -12≤2,解得⎩⎪⎨⎪⎧-12≤x≤32,12≤x ≤52.因此12≤x ≤32,因此函数g(x)的定义域是⎣⎢⎡⎦⎥⎤12,32. (2) 由⎩⎪⎨⎪⎧x +1>0,-x 2-3x +4>0,得-1<x<1.变式训练(1) 求函数y =(x +1)|x|-x的定义域;(2) 函数f(x)的定义域是[-1,1],求f(log 2x)的定义域.解:(1) 由⎩⎪⎨⎪⎧x +1≠0,|x|-x>0,得⎩⎪⎨⎪⎧x≠-1,x<0,∴ 函数定义域是(-∞,-1)∪(-1,0). (2) ∵ 函数f(x)的定义域是[-1,1],∴ -1≤log 2x ≤1,∴ 12≤x ≤2.故f(log 2x)的定义域为⎣⎢⎡⎦⎥⎤12,2. 备选变式(教师专享) 求下列函数的定义域:(1) y =lg (2-x )12+x -x2+(x -1)0; (2) y =lg sin x +64-x 2. 解:(1) 由题意得⎩⎪⎨⎪⎧2-x>0,12+x -x 2>0x -1≠0,,解得⎩⎪⎨⎪⎧x<2,-3<x<4x≠1,,∴ -3<x<2且x≠1,∴ 所求函数的定义域为{x|-3<x<2且x≠1}.(2) 由题意得⎩⎪⎨⎪⎧sin x>0,64-x 2≥0,解得⎩⎪⎨⎪⎧2k π<x<2k π+π,k ∈Z ,-8≤x≤8. ∴ -2π<x<-π或0<x<π或2π<x ≤8.∴ 所求函数的定义域为(-2π,-π)∪(0,π)∪(2π,8]., 2 求函数的值域), 2) 求下列函数的值域: (1) f(x)=x -1-2x ;(2) y =1-x21+x 2;(3) y =2x -1x +1,x ∈[3,5];(4) y =x 2-4x +5x -1(x>1).解:(1) (解法1:换元法)令1-2x =t ,则t ≥0且x =1-t 22,因此f(t)=1-t22-t=-12(t +1)2+1.由于t≥0,因此f(t)≤12,故函数的值域是⎝⎛⎦⎥⎤-∞,12.(解法2:单调性法)容易判定f(x)为增函数,而其定义域应满足1-2x≥0,即x≤12,因此f(x)≤f ⎝ ⎛⎭⎪⎫12=12,即函数的值域是⎝ ⎛⎦⎥⎤-∞,12.(2) y =1-x 21+x 2=21+x2-1.因为1+x 2≥1,因此0<21+x2≤2.因此-1<21+x2-1≤1,即y∈(-1,1].因此函数的值域为(-1,1].(3) (解法1)由y =2x -1x +1=2-3x +1,结合图象知,函数在[3,5]上是增函数,因此y max=32,y min =54,故所求函数的值域是⎣⎢⎡⎦⎥⎤54,32. (解法2)由y =2x -1x +1,得x =1+y2-y.因为x∈[3,5],因此3≤1+y 2-y ≤5,解得54≤y ≤32,即所求函数的值域是⎣⎢⎡⎦⎥⎤54,32. (4) (差不多不等式法)令t =x -1,则x =t +1(t>0),因此y =(t +1)2-4(t +1)+5t =t 2-2t +2t =t +2t-2(t>0).因为t +2t≥2t ·2t=22,当且仅当t =2,即x =2+1时,等号成立, 故所求函数的值域为[22-2,+∞). 备选变式(教师专享) 求下列函数的值域:(1) f(x)=1-x +x +3;(2) g(x)=x 2-9x 2-7x +12;(3) y =log 3x +log x 3-1.解:(1) 由⎩⎪⎨⎪⎧1-x≥0,x +3≥0,解得-3≤x≤1.∴ f(x)=1-x +x +3的定义域是[-3,1].令y =f(x),则y≥0,∴ y 2=4+2(1-x )(x +3),即y 2=4+2-(x +1)2+4(-3≤x≤1).令t(x)=-(x +1)2+4(-3≤x≤1).∵ x ∈[-3,1],由t(-3)=0,t(-1)=4,t(1)=0,知0≤t(x)≤4,从而y 2∈[4,8],即y∈[2,22], ∴ 函数f(x)的值域是[2,22].(2) g(x)=x 2-9x 2-7x +12=(x +3)(x -3)(x -3)(x -4)=x +3x -4=1+7x -4(x≠3且x≠4).∵ x ≠3且x≠4,∴ g (x)≠1且g(x)≠-6.∴ 函数g(x)的值域是(-∞,-6)∪(-6,1)∪(1,+∞). (3) 函数的定义域为{x|x>0且x≠1}. 当x>1时,log 3x>0,log x 3>0,y =log 3x +log x 3-1≥2log 3x ·log x 3-1=1; 当0<x<1时,log 3x<0,log x 3<0,y =log 3x +log x 3-1=-[(-log 3x)+(-log x 3)]-1≤-2-1=-3.∴ 函数的值域是(-∞,-3]∪[1,+∞)., 3 函数值和最值的应用)●典型示例, 3) 已知函数f(x)=x 2+2x +ax,x ∈[1,+∞).(1) 当a =12时,求函数f(x)的最小值;(2) 若对任意x∈[1,+∞),f(x)>0恒成立,试求实数a 的取值范畴.【思维导图】 函数恒成立→不等式恒成立→分类讨论→新函数的最值→a 的取值范畴【规范解答】 解:(1) 当a =12时,f(x)=x +12x+2.∵ f(x)在区间[1,+∞)上为增函数,∴ f(x)在区间[1,+∞)上的最小值为f(1)=72.(2) (解法1)在区间[1,+∞)上,f(x)=x 2+2x +a x>0恒成立,∴ x 2+2x +a>0恒成立.设y =x 2+2x +a ,x ∈[1,+∞).∵ y =x 2+2x +a =(x +1)2+a -1在[1,+∞)上单调递增,∴ 当x =1时,y min =3+a ,当且仅当y min =3+a>0时,函数f(x)>0恒成立,故a>-3.(解法2)f(x)=x +ax+2,x ∈[1,+∞).当a≥0时,函数f(x)的值恒为正;当a<0时,函数f(x)在[1,+∞)上单调递增,故当x =1时,f(x)min =3+a , 当且仅当f(x)min =3+a>0时,函数f(x)>0恒成立,故a>-3. 【精要点评】 解法1运用转化思想把f(x)>0转化为关于x 的二次不等式;解法2运用了分类讨论思想.●总结归纳(1) 求函数的值域此类问题要紧利用求函数值域的常用方法:配方法、分离变量法、单调性法、图象法、换元法、不等式法等.不管用什么方法求函数的值域,都必须考虑函数的定义域.(2) 函数的综合性题目此类问题要紧考查函数值域、单调性、奇偶性等一些差不多知识相结合的题目.此类问题要求具备较高的数学思维能力、综合分析能力以及较强的运算能力.(3) 运用函数的值域解决实际问题此类问题的关键是把实际问题转化为函数问题,从而利用所学知识去解决.此类题目要求具有较强的分析能力和数学建模能力.●题组练透1. 函数y =x 2+x +1的值域是____________.答案:⎣⎢⎡⎭⎪⎫32,+∞解析:∵ x 2+x +1=⎝ ⎛⎭⎪⎫x +122+34≥34,∴ y ≥32,∴ 值域为⎣⎢⎡⎭⎪⎫32,+∞.2. 函数y =x +1-2x 的值域是____________.答案:(-∞,1]解析:令1-2x =t(t≥0),则x =1-t 22.∵ y =1-t 22+t =-12(t -1)2+1≤1,∴ 值域为(-∞,1].3. 已知函数f(x)=x 2+4ax +2a +6.(1) 若f(x)的值域是[0,+∞),求a 的值;(2) 若函数f(x)≥0恒成立,求g(a)=2-a|a -1|的值域.解:(1) ∵ f(x)的值域是[0,+∞),即f(x)min =0,∴ 4(2a +6)-(4a )24=0,∴a =-1或32.(2) 若函数f(x)≥0恒成立,则Δ=(4a)2-4(2a +6)≤0,即2a 2-a -3≤0,∴ -1≤a≤32,∴ g(a)=2-a|a -1|=⎩⎪⎨⎪⎧a 2-a +2,-1≤a≤1,-a 2+a +2,1<a ≤32.当-1≤a≤1时,g(a)=a 2-a +2=⎝ ⎛⎭⎪⎫a -122+74,∴ g (a)∈⎣⎢⎡⎦⎥⎤74,4;当1<a≤32时,g(a)=-a 2+a +2=-(a -12)2+94,∴ g (a)∈⎣⎢⎡⎭⎪⎫54,2.∴ 函数g(a)=2-a|a -1|的值域是⎣⎢⎡⎦⎥⎤54,4. 4. 已知函数y =mx 2-6mx +m +8的定义域为R . (1) 求实数m 的取值范畴;(2) 当m 变化时,若y 的最小值为f(m),求函数f(m)的值域.解:(1) 当m =0时,x ∈R ;当m≠0时,m >0且Δ≤0,解得0<m≤1.故实数m 的取值范畴是0≤m≤1.(2) 当m =0时,f(0)=22;当0<m≤1时,因为y =m (x -3)2+8-8m ,故f(m)=8-8m(0<m≤1).因此f(m)=8-8m (0≤m≤1),其值域为[0,22].1. 函数f(x)=ln (2x -x 2)x -1的定义域为____________.答案:(0,1)∪(1,2)解析:由⎩⎪⎨⎪⎧2x -x 2>0,x -1≠0得0<x <2且x≠1.2. 已知函数y =x 2-2x +a 的定义域为R ,值域为[0,+∞),则实数a 的取值集合为________.答案:{1}解析: x 2-2x +a≥0恒成立,且最小值为0,则满足Δ=0,即4-4a =0,则a =1.3. 函数f(x)=⎩⎪⎨⎪⎧2x ,x ≤0,-x 2+1,x >0的值域为____________. 答案:(-∞,1]解析:可由函数的图象得到函数f(x)的值域为(-∞,1].4. 若函数f(x)=⎩⎪⎨⎪⎧-x +6,x ≤2,3+log a x ,x>2(a>0且a≠1)的值域是[4,+∞),则实数a 的取值范畴是________.答案:(1,2]解析:当x≤2时,-x +6≥4,要使得函数f(x)的值域为[4,+∞),只需当x >2时,f(x)=3+log a x 的值域在区间[4,+∞)内即可,故a >1,因此3+log a 2≥4,解得1<a≤2,因此实数a 的取值范畴是(1,2].5. 已知函数f(x)=a x+b(a>0且a≠1)的定义域和值域差不多上[-1,0],则a +b =________.答案:-32解析:当a>1时,⎩⎪⎨⎪⎧a -1+b =-1,a 0+b =0,该方程组无解;当0<a<1时,⎩⎪⎨⎪⎧a -1+b =0,a 0+b =-1,解得⎩⎪⎨⎪⎧b =-2,a =12,则a +b =12-2=-32. 6. (2020·南阳一中二模)设g(x)=mx 2+x +1.(1) 若g(x)的定义域为R ,求m 的取值范畴;(2) 若g(x)的值域为[0,+∞),求m 的取值范畴.解:令f(x)=mx 2+x +1.(1) 由题意知f(x)≥0在R 上恒成立.① 当m =0时, f(x)=x +1≥0在R 上不恒成立;② 当m≠0时,要满足题意必有⎩⎪⎨⎪⎧m>0,Δ=1-4m≤0,∴ m ≥14.综上所述,m 的取值范畴是⎣⎢⎡⎭⎪⎫14,+∞. (2) 由题意知,f(x)=mx 2+x +1能取到一切大于或等于0的实数. ① 当m =0时,f(x)=x +1能够取到一切大于或等于0的实数;② 当m≠0时,要满足题意必有⎩⎪⎨⎪⎧m>0,Δ=1-4m≥0,∴ 0<m ≤14.综上所述,m 的取值范畴是⎣⎢⎡⎦⎥⎤0,14. 点睛:本题要紧考查函数的定义域与值域、分类讨论思想,属于中档题.分类讨论思想是解决高中数学问题的一种重要思想方法,是中学数学四种重要的数学思想之一,专门在解决含参数的问题时发挥着奇特功效,大大提高了解题能力与速度.运用这种方法的关键是将题设条件研究透,如此才能快速找准突破点. 充分利用分类讨论思想方法能够使问题条理清晰,进而顺利解答,期望同学们能够熟练把握并能应用于解题当中.1. 函数f(x)=|x -2|-1log 2(x -1)的定义域为__________.答案:[3,+∞)解析:由题意知⎩⎪⎨⎪⎧log 2(x -1)≠0,x -1>0,|x -2|-1≥0,解得x≥3.2. (2020·溧阳中学周练)函数f(x)=1xln(x 2-3x +2+-x 2-3x +4)的定义域为____________.答案:[-4,0)∪(0,1)解析:函数的定义域必须满足条件:⎩⎪⎨⎪⎧x≠0,x 2-3x+2≥0,-x 2-3x +4≥0,x 2-3x +2+-x 2-3x +4>0,解得x∈[-4,0)∪(0,1).3. 当x =__________________时,函数f(x)=(x -a 1)2+(x -a 2)2+…+(x -a n )2取得最小值.答案:a 1+a 2+…+a nn解析:f(x)=nx 2-2(a 1+a 2+…+a n )x +(a 21+a 22+…+a 2n ),当x =a 1+a 2+…+a nn时,f(x)取得最小值.4. 设函数f(x)=⎩⎪⎨⎪⎧2x+a ,x>2,x +a 2,x ≤2.若f(x)的值域为R ,则实数a 的取值范畴是____________________.答案:(-∞,-1]∪[2,+∞)解析:f(x)的值域为R ,则22+a≤2+a 2,实数a 的取值范畴是(-∞,-1]∪[2,+∞).5. 已知函数f(x)=4|x|+2-1的定义域是[a ,b](a ,b ∈Z ),值域是[0,1],则满足条件的整数数对(a ,b)共有______个.答案:5解析:由0≤4|x|+2-1≤1,即1≤4|x|+2≤2,解得0≤|x|≤2,满足条件的整数数对有(-2,0),(-2,1),(-2,2),(0,2),(-1,2)共5个.6. 求函数y =(x +3)2+16+(x -5)2+4的值域.解:函数y =f(x)的几何意义:平面内一点P(x ,0)到两点A(-3,4)和B(5,2)的距离之和确实是y 的值.由平面几何知识,找出点B 关于x 轴的对称点B′(5,-2).连结AB′,交x 轴于一点P ,点P 即为所求的最小值点,y min =AB′=82+62=10.因此函数的值域为[10,+∞).1. 函数的定义域是函数的灵魂,它决定了函数的值域,同时它是研究函数性质的基础,因此,我们一定要树立函数定义域优先的意识.2. 函数的值域常常化归为求函数的最值问题,要重视函数单调性在确定函数最值过程中的作用.3. 求函数值域的常用方法:图象法、配方法、换元法、差不多不等式法、单调性法、分离常数法、导数法等.理论上一切函数求值域或最值均可考虑“导数法”,但在具体的解题中要与初等方法紧密配合.[备课札记]第1课时函数的单调性(对应学生用书(文)、(理)15~17页)① 函数单调性的概念是函数性质中最重要的概念,仍将会是2021年高考的重点,专门要注意函数单调性的应用.②常见题型:a.求函数的单调区间;b.用定义判定函数在所给区间上的单调性;c.强化应用单调性解题的意识,如比较式子的大小,求函数最值,已知函数的单调性求参数的取值范畴等.① 明白得函数单调性的定义,并利用函数单调性的定义判定或证明函数在给定区间上的单调性.②明白得函数的单调性、最大(小)值的几何意义,会用单调性方法求函数的最大(小)值.③能利用函数的单调性解决其他一些综合性问题.1. 下列函数中,在(-∞,0)上为减函数的是________.(填序号)① y=1x2;② y=x3;③ y=x0;④ y=x2.答案:④解析:∵ 函数y=x2的图象是开口向上的抛物线,对称轴为y轴,∴函数y=x2在(-∞,0)上为减函数.2. (必修1P44习题2改编)(1) 函数f(x)=2x+1的单调增区间是__________;函数g(x)=-3x+2在区间(-∞,+∞)上为________函数.(2) 函数f(x)=x2-2x-1的单调增区间为________,单调减区间为________.(3) 函数f(x)=-1x-1在区间(-∞,0)上是单调________函数.(4) 函数y=1x在区间[1,3]上是单调________函数.答案:(1) (-∞,+∞)单调减(2) [1,+∞)(-∞,1](3) 增(4) 减3. (必修1P54本章测试6改编)若函数y=5x2+mx+4在区间(-∞,-1]上是减函数,在区间[-1,+∞)上是增函数,则m=__________.答案:10解析:函数y=5x2+mx+4的图象为开口向上,对称轴是x=-m10的抛物线,要使函数y=5x2+mx+4在区间(-∞,-1]上是减函数,在区间[-1,+∞)上是增函数,则-m10=-1,∴ m=10.4. 已知函数f(x)=ax+1x+2在区间(-2,+∞)上为增函数,则实数a的取值范畴是__________.答案:⎝⎛⎭⎪⎫12,+∞解析:f(x)=ax +1x +2=a +1-2a x +2,由复合函数的增减性可知,g(x)=1-2ax +2在(-2,+∞)上为增函数,∴ 1-2a<0,∴ a>12.5. 设函数f(x)满足:对任意的x 1,x 2∈R 都有(x 1-x 2)·[f(x 1)-f(x 2)]>0,则f(-3)与f(-π)的大小关系是____________.答案:f(-3)>f(-π)解析:由(x 1-x 2)[f(x 1)-f(x 2)]>0,可知函数f(x)为增函数,又-3>-π,∴ f(-3)>f(-π).1. 增函数和减函数一样地,设函数y =f(x)的定义域为I :假如关于定义域I 内某个区间D 上的任意两个值x 1,x 2,当x 1<x 2时,都有f(x 1)<f(x 2),那么就说y =f(x)在区间D 上是单调增函数.(如图①所示)假如关于定义域I 内某个区间D 上的任意两个值x 1,x 2,当x 1<x 2时,都有f(x 1)>f(x 2),那么就说y =f(x)在区间D 上是单调减函数.(如图②所示)2. 单调性与单调区间假如一个函数在某个区间D 上是单调增函数或是单调减函数,那么就说那个函数在那个区间D 上具有单调性(区间D 称为单调区间).3. 判定函数单调性的方法 (1) 定义法利用定义严格判定. (2) 利用函数的运算性质假如f(x),g(x)为增函数,则① f(x)+g(x)为增函数;② 1f (x )为减函数(f(x)>0);③ f (x )为增函数(f(x)≥0);④ f(x)·g(x)为增函数(f(x)>0,g(x)>0);⑤ -f(x)为减函数.(3) 利用复合函数关系判定单调性 法则是“同增异减”,即两个简单函数的单调性相同,则这两个函数的复合函数为增函数;若两个简单函数的单调性相反,则这两个函数的复合函数为减函数.(4) 图象法奇函数在关于原点对称的两个区间上具有相同的单调性;偶函数在关于原点对称的两个区间上具有相反的单调性.4. 函数的单调性的证明方法 已知函数解析式,证明其在某区间上的单调性一样只能严格用定义(或导数)来证明.要紧步骤:(1) 设元; (2) 作差(商);(3) 变形(变形要完全,一样通过因式分解、配方等方法,直到符号的判定专门明显); (4) 判定符号; (5) 结论.[备课札记], 1 函数单调性的判定), 1) 判定函数f(x)=axx 2-1(a≠0)在区间(-1,1)上的单调性. 分析:此函数既不是常见函数,也不是由常见函数通过简单的复合而成,因此要判定其在区间(-1,1)上的单调性,只能用函数单调性的定义.解:任取x 1,x 2∈(-1,1),且x 1<x 2,则f(x 1)-f(x 2)=a (x 1x 2+1)(x 2-x 1)(x 21-1)(x 22-1). 由-1<x 1<x 2<1得(x 1x 2+1)(x 2-x 1)(x 21-1)(x 22-1)>0,∴ 当a>0时,f(x 1)-f(x 2)>0,f(x 1)>f(x 2),∴ f(x)在(-1,1)上单调递减;同理,当a<0时,f(x)在(-1,1)上单调递增.备选变式(教师专享)证明函数f(x)=x1+x2在区间[1,+∞)上是减函数.证明:设任取x 1,x 2∈[1,+∞),且x 1<x 2.f(x 1)-f(x 2)=x 11+x 21-x 21+x 22=x 1(1+x 22)-x 2(1+x 21)(1+x 21)(1+x 22)=(x 1-x 2)(1-x 1x 2)(1+x 21)(1+x 22). ∵ x 1,x 2∈[1,+∞),且x 1<x 2, ∴ x 1-x 2<0,1-x 1x 2<0.又(1+x 21)(1+x 22)>0,∴ f(x 1)-f(x 2)>0,即f(x 1)>f(x 2).∴ f(x)=x1+x2在[1,+∞)上为减函数.点评:亦可证明函数f(x)=x 1+x 2在区间[-1,1]上是增函数.由于函数f(x)=x1+x2是定义在R 上的奇函数,故利用单调性与奇偶性可作出函数f(x)=x1+x2的图象.同时也可得到函数f(x)=x 1+x 2在[-1,1]上的值域为⎣⎢⎡⎦⎥⎤-12,12. , 2 求函数的单调区间), 2) 求下列函数的单调区间:(1) y =x 2-3|x|+14;(2) y =⎝ ⎛⎭⎪⎫13x 2-2x ; (3) y =log 2(6+x -2x 2).解:(1) ∵ y=x 2-3|x|+14=⎩⎪⎨⎪⎧⎝⎛⎭⎪⎫x -322-2(x≥0),⎝ ⎛⎭⎪⎫x +322-2(x<0),∴ 由图象可知,y 在⎝ ⎛⎦⎥⎤-∞,-32,⎣⎢⎡⎦⎥⎤0,32上为减函数,在⎣⎢⎡⎦⎥⎤-32,0,⎣⎢⎡⎭⎪⎫32,+∞上为增函数.(2) 易得定义域为R ,令u =x 2-2x =(x -1)2-1,则u 在(-∞,1]上为减函数,在[1,+∞)上为增函数.又y =⎝ ⎛⎭⎪⎫13u 在(-∞,+∞)上为减函数,∴ y =⎝ ⎛⎭⎪⎫13x 2-2x 的单调增区间为(-∞,1],单调减区间为[1,+∞).(3) 由题意得6+x -2x 2>0,化简得2x 2-x -6<0,即(2x +3)(x -2)<0,解得-32<x<2,即定义域为⎝ ⎛⎭⎪⎫-32,2.设u =6+x -2x 2=-2⎝ ⎛⎭⎪⎫x -142+498,易知其在⎝ ⎛⎦⎥⎤-32,14上为增函数,在⎣⎢⎡⎭⎪⎫14,2上为减函数,又y =log 2u 在定义域上为增函数,∴ y =log 2(6+x -2x 2)的单调增区间为⎝ ⎛⎦⎥⎤-32,14,单调减区间为⎣⎢⎡⎭⎪⎫14,2. 点评:已知函数的解析式,讨论或求函数的单调区间,应第一确定函数的定义域,然后再依照复合函数单调性的判定规则在函数的定义域内求内层函数相应的单调区间.变式训练函数y =-(x -3)|x|的单调递增区间是____________.答案:⎣⎢⎡⎦⎥⎤0,32 解析:y =⎩⎪⎨⎪⎧-(x -3)x ,x ≥0,(x -3)x ,x<0.画图象如图所示,可知单调递增区间为⎣⎢⎡⎦⎥⎤0,32.备选变式(教师专享)作出函数f(x)=|x 2-1|+x 的图象,并依照函数图象写出函数的单调区间.解:当x≥1或x≤-1时, y =x 2+x -1=⎝ ⎛⎭⎪⎫x +122-54;当-1<x<1时, y =-x 2+x +1=-⎝ ⎛⎭⎪⎫x -122+54.函数图象如图,由函数图象可知函数单调减区间为(-∞,-1],⎣⎢⎡⎦⎥⎤12,1;单调增区间为⎣⎢⎡⎦⎥⎤-1,12,[1,+∞). ,。
2021-2022年高考数学大一轮复习精品讲义 第二章 函数、导数及其应用(含解析)
2021-2022年高考数学大一轮复习精品讲义第二章函数、导数及其应用(含解析)对应学生用书P12基础盘查一函数的有关概念(一)循纲忆知1.了解构成函数的要素,会求一些简单函数的定义域和值域,了解映射的概念.2.在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数.(二)小题查验1.判断正误(1)函数是建立在其定义域到值域的映射( )(2)函数y=f(x)的图象与直线x=a最多有2个交点( )(3)函数f(x)=x2-2x与g(t)=t2-2t是同一函数( )(4)若两个函数的定义域与值域相同,则这两个函数是相等函数( )(5)若A=R,B={x|x>0},f:x→y=|x|,其对应是从A到B的映射( )答案:(1)√(2)×(3)√(4)×(5)×2.(人教A版教材复习题改编)函数f(x)=x-4|x|-5的定义域是________________.答案:[4,5)∪(5,+∞)3.已知函数y =f (n ),满足f (1)=2,且f (n +1)=3f (n ),n ∈N *,则f (4)=________.答案:54基础盘查二 分段函数(一)循纲忆知了解简单的分段函数,并能简单应用(函数分段不超过三段).(二)小题查验1.判断正误(1)函数f (x )=⎩⎨⎧ 1,x ≥0,-1,x <0,是分段函数( )(2)若f (x )=⎩⎨⎧ 1-x 2,-1≤x ≤1,x +1,x >1或x <-1,则f (-x )=⎩⎨⎧ 1-x 2,-1≤x ≤1,-x +1,x >1或x <-1( )答案:(1)√ (2)√ 2.分段函数的定义域等于各段函数的定义域的________,其值域等于各段函数的值域的________.答案:并集 并集3.已知函数f (x )=⎩⎨⎧ 4x ,x ≤1,-x ,x >1,若f (x )=2,则x =________.答案:12对应学生用书P12[必备知识]1.函数的定义设A 、B 为两个非空的数集,如果按照某种确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一的数f (x )和它对应,那么就称f :A →B 为从集合A 到集合B 的一个函数,记作y =f (x ).2.函数的三要素[题组练透]1.下列四组函数中,表示同一函数的是( )A .y =x -1与y =x -12B .y =x -1与y =x -1x -1C .y =4lg x 与y =2lg x 2D .y =lg x -2与y =lg x100答案:D2.下列所给图象是函数图象的个数为( )A.1 B.2C.3 D.4解析:选B ①中当x>0时,每一个x的值对应两个不同的y值,因此不是函数图象,②中当x=x0时,y的值有两个,因此不是函数图象,③④中每一个x的值对应唯一的y值,因此是函数图象,故选B.[类题通法]两个函数是否是同一个函数,取决于它们的定义域和对应关系是否相同,只有当两个函数的定义域和对应关系完全相同时,才表示同一函数.另外,函数的自变量习惯上用x表示,但也可用其他字母表示,如:f(x)=2x-1,g(t)=2t -1,h(m)=2m-1均表示同一函数.考点二函数的定义域问题(常考常新型考点——多角探明)[多角探明]函数的定义域是使函数有意义的自变量取值的集合,它是函数不可缺少的组成部分,研究函数问题必须树立“定义域优先”的观念.求给定函数的定义域往往转化为解不等式(组)的问题,在解不等式(组)取交集时可借助于数轴.常见的命题角度有:(1)求给定函数解析式的定义域;(2)求抽象函数的定义域;(3)已知定义域确定参数问题.角度一:求给定函数解析式的定义域1.函数f (x )=1-|x -1|a x -1(a >0且a ≠1)的定义域为________. 解析:由⎩⎨⎧ 1-|x -1|≥0,a x -1≠0⇒⎩⎨⎧ 0≤x ≤2,x ≠0⇒0<x ≤2,故所求函数的定义域为(0,2].答案:(0,2]2.(xx·安徽高考)函数y =ln ⎝⎛⎭⎪⎫1+1x +1-x 2的定义域为________. 解析:要使函数有意义,需⎩⎨⎧ 1+1x >0,1-x 2≥0,即⎩⎨⎧ x +1x >0,x 2≤1,即⎩⎨⎧ x <-1或x >0,-1≤x ≤1,解得0<x ≤1,所以定义域为(0,1].答案:(0,1] 角度二:求抽象函数的定义域3.若函数y =f (x )的定义域是[1,2 014],则函数g (x )=f x +1x -1的定义域是( )A .[0,2 013]B .[0,1)∪(1,2 013]C .(1,2 014]D .[-1,1)∪(1,2 013]解析:选B 令t =x +1,则由已知函数的定义域为[1,2 014],可知1≤t ≤2 014.要使函数f (x +1)有意义,则有1≤x +1≤2 014,解得0≤x ≤2 013,故函数f (x +1)的定义域为[0,2 013].所以使函数g (x )有意义的条件是⎩⎨⎧ 0≤x ≤2 013,x -1≠0,解得0≤x <1或1<x ≤2013.故函数g (x )的定义域为[0,1)∪(1,2 013].故选B.4.若函数f (x 2+1)的定义域为[-1,1],则f (lg x )的定义域为( )A .[-1,1]B .[1,2]C .[10,100]D .[0,lg 2]解析:选C 因为f (x 2+1)的定义域为[-1,1],则-1≤x ≤1,故0≤x 2≤1,所以1≤x 2+1≤2.因为f (x 2+1)与f (lg x )是同一个对应法则,所以1≤lg x ≤2,即10≤x ≤100,所以函数f (lg x )的定义域为[10,100].故选C.角度三:已知定义域确定参数问题5.(xx·合肥模拟)若函数f (x )= 2x 2+2ax -a -1的定义域为R ,则a 的取值范围为________.解析:函数f (x )的定义域为R ,所以2x 2+2ax -a -1≥0对x ∈R 恒成立,即2x 2+2ax -a ≥20,x 2+2ax -a ≥0恒成立,因此有Δ=(2a )2+4a ≤0,解得-1≤a ≤0.答案:[-1,0][类题通法]简单函数定义域的类型及求法(1)已知函数的解析式,则构造使解析式有意义的不等式(组)求解.(2)对实际问题:由实际意义及使解析式有意义构成的不等式(组)求解.(3)已知f (x )的定义域是[a ,b ],求f (g (x ))的定义域,是指满足a ≤g (x )≤b 的x 的取值范围,而已知f (g (x ))的定义域是[a ,b ],指的是x ∈[a ,b ].考点三 求函数的解析式(重点保分型考点——师生共研)[必备知识](1)函数的解析式是表示函数的一种方法,对于不是y =f (x )的形式,可根据题目的条件转化为该形式.(2)求函数的解析式时,一定要注意函数定义域的变化,特别是利用换元法求出的解析式,不注明定义域往往导致错误.[典题例析](1)已知f ⎝⎛⎭⎪⎫x +1x =x 2+1x 2,求f (x )的解析式; (2)已知f ⎝ ⎛⎭⎪⎫2x +1=lg x ,求f (x )的解析式;(3)已知f (x )是二次函数,且f (0)=0,f (x +1)=f (x )+x +1,求f (x );(4)已知函数f (x )的定义域为(0,+∞),且f (x )=2f ⎝ ⎛⎭⎪⎫1x ·x -1,求f (x ). 解:(1)由于f ⎝⎛⎭⎪⎫x +1x =x 2+1x 2=⎝ ⎛⎭⎪⎫x +1x 2-2, 所以f (x )=x 2-2,x ≥2或x ≤-2,故f (x )的解析式是f (x )=x 2-2,x ≥2或x ≤-2.(2)令2x +1=t 得x =2t -1,代入得f (t )=lg 2t -1, 又x >0,所以t >1,故f (x )的解析式是f (x )=lg2x -1,x >1. (3)设f (x )=ax 2+bx +c (a ≠0),由f (0)=0,知c =0,f (x )=ax 2+bx ,又由f (x +1)=f (x )+x +1,得a (x +1)2+b (x +1)=ax 2+bx +x +1,即ax 2+(2a +b )x +a +b =ax 2+(b +1)x +1,所以⎩⎨⎧ 2a +b =b +1,a +b =1,解得a =b =12. 所以f (x )=12x 2+12x ,x ∈R . (4)在f (x )=2f ⎝ ⎛⎭⎪⎫1x x -1中,用1x 代替x ,得f ⎝ ⎛⎭⎪⎫1x =2f (x )1x-1, 将f ⎝ ⎛⎭⎪⎫1x =2f x x -1代入f (x )=2f ⎝ ⎛⎭⎪⎫1x x -1中, 可求得f (x )=23x +13. [类题通法]求函数解析式常用的方法(1)配凑法:由已知条件f (g (x ))=F (x ),可将F (x )改写成关于g (x )的表达式,然后以x 替代g (x ),便得f (x )的表达式;(2)换元法:已知复合函数f (g (x ))的解析式,可用换元法,此时要注意新元的取值范围;(3)待定系数法:若已知函数的类型(如一次函数、二次函数)可用待定系数法;(4)消去法:已知关于f (x )与f ⎝ ⎛⎭⎪⎫1x 或f (-x )的表达式,可根据已知条件再构造出另外一个等式组成方程组,通过解方程求出f (x ).[演练冲关]1.已知f (x +1)=x +2x ,求f (x )的解析式.解:法一:设t =x +1,则x =(t -1)2,t ≥1,代入原式有f (t )=(t -1)2+2(t -1)=t 2-2t +1+2t -2=t 2-1.故f (x )=x 2-1,x ≥1.法二:∵x +2x =(x )2+2x +1-1=(x +1)2-1,∴f (x +1)=(x +1)2-1,x +1≥1,即f (x )=x 2-1,x ≥1.2.设y =f (x )是二次函数,方程f (x )=0有两个相等实根,且f ′(x )=2x +2,求f (x )的解析式.解:设f (x )=ax 2+bx +c (a ≠0),则f ′(x )=2ax +b =2x +2,∴a =1,b =2,f (x )=x 2+2x +c .又∵方程f (x )=0有两个相等实根,∴Δ=4-4c =0,解得c =1.故f (x )=x 2+2x +1.考点四 分段函数(重点保分型考点——师生共研)[必备知识]若函数在其定义域内,对于定义域内的不同取值区间,有着不同的对应关系,这样的函数通常叫做分段函数.[提醒] 分段函数虽然由几部分组成,但它表示的是一个函数.[典题例析]1.已知f (x )=⎩⎨⎧ log 3x ,x >0,a x +b ,x ≤0,且f (0)=2,f (-1)=3,则f (f (-3))=( )A .-2B .2C .3D .-3解析:选B 由题意得f (0)=a 0+b =1+b =2, 解得b =1.f (-1)=a -1+b =a -1+1=3,解得a =12.故f (-3)=⎝ ⎛⎭⎪⎫12-3+1=9,从而f (f (-3))=f (9)=log 39=2.2.已知实数a ≠0,函数f (x )=⎩⎪⎨⎪⎧2x +a ,x <1,-x -2a ,x ≥1.若f (1-a )=f (1+a ),则a 的值为________.解析:当a >0时,1-a <1,1+a >1. 这时f (1-a )=2(1-a )+a =2-a ,f (1+a )=-(1+a )-2a =-1-3a .由f (1-a )=f (1+a )得2-a =-1-3a ,解得a =-32.不合题意,舍去.当a <0时,1-a >1,1+a <1,这时f (1-a )=-(1-a )-2a =-1-a ,f (1+a )=2(1+a )+a =2+3a .由f (1-a )=f (1+a )得-1-a =2+3a ,解得a =-34.综上可知,a 的值为-34.答案:-34[类题通法]分段函数“两种”题型的求解策略 (1)根据分段函数解析式求函数值首先确定自变量的值属于哪个区间,其次选定相应的解析式代入求解. (2)已知函数值或函数值范围求自变量的值或范围应根据每一段的解析式分别求解,但要注意检验所求自变量的值或范围是否符合相应段的自变量的取值范围.[提醒] 当分段函数的自变量范围不确定时,应分类讨论.[演练冲关](xx·榆林二模)已知f (x )=⎩⎪⎨⎪⎧12x +1, x ≤0,-x -12, x >0,使f (x )≥-1成立的x 的取值范围是________.解析:由题意知⎩⎪⎨⎪⎧x ≤0,12x +1≥-1或⎩⎪⎨⎪⎧x >0,-x -12≥-1,解得-4≤x ≤0或0<x ≤2,故x 的取值范围是[-4,2]. 答案:[-4,2]对应B 本课时跟踪检测四一、选择题1.(xx·大同调研)设全集为R ,函数f (x )=ln 1+x1-x 的定义域为M ,则∁R M =( )A .(-1,1)B .(-∞,-1)∪(1,+∞)C .(-∞,-1]∪[1,+∞)D .[-1,1]解析:选C 由f (x )=ln 1+x 1-x ,得到1+x1-x >0,即(x +1)(x -1)<0,解得-1<x <1,即M =(-1,1), ∵全集为R ,∴∁R M =(-∞,-1]∪[1,+∞).2.已知函数f (x )=⎩⎪⎨⎪⎧x 2+1,x ≤1,2x+ax ,x >1,若f (f (1))=4a ,则实数a 等于( ) A.12 B.43 C .2D .4解析:选C ∵f (1)=2,∴f (f (1))=f (2)=4+2a =4a ,解得a =2.故选C.3.若二次函数g (x )满足g (1)=1,g (-1)=5,且图象过原点,则g (x )的解析式为( ) A .g (x )=2x 2-3xB .g (x )=3x 2-2xC .g (x )=3x 2+2xD .g (x )=-3x 2-2x解析:选B (待定系数法)设g (x )=ax 2+bx +c (a ≠0),∵g (1)=1,g (-1)=5,且图象过原点,∴⎩⎪⎨⎪⎧a +b +c =1,a -b +c =5,c =0,解得⎩⎪⎨⎪⎧a =3,b =-2,c =0,∴g (x )=3x 2-2x ,选B.4.函数f (x )=10+9x -x2lg x -1的定义域为( )A .[1,10]B .[1,2)∪(2,10]C .(1,10]D .(1,2)∪(2,10]解析:选D 要使函数f (x )有意义, 则x 需满足⎩⎪⎨⎪⎧10+9x -x 2≥0,x -1>0,lg x -1≠0,即⎩⎪⎨⎪⎧-1≤x ≤10,x >1,x ≠2,所以不等式组的解集为(1,2)∪(2,10].故选D.5.根据统计,一名工人组装第x 件某产品所用的时间(单位:分钟)为f (x )=⎩⎪⎨⎪⎧cx,x <A ,c A ,x ≥A ,(A ,c 为常数).已知工人组装第4件产品用时30分钟,组装第A 件产品用时15分钟,那么c 和A 的值分别是( )A .75,25B .75,16C .60,25D .60,16解析:选D 因为组装第A 件产品用时15分钟, 所以cA=15,① 所以必有4<A ,且c4=c2=30.② 联立①②解得c =60,A =16.6.创新题具有性质:f ⎝ ⎛⎭⎪⎫1x =-f (x )的函数,我们称为满足“倒负”变换的函数,下列函数:①y =x -1x ;②y =x +1x ;③y =⎩⎪⎨⎪⎧x ,0<x <1,0,x =1,-1x ,x >1.其中满足“倒负”变换的函数是( ) A .①② B .①③ C .②③D .①解析:选B 对于①,f (x )=x -1x ,f ⎝ ⎛⎭⎪⎫1x =1x -x =-f (x ),满足;对于②,f ⎝ ⎛⎭⎪⎫1x =1x+x=f (x ),不满足;对于③,f ⎝ ⎛⎭⎪⎫1x =⎩⎪⎨⎪⎧1x ,0<1x <1,0,1x =1,-x ,1x >1,即f ⎝ ⎛⎭⎪⎫1x =⎩⎪⎨⎪⎧1x ,x >1,0,x =1,-x ,0<x <1,故f ⎝ ⎛⎭⎪⎫1x =-f (x ),满足.综上可知,满足“倒负”变换的函数是①③.二、填空题7.(xx·太原月考)已知y =f (2x)的定义域为[-1,1],则y =f (log 2x )的定义域是________.解析:∵函数f (2x)的定义域为[-1,1], ∴-1≤x ≤1,∴12≤2x≤2.∴在函数y =f (log 2x )中,12≤log 2x ≤2,∴2≤x ≤4.答案:[2,4]8.设函数f (x )满足f (x )=1+f ⎝ ⎛⎭⎪⎫12log 2x ,则f (2)=________. 解析:由已知得f ⎝ ⎛⎭⎪⎫12=1-f ⎝ ⎛⎭⎪⎫12·log 22,则f ⎝ ⎛⎭⎪⎫12=12,则f (x )=1+12·log 2x ,故f (2)=1+12·log 22=32. 答案:329.已知函数y =f (x 2-1)的定义域为[-3,3],则函数y =f (x )的定义域为________. 解析:∵y =f (x 2-1)的定义域为[-3,3],∴x ∈[-3,3],x 2-1∈[-1,2], ∴y =f (x )的定义域为[-1,2]. 答案:[-1,2]10.(xx·岳阳模拟)已知奇函数f (x )=⎩⎪⎨⎪⎧3x+a ,x ≥0,g x ,x <0,则f (-2)的值为________.解析:因为函数f (x )为奇函数,所以f (0)=30+a =0,即a =-1.所以f (-2)=g (-2)=-f (2)=-(32-1)=-8.答案:-8 三、解答题11.(1)如果f ⎝ ⎛⎭⎪⎫1x =x 1-x,则当x ≠0且x ≠1时,求f (x )的解析式;(2)已知f (x )是一次函数,且满足3f (x +1)-2f (x -1)=2x +17,求f (x )的解析式. 解:(1)令1x =t ,得x =1t(t ≠0且t ≠1),∴f (t )=1t 1-1t=1t -1,∴f (x )=1x -1(x ≠0且x ≠1).(2)设f (x )=ax +b (a ≠0),则3f (x +1)-2f (x -1)=3ax +3a +3b -2ax +2a -2b =ax +5a +b , 即ax +5a +b =2x +17不论x 为何值都成立, ∴⎩⎪⎨⎪⎧a =2,b +5a =17,解得⎩⎪⎨⎪⎧a =2,b =7,∴f (x )=2x +7.12.如图1是某公共汽车线路收支差额y 元与乘客量x 的图象.(1)试说明图1上点A 、点B 以及射线AB 上的点的实际意义;(2)由于目前本条线路亏损,公司有关人员提出了两种扭亏为赢的建议,如图2、3所示.你能根据图象,说明这两种建议的意义吗?(3)此问题中直线斜率的实际意义是什么? (4)图1、图2、图3中的票价分别是多少元?解:(1)点A 表示无人乘车时收支差额为-20元,点B 表示有10人乘车时收支差额为0元,线段AB 上的点表示亏损,AB 延长线上的点表示赢利.(2)图2的建议是降低成本,票价不变,图3的建议是提高票价. (3)斜率表示票价.(4)图1、2中的票价是2元.图3中的票价是4元.第二节函数的单调性与最值对应学生用书P15基础盘查一 函数的单调性 (一)循纲忆知1.理解函数的单调性及其几何意义.2.会运用基本初等函数的图象分析函数的性质. (二)小题查验 1.判断正误(1)所有的函数在其定义域上都具有单调性( ) (2)函数f (x )为R 上的减函数,则f (-3)>f (3)( )(3)在增函数与减函数的定义中,可以把“任意两个自变量”改为“存在两个自变量”( )(4)函数y =1x的单调递减区间是(-∞,0)∪(0,+∞)( )(5)函数y =f (x )在[1,+∞)上是增函数,则函数的单调递增区间是[1,+∞)( ) 答案:(1)× (2)√ (3)× (4)× (5)×2.(人教A 版教材习题改编)函数y =x 2-2x (x ∈[2,4])的增区间为________. 答案:[2,4]3.若函数y =(2k +1)x +b 在(-∞,+∞)上是减函数,则k 的取值范围是________. 答案:⎝ ⎛⎭⎪⎫-∞,-12 基础盘查二 函数的最值 (一)循纲忆知1.理解函数最大值、最小值及其几何意义. 2.会运用函数图象理解和研究函数的最值. (二)小题查验 1.判断正误(1)所有的单调函数都有最值( ) (2)函数y =1x 在[1,3]上的最小值为13( )答案:(1)× (2)√2.(人教A 版教材例题改编)已知函数f (x )=2x -1(x ∈[2,6]),则函数的最大值为________.答案:2对应学生用书P15考点一 函数单调性的判断(基础送分型考点——自主练透)[必备知识]1.定义法设函数f (x )的定义域为I ,区间D ⊆I ,如果对于任意x 1,x 2∈D ,且x 1<x 2,则有: (1)f (x )在区间D 上是增函数⇔f (x 1)<f (x 2); (2)f (x )在区间D 上是减函数⇔f (x 1)>f (x 2). 2.导数法在某个区间(a ,b )内,如果f ′(x )>0,那么函数y =f (x )在这个区间上单调递增;如果f ′(x )<0,那么函数y =f (x )在这个区间上单调递减.[题组练透]1.下列四个函数中,在(0,+∞)上为增函数的是( ) A .f (x )=3-x B .f (x )=x 2-3x C .f (x )=-1x +1D .f (x )=-|x |解析:选C 当x >0时,f (x )=3-x 为减函数;当x ∈⎝ ⎛⎭⎪⎫0,32时,f (x )=x 2-3x 为减函数,当x ∈⎝ ⎛⎭⎪⎫32,+∞时,f (x )=x 2-3x 为增函数;当x ∈(0,+∞)时,f (x )=-1x +1为增函数; 当x ∈(0,+∞)时,f (x )=-|x |为减函数.故选C. 2.判断函数g (x )=-2xx -1在(1,+∞)上的单调性.解:任取x 1,x 2∈(1,+∞),且x 1<x 2,则g (x 1)-g (x 2)=-2x 1x 1-1--2x 2x 2-1=2x 1-x 2x 1-1x 2-1,因为1<x 1<x 2,所以x 1-x 2<0,(x 1-1)(x 2-1)>0,因此g (x 1)-g (x 2)<0,即g (x 1)<g (x 2). 故g (x )在(1,+∞)上是增函数.[类题通法]对于给出具体解析式的函数,证明其在某区间上的单调性有两种方法: (1)可以结合定义(基本步骤为取值、作差或作商、变形、判断)求解.(2)可导函数则可以利用导数判断.但是,对于抽象函数单调性的证明,只能采用定义法进行判断.考点二 求函数的单调区间(重点保分型考点——师生共研)[必备知识]单调区间的定义若函数y =f (x )在区间D 上是增函数或减函数,则称函数y =f (x )在这一区间上具有(严格的)单调性,区间D 叫做y =f (x )的单调区间.[典题例析]求下列函数的单调区间: (1)y =-x 2+2|x |+1; (2)y =log 12(x 2-3x +2).解:(1)由于y =⎩⎪⎨⎪⎧-x 2+2x +1,x ≥0,-x 2-2x +1,x <0,即y =⎩⎪⎨⎪⎧-x -12+2,x ≥0,-x +12+2,x <0.画出函数图象如图所示,单调递增区间为(-∞,-1]和[0,1],单调递减区间为[-1,0]和[1,+∞).(2)令u =x 2-3x +2,则原函数可以看作y =log u 与u =x 2-3x +2的复合函数.令u =x 2-3x +2>0,则x <1或x >2.∴函数y =log (x 2-3x +2)的定义域为(-∞,1)∪(2,+∞). 又u =x 2-3x +2的对称轴x =32,且开口向上.∴u =x 2-3x +2在(-∞,1)上是单调减函数,在(2,+∞)上是单调增函数. 而y =log u 在(0,+∞)上是单调减函数,∴y =log(x 2-3x +2)的单调递减区间为(2,+∞),单调递增区间为(-∞,1).[类题通法]求函数的单调区间与确定单调性的方法一致(1)利用已知函数的单调性,即转化为已知函数的和、差或复合函数,求单调区间. (2)定义法:先求定义域,再利用单调性定义.(3)图象法:如果f (x )是以图象形式给出的,或者f (x )的图象易作出,可由图象的直观性写出它的单调区间.(4)导数法:利用导数取值的正负确定函数的单调区间.[提醒] 单调区间只能用区间表示,不能用集合或不等式表示;如有多个单调区间应分别写,不能用并集符号“∪”联结,也不能用“或”联结.[演练冲关]1.若将典例(1)中的函数变为“y =|-x 2+2x +1|”,则结论如何? 解:函数y =|-x 2+2x +1|的图象如图所示.由图象可知,函数y =|-x 2+2x +1|的单调递增区间为(1-2,1)和(1+2,+∞);单调递减区间为(-∞,1-2)和(1,1+2).2.设函数y =f (x )在(-∞,+∞)内有定义.对于给定的正数k ,定义函数f k (x )=⎩⎪⎨⎪⎧f x ,f x ≤k ,k ,fx >k ,取函数f (x )=2-|x |.当k =12时,求函数f k (x )的单调递增区间.解:由f (x )>12,得-1<x <1.由f (x )≤12,得x ≤-1或x ≥1.所以f (x )=⎩⎪⎨⎪⎧2-x,x ≥1,12,-1<x <1,2x,x ≤-1.故f (x )的单调递增区间为(-∞,-1).考点三 函数单调性的应用(常考常新型考点——多角探明)[必备知识]函数的最值(1)函数最大(小)值的几何意义:函数的最大值对应图象最高点的纵坐标;函数的最小值对应图象最低点的纵坐标.(2)利用函数单调性求最值的常用结论:如果函数y =f (x )在区间[a ,b ]上单调递增,在区间[b ,c ]上单调递减,则函数y =f (x ),x ∈[a ,c ]在x =b 处有最大值f (b );如果函数y =f (x )在区间[a ,b ]上单调递减,在区间[b ,c ]上单调递增,则函数y =f (x ),x ∈[a ,c ]在x =b 处有最小值f (b ).[多角探明]高考对函数单调性的考查多以选择题、填空题的形式出现,有时也应用于解答题中的某一问中.函数单调性的应用,归纳起来常见的命题角度有:(1)求函数的值域或最值;(2)比较两个函数值或两个自变量的大小; (3)解函数不等式;(4)利用单调性求参数的取值范围或值. 角度一:求函数的值域或最值 1.函数f (x )=⎩⎪⎨⎪⎧1x,x ≥1,-x 2+2,x <1的最大值为________.解析:当x ≥1时,函数f (x )=1x为减函数,所以f (x )在x =1处取得最大值,为f (1)=1;当x <1时,易知函数f (x )=-x 2+2在x =0处取得最大值,为f (0)=2.故函数f (x )的最大值为2. 答案:2角度二:比较两个函数值或两个自变量的大小 2.已知函数f (x )=log 2x +11-x,若x 1∈(1,2),x 2∈(2,+∞),则( ) A .f (x 1)<0,f (x 2)<0 B .f (x 1)<0,f (x 2)>0 C .f (x 1)>0,f (x 2)<0D .f (x 1)>0,f (x 2)>0解析:选B ∵函数f (x )=log 2x +11-x 在(1,+∞)上为增函数,且f (2)=0,∴当x 1∈(1,2)时,f (x 1)<f (2)=0, 当x 2∈(2,+∞)时,f (x 2)>f (2)=0, 即f (x 1)<0,f (x 2)>0. 角度三:解函数不等式3.f (x )是定义在(0,+∞)上的单调增函数,满足f (xy )=f (x )+f (y ),f (3)=1,当f (x )+f (x -8)≤2时,x 的取值范围是( )A .(8,+∞)B .(8,9]C .[8,9]D .(0,8)解析:选 B 2=1+1=f (3)+f (3)=f (9),由f (x )+f (x -8)≤2,可得f [x (x -8)]≤f (9),因为f (x )是定义在(0,+∞)上的增函数,所以有⎩⎪⎨⎪⎧x >0,x -8>0,x x -8≤9,解得8<x ≤9.角度四:利用单调性求参数的取值范围或值4.已知函数f (x )=⎩⎪⎨⎪⎧a -2x ,x ≥2,⎝ ⎛⎭⎪⎫12x-1,x <2满足对任意的实数x 1≠x 2,都有f x 1-f x 2x 1-x 2<0成立,则实数a 的取值范围为( )A .(-∞,2) B.⎝⎛⎦⎥⎤-∞,138 C .(-∞,2]D.⎣⎢⎡⎭⎪⎫138,2解析:选B 由题意可知,函数f (x )是R 上的减函数,于是有⎩⎪⎨⎪⎧a -2<0,a -2×2≤⎝ ⎛⎭⎪⎫122-1,由此解得a ≤138,即实数a 的取值范围是⎝⎛⎦⎥⎤-∞,138 . [类题通法]函数单调性应用问题的常见类型及解题策略(1)比较大小.比较函数值的大小,应将自变量转化到同一个单调区间内,然后利用函数的单调性解决.(2)解不等式.在求解与抽象函数有关的不等式时,往往是利用函数的单调性将“f ”符号脱掉,使其转化为具体的不等式求解.此时应特别注意函数的定义域.(3)利用单调性求参数.①视参数为已知数,依据函数的图象或单调性定义,确定函数的单调区间,与已知单调区间比较求参数;②需注意若函数在区间[a ,b ]上是单调的,则该函数在此区间的任意子集上也是单调的. (4)利用单调性求最值.应先确定函数的单调性,然后再由单调性求出最值.对应A 本课时跟踪检测五一、选择题1.(xx·北京高考)下列函数中,定义域是R 且为增函数的是( ) A .y =e -xB .y =x 3C .y =ln xD .y =|x |解析:选B 因为对数函数y =ln x 的定义域不是R ,故首先排除选项C ;因为指数函数y =e -x ,即y =⎝ ⎛⎭⎪⎫1ex ,在定义域内单调递减,故排除选项A ;对于函数y =|x |,当x ∈(-∞,0)时,函数变为y =-x ,在其定义域内单调递减,因此排除选项D ;而函数y =x 3在定义域R 上为增函数.故选B.2.函数f (x )=|x -2|x 的单调减区间是( ) A .[1,2] B .[-1,0] C .[0,2]D .[2,+∞)解析:选A 由于f (x )=|x -2|x =⎩⎪⎨⎪⎧x 2-2x ,x ≥2,-x 2+2x ,x <2.结合图象可知函数的单调减区间是[1,2].3.(xx·黑龙江牡丹江月考)设函数f (x )定义在实数集上,它的图象关于直线x =1对称,且当x ≥1时,f (x )=3x-1,则( )A .f ⎝ ⎛⎭⎪⎫13<f ⎝ ⎛⎭⎪⎫32<f ⎝ ⎛⎭⎪⎫23B .f ⎝ ⎛⎭⎪⎫23<f ⎝ ⎛⎭⎪⎫32<f ⎝ ⎛⎭⎪⎫13C .f ⎝ ⎛⎭⎪⎫23<f ⎝ ⎛⎭⎪⎫13<f ⎝ ⎛⎭⎪⎫32D .f ⎝ ⎛⎭⎪⎫32<f ⎝ ⎛⎭⎪⎫23<f ⎝ ⎛⎭⎪⎫13 解析:选B 由题设知,当x <1时,f (x )单调递减,当x ≥1时,f (x )单调递增,而x =1为对称轴,∴f ⎝ ⎛⎭⎪⎫32=f ⎝ ⎛⎭⎪⎫1+12=f ⎝ ⎛⎭⎪⎫1-12=f ⎝ ⎛⎭⎪⎫12,又13<12<23<1, ∴f ⎝ ⎛⎭⎪⎫13>f ⎝ ⎛⎭⎪⎫12>f ⎝ ⎛⎭⎪⎫23,即f ⎝ ⎛⎭⎪⎫13>f ⎝ ⎛⎭⎪⎫32>f ⎝ ⎛⎭⎪⎫23.4.创新题定义新运算⊕:当a ≥b 时,a ⊕b =a ;当a <b 时,a ⊕b =b 2,则函数f (x )=(1⊕x )x -(2⊕x ),x ∈[-2,2]的最大值等于( )A .-1B .1C .6D .12解析:选C 由已知得当-2≤x ≤1时,f (x )=x -2,当1<x ≤2时,f (x )=x 3-2.∵f (x )=x -2,f (x )=x 3-2在定义域内都为增函数. ∴f (x )的最大值为f (2)=23-2=6.5.已知函数f (x )=⎩⎪⎨⎪⎧log 2x ,x ≥1,x +c ,x <1,则“c =-1”是“函数f (x )在R 上递增”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选A 若函数f (x )在R 上递增,则需log 21≥c +1,即c ≤-1.由于c =-1⇒c ≤-1,但c ≤-1⇒/ c =-1,所以“c =-1”是“f (x )在R 上递增”的充分不必要条件.故选A.6.(xx·长春调研)已知定义在R 上的函数f (x )满足f (x )+f (-x )=0,且在(-∞,0)上单调递增,如果x 1+x 2<0且x 1x 2<0,则f (x 1)+f (x 2)的值( )A .可能为0B .恒大于0C .恒小于0D .可正可负解析:选C 由x 1x 2<0不妨设x 1<0,x 2>0. ∵x 1+x 2<0,∴x 1<-x 2<0.由f (x )+f (-x )=0知f (x )为奇函数.又由f (x )在(-∞,0)上单调递增得,f (x 1)<f (-x 2)=-f (x 2),所以f (x 1)+f (x 2)<0.故选C.二、填空题7.已知函数f (x )为R 上的减函数,若f ⎝ ⎛⎭⎪⎫⎪⎪⎪⎪⎪⎪1x<f (1),则实数x 的取值范围是________.解析:由题意知f (x )为R 上的减函数且f ⎝ ⎛⎭⎪⎫⎪⎪⎪⎪⎪⎪1x<f (1); 则⎪⎪⎪⎪⎪⎪1x >1,即|x |<1,且x ≠0.故-1<x <1且x ≠0. 答案:(-1,0)∪(0,1)8.已知函数f (x )=x 2-2ax -3在区间[1,2]上具有单调性,则实数a 的取值范围为________________.解析:函数f (x )=x 2-2ax -3的图象开口向上,对称轴为直线x =a ,画出草图如图所示.由图象可知,函数在(-∞,a ]和[a ,+∞)上都具有单调性,因此要使函数f (x )在区间[1,2]上具有单调性,只需a ≤1或a ≥2,从而a ∈(-∞,1]∪[2,+∞).答案:(-∞,1]∪[2,+∞) 9.设函数f (x )=⎩⎪⎨⎪⎧1,x >0,0,x =0,-1,x <0,g (x )=x 2f (x -1),则函数g (x )的递减区间是________.解析:由题意知g (x )=⎩⎪⎨⎪⎧x 2,x >1,0,x =1,-x 2,x <1.函数图象如图所示,其递减区间是[0,1).答案:[0,1)10.使函数y =2x +kx -2与y =log 3(x -2)在(3,+∞)上具有相同的单调性,则实数k 的取值范围是________________.解析:由y =log 3(x -2)的定义域为(2,+∞),且为增函数,故在(3,+∞)上是增函数.又函数y =2x +k x -2=2x -2+4+k x -2=2+4+kx -2,使其在(3,+∞)上是增函数, 故4+k <0,得k <-4. 答案:(-∞,-4) 三、解答题 11.已知f (x )=xx -a(x ≠a ).(1)若a =-2,试证明f (x )在(-∞,-2)内单调递增; (2)若a >0且f (x )在(1,+∞)上单调递减,求a 的取值范围. 解:(1)证明:任设x 1<x 2<-2, 则f (x 1)-f (x 2)=x 1x 1+2-x 2x 2+2=2x 1-x 2x 1+2x 2+2. ∵(x 1+2)(x 2+2)>0,x 1-x 2<0, ∴f (x 1)<f (x 2),∴f (x )在(-∞,-2)上单调递增. (2)任设1<x 1<x 2,则f (x 1)-f (x 2)=x 1x 1-a -x 2x 2-a =a x 2-x 1x 1-a x 2-a.∵a >0,x 2-x 1>0, ∴要使f (x 1)-f (x 2)>0,只需(x 1-a )(x 2-a )>0在(1,+∞)上恒成立,∴a ≤1. 综上所述知a 的取值范围是(0,1].12.已知定义在区间(0,+∞)上的函数f (x )满足f ⎝ ⎛⎭⎪⎫x 1x 2=f (x 1)-f (x 2),且当x >1时,f (x )<0.(1)求f (1)的值;(2)证明:f (x )为单调递减函数;(3)若f (3)=-1,求f (x )在[2,9]上的最小值. 解:(1)令x 1=x 2>0,代入得f (1)=f (x 1)-f (x 1)=0, 故f (1)=0.(2)证明:任取x 1,x 2∈(0,+∞),且x 1>x 2, 则x 1x 2>1,由于当x >1时,f (x )<0, 所以f ⎝ ⎛⎭⎪⎫x 1x 2<0,即f (x 1)-f (x 2)<0, 因此f (x 1)<f (x 2),所以函数f (x )在区间(0,+∞)上是单调递减函数. (3)∵f (x )在(0,+∞)上是单调递减函数. ∴f (x )在[2,9]上的最小值为f (9).由f ⎝ ⎛⎭⎪⎫x 1x 2=f (x 1)-f (x 2)得, f ⎝ ⎛⎭⎪⎫93=f (9)-f (3), 而f (3)=-1,所以f (9)=-2. ∴f (x )在[2,9]上的最小值为-2.第三节函数的奇偶性及周期性对应学生用书P17基础盘查一 函数的奇偶性(一)循纲忆知1.结合具体函数,了解函数奇偶性的含义. 2.会运用函数的图象理解和研究函数的奇偶性. (二)小题查验 1.判断正误(1)若f (x )是定义在R 上的奇函数,则f (-x )+f (x )=0( ) (2)偶函数图象不一定过原点,奇函数的图象一定过原点( )(3)如果函数f (x ),g (x )为定义域相同的偶函数,则F (x )=f (x )+g (x )是偶函数( ) (4)定义域关于原点对称是函数具有奇偶性的一个必要条件( ) 答案:(1)√ (2)× (3)√ (4)√2.(人教A 版教材习题改编)已知函数f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=x (1+x ),则x <0时,f (x )=________.答案:x (1-x )3.已知f (x )=ax 2+bx 是定义在[a -1,2a ]上的偶函数,那么a +b 的值是________. 答案:13基础盘查二 函数的周期性 (一)循纲忆知了解函数周期性、最小正周期的含义,会判断、应用简单函数的周期性. (二)小题查验 1.判断正误(1)若T 是函数的一个周期,则nT (n ∈Z ,n ≠0)也是函数的周期( )(2)函数f (x )在定义域上满足f (x +a )=-f (x ),则f (x )是周期为2a (a >0)的周期函数( )答案:(1)√ (2)√2.若函数f (x )是周期为5的奇函数,且满足f (1)=1,f (2)=2,则f (8)-f (14)=________.答案:-1对应学生用书P18考点一 函数奇偶性的判断(基础送分型考点——自主练透)[必备知识]函数的奇偶性的定义如果对于函数f (x )的定义域内任意一个x ,都有f (-x )=f (x )[或f (-x )=-f (x )],那么函数f (x )就叫做偶函数(奇函数).[提醒] 定义域关于原点对称是函数具有奇偶性的一个必要条件.[题组练透]判断下列函数的奇偶性. (1)f (x )=1-x 2+x 2-1; (2)f (x )=3-2x +2x -3; (3)f (x )=3x -3-x; (4)f (x )=4-x 2|x +3|-3;(5)f (x )=⎩⎪⎨⎪⎧x 2+x ,x >0,x 2-x ,x <0.解:(1)∵由⎩⎪⎨⎪⎧x 2-1≥0,1-x 2≥0,得x =±1,∴f (x )的定义域为{-1,1}.又f (1)+f (-1)=0,f (1)-f (-1)=0, 即f (x )=±f (-x ).∴f (x )既是奇函数又是偶函数.(2)∵函数f (x )=3-2x +2x -3的定义域为⎩⎨⎧⎭⎬⎫32,不关于坐标原点对称,∴函数f (x )既不是奇函数,也不是偶函数. (3)∵f (x )的定义域为R ,∴f (-x )=3-x-3x =-(3x -3-x)=-f (x ), 所以f (x )为奇函数.(4)∵由⎩⎪⎨⎪⎧4-x 2≥0,|x +3|-3≠0,得-2≤x ≤2且x ≠0.∴f (x )的定义域为[-2,0)∪(0,2], ∴f (x )=4-x2|x +3|-3=4-x 2x +3-3=4-x2x,∴f (-x )=-f (x ),∴f (x )是奇函数.(5)易知函数的定义域为(-∞,0)∪(0,+∞),关于原点对称,又当x >0时,f (x )=x 2+x ,则当x <0时,-x >0,故f(-x)=x2-x=f(x);当x<0时,f(x)=x2-x,则当x>0时,-x<0,故f(-x)=x2+x=f(x),故原函数是偶函数.[类题通法]判定函数奇偶性的常用方法及思路1.定义法:2.图象法:3.性质法:(1)“奇+奇”是奇,“奇-奇”是奇,“奇·奇”是偶,“奇÷奇”是偶;(2)“偶+偶”是偶,“偶-偶”是偶,“偶·偶”是偶,“偶÷偶”是偶;(3)“奇·偶”是奇,“奇÷偶”是奇.[提醒] (1)“性质法”中的结论是在两个函数的公共定义域内才成立的.(2)判断分段函数的奇偶性应分段分别证明f(-x)与f(x)的关系,只有对各段上的x都满足相同的关系时,才能判断其奇偶性.考点二函数的周期性(题点多变型考点——全面发掘)[必备知识]1.周期函数对于函数y=f(x),如果存在一个非零常数T,使得当x取定义域内的任何值时,都有f(x+T)=f(x),那么就称函数y=f(x)为周期函数,称T为这个函数的周期.2.最小正周期如果在周期函数f(x)的所有周期中存在一个最小的正数,那么这个最小正数就叫做f(x)的最小正周期.[一题多变][典型母题]设f(x)是定义在R上的奇函数,且对任意实数x,恒有f(x+2)=-f(x).当x∈[0,2]时,f(x)=2x-x2.(1)求函数的最小正周期;(2)计算f(0)+f(1)+f(2)+…+f(2 015).[解] (1)∵f(x+2)=-f(x),∴f(x+4)=-f(x+2)=f(x).∴f(x)的最小正周期为4.(2)f(0)=0,f(1)=1,f(2)=0,f(3)=f(-1)=-f(1)=-1.又∵f(x)是周期为4的周期函数,∴f(0)+f(1)+f(2)+f(3)=f(4)+f(5)+f(6)+f(7)=…=f(2 012)+f(2 013)+f(2 014)+f(2 015)=0,∴f(0)+f(1)+f(2)+…+f(2 015)=0.[题点发散1] 本例条件若改为:设定义在R上的函数f(x)满足f(x+2)=f(x),且当x∈[0,2)时,f(x)=2x-x2.试计算f(0)+f(1)+f(2)+…+f(2 015)的值.解:因为f(x+2)=f(x),所以周期T=2.又f(0)=0,f(1)=1,所以f(0)=f(2)=f(4)=…=f(2 014)=0,f(1)=f(3)=f(5)=…=f(2 015)=1,所以f(0)+f(1)+f(2)+…+f(2 015)=1 008.[题点发散2] 若本例中条件变为“f(x+2)=-1f x”,求函数f(x)的最小正周期.解:∵对任意x∈R,都有f(x+2)=-1f x,∴f(x+4)=f(x+2+2)=-1f x+2=-1-1f x=f(x),∴f(x)是以4为周期的周期函数.[题点发散3] 在本例条件下,求f(x)(x∈[2,4])的解析式.解:当x∈[-2,0]时,-x∈[0,2],由已知得f(-x)=2(-x)-(-x)2=-2x-x2,又f(x)是奇函数,∴f(-x)=-f(x)=-2x-x2.∴f(x)=x2+2x.又当x∈[2,4]时,x-4∈[-2,0],∴f(x-4)=(x-4)2+2(x-4).又f(x)是周期为4的周期函数,∴f(x)=f(x-4)=(x-4)2+2(x-4)=x2-6x+8. 故x∈[2,4]时,f(x)=x2-6x+8.[类题通法] 1.判断函数周期性的两个方法(1)定义法.(2)图象法.2.周期性三个常用结论对f(x)定义域内任一自变量的值x:(1)若f(x+a)=-f(x),则T=2a;(2)若f(x+a)=1f x,则T=2a;(3)若f(x+a)=-1f x,则T=2a.(a>0)[提醒] 应用函数的周期性时,应保证自变量在给定的区间内.考点三函数性质的综合应用(常考常新型考点——多角探明)[多角探明]高考对于函数性质的考查,一般不会单纯地考查某一个性质,而是对奇偶性、周期性、单调性的综合考查.归纳起来常见的命题角度有:(1)单调性与奇偶性结合;(2)周期性与奇偶性结合;(3)单调性、奇偶性与周期性结合.角度一:单调性与奇偶性结合1.(xx·洛阳统考)下列函数中,既是偶函数又在(-∞,0)上单调递增的是( ) A.y=x2B.y=2|x|C.y=log21|x|D.y=sin x解:选C 函数y=x2在(-∞,0)上是减函数;函数y=2|x|在(-∞,0)上是减函数;函数y=log21|x|=-log2|x|是偶函数,且在(-∞,0)上是增函数;函数y=sin x不是偶函数.综上所述,选C.2.已知奇函数f(x)的定义域为[-2,2],且在区间[-2,0]上递减,求满足f(1-m)+f(1-m 2)<0的实数m 的取值范围.解:∵f (x )的定义域为[-2,2],∴⎩⎪⎨⎪⎧-2≤1-m ≤2,-2≤1-m 2≤2,解得-1≤m ≤ 3.①又f (x )为奇函数,且在[-2,0]上递减, ∴f (x )在[-2,2]上递减,∴f (1-m )<-f (1-m 2)=f (m 2-1)⇒1-m >m 2-1, 解得-2<m <1.②综合①②可知,-1≤m <1. 即实数m 的取值范围是[-1,1). 角度二:周期性与奇偶性结合3.(xx·石家庄一模)已知f (x )是定义在R 上的以3为周期的偶函数,若f (1)<1,f (5)=2a -3a +1,则实数a 的取值范围为( ) A .(-1,4) B .(-2,0) C .(-1,0)D .(-1,2)解:选A ∵f (x )是定义在R 上的周期为3的偶函数, ∴f (5)=f (5-6)=f (-1)=f (1),∵f (1)<1,f (5)=2a -3a +1,∴2a -3a +1<1,即a -4a +1<0,解得-1<a <4,故选A.角度三:单调性、奇偶性与周期性结合4.已知定义在R 上的奇函数f (x )满足f (x -4)=-f (x ),且在区间[0,2]上是增函数,则( )A .f (-25)<f (11)<f (80)B .f (80)<f (11)<f (-25)C .f (11)<f (80)<f (-25)D .f (-25)<f (80)<f (11)解:选D ∵f (x )满足f (x -4)=-f (x ),∴f (x -8)=f (x ),∴函数f (x )是以8为周期的周期函数,则f (-25)=f (-1),f (80)=f (0),f (11)=f (3).由f (x )是定义在R 上的奇函数,且满足f (x -4)=-f (x ),得f (11)=f (3)=-f (-1)=f (1).∵f (x )在区间[0,2]上是增函数,f (x )在R 上是奇函数, ∴f (x )在区间[-2,2]上是增函数,∴f (-1)<f (0)<f (1),即f (-25)<f (80)<f (11).[类题通法]函数性质综合应用问题的常见类型及解题策略(1)函数单调性与奇偶性结合.注意函数单调性及奇偶性的定义,以及奇、偶函数图象的对称性.(2)周期性与奇偶性结合.此类问题多考查求值问题,常利用奇偶性及周期性进行交换,将所求函数值的自变量转化到已知解析式的函数定义域内求解.(3)周期性、奇偶性与单调性结合.解决此类问题通常先利用周期性转化自变量所在的区间,然后利用奇偶性和单调性求解.对应B 本课时跟踪检测六一、选择题1.(xx·河南信阳二模)函数f (x )=lg|sin x |是( ) A .最小正周期为π的奇函数 B .最小正周期为2π的奇函数 C .最小正周期为π的偶函数 D .最小正周期为2π的偶函数解析:选 C 易知函数的定义域为{}x |x ≠k π,k ∈Z ,关于原点对称,又f (-x )=lg |sin(-x )|=lg |-sin x |=lg |sin x |=f (x ),所以f (x )是偶函数,又函数y =|sin x |的最小正周期为π,所以函数f (x )=lg|sin x |是最小正周期为π的偶函数.2.(xx·大连测试)下列函数中,与函数y =-3|x |的奇偶性相同,且在(-∞,0)上单调性也相同的是( )A .y =-1xB .y =log 2|x |C .y =1-x 2D .y =x 3-1解析:选C 函数y =-3|x |为偶函数,在(-∞,0)上为增函数,选项B 的函数是偶函数,但其单调性不符合,只有选项C 符合要求.3.(xx·唐山统考)f (x )是R 上的奇函数,当x ≥0时,f (x )=x 3+ln(1+x ).则当x <0时,f (x )=( )A .-x 3-ln(1-x ) B .x 3+ln(1-x ) C .x 3-ln(1-x )D .-x 3+ln(1-x )解析:选C 当x <0时,-x >0,f (-x )=(-x )3+ln(1-x ),∵f (x )是R 上的奇函数,∴当x >0时,f (x )=-f (-x )=-[(-x )3+ln(1-x )],∴f (x )=x 3-ln(1-x ).4.(xx·长春调研)已知函数f (x )=x 2+x +1x 2+1,若f (a )=23,则f (-a )=( )。
【与名师对话】高考数学一轮复习 2.9函数与方程课件 文
的函数y=
f(x),通过不断地把函数f(x)的零点所在的区间 一分为二 ,使区 间的两个端点逐步逼近 零点 ,进而得到零点近似值的方法叫做 二分法. (2)给定精确度ε,用二分法求函数f(x)零点近似值的步骤如 下:
①确定区间[a,b],验证f(a)· f(b)<0,给定精确度ε;②求区 间(a,b)的中点c;③计算f(c); (ⅰ)若f(c)=0,则c就是函数的零点; (ⅱ)若f(a)· f(c)<0,则令b=c(此时零点x0∈(a,c)); (ⅲ)若f(c)· f(b)<0,则令a=c(此时零点x0∈(c,b)). ④判断是否达到精确度ε.即:若|a-b|<ε,则得到零点近似 值a(或b);否则重复②③④.
由图知满足条件的 a 的取值范围是 a>1.
答案:a>1
考 点
互 动 探 究
考点一 判断函数零点所在区间
判断函数在某个区间上是否存在零点,要根据具体题目灵活 处理,当能直接求出零点时,就直接求出进行判断;当不能直接 求出时,可根据零点存在性定理判断;当用零点存在性定理也无 法判断时可画出图象判断.
D.
(2)f(a) =(a-b)(a -c) ,f(b)=(b - c)(b- a),f(c) =(c- a)(c- b).又 a<b<c,则 f(a)>0,f(b)<0,f(c)>0,又该函数是二次函数, 且开口向上,可知两根分别在(a,b)和(b,c)内,选 A.
【答案】
(1)D
(2)A
判断解所在区间或已知解所在区间及求参数的取值范围都 用零点的存在性定理.
解析:f(x)=3ax-2a+1 在[ -1,1] 上存在一个零点,则 f(- 1 1)· f(1)≤0,即 a≥ 或 a≤-1. 5
2021届浙江新高考数学一轮复习教师用书:第二章-9-第9讲-函数模型及其应用
2021届浙江新高考数学一轮复习教师用书:第二章-9-第9讲-函数模型及其应用(总15页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除第9讲函数模型及其应用1.几种常见的函数模型函数模型函数解析式一次函数模型f(x)=ax+b(a,b为常数,a≠0)二次函数模型f(x)=ax2+bx+c(a,b,c为常数,a≠0)指数函数模型f(x)=ba x+c(a,b,c为常数,a>0且a≠1,b≠0)对数函数模型f(x)=b log a x+c(a,b,c为常数,a>0且a≠1,b≠0)幂函数模型f(x)=ax n+b(a,b,n为常数,a≠0,n≠0)y=a x(a>1)y=log a x(a>1)y=x n(n>0) 在(0,+∞)上的单调性增函数增函数增函数增长速度越来越快越来越慢相对平稳图象的变化随x值增大,图象与y轴接近平行随x值增大,图象与x轴接近平行随n值变化而不同[疑误辨析]判断正误(正确的打“√”,错误的打“×”)(1)幂函数增长比直线增长更快.()(2)不存在x0,使ax0<x n0<log a x0.()(3)在(0,+∞)上,随着x的增大,y=a x(a>1)的增长速度会超过并远远大于y=x a(a>1)的增长速度.()(4)“指数爆炸”是指数型函数y=a·b x+c(a≠0,b>0,b≠1)增长速度越来越快的形象比喻.()答案:(1)×(2)×(3)√(4)×[教材衍化]1.(必修1P107A组T1改编)在某个物理实验中,测量得变量x和变量y的几组数据,如表:x 0.500.99 2.01 3.98y -0.99 0.01 0.98 2.00A .y =2xB .y =x 2-1C .y =2x -2D .y =log 2x解析:选 D.根据x =0.50,y =-0.99,代入计算,可以排除A ;根据x =2.01,y =0.98,代入计算,可以排除B ,C ;将各数据代入函数y =log 2x ,可知满足题意.2.(必修1P102例3改编)某工厂一年中各月份的收入、支出情况的统计图如图所示,则下列说法中错误的是( )A .收入最高值与收入最低值的比是3∶1B .结余最高的月份是7月C .1至2月份的收入的变化率与4至5月份的收入的变化率相同D .前6个月的平均收入为40万元解析:选 D.由题图可知,收入最高值为90万元,收入最低值为30万元,其比是3∶1,故A 正确;由题图可知,7月份的结余最高,为80-20=60(万元),故B 正确;由题图可知,1至2月份的收入的变化率与4至5月份的收入的变化率相同,故C 正确;由题图可知,前6个月的平均收入为16×(40+60+30+30+50+60)=45(万元),故D 错误.3.(必修1P107A 组T4改编)用长度为24的材料围一矩形场地,中间加两道隔墙,要使矩形的面积最大,则隔墙的长度为______.解析:设隔墙的长度为x (0<x <6),矩形面积为y ,则y =x ×24-4x2=2x (6-x )=-2(x -3)2+18,所以当x =3时,y 最大.答案:3 [易错纠偏](1)对三种函数增长速度的理解不深致错; (2)建立函数模型出错;(3)分段函数模型的分并把握不准.1.已知f (x )=x 2,g (x )=2x ,h (x )=log 2x ,当x ∈(4,+∞)时,对三个函数的增长速度进行比较,下列选项中正确的是( )A .f (x )>g (x )>h (x )B .g (x )>f (x )>h (x )C .g (x )>h (x )>f (x )D .f (x )>h (x )>g (x )解析:选 B.由函数性质知,当x ∈(4,+∞)时,增长速度由大到小依次为g (x )>f (x )>h (x ).故选B.2.生产一定数量商品的全部费用称为生产成本,某企业一个月生产某种商品x 万件时的生产成本为C (x )=12x 2+2x +20(万元).一万件售价为20万元,为获取更大利润,该企业一个月应生产该商品数量为______万件.解析:利润L (x )=20x -C (x )=-12(x -18)2+142,当x =18时,L (x )有最大值.答案:183.某城市客运公司确定客票价格的方法是:如果行程不超过100 km ,票价是0.5元/km ,如果超过100 km ,超过100 km 的部分按0.4元/km 定价,则客运票价y (元)与行程千米数x (km)之间的函数关系式是________.解析:由题意可得y =⎩⎪⎨⎪⎧0.5x ,0<x ≤100,0.4x +10,x >100. 答案:y =⎩⎪⎨⎪⎧0.5x ,0<x ≤100,0.4x +10,x >100应用所给函数模型解决实际问题某商场从生产厂家以每件20元的价格购进一批商品,若该商品零售价定为p元,销售量为Q 件,则销售量Q (单位:件)与零售价p (单位:元)有如下关系:Q =8 300-170 p -p 2,则最大毛利润为(毛利润=销售收入-进货支出)( )A .30元B .60元C .28 000元D .23 000元【解析】 设毛利润为L (p )元,则由题意知 L (p )=pQ -20Q =Q (p -20) =(8 300-170p -p 2)(p -20) =-p 3-150p 2+11 700p -166 000, 所以L ′(p )=-3p 2-300p +11 700.令L ′(p )=0,解得p =30或p =-130(舍去).当p ∈(0,30)时,L ′(p )>0,当p ∈(30,+∞)时,L ′(p )<0,故L (p )在p =30时取得极大值,即最大值,且最大值为L (30)=23 000.【答案】 D应用所给函数模型解决实际问题的关键点(1)认清所给函数模型,弄清哪些量为待定系数. (2)根据已知利用待定系数法,确定模型中的待定系数. (3)利用该模型求解实际问题.1.某市家庭煤气的使用量x (m 3)和煤气费f (x )(元)满足关系式f (x )=⎩⎪⎨⎪⎧C ,0<x ≤A ,C +B (x -A ),x >A .已知某家庭2019年前三个月的煤气费如表: 月份 用气量 煤气费 一月份 4 m 3 4元 二月份 25 m 3 14元 三月份35 m 319元A .11.5元B .11元C .10.5元D .10元解析:选A.根据题意可知f (4)=C =4,f (25)=C +B (25-A )=14,f (35)=C +B (35-A )=19,解得A =5,B =12,C =4,所以f (x )=⎩⎪⎨⎪⎧4,0<x ≤5,4+12(x -5),x >5,所以f (20)=4+12(20-5)=11.5.2.一个容器装有细沙a cm 3,细沙从容器底部一个细微的小孔慢慢地匀速漏出,t min 后剩余的细沙量为y =a e-bt(cm 3),经过8 min 后发现容器内还有一半的沙子,则再经过________min ,容器中的沙子只有开始时的八分之一.解析:当t =0时,y =a ; 当t =8时,y =a e-8b=12a ,故e -8b =12. 当容器中的沙子只有开始时的八分之一时,即y =a e-bt=18a ,e -bt =18=(e -8b )3=e -24b ,则t =24,所以再经过16 min 容器中的沙子只有开始时的八分之一.答案:16构建函数模型解决实际问题(高频考点)构建函数模型是每年高考的重点,难度中等.主要命题角度有: (1)构建二次函数模型;(2)构建指数函数、对数函数模型; (3)构建分段函数模型; (4)构建y =x +ax (a >0)模型.角度一 构建二次函数模型某城市对一种售价为每件160元的商品征收附加税,税率为R %(即每销售100元征税R 元),若年销售量为(30-52R )万件,要使附加税不少于128万元,则R 的取值范围是( )A .[4,8]B .[6,10]C .[4%,8%]D .[6%,10%]【解析】 根据题意,要使附加税不少于128万元, 需⎝⎛⎭⎫30-52R ×160×R %≥128, 整理得R 2-12R +32≤0,解得4≤R ≤8, 即R ∈[4,8]. 【答案】 A角度二 构建指数函数、对数函数模型某公司为激励创新,计划逐年加大研发资金投入.若该公司2015年全年投入研发资金130万元,在此基础上,每年投入的研发资金比上一年增长12%,则该公司全年投入的研发资金开始超过200万元的年份是( )(参考数据:lg 1.12≈0.05,lg 1.3≈0.11,lg 2≈0.30) A .2018年 B .2019年 C .2020年D .2021年【解析】 根据题意,知每年投入的研发资金增长的百分率相同,所以,从2015年起,每年投入的研发资金组成一个等比数列{a n },其中,首项a 1=130,公比q =1+12%=1.12,所以a n =130×1.12n-1.由130×1.12n-1>200,两边同时取对数,得n -1>lg 2-lg 1.3lg 1.12,又lg 2-lg 1.3lg 1.12≈0.30-0.110.05=3.8,则n >4.8,即a 5开始超过200,所以2019年投入的研发资金开始超过200万元,故选B.【答案】 B角度三 构建分段函数模型提高过江大桥的车辆通行能力可改善整个城市的交通状况.在一般情况下,大桥上的车流速度v (单位:千米/时)是车流密度x (单位:辆/千米)的函数.当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/千米时,车流速度为60千米/时.研究表明:当20≤x ≤200时,车流速度v 是车流密度x 的一次函数.(1)当0≤x ≤200时,求函数v (x )的表达式;(2)当车流密度x 为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/时)f (x )=x ·v (x )可以达到最大,并求出最大值.(精确到1辆/时)【解】 (1)由题意,当0≤x ≤20时,v (x )=60; 当20<x ≤200时,设v (x )=ax +b ,再由已知得⎩⎪⎨⎪⎧200a +b =0,20a +b =60,解得⎩⎨⎧a =-13,b =2003.故函数v (x )的表达式为v (x )=⎩⎪⎨⎪⎧60,0≤x ≤20,13(200-x ),20<x ≤200.(2)依题意并由(1)可得f (x )=⎩⎪⎨⎪⎧60x ,0≤x ≤20,13x (200-x ),20<x ≤200.当0≤x ≤20时,f (x )为增函数,故当x =20时,其最大值为60×20=1 200; 当20<x ≤200时,f (x )=13x (200-x )≤13⎣⎡⎦⎤x +(200-x )2=10 0003,当且仅当x =200-x ,即x =100时,等号成立.所以当x =100时,f (x )在区间(20,200]上取得最大值10 0003.综上,当x =100时,f (x )在区间[]0,200上取得最大值10 0003≈3 333,即当车流密度为100辆/千米时,车流量可以达到最大,最大值约为3 333辆/时. 角度四 构建y =x +ax(a >0)模型要建造一个容积为2 400 m 3,深为6 m 的长方体无盖水池.池底造价为100元/m 2,池壁造价为80元/m 2,则最低造价为________(元).【解析】 设水池长为x ,则宽为2 4006x =400x .则总造价y =(12x +4 800x )×80+400×100=960(x +400x)+40 000≥960×2x ×400x+40 000=78 400(元). 当且仅当x =400x,即x =20时,最低造价为78 400元. 【答案】 78 400构建数学模型解决实际问题,要正确理解题意,分清条件和结论,理顺数量关系,将文字语言转化成数学语言,建立适当的函数模型,求解过程中不要忽略实际问题对变量的限制.为了保护环境,发展低碳经济,某单位在国家科研部门的支持下,进行技术攻关,采用了新工艺,把二氧化碳转化为一种可利用的化工产品.已知该单位每月的处理量最少为400吨,最多为600吨,月处理成本y (元)与月处理量x (吨)之间的函数关系可近似地表示为:y =12x 2-200x +80 000,且每处理一吨二氧化碳得到可利用的化工产品的价值为100元,则该单位每月能否获利?如果获利,求出最大利润;如果不获利,则国家至少需要补贴多少元才能使该单位不亏损?解:设该单位每月获利为S , 则S =100x -y=100x -⎝⎛⎭⎫12x 2-200x +80 000 =-12x 2+300x -80 000=-12(x -300)2-35 000,因为400≤x ≤600,所以当x =400时,S 有最大值-40 000.故该单位不获利,需要国家每月至少补贴40 000元,才能不亏损.核心素养系列4 数学建模——函数建模在实际问题中的妙用某新型企业为获得更大利润,须不断加大投资,若预计年利润低于10%时,则该企业就考虑转型,下表显示的是某企业几年来年利润y (百万元)与年投资成本x (百万元)变化的一组数据:年份2008200920102011…投资成本x 3 5 9 17 … 年利润y1234…给出以下3个函数模型:①y =kx +b (k ≠0);②y =ab x (a ≠0,b >0,且b ≠1);③y =log a (x +b )(a >0,且a ≠1).(1)选择一个恰当的函数模型来描述x ,y 之间的关系;(2)试判断该企业年利润超过6百万元时,该企业是否要考虑转型. 【解】 (1)将(3,1),(5,2)代入y =kx +b (k ≠0),得⎩⎪⎨⎪⎧1=3k +b ,2=5k +b ,解得⎩⎨⎧k =12,b =-12,所以y =12x -12. 当x =9时,y =4,不符合题意;将(3,1),(5,2)代入y =ab x (a ≠0,b >0,且b ≠1),得⎩⎪⎨⎪⎧1=ab 3,2=ab 5,解得⎩⎪⎨⎪⎧a =24,b =2,所以y =24·(2)x =2错误!. 当x =9时,y =2错误!=8,不符合题意;将(3,1),(5,2)代入y =log a (x +b )(a >0,且a ≠1),得⎩⎪⎨⎪⎧1=log a (3+b ),2=log a (5+b ),解得⎩⎪⎨⎪⎧a =2,b =-1,所以y =log 2(x -1). 当x =9时,y =log 28=3;当x =17时,y =log 216=4.故可用③来描述x ,y 之间的关系. (2)令log 2(x -1)>6,则x >65.因为年利润665<10%,所以该企业要考虑转型.解函数模型的实际应用题,首先应考虑该题考查的是何种函数,然后根据题意列出函数关系式(注意定义域),并进行相关求解,最后结合实际意义作答.――――→读题(文字语言) ――――→建模(数学语言) ――――→求解(数学应用)反馈(检验作答)某沿海地区养殖的一种特色海鲜上市时间仅能持续5个月,预测上市初期和后期会因供应不足使价格呈持续上涨态势,而中期又将出现供大于求使价格连续下跌.现有三种价格模拟函数:①f (x )=p ·q x ;②f (x )=px 2+qx +1;③f (x )=x (x -q )2+p (以上三式中p ,q 均为常数,且q >1).(1)为准确研究其价格走势,应选哪种价格模拟函数(不必说明理由) (2)若f (0)=4,f (2)=6.①求出所选函数f (x )的解析式(注:函数定义域是[0,5],其中x =0表示8月1日,x =1表示9月1日,以此类推);②为保证养殖户的经济效益,当地政府计划在价格下跌期间积极拓宽外销,请你预测该海鲜将在哪几个月内价格下跌.解:(1)因为上市初期和后期价格呈持续上涨态势,而中期又将出现价格连续下跌,所以在所给出的函数中应选模拟函数f (x )=x (x -q )2+p .(2)①对于f (x )=x (x -q )2+p , 由f (0)=4,f (2)=6, 可得p =4,(2-q )2=1, 又q >1,所以q =3,所以f (x )=x 3-6x 2+9x +4(0≤x ≤5). ②因为f (x )=x 3-6x 2+9x +4(0≤x ≤5), 所以f ′(x )=3x 2-12x +9, 令f ′(x )<0,得1<x <3.所以函数f (x )在(1,3)内单调递减,所以可以预测这种海鲜将在9月、10月两个月内价格下跌.[基础题组练]1.在某种新型材料的研制中,实验人员获得了下列一组实验数据,现准备用下列四个函数中的一个近似地表示这些数据的规律,其中最接近的一个是( )x 1.992 3 4 5.15 6.126 y1.5174.041 87.51218.01A.y =2x -2 B .y =12(x 2-1)C .y =log 2xD .y =log 错误!x解析:选B.由题中表可知函数在(0,+∞)上是增函数,且y 的变化随x 的增大而增大得越来越快,分析选项可知B 符合,故选B.2.某工厂6年来生产某种产品的情况是:前3年年产量的增长速度越来越快,后3年年产量保持不变,则该厂6年来这种产品的总产量C 与时间t (年)的函数关系图象正确的是( )解析:选A.前3年年产量的增长速度越来越快,说明呈高速增长,只有A 、C 图象符合要求,而后3年年产量保持不变,故选A.3.一种放射性元素的质量按每年10%衰减,这种放射性元素的半衰期(剩余质量为最初质量的一半所需的时间叫作半衰期)是(精确到0.1,已知lg 2=0.301 0,lg 3=0.477 1)( )A .5.2B .6.6C .7.1D .8.3解析:选B.设这种放射性元素的半衰期是x 年,则(1-10%)x =12,化简得0.9x =12,即x =log 0.912=lg12lg 0.9=-lg 22lg 3-1=-0.301 02×0.477 1-1≈6.6(年).故选B.4.某单位为鼓励职工节约用水,作出了以下规定:每位职工每月用水不超过10 m 3的,按每立方米m 元收费;用水超过10 m 3的,超过部分加倍收费.某职工某月缴水费16m 元,则该职工这个月实际用水为( )A .13 m 3B .14 m 3C .18 m 3D .26 m 3解析:选 A.设该职工用水x m 3时,缴纳的水费为y 元,由题意得y =⎩⎪⎨⎪⎧mx (0<x ≤10),10m +(x -10)·2m (x >10), 则10m +(x -10)·2m =16m ,解得x =13.5.已知甲、乙两种商品在过去一段时间内的价格走势如图所示.假设某商人持有资金120万元,他可以在t 1至t 4的任意时刻买卖这两种商品,且买卖能够立即成交(其他费用忽略不计).如果他在t 4时刻卖出所有商品,那么他将获得的最大利润是( )A .40万元B .60万元C .120万元D .140万元解析:选C.甲6元时该商人全部买入甲商品,可以买120÷6=20(万份),在t 2时刻全部卖出,此时获利20×2=40万元,乙4元时该商人买入乙商品,可以买(120+40)÷4=40(万份),在t 4时刻全部卖出,此时获利40×2=80万元,共获利40+80=120万元,故选C.6.某地区要建造一条防洪堤,其横断面为等腰梯形,腰与底边夹角为60°(如图),考虑防洪堤坚固性及石块用料等因素,设计其横断面要求面积为93平方米,且高度不低于3米.记防洪堤横断面的腰长为x米,外周长(梯形的上底线段BC 与两腰长的和)为y 米.要使防洪堤横断面的外周长不超过10.5米,则其腰长x 的范围为( )A .[2,4]B .[3,4]C .[2,5]D .[3,5]解析:选B.根据题意知,93=12(AD +BC )h ,其中AD =BC +2·x 2=BC +x ,h =32x ,所以93=12(2BC +x )32x ,得BC =18x -x2,由⎩⎨⎧h =32x ≥3,BC =18x -x2>0,得2≤x <6.所以y =BC +2x =18x +3x 2(2≤x <6),由y =18x +3x2≤10.5,解得3≤x ≤4.因为[3,4]⊆[2,6),所以腰长x 的范围是[3,4].7.某辆汽车每次加油都把油箱加满,下表记录了该车相邻两次加油时的情况.在这段时间内,该车每100千米平均耗油量为________升.解析:因为每次都把油箱加满,第二次加了48升油,说明这段时间总耗油量为48升,而行驶的路程为35 600-35 000=600(千米),故每100千米平均耗油量为48÷6=8(升).答案:88.某市出租车收费标准如下:起步价为8元,起步里程为3 km(不超过3 km 按起步价付费);超过3 km 但不超过8 km 时,超过部分按每千米2.15元收费;超过8 km 时,超过部分按每千米2.85元收费,另每次乘坐需付燃油附加费1元.现某人乘坐一次出租车付费22.6元,则此次出租车行驶了________km.解析:设出租车行驶x km 时,付费y 元,则y =⎩⎨⎧9,0<x ≤3,8+2.15(x -3)+1,3<x ≤8,8+2.15×5+2.85(x -8)+1,x >8,由y =22.6,解得x =9. 答案:99.里氏震级M 的计算公式为:M =lg A -lg A 0,其中A 是测震仪记录的地震曲线的最大振幅,A 0是相应的标准地震的振幅.假设在一次地震中,测震仪记录的最大振幅是 1000,此时标准地震的振幅为0.001,则此次地震的震级为________级;9级地震的最大振幅是5级地震最大振幅的________倍.解析:M =lg 1 000-lg 0.001=3-(-3)=6.设9级地震的最大振幅和5级地震的最大振幅分别为A 1,A 2,则9=lg A 1-lg A 0=lg A 1A 0,则A 1A 0=109, 5=lg A 2-lg A 0=lg A 2A 0,则A 2A 0=105,所以A 1A 2=104.即9级地震的最大振幅是5级地震最大振幅的10 000倍. 答案:6 10 00010.(2020·杭州八校联考)一艘轮船在匀速行驶过程中每小时的燃料费与速度v 的平方成正比,且比例系数为k ,除燃料费外其他费用为每小时96元.当速度为10海里/小时时,每小时的燃料费是6元.若匀速行驶10海里,当这艘轮船的速度为________海里/小时时,总费用最小.解析:设每小时的总费用为y 元,则y =k v 2+96,又当v =10时,k ×102=6, 解得k =0.06,所以每小时的总费用y =0.06v 2+96,匀速行驶10海里所用的时间为10v 小时,故总费用为W =10v y =10v (0.06v 2+96)=0.6v +960v ≥20.6v ×960v =48,当且仅当0.6v =960v ,即v =40时等号成立.故总费用最小时轮船的速度为40海里/小时. 答案:4011.A ,B 两城相距100 km ,在两城之间距A 城x (km)处建一核电站给A ,B 两城供电,为保证城市安全,核电站距城市距离不得小于10 km.已知供电费用等于供电距离(km)的平方与供电量(亿度)之积的0.25倍,若A 城供电量为每月20亿度,B 城供电量为每月10亿度.(1)求x 的取值范围;(2)把月供电总费用y 表示成x 的函数;(3)核电站建在距A 城多远,才能使供电总费用y 最少?解:(1)x 的取值范围为10≤x ≤90. (2)y =5x 2+52(100-x )2(10≤x ≤90).(3)因为y =5x 2+52(100-x )2=152x 2-500x +25 000=152⎝⎛⎭⎫x -1003+50 0003,所以当x =1003时,y min =50 0003.故核电站建在距A 城1003km 处,能使供电总费用y 最少. 12.如图,GH 是一条东西方向的公路,现准备在点B 的正北方向的点A 处建一仓库,设AB =y 千米,并在公路旁边建造边长为x 千米的正方形无顶中转站CDEF (其中边EF 在公路GH 上).若从点A 向公路和中转站分别修两条道路AB ,AC ,已知AB =AC +1,且∠ABC =60°.(1)求y 关于x 的函数解析式;(2)如果中转站四周围墙的造价为10万元/千米,道路的造价为30万元/千米,问x 取何值时,修建中转站和道路的总造价M 最低?解:(1)由题意易知x >1,BC =2x , 又AB =y ,AC =y -1,在△ABC 中,由余弦定理得,(y -1)2=y 2+4x 2-2y ·2x ·cos 60°, 所以y =4x 2-12(x -1)(x >1).(2)M =30(2y -1)+40x =120x 2-30x -1-30+40x ,其中x >1,设t =x -1,则t >0,所以M =120(t +1)2-30t -30+40(t +1)=160t +90t +250≥2160t ·90t+250=490,当且仅当t =34时等号成立,此时x =74.所以当x =74时,修建中转站和道路的总造价M 最低.[综合题组练]1.某食品的保鲜时间y (单位:小时)与储藏温度x (单位:℃)满足函数关系y =e kx +b (e =2.718…为自然对数的底数,k ,b 为常数).若该食品在0 ℃的保鲜时间是192小时,在22 ℃的保鲜时间是48小时,则该食品在33 ℃的保鲜时间是( )A .16小时B .20小时C .24小时D .28小时解析:选C.由已知得192=e b ,① 48=e 22k +b =e 22k ·e b ,②将①代入②得e 22k =14,则e 11k =12,当x =33时,y =e 33k +b =e 33k ·e b =⎝⎛⎭⎫12×192=24,所以该食品在33 ℃的保鲜时间是24小时.故选C.2.某类产品按工艺共分10个档次,最低档次产品每件利润为8元.每提高一个档次,每件利润增加2元.用同样工时,可以生产最低档次产品60件,每提高一个档次将少生产3件产品,则每天获得利润最大时生产产品的档次是( )A .7B .8C .9D .10解析:选C.由题意,当生产第k 档次的产品时,每天可获利润为y =[8+2(k -1)][60-3(k -1)]=-6k 2+108k +378(1≤k ≤10,k ∈N *),配方可得y =-6(k -9)2+864,所以当k =9时,获得利润最大.选C.3.拟定甲、乙两地通话m 分钟的电话费(单位:元)由f (m )=1.06(0.5[m ]+1)给出,其中m >0,[m ]是不超过m 的最大整数(如[3]=3,[3.7]=3,[3.1]=3),则甲、乙两地通话6.5分钟的电话费为________元.解析:因为m =6.5,所以[m ]=6,则f (m )=1.06×(0.5×6+1)=4.24. 答案:4.244.某汽车销售公司在A 、B 两地销售同一种品牌的汽车,在A 地的销售利润(单位:万元)为y 1=4.1x -0.1x 2,在B 地的销售利润(单位:万元)为y 2=2x ,其中x 为销售量(单位:辆),若该公司在两地共销售16辆该种品牌的汽车,则能获得的最大利润是________万元.解析:设公司在A 地销售该品牌的汽车x 辆,则在B 地销售该品牌的汽车(16-x )辆,所以可得利润y =4.1x -0.1x 2+2(16-x )=-0.1x 2+2.1x +32=-0.1⎝⎛⎭⎫x -212+0.1×2124+32.因为x ∈[0,16]且x ∈N ,所以当x =10或11时,总利润取得最大值43万元.答案:435.某医药研究所开发的一种新药,如果成年人按规定的剂量服用,据监测,服药后每毫升血液中的含药量y (微克)与时间t (小时)之间近似满足如图所示的曲线.(1)写出第一次服药后y 与t 之间的函数关系式;(2)据进一步测定,每毫升血液中含药量不少于0.25微克时治疗疾病有效,求服药一次后治疗疾病有效的时间.解:(1)由题图,设y =⎩⎪⎨⎪⎧kt ,0≤t ≤1,⎝⎛⎭⎫12,t >1,当t =1时,由y =4得k =4, 由⎝⎛⎭⎫12=4得a =3. 所以y =⎩⎪⎨⎪⎧4t ,0≤t ≤1,⎝⎛⎭⎫12,t >1.(2)由y ≥0.25得⎩⎪⎨⎪⎧0≤t ≤1,4t ≥0.25或⎩⎪⎨⎪⎧t >1,⎝⎛⎭⎫12≥0.25,解得116≤t ≤5.因此服药一次后治疗疾病有效的时间是5-116=7916(小时).6.食品安全问题越来越引起人们的重视,农药、化肥的滥用对人民群众的健康带来一定的危害,为了给消费者带来放心的蔬菜,某农村合作社每年投入200万元,搭建了甲、乙两个无公害蔬菜大棚,每个大棚至少要投入20万元,其中甲大棚种西红柿,乙大棚种黄瓜,根据以往的种菜经验,发现种西红柿的年收入P 、种黄瓜的年收入Q 与投入a (单位:万元)满足P =80+42a ,Q =14a +120,设甲大棚的投入为x (单元:万元),每年两个大棚的总收益为f (x )(单位:万元).(1)求f (50)的值;(2)试问如何安排甲、乙两个大棚的投入,才能使总收益f (x )最大?解:(1)由题意知甲大棚投入50万元, 则乙大棚投入150万元,所以f (50)=80+42×50+14×150+120=277.5(万元).(2)f (x )=80+42x +14(200-x )+120=-14x +42x +250,依题意得⎩⎪⎨⎪⎧x ≥20,200-x ≥20⇒20≤x ≤180,故f (x )=-14x +42x +250(20≤x ≤180).令t =x ,则t ∈[25,65],y =-14t 2+42t +250=-14(t -82)2+282,当t =82,即x =128时,f (x )取得最大值,f (x )max =282.所以甲大棚投入128万元,乙大棚投入72万元时,总收益最大,且最大总收益为282万元.。
2021届 与名师对话 高三文科数学 第一轮复习资料 第二章 第八节 函数的图像
基
名
础 知
=ex关于y轴对称,则f(x)的解析式为( D )
师 微
识 回 顾
A.f(x)=ex+1
B.f(x)=ex-1
课 导 学
C.f(x)=e-x+1
D.f(x)=e-x-1
[解析] 曲线y=ex关于y轴对称的曲线为y=e-x,函数y
核
课
心 考
=e-x的图象向左平移1个单位得y=e-(x+1)的图象,即f(x)=e
基
名
础
师
知
微
识
课
回
导
顾
[解析] 随着直线l的右移,左侧的面积不断增大,开始 学
至经过D的阶段,增加的越来越快,由D到C阶段增加的均
核 匀,由C至B阶段,增加的越来越慢,故选D.
心
课 后
考
跟
点
踪
突
训
破
练
第18页
第2章 第8节
与名师对话·系列丛书
高考总复习·课标版·数学(文)
4.函数f(x)的图象向右平移1个单位,所得图象与曲线y
与名师对话·系列丛书
基 础 知 识 回 顾 核 心 考 点 突 破
第1页
高考总复习·课标版·数学(文) 名 师 微 课 导 学 课 后 跟 踪 训 练
第2章 第8节
与名师对话·系列丛书
高考总复习·课标版·数学(文)
基
名
础
师
知
微
识
课
回
导
顾
学
第八节 函数的图象
核
课
心
后
考
跟
点
踪
突
训
破
练
第2页
第2章 第8节
2021届 与名师对话 高三文科数学 第一轮复习资料 第二章 第十节 函数模型及其应用
后 跟
点
踪
突 破
=-21,故最大温差为43-(-21)=64(℃).故选C.
训 练
第11页
第2章 第10节
与名师对话·系列丛书
高考总复习·课标版·数学(文)
基
3.用长度为24的材料围一矩形场地,中间加两道隔
名
础
师
知 识
墙,要使矩形的面积最大,则隔墙的长度为( A )
微 课
回 顾
A.3
B.4
导 学
C.6
②问:如果你是厂长,怎样分配这18万元投资,才能
跟 踪
突 破
使该企业获得最大利润?其最大利润约为多少万元?
训 练
第25页
第2章 第10节
与名师对话·系列丛书
高考总复习·课标版·数学(文)
基
名
础
师
知
微
识 回
[解] (1)设甲、乙两种产品分别投资x万元(x≥0),所获
课 导
顾
学
利润分别为f(x)、g(x)万元,
础 知
距145 km的甲乙两地开出.A从甲地自东向西行驶.B从乙
师 微
识
课
回 顾
地自北向南行驶,A的速度是40 km/h,B的速度是16 km/h,
导 学
25
经过____8____小时,AB间的距离最短.
核
课
心
后
考
跟
点
踪
突
训
破
练
第15页
第2章 第10节
与名师对话·系列丛书
高考总复习·课标版·数学(文)
基
名
础
师
知 识
即当6≤m<7.6时,投资生产A产品200件可获得最大年
2021版高考文科数学(人教A版)一轮复习教师用书:第二章 第1讲 函数及其表示 Word版含答案
第1讲函数及其表示一、知识梳理1.函数与映射的概念(1)函数的定义域、值域在函数y=f(x),x∈A中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.显然,值域是集合B 的子集.(2)函数的三要素:定义域、值域和对应关系.(3)函数的表示法表示函数的常用方法有:解析法、图象法、列表法.[注意]函数图象的特征:与x轴垂直的直线与其最多有一个公共点.利用这个特征可以判断一个图形能否作为一个函数的图象.3.分段函数若函数在其定义域的不同子集上,因对应关系不同而分别用几个不同的式子来表示,这种函数称为分段函数.[注意] 分段函数是一个函数,而不是几个函数,分段函数的定义域是各段定义域的并集,值域是各段值域的并集.二、习题改编1.(必修1P23练习T2改编)下列四个图形中,不是以x 为自变量的函数的图象是( )答案:C2.(必修1P18例2改编)下列哪个函数与y =x 相等( ) A .y =x 2xB .y =2log 2xC .y =x 2D .y =(3x )3答案:D一、思考辨析判断正误(正确的打“√”,错误的打“×”)(1)对于函数f :A →B ,其值域是集合B .( )(2)函数f (x )=x 2-2x 与g (t )=t 2-2t 是同一函数.( )(3)若两个函数的定义域与值域相同,则这两个函数是相等函数.( ) (4)函数f (x )的图象与直线x =1最多有一个交点.( ) (5)分段函数是由两个或几个函数组成的.( ) 答案:(1)× (2)√ (3)× (4)√ (5)× 二、易错纠偏常见误区(1)对函数概念理解不透彻; (2)解分段函数不等式忽视范围.1.下列函数中,与函数y =x +1是相等函数的是( ) A .y =(x +1)2 B .y =3x 3+1 C .y =x 2x+1D .y =x 2+1解析:选B.对于A.函数y =(x +1)2的定义域为{x |x ≥-1},与函数y =x +1的定义域不同,不是相等函数;对于B.定义域和对应关系都相同,是相等函数;对于C.函数y =x 2x +1的定义域为{x |x ≠0},与函数y =x +1的定义域不同,不是相等函数;对于D ,定义域相同,但对应关系不同,不是相等函数.2.设函数f (x )=⎩⎪⎨⎪⎧|x |,x <1,3x -5,x ≥1,则使得f (x )≥1的自变量x 的取值范围为 .解析:当x <1时,|x |≥1,所以x ≥1或x ≤-1. 所以x ≤-1;当x ≥1时,3x -5≥1,所以x ≥2.所以x ≥2;所以x 的取值范围为(-∞,-1]∪[2,+∞). 答案:(-∞,-1]∪[2,+∞)函数的定义域(多维探究) 角度一求函数的定义域(2020·辽宁鞍山一中一模)函数f (x )=14-x 2+ln(2x +1)的定义域为( ) A.⎣⎡⎦⎤-12,2 B.⎣⎡⎭⎫-12,2 C.⎝⎛⎦⎤-12,2 D.⎝⎛⎭⎫-12,2 【解析】 要使函数f (x )有意义,需满足⎩⎪⎨⎪⎧4-x 2>0,2x +1>0,解得-12<x <2.所以函数f (x )的定义域为⎝⎛⎭⎫-12,2.故选D. 【答案】 D求函数定义域的两种方法连接,而应该用并集符号“∪”连接.角度二 已知函数的定义域求参数若函数f (x )=mx 2+mx +1的定义域为一切实数,则实数m 的取值范围是 .【解析】 由题意可得mx 2+mx +1≥0对x ∈R 恒成立. 当m =0时,1≥0恒成立;当m ≠0时,则⎩⎪⎨⎪⎧m >0,Δ=m 2-4m ≤0, 解得0<m ≤4. 综上可得0≤m ≤4. 【答案】 [0,4]已知函数定义域求参数取值范围,通常是根据已知的定义域将问题转化为方程或不等式恒成立的问题,然后求得参数的值或范围.1.函数f (x )=3xx -1+ln(2x -x 2)的定义域为( ) A .(2,+∞) B .(1,2) C .(0,2)D .[1,2]解析:选B.要使函数有意义,则⎩⎪⎨⎪⎧x -1>0,2x -x 2>0,解得1<x <2. 所以函数f (x )=3xx -1+ln(2x -x 2)的定义域为(1,2). 2.如果函数f (x )=ln(-2x +a )的定义域为(-∞,1),那么实数a 的值为( ) A .-2B .-1C .1D .2解析:选D.因为-2x +a >0, 所以x <a 2,所以a2=1,所以a =2.3.(2020·山东安丘质量检测)已知函数f (x )的定义域为[0,2],则函数g (x )=f ⎝⎛⎭⎫12x +8-2x的定义域为( )A .[0,3]B .[0,2]C .[1,2]D .[1,3]解析:选A.由题意,可知x 满足⎩⎪⎨⎪⎧0≤12x ≤2,8-2x ≥0,解得0≤x ≤3,即函数g (x )的定义域为[0,3],故选A.函数的解析式(师生共研)(1)已知f ⎝⎛⎭⎫2x +1=lg x ,则f (x )的解析式为 .(2)若f (x )为二次函数且f (0)=3,f (x +2)-f (x )=4x +2,则f (x )的解析式为 . (3)已知函数f (x )满足f (-x )+2f (x )=2x ,则f (x )的解析式为 . 【解析】 (1)(换元法)令2x +1=t ,由于x >0,所以t >1且x =2t -1,所以f (t )=lg 2t -1,即f (x )的解析式是f (x )=lg 2x -1(x >1).(2)(待定系数法)设f (x )=ax 2+bx +c (a ≠0), 又f (0)=c =3.所以f (x )=ax 2+bx +3,所以f (x +2)-f (x )=a (x +2)2+b (x +2)+3-(ax 2+bx +3)=4ax +4a +2b =4x +2.所以⎩⎪⎨⎪⎧4a =4,4a +2b =2,所以⎩⎪⎨⎪⎧a =1,b =-1,所以所求函数的解析式为f (x )=x 2-x +3. (3)(解方程组法)因为2f (x )+f (-x )=2x ,① 将x 换成-x 得2f (-x )+f (x )=-2x ,② 由①②消去f (-x ),得3f (x )=6x , 所以f (x )=2x .【答案】(1)f(x)=lg2x-1(x>1)(2)f(x)=x2-x+3(3)f(x)=2x 求函数解析式的4种方法1.(一题多解)已知二次函数f (2x +1)=4x 2-6x +5,则f (x )= . 解析:法一(换元法):令2x +1=t (t ∈R ),则x =t -12,所以f (t )=4⎝⎛⎭⎫t -122-6·t -12+5=t 2-5t +9(t ∈R ),所以f (x )=x 2-5x +9(x ∈R ).法二(配凑法):因为f (2x +1)=4x 2-6x +5=(2x +1)2-10x +4=(2x +1)2-5(2x +1)+9, 所以f (x )=x 2-5x +9(x ∈R ).法三(待定系数法):因为f (x )是二次函数,所以设f (x )=ax 2+bx +c (a ≠0),则f (2x +1)=a (2x +1)2+b (2x +1)+c =4ax 2+(4a +2b )x +a +b +c .因为f (2x +1)=4x 2-6x +5, 所以⎩⎪⎨⎪⎧4a =4,4a +2b =-6,a +b +c =5,解得⎩⎪⎨⎪⎧a =1,b =-5,c =9,所以f (x )=x 2-5x +9(x ∈R ). 答案:x 2-5x +9(x ∈R )2.定义在R 上的函数f (x )满足f (x +1)=2f (x ).若当0≤x ≤1时,f (x )=x (1-x ),则当-1≤x ≤0时,f (x )= .解析:因为-1≤x ≤0,所以0≤x +1≤1,所以f (x )=12f (x +1)=12(x +1)[1-(x +1)]=-12x (x +1).故当-1≤x ≤0时,f (x )=-12x (x +1).答案:-12x (x +1)分段函数(多维探究) 角度一 求分段函数的函数值(1)(2020·合肥一检)已知函数f (x )=⎩⎪⎨⎪⎧x +1x -2,x >2,x 2+2,x ≤2,则f (f (1))=( ) A .-12B .2C .4D .11(2)(2020·山西太原三中模拟)设函数f (x )=⎩⎪⎨⎪⎧x 2-1(x ≥2),log 2x (0<x <2),若f (m )=3,则f ⎝⎛⎭⎫52-m = .【解析】 (1)因为f (1)=12+2=3,所以f (f (1))=f (3)=3+13-2=4.故选C.(2)当m ≥2时,m 2-1=3,所以m =2或m =-2(舍); 当0<m <2时,log 2m =3,所以m =8(舍). 所以m =2.所以f ⎝⎛⎭⎫52-m =f ⎝⎛⎭⎫12=log 212=-1. 【答案】 (1)C (2)-1分段函数的求值问题的解题思路(1)求函数值:先确定要求值的自变量属于哪一段区间,然后代入该段的解析式求值,当出现f (f (a ))的形式时,应从内到外依次求值.(2)求自变量的值:先假设所求的值在分段函数定义区间的各段上,然后求出相应自变量的值,切记要代入检验.角度二 分段函数与方程、不等式问题(1)(一题多解)设f (x )=⎩⎨⎧x ,0<x <1,2(x -1),x ≥1,若f (a )=f (a +1),则f ⎝⎛⎭⎫1a =( )A .2B .4C .6D .8(2)(一题多解)(2018·高考全国卷Ⅰ)设函数f (x )=⎩⎪⎨⎪⎧2-x ,x ≤01,x >0,则满足f (x +1)<f (2x )的x 的取值范围是( )A .(-∞,-1]B .(0,+∞)C .(-1,0)D .(-∞,0)【解析】 (1)法一:当0<a <1时,a +1>1, 所以f (a )=a ,f (a +1)=2(a +1-1)=2a . 由f (a )=f (a +1)得a =2a , 所以a =14.此时f ⎝⎛⎭⎫1a =f (4)=2×(4-1)=6. 当a ≥1时,a +1>1,所以f (a )=2(a -1),f (a +1)=2(a +1-1)=2a . 由f (a )=f (a +1)得2(a -1)=2a ,无解. 综上,f ⎝⎛⎭⎫1a =6,故选C.法二:因为当0<x <1时,f (x )=x ,为增函数, 当x ≥1时,f (x )=2(x -1),为增函数, 又f (a )=f (a +1), 所以a =2(a +1-1), 所以a =14.所以f ⎝⎛⎭⎫1a =f (4)=6.(2)法一:①当⎩⎪⎨⎪⎧x +1≤0,2x ≤0,即x ≤-1时,f (x +1)<f (2x )即为2-(x +1)<2-2x ,即-(x +1)<-2x ,解得x <1.因此不等式的解集为(-∞,-1].②当⎩⎪⎨⎪⎧x +1≤0,2x >0时,不等式组无解.③当⎩⎪⎨⎪⎧x +1>0,2x ≤0,即-1<x ≤0时,f (x +1)<f (2x )即1<2-2x ,解得x <0.因此不等式的解集为(-1,0).④当⎩⎪⎨⎪⎧x +1>0,2x >0,即x >0时,f (x +1)=1,f (2x )=1,不合题意.综上,不等式f (x +1)<f (2x )的解集为(-∞,0). 故选D.法二:因为f (x )=⎩⎪⎨⎪⎧2-x ,x ≤0,1,x >0,所以函数f (x )的图象如图所示.由图可知,当x +1≤0且2x ≤0时,函数f (x )为减函数,故f (x +1)<f (2x )转化为x +1>2x .此时x ≤-1.当2x <0且x +1>0时,f (2x )>1,f (x +1)=1, 满足f (x +1)<f (2x ). 此时-1<x <0.综上,不等式f (x +1)<f (2x )的解集为(-∞,-1]∪(-1,0)=(-∞,0). 故选D.【答案】 (1)C (2)D有关分段函数不等式问题,要按照分段函数的“分段”进行分类讨论,从而将问题转化为简单的不等式组来解.1.已知f (x )=⎩⎪⎨⎪⎧2x ,x >0,f (x +1),x ≤0,则f ⎝⎛⎭⎫43+f ⎝⎛⎭⎫-43的值等于( ) A .-2 B .4 C .2D .-4解析:选B.由题意得f ⎝⎛⎭⎫43=2×43=83. f ⎝⎛⎭⎫-43=f ⎝⎛⎭⎫-13=f ⎝⎛⎭⎫23=2×23=43. 所以f ⎝⎛⎭⎫43+f ⎝⎛⎭⎫-43=4.2.已知函数f (x )=⎩⎪⎨⎪⎧x 2+x ,x ≥0,-3x ,x <0,若a [f (a )-f (-a )]>0,则实数a 的取值范围为( )A .(1,+∞)B .(2,+∞)C .(-∞,-1)∪(1,+∞)D .(-∞,-2)∪(2,+∞)解析:选D.当a >0时,不等式a [f (a )-f (-a )]>0可化为a 2+a -3a >0,解得a >2.当a <0时.不等式a [f (a )-f (-a )]>0可化为-a 2-2a <0,解得a <-2.综上所述,a 的取值范围为(-∞,-2)∪(2,+∞).3.(2020·安徽安庆二模)已知函数f (x )=⎩⎨⎧x +1,-1<x <0,2x ,x ≥0.若实数a 满足f (a )=f (a -1),则f ⎝⎛⎭⎫1a = .解析:由题意得a >0.当0<a <1时,由f (a )=f (a -1),即2a =a .解得a =14,则f ⎝⎛⎭⎫1a =f (4)=8,当a ≥1时,由f (a )=f (a -1),得2a =2(a -1),无解. 答案:8核心素养系列2 数学抽象——函数的新定义问题所谓“新定义”函数,是相对于高中教材而言,指在高中教材中不曾出现或尚未介绍的一类函数.函数新定义问题的一般形式是:由命题者先给出一个新的概念、新的运算法则,或者给出一个抽象函数的性质等,然后让学生按照这种“新定义”去解决相关的问题.(2020·广东深圳3月模拟)在平面直角坐标系中,横坐标、纵坐标均为整数的点称为整点,若函数f (x )的图象恰好经过n (n ∈N *)个整点,则称函数f (x )为n 阶整点函数.给出下列函数:①f (x )=sin 2x ;②g (x )=x 3; ③h (x )=⎝⎛⎭⎫13x;④φ(x )=ln x . 其中是一阶整点函数的是( ) A .①②③④ B .①③④ C .①④D .④【解析】 对于函数f (x )=sin 2x ,它的图象(图略)只经过一个整点(0,0),所以它是一阶整点函数,排除D ;对于函数g (x )=x 3,它的图象(图略)经过整点(0,0),(1,1),…,所以它不是一阶整点函数,排除A ;对于函数h (x )=⎝⎛⎭⎫13x,它的图象(图略)经过整点(0,1),(-1,3),…,所以它不是一阶整点函数,排除B.故选C.【答案】 C本题意在考查考生的数学抽象、逻辑推理、数学运算、直观想象等核心素养.破解新定义函数题的关键是:紧扣新定义的函数的含义,学会语言的翻译、新旧知识的转化,便可使问题顺利获解.如本例,若能把新定义的一阶整点函数转化为函数f(x)的图象恰好经过1个整点,问题便迎刃而解.1.若一系列函数的解析式相同,值域相同,但定义域不同,则称这些函数为“同族函数”,则函数解析式为y=x2+1,值域为{1,3}的同族函数有()A.1个B.2个C.3个D.4个解析:选C.由x2+1=1得x=0,由x2+1=3得x=±2,所以函数的定义域可以是{0,2},{0,-2},{0,2,-2},故值域为{1,3}的同族函数共有3个.2.若函数f(x)同时满足下列两个条件,则称该函数为“优美函数”:(1)∀x∈R,都有f(-x)+f(x)=0;(2)∀x 1,x 2∈R ,且x 1≠x 2,都有f (x 1)-f (x 2)x 1-x 2<0.①f (x )=sin x ;②f (x )=-2x 3;③f (x )=1-x ; 以上三个函数中, 是“优美函数”.解析:由条件(1),得f (x )是R 上的奇函数,由条件(2),得f (x )是R 上的单调递减函数.对于①,f (x )=sin x 在R 上不单调,故不是“优美函数”;对于②,f (x )=-2x 3既是奇函数,又在R 上单调递减,故是“优美函数”;对于③,f (x )=1-x 不是奇函数,故不是“优美函数”.答案:②[基础题组练]1.函数y =1ln (x -1)的定义域为( )A .(1,+∞)B .[1,+∞)C .(1,2)∪(2,+∞)D .(1,2)∪[3,+∞)解析:选C.由ln(x -1)≠0,得x -1>0且x -1≠1.由此解得x >1且x ≠2,即函数y =1ln (x -1)的定义域是(1,2)∪(2,+∞).2.已知f ⎝⎛⎭⎫12x -1=2x -5,且f (a )=6,则a 等于( ) A .-74B.74C.43D .-43解析:选B.令t =12x -1,则x =2t +2,所以f (t )=2(2t +2)-5=4t -1,所以f (a )=4a -1=6,即a =74.3.(2020·江西南昌一模)设函数f (x )=⎩⎪⎨⎪⎧x 2-2x (x ≤0),f (x -3)(x >0),则f (5)的值为( ) A .-7 B .-1 C .0D.12解析:选D.f (5)=f (5-3)=f (2)=f (2-3)=f (-1)=(-1)2-2-1=12.故选D.4.已知f ⎝⎛⎭⎫1+x x =x 2+1x 2+1x ,则f (x )等于( ) A .(x +1)2(x ≠1) B .(x -1)2(x ≠1) C .x 2-x +1(x ≠1)D .x 2+x +1(x ≠1)解析:选C.f ⎝⎛⎭⎫1+x x =x 2+1x 2+1x =⎝⎛⎭⎫x +1x 2-x +1x +1,令x +1x =t (t ≠1),则f (t )=t 2-t +1,即f (x )=x 2-x +1(x ≠1).5.设函数f (x )=⎩⎪⎨⎪⎧1x ,x >1,-x -2,x ≤1,则f (f (2))= ,函数f (x )的值域是 .解析:因为f (2)=12,所以f (f (2))=f ⎝⎛⎭⎫12=-12-2=-52. 当x >1时,f (x )∈(0,1), 当x ≤1时,f (x )∈[-3,+∞), 所以f (x )∈[-3,+∞). 答案:-52[-3,+∞)6.若函数f (x )在闭区间[-1,2]上的图象如图所示,则此函数的解析式为 .解析:由题图可知,当-1≤x <0时,f (x )=x +1;当0≤x ≤2时,f (x )=-12x ,所以f (x )=⎩⎪⎨⎪⎧x +1,-1≤x <0,-12x ,0≤x ≤2.答案:f (x )=⎩⎪⎨⎪⎧x +1,-1≤x <0,-12x ,0≤x ≤27.已知f (x )=⎩⎪⎨⎪⎧12x +1,x ≤0,-(x -1)2,x >0,则使f (x )≥-1成立的x 的取值范围是 .解析:由题意知⎩⎪⎨⎪⎧x ≤0,12x +1≥-1或⎩⎪⎨⎪⎧x >0,-(x -1)2≥-1, 解得-4≤x ≤0或0<x ≤2,故x 的取值范围是[-4,2]. 答案:[-4,2] 8.设函数f (x )=⎩⎪⎨⎪⎧ax +b ,x <0,2x,x ≥0,且f (-2)=3,f (-1)=f (1).(1)求f (x )的解析式; (2)画出f (x )的图象.解:(1)由f (-2)=3,f (-1)=f (1)得⎩⎪⎨⎪⎧-2a +b =3,-a +b =2,解得a =-1,b =1,所以f (x )=⎩⎪⎨⎪⎧-x +1,x <0,2x ,x ≥0. (2)f (x )的图象如图所示.[综合题组练]1.(2020·海淀期末)下列四个函数:①y =3-x ;②y =2x -1(x >0);③y =x 2+2x -10;④y =⎩⎪⎨⎪⎧x (x ≤0),1x(x >0).其中定义域与值域相同的函数的个数为( )A .1B .2C .3D .4解析:选B.①y =3-x 的定义域与值域均为R ,②y =2x -1(x >0)的定义域为(0,+∞),值域为⎝⎛⎭⎫12,+∞,③y =x 2+2x -10的定义域为R ,值域为[-11,+∞),④y =⎩⎪⎨⎪⎧x (x ≤0),1x (x >0)的定义域和值域均为R .所以定义域与值域相同的函数是①④,共有2个,故选B.2.(创新型)设f (x ),g (x )都是定义在实数集上的函数,定义函数(f ·g )(x ):∀x ∈R ,(f ·g )(x )=f (g (x )).若f (x )=⎩⎪⎨⎪⎧x ,x >0,x 2,x ≤0,g (x )=⎩⎪⎨⎪⎧e x ,x ≤0,ln x ,x >0,则( )A .(f ·f )(x )=f (x )B .(f ·g )(x )=f (x )C .(g ·f )(x )=g (x )D .(g ·g )(x )=g (x )解析:选A.对于A ,(f ·f )(x )=f (f (x ))=⎩⎪⎨⎪⎧f (x ),f (x )>0,f 2(x ),f (x )≤0,当x >0时,f (x )=x >0,(f ·f )(x )=f (x )=x ;当x <0时,f (x )=x 2>0,(f ·f )(x )=f (x )=x 2;当x =0时,(f ·f )(x )=f 2(x )=0=02,因此对任意的x ∈R ,有(f ·f )(x )=f (x ),故A 正确,选A.3.(2020·宁夏银川一中一模)已知函数f (x )=⎩⎨⎧2-x+1,x ≤0,-x ,x >0,则f (x +1)-9≤0的解集为 .解析:因为f (x )=⎩⎨⎧2-x+1,x ≤0,-x ,x >0,所以当x +1≤0时,⎩⎪⎨⎪⎧x ≤-1,2-(x +1)-8≤0,解得-4≤x ≤-1;当x +1>0时,⎩⎨⎧x >-1,-x +1-9≤0,解得x >-1.综上,x ≥-4,即f (x +1)-9≤0的解集为[-4,+∞). 答案:[-4,+∞)4.(创新型)设函数f (x )的定义域为D ,若对任意的x ∈D ,都存在y ∈D ,使得f (y )=-f (x )成立,则称函数f (x )为“美丽函数”,下列所给出的几个函数:①f (x )=x 2;②f (x )=1x -1;③f (x )=ln(2x +3);④f (x )=2sin x -1. 其中是“美丽函数”的序号有 .解析:由已知,在函数定义域内,对任意的x 都存在着y ,使x 所对应的函数值f (x )与y 所对应的函数值f (y )互为相反数,即f (y )=-f (x ).故只有当函数的值域关于原点对称时才会满足“美丽函数”的条件.①中函数的值域为[0,+∞),值域不关于原点对称,故①不符合题意;②中函数的值域为(-∞,0)∪(0,+∞),值域关于原点对称,故②符合题意;③中函数的值域为(-∞,+∞),值域关于原点对称,故③符合题意;④中函数f(x)=2sin x-1的值域为[-3,1],不关于原点对称,故④不符合题意.故本题正确答案为②③.答案:②③。
与名师对话高三数学(文)一轮复习课件:第二章-函数的概念与基本初等函数
解:(1)记“甲获得‘合格证书’”为事件 A,“乙获得‘合格 证书’”为事件 B,“丙获得‘合格证书’”为事件 C,则 P(A) =45×12=25,P(B)=34×23=12,P(C)=23×56=59, 从而 P(C)>P(B)>P(A),所以丙获得“合格证书”的可能性大. (2)记“甲、乙、丙三人进行理论与实际操作两项考试后,恰有 两人获得‘合格证书’”为事件 D,则 P(D)=P(AB -C )+P(A -B C)+P(-A BC)=25×12×49+25×12×59+35×12×59=3110.
4.二项分布的均值、方差 若 X~B(n,p),则 E(X)=_n_p _,D(X)=_n_p(_1-_p_) __.
5.正态曲线的特点
(1)曲线位于 x 轴上方,与 x 轴不相交; (2)曲线是单峰的,它关于直线__x=_μ___对称;
(3)曲线在
x=μ
处达到峰值 σ
1; 2π
(4)曲线与 x 轴之间的面积为 1;
n(AB) =_______n_(__A_)__________.
(2)条件概率具有的性质: ①0≤P(B|A)≤1; ②如果 B 和 C 是两个互斥事件, 则 P(B∪C|A)=P(B|A)+P(C|A). 2.相互独立事件 (1)对于事件 A、B,若 A 的发生与 B 的发生互不影响,则称 A、B 是_______相__互__独__立__事__件__________. (2)若 A 与 B 相互独立,则 P(B|A)=P(B), P(AB)=P(A)P(B|A)=P(A)P(B). (3)若 A 与 B 相互独立,则 A 与-B ,-A 与 B,-A 与-B 也都相互独立.
(1)求一续保人本年度的保费高于基本保费的概率; (2)若一续保人本年度的保费高于基本保费,求其保费比基 本保费高出 60%的概率.
2021版高考数学苏教版一轮教师用书:2.9 函数与方程
[最新考纲] 结合二次函数的图象,了解函数的零点与方程根的联系,判断 一元二次方程根的存在性与根的个数.
1.函数的零点
(1)函数零点的定义
对于函数 y=f(x)(x∈D),把使 f(x)=0 的实数 x 叫做函数 y=f(x)(x∈D)的零
点.
(2)三个等价关系
方程 f(x)=0 有实数根⇔函数 y=f(x)的图象与 x 轴有交点⇔函数 y=f(x)有零 点.
则函数 y=f(x)在区间[1,6]上的零点至少有( )
A.2 个
B.3 个
C.4 个
D.5 个
B [∵f(2)·f(3)<0,f(3)·f(4)<0,f(4)·f(5)<0,故函数 f(x)在区间[1,6]内至少
有 3 个零点.]
2.函数 f(x)=ln x+2x-6 的零点所在的区间是( )
当 x>0 时,令 f(x)=ex+x-3=0,则 ex=-x+3,分别画出函数 y=ex 和 y=-x+3 的图象,如图所示,两函数图象有 1 个交点,所以函数 f(x)有 1 个零 点.
根据对称性知,当 x<0 时,函数 f(x)也有 1 个零点.综上所述,f(x)的零点 个数为 3.]
(1)利用函数的零点存在性定理时,不仅要求函数的图象在区间[a,b] 上是连续不断的曲线,且 f(a)f(b)<0,还必须结合函数的图象与性质(如单调性、 奇偶性)才能确定函数有多少个零点.
(-∞,0]∪(1,+∞) [函数 g(x)=f(x)+x-m 的零点就是方程 f(x)+x=m 的 根,画出 h(x)=f(x)+x=Error!的大致图象(图略).
观察它与直线 y=m 的交点,得知当 m≤0 或 m>1 时,有交点,即函数 g(x) =f(x)+x-m 有零点.]
2021版高考数学一轮讲义:第2章 函数、导数及其应用+2.6 对数与对数函数
2.6 对数与对数函数[知识梳理]1.对数2.对数函数的概念、图象与性质3.反函数概念:当一个函数的自变量和函数值成一一对应时,可以把这个函数的因变量作为一个新的函数的自变量,而把这个函数的自变量作为新的函数的因变量,我们称这两个函数互为反函数.4.对数函数与指数函数的关系指数函数y=a x(a>0且a≠1)与对数函数y=log a x(a>0且a≠1)互为反函数.(1)对数函数的自变量x恰好是指数函数的函数值y,而对数函数的函数值y恰好是指数函数的自变量x,即二者的定义域和值域互换.(2)由两函数的图象关于直线y=x对称,易知两函数的单调性、奇偶性一致.特别提示:底数a对函数y=log a x(a>0且a≠1)的图象的影响(1)底数a与1的大小关系决定了对数函数图象的“升降”:当a>1时,对数函数的图象“上升”;当0<a<1时,对数函数的图象“下降”.(2)底数的大小决定了图象相对位置的高低:不论是a>1还是0<a<1,在第一象限内,自左向右,图象对应的对数函数的底数逐渐变大.(3)作直线y=1与所给图象相交,交点的横坐标为该对数函数的底数,由此可判断多个对数函数底数的大小关系.[诊断自测]1.概念思辨(1)若log a M2=log a N2,则M=N;若M=N,则log a M2=log a N2.()(2)当x>1时,若log a x>log b x,则a<b.()(3)函数f (x )=lg x -2x +2与g (x )=lg (x -2)-lg (x +2)是同一个函数.( )(4)对数函数y =log a x (a >0且a ≠1)的图象过定点(1,0),且过点(a,1),⎝ ⎛⎭⎪⎫1a ,-1.( )。
【与名师对话】高考数学一轮复习 2.1函数及其表示课件 文
有以下判断:
1, x≥0, |x| (1)f(x)= 与 g(x)= 表示同一函数; x -1, x<0
(2)函数 y=f(x)的图象与直线 x=1 的交点最多有 1 个; (3)f(x)=x2-2x+1 与 g(t)=t2-2t+1 是同一函数; (4)若 f(x)=|x-1|-|x|,则
答案:(2)(3)
考点二 函数的表示方法
1.表示函数的常用方法有:解析法、列表法、图象法. 2. 解析法就是把变量 x, y 之间的关系, 用一个关系式 y=f(x) 来表示,通过关系式可以由 x 的值求出 y 的值.列表法是将变量 x,y 的取值列成表格,由表格直接反映出二者的关系;图象法就 是把 x, y 之间的关系绘制成图象, 图象上每个点的坐标就是相应 的变量 x,y 的值.
x2-1 在 C 中,f(x)= =x+1,其定义域为{x|x≠1};g( x)=x x-1 +1 的定义域为 R.因为它们的定义域不同,所以 C 不成立. 在 D 中, g(t)= t2=|t |, 与 f(x)= |x|的对应关系和定义域都相 同,所以 D 成立.
【答案】 D
两个函数的定义域、值域和对应关系中有一个不同,它们就 表示不同的函数.
第 二 章
函数、导数及其应用
第一节
函数及其表示
高考导航
基 础
知 识 回 顾
1.函数与映射的概念
问题探究 1:映射与函数有什么区别? 提示:函数是特殊的映射,二者区别在于映射定义中的两个 集合是非空集合,可以不是数集,而函数中的两个集合必须是非 空数集.
2.函数的相关概念 (1)函数的三要素是 定义域、值域 (2)相等函数 如果两个函数的 定义域 和 对应关系 个函数相等. 完全一致,则这两 和 对应关系.
2021年高考数学一轮复习 第2章《函数与导数》二次函数精品课件
a2 4a 1 >0
由
a
a<0,
a
解得a<-2- 3或-2+ 3 <a<0.
故当f(x)的最大值为正数时,实数a的取值范围
是(-∞,-2- 3)∪(-2+ 3,0).
【评析】解一元二次不等式 ax2+bx+c>0 或 ax2 +
bx+c<0 ,反映在数量关系上就是考查二次方程ax2+
bx+c=0的根,反映在图形上就是考查二次 y=ax2+bx
令h(a)=2a2,则当0<a<3-2 2时,h(a)是增函数.
∴h(a)<h(3-2 2)=2(3-2 2)2 2 =2(17-12 )
=2×
1
< 1.
17 12 2 即f(0)·f(1)-f(0)< 1 .
16
16
【评析】本题利用二次函数的性质研究了二次方程根 的分布问题,继而求出了待定字母a的取值范围.
即5a2-4a-1=0. 1 解得a=1或a=- 5 .
由于a<0,舍去a=1. 将a=- 1 代入①得f(x)的解析式为
5 163 f(x)=- x2- x- . 555
返回目录
(2)f(x)=ax2-2(1+2a)x+3a
=
a
x
1
2a
2
a
2
4a
1
a
a
由a<0,可得f(x)的最大值为 a2 4a 1 .
学案4 二 次 函 数
1.二次函数 函数 y=ax2+bx+c(a≠0) 叫做二次函数,它的定义
2021高考文科数学一轮总复习课标通用版课件:第2章 函数 2-1
4.(数学文化)中国清朝数学家李善兰在 1859 年翻译《代数学》中首次将“function”
译做:“函数”,沿用至今,为什么这么翻译,书中解释说“凡此变数中函彼变数者,
则此为彼之函数”.1930 年美国人给出了我们课本中所学的集合论的函数定义,已知集合
M={-1,1,2,4},N={1,2,4,16},给出下列四个对应法则:①y=log2|x|,②y=x +1,③y=2|x|,④y=x2,请由函数定义判断,其中能构成从 M 到 N 的函数的是( )
【解析】 在选项 A 中,前者属于非负数,后者的 y≤0,两个函数的值域不同;在
选项 B 中,前者的定义域为 x>1,后者为 x>1 或 x<-1 ,定义域不同;在选项 C 中,
两函数定义域不相同;在选项 D 中,f(x)=x0 定义域是{x|x≠0},g(x)=x10的定义域为
{x|x≠0},定义域不相同,值域、对应法则都相同,所以是同一函数,故选 D.
(3)(消元法)在 f(x)=2f(1x)· x-1,用1x代替 x,
得 f(1x)=2f(x)·1x-1,
将 f(1x)=2f(xx)-1 代入 f(x)=2f(1x)· x-1 中,
可求得 f(x)=32 x+31.
【答案】
2 (1)lgx-1(x>1)
(2)2x+7
2 (3)3பைடு நூலகம்
x+13
【反思·升华】 本题考查函数表示方法中的解析法,一般最常见的有如下几种: (1)待定系数法:若已知函数的类型(如一次函数、二次函数),可用待定系数法; (2)换元法:已知复合函数 f(g(x))的解析式,可用换元法,此时要注意新元的取值范 围; (3)配凑法:由已知条件 f(g(x))=F(x),可将 F(x)改写成关于 g(x)的表达式,然后以 x 替代 g(x),便得 f(x)的解析式;
全国近年高考数学一轮复习第2章函数、导数及其应用第9讲函数模型及其应用学案(2021年整理)
(全国版)2019版高考数学一轮复习第2章函数、导数及其应用第9讲函数模型及其应用学案编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((全国版)2019版高考数学一轮复习第2章函数、导数及其应用第9讲函数模型及其应用学案)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(全国版)2019版高考数学一轮复习第2章函数、导数及其应用第9讲函数模型及其应用学案的全部内容。
第9讲函数模型及其应用板块一知识梳理·自主学习[必备知识]考点1 常见的函数模型函数模型函数解析式一次函数f(x)=ax+b(a,b为常数,a≠0)型二次函数f(x)=ax2+bx+c(a,b,c为常数,a≠0)型指数函数f(x)=ba x+c(a,b,c为常数,a>0且a≠1,b≠0)型对数函数f(x)=b log a x+c(a,b,c为常数,a〉0且a≠1,b≠0)型幂函数型f(x)=ax n+b(a,b为常数,a≠0)[必会结论]“f(x)=x+错误!(a>0)”型函数模型形如f(x)=x+错误!(a>0)的函数模型称为“对勾"函数模型:(1)该函数在(-∞,-错误!]和[错误!,+∞)上单调递增,在[-错误!,0]和(0,a]上单调递减.(2)当x>0时,x=错误!时取最小值2错误!,当x<0时,x=-错误!时取最大值-2错误!。
[考点自测]1.判断下列结论的正误.(正确的打“√”,错误的打“×")(1)函数y=2x的函数值比y=x2的函数值大.( )(2)幂函数比一次函数增长速度快.()(3)指数函数模型,一般用于解决变化较快,短时间内变化量较大的实际问题中.()(4)对数函数增长模型比较适合于描述增长速度平缓的变化规律.()(5)某种商品进价为每件100元,按进价增加25%出售,后因库存积压降价,若按九折出售,则每件商品仍能获利.()(6)当x>4时,恒有2x>x2>log2x.( )答案(1)×(2)×(3)√(4)√(5)√(6)√2.[2018·长沙模拟]小明骑车上学,开始时匀速行驶,途中因交通堵塞停留了一段时间,后为了赶时间加快速度行驶.与以上事件吻合得最好的图象是()答案C解析出发时距学校最远,先排除A,中途堵塞停留,距离没变,再排除D,堵塞停留后比原来骑得快,因此排除B。
【与名师对话】高考数学总复习 3-9 函数模型及其应用课件 文 新人教A版
解析:当 h=H 时,体积为 V,故排除 A、C,又当开始 阶段,由 H→0 过程中,减少相同高度的水,水的体积减少的 越来越多,故 D 不满足要求.
答案:B
5.某农贸市场出售西红柿,当价格上涨时,供给量相应 增加,而需求量相应减少,具体调查结果如下表所示: 表 1 市场供给表
单价/(元/kg) 供给量/(1 000 kg) 2 50 2.4 60 2.8 70 3.2 75 3.6 80 4 90
(对应学生用书 P57)
1.三种函数模型的性质
函数 性质 在(0,+∞) 上的增减性 增长速度
y=ax(a>1) 单调递增 越来越快
y=logax(a>1)
y=xn(n>0) 单调递增 相对平稳
单调递增
越来越慢
函数 性质
y=ax(a>1) 随x增大逐渐 表示为与y轴 平行一样
y=logax(a>1)
考纲要求 1.了解指数函数、 对数函数以及幂 函数的增长特 征,知道直线上 升、指数增长、 对数增长等不同 函数类型增长的 含义. 2.了解函数模型 (如指数函数、对 数函数、幂函 数、分段函数等 在社会生活中普 遍使用的过对近三年高考试题的统计分析可以看出,对函数 的实际应用问题的考查,多以社会实际生活为背景, 设问新颖、灵活,而解决这些问题所涉及的数学知 识、数学思想和方法又都是高中教材和大纲中所要求 掌握的概念、公式、法则、定理等基础知识和方法, 这就要求学生具备转化与化归及分类讨论的能力,将 复杂问题转化为熟悉的问题加以解决,难度为中等难 度.如2012年江西卷10,上海卷21等. 预测:2013年高考试题仍将突出函数实际应用题的信 息量大的特征,重点考查学生处理问题的能力.所涉 及的函数模型将会以二次(三次)函数型、指数型、对 b 勾函数(f(x)=ax+ x )型及分段函数型为主.高考复习 中应充分挖掘课本中涉及的应用背景,重点训练学生 处理问题、建立数学模型的能力.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
微 课
回 顾
值(精确度0.1)如下表所示:
导 学
x 1.25 1.3125 1.375 1.4375 1.5 1.5625
f(x) -0.8716 -0.5788 -0.2813 0.2101 0.32843 0.64115
核 心
则方程2x+3x=7的近似解(精确到0.1)可取为( C )
课 后
考
跟
基
名
础
师
知
微
识 回
[思路引导] (1)研究f(x)的单调性→确定区间端点函数
课 导
顾
学
值的符号→判断零点所在的区间.
核
(2)f(x)=0转化为
2 x-1
=lnx→作出函数y=
2 x-1
和y=lnx
课
心
后
考 的图象→由图象确定结果.
点
跟 踪
突
训
破
练
第21页
第2章 第9节
与名师对话·系列丛书
高考总复习·课标版·数学(文)
微 课
回
导
顾
如果函数y=f(x)在区间[a,b]上的图象是连续不断的一 学
条曲线,并且有 f(a)·f(b)<0,那么,函数y=f(x)在区间(a,b)
核 内有零点,即存在c∈(a,b),使得 f(c)=0 ,这个 c 也就
心
课 后
考 点
是方程f(x)=0的根.
跟 踪
突
训
破
练
第6页
第2章 第9节
与名师对话·系列丛书
识 回 顾
[解析] 因为f1e=-12+1e-e-2<0, f(1)=-2<0, f(2)=12
课 导 学
ln2-12<0, f(e)=12+e-1e-2>0,所以f(2)f(e)<0,所以函数f(x)
核 心 考 点
=12lnx+x-1x-2的零点所在的区间是(2,e),故选C.
课 后 跟 踪
突
训
破
零点在(1.375,1.4375)内,因为精确到0.1,故2x+3x=7的近
核
课
心 考
似解可取1.4.故选C.
后 跟
点
踪
突
训
破
练
第17页
第2章 第9节
与名师对话·系列丛书
高考总复习·课标版·数学(文)
基
名
础 知
5.(2019·辽宁锦州期中)已知方程x2+(m+2)x+m+5=
师 微
识 回
0有两个正根,则实数m的取值范围是__(_-__5_,__-__4_]__.
与名师对话·系列丛书
基 础 知 识 回 顾 核 心 考 点 突 破
第1页
高考总复习·课标版·数学(文) 名 师 微 课 导 学 课 后 跟 踪 训 练
第2章 第9节
与名师对话·系列丛书
高考总复习·课标版·数学(文)
基
名
础
师
知
微
识
课
回
导
顾
学
第九节 函数与方程
核
课
心
后
考
跟
点
踪
突
训
破
练
第2页
第2章 第9节
高考总复习·课标版·数学(文)
基
名
础
考点二 函数零点个数的判断
师
知
微
识
课
回
导
顾
x2+x-2,x≤0,
学
【例2】 (1)函数f(x)=
的零点个
-1+lnx,x>0
核 数为( B )
心
课 后
考 点
A.3
B.2
跟 踪
突
训
破
C.7
D.0
练
第30页
第2章 第9节
与名师对话·系列丛书
高考总复习·课标版·数学(文)
C.(2,3)
D.(3,4)
核 心
(2)(2020·宁波镇海中学月考)函数f(x)=x-2 1+ln1x 的零点
课 后
考 点
所在的大致区间是( D )
跟 踪
突
训
破
A.(0,1)
B.(1,2)
练
C.(2,3)
D.(0,1),(2,3)
第20页
第2章 第9节
与名师对话·系列丛书
高考总复习·课标版·数学(文)
基 础
(2)(2020·河南郑州质检)已知函数f(x)=
与名师对话·系列丛书
高考总复习·课标版·数学(文)
基
名
础
师
知
微
识
课
回
导
顾
最新考纲:1.结合二次函数的图象,了解函数的零点与 学
方程根的联系,判断一元二次方程根的存在性及根的个数;
核 2.根据具体函数的图象,能够用二分法求相应方程的近似解. 课
心
后
考
跟
点
ห้องสมุดไป่ตู้
踪
突
训
破
练
第3页
第2章 第9节
与名师对话·系列丛书
基
础
知
识
回 顾
基础
核 心 考 点 突 破
第4页
高考总复习·课标版·数学(文)
名
师
微
课
知识回顾
导 学
课 后 跟 踪 训 练
第2章 第9节
与名师对话·系列丛书
高考总复习·课标版·数学(文)
基
名
础 知
1.函数的零点
师 微
识
课
回 顾
(1)函数零点的定义
导 学
对于函数y=f(x)(x∈D),把使 f(x)=0 的实数x叫做函
基
名
础
师
知
微
识
课
回
导
顾
核心
考点突破
学
核
课
心
后
考
跟
点
踪
突
训
破
练
第19页
第2章 第9节
与名师对话·系列丛书
高考总复习·课标版·数学(文)
考点一 函数零点所在区间的判断
基
【例1】 (1)函数f(x)=log3x+x-2的零点所在的区间 名
础
师
知 识
为( B )
微 课
回 顾
A.(0,1)
B.(1,2)
导 学
第11页
第2章 第9节
与名师对话·系列丛书
高考总复习·课标版·数学(文)
基
名
础
师
知
微
识
课
回 顾
(3)二次函数y=ax2+bx+c(a≠0)在b2-4ac<0时没有零
导 学
点.( √ )
(4)f(x)=x2,g(x)=2x,h(x)=log2x,当x∈(4,+∞)时,
核 心
恒有h(x)<f(x)<g(x).( √
后 跟
点 突
在区间(1,2)内.故选B.
踪 训
破
练
第22页
第2章 第9节
与名师对话·系列丛书
高考总复习·课标版·数学(文)
基
名
础 知 识 回
师
(2)求函数f(x)=x-2 1+ln1x的零点所在的大致区间,等价
微 课 导
顾
学
于求x-2 1+ln1x=0的解所在的大致区间,等价于求x-2 1=-
核 心
核 心
或1+1x+3x=0, 解得x=0或x=-1,
课 后
考
跟
点 突
所以函数y=f(x)+3x的零点个数是2.故选C.
踪 训
破
练
第15页
第2章 第9节
与名师对话·系列丛书
高考总复习·课标版·数学(文)
基
4.(必修1P20例2改编)为了求函数f(x)=2x+3x-7的一个 名
础
师
知 识
零点,某同学利用计算器得到自变量x和函数f(x)的部分对应
ln
1 x
的解所在的大致区间,等价于求
2 x-1
=lnx的解所在的大
课 后
考
跟
点 突
致区间,
踪 训
破
练
第23页
第2章 第9节
与名师对话·系列丛书
高考总复习·课标版·数学(文)
基
等价于求y=
2 x-1
与y=lnx的图象在(0,+∞)上的交点的横
名
础 知
坐标所在的大致区间(如图所示),由图可得,选D.
点 突
A.1.32
B.1.39
踪 训
破
C.1.4
D.1.3
练
第16页
第2章 第9节
与名师对话·系列丛书
高考总复习·课标版·数学(文)
基
名
础
师
知
微
识
课
回 顾
[解析] 方程2x+3x=7的近似解,即函数f(x)=2x+3x-
导 学
7的零点,由图表可知,f(1.375)<0,f(1.4375)>0,所以f(x)的
心
后
考 点 突 破
ln2-
1 2
=ln2-ln
e >0,所以函数f(x)的零点所在的区间是
跟 踪 训 练
(1,2).故选B.
第13页
第2章 第9节
与名师对话·系列丛书
高考总复习·课标版·数学(文)
基
名
础 知
3.(2019·福建省龙岩市期末)已知函数f(x)=
师 微
识
课
回