统计学第四版课后答案

合集下载

统计学课后题答案第四版中国人民大学出版社

统计学课后题答案第四版中国人民大学出版社

●3.2.某行业管理局所属40个企业2002年的产品销售收入数据如下(单位:万元):1521241291161001039295127104105119114115871031181421351251171081051101071371201361171089788123115119138112146113126(1)根据上面的数据进行适当的分组,编制频数分布表,并计算出累积频数和累积频率;(2)如果按规定:销售收入在125万元以上为先进企业,115万~125万元为良好企业,105万~115万元为一般企业,105万元以下为落后企业,按先进企业、良好企业、一般企业、落后企业进行分组。

解:(1)要求对销售收入的数据进行分组,全部数据中,最大的为152,最小的为87,知数据全距为152-87=65;为便于计算和分析,确定将数据分为6组,各组组距为10,组限以整10划分;为使数据的分布满足穷尽和互斥的要求,注意到,按上面的分组方式,最小值87可能落在最小组之下,最大值152可能落在最大组之上,将最小组和最大组设计成开口形式;按照“上限不在组内”的原则,用划记法统计各组内数据的个数——企业数,也可以用Excel 进行排序统计(见Excel练习题2.2),将结果填入表内,得到频数分布表如下表中的左两列;将各组企业数除以企业总数40,得到各组频率,填入表中第三列;在向上的数轴中标出频数的分布,由下至上逐组计算企业数的向上累积及频率的向上累积,由上至下逐组计算企业数的向下累积及频率的向下累积。

整理得到频数分布表如下:40个企业按产品销售收入分组表(2)按题目要求分组并进行统计,得到分组表如下:某管理局下属40个企分组表按销售收入分组(万元)企业数(个)频率(%)先进企业良好企业一般企业落后企业11119927.527.522.522.5合计40100.0●7.1. 从一个标准差为5的总体中抽出一个容量为40的样本,样本均值为25。

统计学贾俊平第四版课后习题答案

统计学贾俊平第四版课后习题答案

3.3 某百货公司连续40天的商品销售额如下:单位:万元41 25 29 47 38 34 30 38 43 40 46 36 45 37 37 36 45 43 33 44 35 28 46 34 30 37 44 26 38 44 42363737493942323635要求:根据上面的数据进行适当的分组,编制频数分布表,并绘制直方图。

1、确定组数: ()lg 40lg() 1.60206111 6.32lg(2)lg 20.30103n K =+=+=+=,取k=6 2、确定组距:组距=( 最大值 - 最小值)÷ 组数=(49-25)÷6=4,取54.8 一项关于大学生体重状况的研究发现.男生的平均体重为60kg ,标准差为5kg ;女生的平均体重为50kg ,标准差为5kg 。

请回答下面的问题: (1)是男生的体重差异大还是女生的体重差异大?为什么?女生,因为标准差一样,而均值男生大,所以,离散系数是男生的小,离散程度是男生的小。

(2)以磅为单位(1ks=2.2lb),求体重的平均数和标准差。

都是各乘以2.21,男生的平均体重为60kg×2.21=132.6磅,标准差为5kg ×2.21=11.05磅;女生的平均体重为50kg×2.21=110.5磅,标准差为5kg×2.21=11.05磅。

(3)粗略地估计一下,男生中有百分之几的人体重在55kg一65kg之间?计算标准分数:Z1=x xs-=55605-=-1;Z2=x xs-=65605-=1,根据经验规则,男生大约有68%的人体重在55kg一65kg之间。

(4)粗略地估计一下,女生中有百分之几的人体重在40kg~60kg之间?计算标准分数:Z1=x xs-=40505-=-2;Z2=x xs-=60505-=2,根据经验规则,女生大约有95%的人体重在40kg一60kg之间。

统计学课后习题答案(第四版)贾俊平(第4、5、7、10章)

统计学课后习题答案(第四版)贾俊平(第4、5、7、10章)

《统计学》第四版 第四章练习题答案众数:M o =1O;中位数:中位数位置=n+1/2=5.5 , M e =10 ;平均数:(2) Q L 位置=n/4=2.5, Q L =4+7/2=5.5 ; Q u 位置=3n/4=7.5 , Q u =12(4) 4.2 和 M O =23。

将原始数据排序后,计算中位数的位置为:中位数位置=n+1/2=13,第13个位置上的数值为23,所以中位数为 M e =23(2)Q L 位置=n/4=6.25, Q L ==19 ; Q u 位置=3n/4=18.75,Q u =26.5茎 叶 频数 5 5 1 6 6 7 8 3 71 3 4 8 85(3)第一种排队方式: 离散程度大于第二种排队方式。

(4 )选方法二,因为第二种排队方式的平均等待时间较短,且离散程度小于第一种排队方 式。

_ Z X i4.4 ( 1)X8223/30=274.14.1 ( 1 ) 二X i X =n96.9,6 102' (X i-X ) _156.4 42n -1, 9由于平均数小于中位数和众数,所以汽车销售量为左偏分布。

(1)从表中数据可以看出,年龄出现频数最多的是 19和23,故有个众数,即 M O =19(3)⑶平均数-A =600/25=24,标准差—(XLX)\ n —1210626.6525-1n(4) 偏态系数SK=1.08,峰态系数K=0.77(5) 分析:从众数、中位数和平均数来看,网民年龄在 23-24岁的人数占多数。

由于标准差较大,说明网民年龄之间有较大差异。

从偏态系数来看,年龄分布为右偏,由于偏态系数 1,所以,偏斜程度很大。

由于峰态系数为正值,所以为尖峰分布。

(1)茎叶图如下: 大于 4.3 —2'(X 一 X ) 4.080.714nn -1■ 8由于两种排队方式的平均数不同,所以用离散系数进行比较。

(2) X 二一^ =63/9=7, S = ■■n中位数位置=n+1/2=15.5 , M e=272+273/2=272.5(2) Q L位置=n/4=7.5, Q L==(258+261)/2=259.5 ; Q u 位置=3n/4=22.5 , Q u=(284+291)/2=287.5' (^-X ^ /3002-7 = 21.17 I n —1 \ 30—12100 +3000 +15004.5 (1)甲企业的平均成本=总成本/总产量=-2100 3000---- + ----- 15 20乙企业的平均成本=总成本/总产量=3255150015006255=18.293255 1500 1500 342____ + _____ + _____152030原因:尽管两个企业的单位成本相同, 但单位成本较低的产品在乙企业的产量中所占比重较 大,因此拉低了总平均成本。

统计学人大第四版课后答案

统计学人大第四版课后答案

3.1 为评价家电行业售后服务的质量,随机抽取了由100个家庭构成的一个样本。

服务质量的等级分别表示为:A.好;B.较好;C一般;D.较差;E.差。

调查结果如下:B EC C AD C B A ED A C B C DE C E EA DBC C A ED C BB ACDE A B D D CC B C ED B C C B CD A C B C DE C E BB EC C AD C B A EB AC E E A BD D CA DBC C A ED C BC B C ED B C C B C要求:(1)指出上面的数据属于什么类型。

顺序数据(2)用Excel制作一张频数分布表。

用数据分析——直方图制作:接收频率E16D17C32B21A14(3)绘制一张条形图,反映评价等级的分布。

用数据分析——直方图制作:(4)绘制评价等级的帕累托图。

逆序排序后,制作累计频数分布表:接收频数频率(%)累计频率(%)C 32 32 32B 21 21 53D 17 17 70E 16 16 86A 14 14 1005101520253035CDBAE204060801001203.2 某行业管理局所属40个企业2002年的产品销售收入数据如下: 152 124 129 116 100 103 92 95 127 104 105 119 114 115 87 103 118 142 135 125 117 108 105 110 107 137 120 136 117 108 9788123115119138112146113126要求:(1)根据上面的数据进行适当的分组,编制频数分布表,并计算出累积频数和累积频率。

1、确定组数:()l g 40l g () 1.60206111 6.32l g (2)l g 20.30103n K =+=+=+=,取k=6 2、确定组距:组距=( 最大值 - 最小值)÷ 组数=(152-87)÷6=10.83,取10 3(2)按规定,销售收入在125万元以上为先进企业,115~125万元为良好企业,105~115 万元为一般企业,105万元以下为落后企业,按先进企业、良好企业、一般企业、落后企业进行分组。

统计学第四版课后习题答案

统计学第四版课后习题答案

第1章绪论1.什么是统计学?怎样理解统计学与统计数据的关系?2.试举出日常生活或工作中统计数据及其规律性的例子。

3..一家大型油漆零售商收到了客户关于油漆罐分量不足的许多抱怨。

因此,他们开始检查供货商的集装箱,有问题的将其退回。

最近的一个集装箱装的是2 440加仑的油漆罐。

这家零售商抽查了50罐油漆,每一罐的质量精确到4位小数。

装满的油漆罐应为4.536 kg。

要求:(1)描述总体;(2)描述研究变量;(3)描述样本;(4)描述推断。

答:(1)总体:最近的一个集装箱内的全部油漆;(2)研究变量:装满的油漆罐的质量;(3)样本:最近的一个集装箱内的50罐油漆;(4)推断:50罐油漆的质量应为4.536×50=226.8 kg。

4.“可乐战”是描述市场上“可口可乐”与“百事可乐”激烈竞争的一个流行术语。

这场战役因影视明星、运动员的参与以及消费者对品尝试验优先权的抱怨而颇具特色。

假定作为百事可乐营销战役的一部分,选择了1000名消费者进行匿名性质的品尝试验(即在品尝试验中,两个品牌不做外观标记),请每一名被测试者说出A品牌或B品牌中哪个口味更好。

要求:(1)描述总体;(2)描述研究变量;(3)描述样本;(4)一描述推断。

答:(1)总体:市场上的“可口可乐”与“百事可乐”(2)研究变量:更好口味的品牌名称;(3)样本:1000名消费者品尝的两个品牌(4)推断:两个品牌中哪个口味更好。

第2章统计数据的描述——练习题●1.为评价家电行业售后服务的质量,随机抽取了由100家庭构成的一个样本。

服务质量的等级分别表示为:A.好;B.较好;C.一般;D.差;E.较差。

调查结果如下:B EC C AD C B A ED A C B C DE C E EA DBC C A ED C BB ACDE A B D D CC B C ED B C C B CD A C B C DE C E BB EC C AD C B A EB ACDE A B D D CA DBC C A ED C BC B C ED B C C B C(1) 指出上面的数据属于什么类型;(2)用Excel制作一张频数分布表;(3) 绘制一张条形图,反映评价等级的分布。

统计学贾俊平_第四版课后习题答案

统计学贾俊平_第四版课后习题答案

3.3 某百货公司连续40天的商品销售额如下:单位:万元41 25 29 47 38 34 30 38 43 40 46 36 45 37 37 36 45 43 33 44 35 28 46 34 30 37 44 26 38 44 42363737493942323635要求:根据上面的数据进行适当的分组,编制频数分布表,并绘制直方图。

1、确定组数: ()l g 40l g () 1.60206111 6.32l g (2)l g 20.30103n K =+=+=+=,取k=62、确定组距:组距=( 最大值 - 最小值)÷ 组数=(49-25)÷6=4,取5(1) 对这个年龄分布作直方图;(2) 从直方图分析成人自学考试人员年龄分布的特点。

解:(1)制作直方图:将上表复制到Excel 表中,点击:图表向导→柱形图→选择子图表类型→完成。

即得到如下的直方图:(见Excel 练习题2.6)(2)年龄分布的特点:自学考试人员年龄的分布为右偏。

解:(1)根据上面的数据,画出两个班考试成绩的对比条形图和环形图。

3.14 已知1995—2004年我国的国内生产总值数据如下(按当年价格计算):要求:(2)绘制第一、二、三产业国内生产总值的线图。

4.1 一家汽车零售店的10名销售人员5月份销售的汽车数量(单位:台)排序后如下:2 4 7 10 10 10 12 12 14 15要求:(1)计算汽车销售量的众数、中位数和平均数。

(2)根据定义公式计算四分位数。

(3)计算销售量的标准差。

(4)说明汽车销售量分布的特征。

解:Statistics汽车销售数量N Valid 10Missing 0Mean 9.60Median 10.00Mode 10Std. Deviation 4.169Percentiles 25 6.2550 10.0075 12.50种是所有颐客都进入一个等待队列:另—种是顾客在三千业务窗口处列队3排等待。

统计学课后习题答案_(第四版)_贾俊平

统计学课后习题答案_(第四版)_贾俊平

《统计学》第四版 第四章练习题答案4.1 (1)众数:M 0=10; 中位数:中位数位置=n+1/2=5.5,M e =10;平均数:6.91096===∑nxx i(2)Q L 位置=n/4=2.5, Q L =4+7/2=5.5;Q U 位置=3n/4=7.5,Q U =12 (3)2.494.1561)(2==-=∑-n i s x x (4)由于平均数小于中位数和众数,所以汽车销售量为左偏分布。

4.2 (1)从表中数据可以看出,年龄出现频数最多的是19和23,故有个众数,即M 0=19和M 0=23。

将原始数据排序后,计算中位数的位置为:中位数位置= n+1/2=13,第13个位置上的数值为23,所以中位数为M e =23(2)Q L 位置=n/4=6.25, Q L ==19;Q U 位置=3n/4=18.75,Q U =26.5(3)平均数==∑nx x i600/25=24,标准差65.612510621)(2=-=-=∑-n i s x x(4)偏态系数SK=1.08,峰态系数K=0.77(5)分析:从众数、中位数和平均数来看,网民年龄在23-24岁的人数占多数。

由于标准差较大,说明网民年龄之间有较大差异。

从偏态系数来看,年龄分布为右偏,由于偏态系数大于1,所以,偏斜程度很大。

由于峰态系数为正值,所以为尖峰分布。

4.3 (1(2)==∑nxx i63/9=7,714.0808.41)(2==-=∑-n i s x x (3)由于两种排队方式的平均数不同,所以用离散系数进行比较。

第一种排队方式:v 1=1.97/7.2=0.274;v 2=0.714/7=0.102.由于v 1>v 2,表明第一种排队方式的离散程度大于第二种排队方式。

(4)选方法二,因为第二种排队方式的平均等待时间较短,且离散程度小于第一种排队方式。

4.4 (1)==∑nx x i8223/30=274.1中位数位置=n+1/2=15.5,M e =272+273/2=272.5(2)Q L 位置=n/4=7.5, Q L ==(258+261)/2=259.5;Q U 位置=3n/4=22.5,Q U =(284+291)/2=287.5(3) 17.211307.130021)(2=-=-=∑-n i s x x4.5 (1)甲企业的平均成本=总成本/总产量=41.193406600301500203000152100150030002100==++++乙企业的平均成本=总成本/总产量=29.183426255301500201500153255150015003255==++++原因:尽管两个企业的单位成本相同,但单位成本较低的产品在乙企业的产量中所占比重较大,因此拉低了总平均成本。

统计学第四版答案

统计学第四版答案
19
75%四分位数
26.5
众数
19
标准差
6.65
方差
44.25
峰度
0.77
偏度
1.08
极差
26
最小值
15
最大值
41
从集中度来看,网民平均年龄为24岁,中位数为23岁。从离散度来 看,标准差在为6.65岁,极差达到26岁,说明离散程度较大。从分布的 形状上看,年龄呈现右偏,而且偏斜程度较大。
3.2某银行为缩短顾客到银行办理业务等待的时间,准备采用两种排队方 式进行试验。一种是所有顾客都进入一个等待队列;另一种是顾客在3个
的期望值如何依赖于自变量x的方程。估计的回归方程是利用最小二乘法,根据样本数据求
出的回归方程的估计。 简述参数最小二乘估计的基本原理:
这一公式的x和y的n对观察值,用于描述其关系的直线有多条,用距离观测点最近的 一条直线,用它来表示x与y之间的关系与实际数据的误差比其它任何直线都小。根据这一
思想确定直线中未知常数和的方法称为最小二乘法
一组数据的分布特征可以从哪几个方面进行描述:
1、数据的水平,反映数据的集中程度2、数据的差异,反映各数据的离散程度
3、分布的形状,反映数据分布的偏态和峰态
说明平均数、中位数和众数的特点及应用场合:
平均数也称为均值,它是一组数据相加后除以数据的个数而得到的结果。平均数是度量数
据水平的常用统计量,在参数估计以及假设检验中经常用到。
业务窗口处列队3排等待。为比较哪种排队方式使顾客等待的时间更短, 两种排队方式各随机抽取9名顾客,得到第一种排队方式的平均等待时间 为7.2分钟,标准差为1.97分钟,第二种排队方式的等待时间(单位:分 钟)如下:
5.5

《统计学》(第四版)袁卫 课后答案

《统计学》(第四版)袁卫 课后答案
第四章、参数估计
1.简述评价估计量好坏的标准
答:评价估计量好坏的标准主要有:无偏性、有效性和相合性。设总体参数 的估计量有 和 ,如果 ,称 是无偏估计量;如果 和 是无偏估计量,且 小于 ,那么 比 更有效;如果当样本容量 , ,那么 是相合估计量。
答:总体参数的区间估计是在一定的置信水平下,根据样本统计量的抽样分布计算出用样本统计量加减抽样误差表示的估计区间,使该区间包含总体参数的概率为置信水平。置信水平反映估计的可信度,而区间的长度反映估计的精确度。
答:数据分布特征一般可从集中趋势、离散程度、偏态和峰度几方面来测度。常用的指标有均值、中位数、众数、极差、方差、标准差、离散系数、偏态系数和峰度系数。
4怎样理解均值在统计中的地位?
答:均值是对所有数据平均后计算的一般水平的代表值,数据信息提取得最充分,
具有良好的数学性质,是数据误差相互抵消后的客观事物必然性数量特征的一种反映,在统计推断中显示出优良特性,由此均值在统计中起到非常重要的根底地位。受极端数值的影响是其使用时存在的问题。
条形图〔略〕
2〔1〕采用等距分组:
n=40全距=152-88=64取组距为10
组数为64/10=6.4取6组
频数分布表如下:
40个企业按产品销售收入分组表
按销售收入分组
〔万元〕
企业数
〔个〕
频率
〔%〕
向上累积
向下累积
企业数
频率
企业数
频率
100以下
100~110
110~120
120~130
130~140
原因:尽管两个企业的单位本钱相同,但单位本钱较低的产品在乙企业的产量中所占比重较大,因此拉低了总平均本钱。
11. = 〔万元〕;

统计学(第四版)课后题答案

统计学(第四版)课后题答案

者比平均分数高 出 1 个标准差,而在 B 项测试中只高出平均分数 0.5 个标准差,由于 A 项 测试的标准化值高于 B 项测试,所以 A 项测试比较理想。 3.10 通过标准化值来判断,各天的标准化值如下表 日期 周一 周二 周三 周四 周五 周六 周日 标准化值 Z 3 -0.6 -0.2 0.4 -1.8 -2.2 0 周一和周六两天失去了控制。
-15~-10 10 -10~-5 13 -5~0 12 0~5 4 5~10 7 合计 60 (3)直方图(略) 。 2.9 (1)直方图(略) 。 (2)自学考试人员年龄的分布为右偏。 2.10(1)茎叶图如下
A班 数据个数 树 叶 树茎 B班 树叶 数据个数பைடு நூலகம்
0 3 59 2 1 4 4 0448 4 2 97 5 122456677789 12 11 97665332110 6 011234688 9 23 98877766555554443332100 7 00113449 8 7 6655200 8 123345 6 6 632220 9 011456 6 0 10 000 3 (2)A 班考试成绩的分布比较集中,且平均分数较高;B 班考试成绩的分 布比 A 班分散, 且平均成绩较 A 班低。 2.11(略) 。 2.12(略) 。 2.13(略) 。 2.14(略) 。 2.15箱线图如下: (特征请读者自己分析)
2 4.1 (1)200。 (2)5。 (3)正态分布。 (4) (100 1) 。
4.2 (1)32。 (2)0.91。 4.3 0.79。 4.4 (1) x 25 ~ N (17,2 2 ) 。 (2) x100 ~ N (17,1) 。 4.5 (1)1.41。 (2)1.41,1.41,1.34。 4.6 (1)0.4。 (2)0.024 。 (3)正态分布。 4.7 (1)0.050,0.035,0.022,016。 (2)当样本量增大时,样本比例的标准 差越来越小。 4.8 (1) (2)E=4.2; (3) (115.8,124.2) 。 x 2.14 ; 4.9 (87819,121301) 。 4.10(1)81±1.97; (2)81±2.35; (3)81±3.10。 4.11(1) (24.11,25.89) ; (2) (113.17,126.03) ; (3) (3.136,3.702) 4.12(1) (8687,9113) ; (2) (8734 ,9066) ; (3) (8761,9039) ; (4) (8682, 9118) 。 4.13(2.88,3.76) ;(2.80,3.84);(2.63,4.01)。 4.14(7.1,12.9) 。 4.15(7.18,11.57) 。 4.16(1) (148.9,150.1) ; (2)中心极限定理。 4.17(1) (100.9,123.7) ; (2) (0.017,0.183) 。 4.18(15.63,16.55) 。 4.19(10.36,16.76) 。

[管理]统计学第四版(贾俊平)课后思考题答案

[管理]统计学第四版(贾俊平)课后思考题答案

统计课后思考题答案第一章思考题1.1什么是统计学统计学是关于数据的一门学科,它收集,处理,分析,解释来自各个领域的数据并从中得出结论。

1.2解释描述统计和推断统计描述统计;它研究的是数据收集,处理,汇总,图表描述,概括与分析等统计方法。

推断统计;它是研究如何利用样本数据来推断总体特征的统计方法。

1.3统计学的类型和不同类型的特点统计数据;按所采用的计量尺度不同分;(定性数据)分类数据:只能归于某一类别的非数字型数据,它是对事物进行分类的结果,数据表现为类别,用文字来表述;(定性数据)顺序数据:只能归于某一有序类别的非数字型数据。

它也是有类别的,但这些类别是有序的。

(定量数据)数值型数据:按数字尺度测量的观察值,其结果表现为具体的数值。

统计数据;按统计数据都收集方法分;观测数据:是通过调查或观测而收集到的数据,这类数据是在没有对事物人为控制的条件下得到的。

实验数据:在实验中控制实验对象而收集到的数据。

统计数据;按被描述的现象与实践的关系分;截面数据:在相同或相似的时间点收集到的数据,也叫静态数据。

时间序列数据:按时间顺序收集到的,用于描述现象随时间变化的情况,也叫动态数据。

1.4解释分类数据,顺序数据和数值型数据答案同1.31.5举例说明总体,样本,参数,统计量,变量这几个概念对一千灯泡进行寿命测试,那么这千个灯泡就是总体,从中抽取一百个进行检测,这一百个灯泡的集合就是样本,这一千个灯泡的寿命的平均值和标准差还有合格率等描述特征的数值就是参数,这一百个灯泡的寿命的平均值和标准差还有合格率等描述特征的数值就是统计量,变量就是说明现象某种特征的概念,比如说灯泡的寿命。

1.6变量的分类变量可以分为分类变量,顺序变量,数值型变量。

变量也可以分为随机变量和非随机变量。

经验变量和理论变量。

1.7举例说明离散型变量和连续性变量离散型变量,只能取有限个值,取值以整数位断开,比如“企业数”连续型变量,取之连续不断,不能一一列举,比如“温度”。

统计学_贾俊平_第4版_课后答案(优选.)

统计学_贾俊平_第4版_课后答案(优选.)

3.1 为评价家电行业售后服务的质量,随机抽取了由100个家庭构成的一个样本。

服务质量的等级分别表示为:A.好;B.较好;C一般;D.较差;E.差。

调查结果如下:B EC C AD C B A ED A C B C DE C E EA DBC C A ED C BB ACDE A B D D CC B C ED B C C B CD A C B C DE C E BB EC C AD C B A EB AC E E A BD D CA DBC C A ED C BC B C ED B C C B C要求:(1)指出上面的数据属于什么类型。

顺序数据(2)用Excel制作一张频数分布表。

用数据分析——直方图制作:接收频率E16D17C32B21A14(3)绘制一张条形图,反映评价等级的分布。

用数据分析——直方图制作:(4)绘制评价等级的帕累托图。

逆序排序后,制作累计频数分布表:接收频数频率(%)累计频率(%)C 32 32 32B 21 21 53D 17 17 70E 16 16 86A 14 14 1005101520253035CDBAE204060801001203.2 某行业管理局所属40个企业2002年的产品销售收入数据如下: 152 124 129 116 100 103 92 95 127 104 105 119 114 115 87 103 118 142 135 125 117 108 105 110 107 137 120 136 117 108 9788123115119138112146113126要求:(1)根据上面的数据进行适当的分组,编制频数分布表,并计算出累积频数和累积频率。

1、确定组数:()lg 40lg() 1.60206111 6.32lg(2)lg 20.30103n K =+=+=+=,取k=6 2、确定组距:组距=( 最大值 - 最小值)÷ 组数=(152-87)÷6=10.83,取10 3(2)按规定,销售收入在125万元以上为先进企业,115~125万元为良好企业,105~115 万元为一般企业,105万元以下为落后企业,按先进企业、良好企业、一般企业、落后企业进行分组。

贾俊平_统计学(第四版)最完整的答案(用一次就知道是我想要的)

贾俊平_统计学(第四版)最完整的答案(用一次就知道是我想要的)

3.6一 种 袋 装 食 品 用 生 产 线 自 动 装 填 ,每 袋 重 量 大 约 为 50g,但 由 于 某 些 原 因 , 每 袋 重 量 不 会 恰 好 是 50g 。 下 面 是 随 机 抽 取 的 100 袋 食 品 , 测 得 的 重 量 数 据 如 下: 单位:g 57 46 49 54 55 58 49 61 51 49 51 60 52 54 51 55 60 56 47 47
直方图:
6
组距3,小于
30
20
Frequency
10
Mean =5.22 Std. Dev. =1.508 N =100 0 0 2 4 6 8 10
组距3,小于
组距 4,上限为小于等于 频数 有效 <= 40.00 41.00 - 44.00 45.00 - 48.00 49.00 - 52.00 53.00 - 56.00 57.00 - 60.00 61.00+ 合计 1 7 28 28 22 13 1 100 百分比 1.0 7.0 28.0 28.0 22.0 13.0 1.0 100.0 累计频数 1 8 36 64 86 99 100 累积百分比 1.0 8.0 36.0 64.0 86.0 99.0 100.0
贾俊平—统计学(第四版)最完整的答案 (用一次就知道是我想要的)
3.1 为评价家电行业售后服务的质量,随机抽取了由 100 个家庭构成的一个样本。 服务质量的等级分别表示为:A.好;B.较好;C 一般;D.较差;E.差。调查结果如下: B D A B C D B B A C E A D A B A E A D B C C B C C C C C B C C B C D E B C E C E A C C E D C A E C D D D A A B D D A A B C E E B C E C B E C B C D D C C B D D C A E C D B E A D C B E E B C C B E C B C

第四版统计学课后习题答案

第四版统计学课后习题答案
3.5绘制线图应注意问题
时间在横轴,观测值绘在纵轴。一般是长宽比例10:7的长方形,纵轴下端一般从0开始,数据与0距离过大的话用折断符号折断。
3.6饼图和环形图的不同
饼图只能显示一个样本或总体各部分所占比例,环形图可以同时绘制多个样本或总体的数据系列,其图形中间有个“空洞”,每个样本或总体的数据系类为一个环。
4.6简述异众比率、四分位差、方差或标准差的适用场合
对于分类数据,主要用异众比率来测量其离散程度;对于顺序数据,虽然也可以计算异众比率,但主要使用四分位差来测量其离散程度;对于数值型数据,虽然可以计算异众比率和四分位差,但主要使用方差或标准差来测量其离散程度。
4.7标准分数有哪些用途?
4.9测度数据分布形状的统计量有哪些?
对分布形状的测度有偏态和峰态,测度偏态的统计量是偏态系数,测度峰态的统计量是峰态系数。
第五章 概率与概率分布
5.1频率与概率有什么关系?
在相同条件下随机试验n次,某事件A出现m次,则比值m/n称为事件A发生的频率。随着n的增大,该频率围绕某一常数p波动,且波动幅度逐渐减小,趋于稳定,这个频率的稳定值即为该事件的概率。
1.4解释分类数据,顺序数据和数值型数据
答案同1.3
1.5举例说明总体,样本,参数,统计量,变量这几个概念
对一千灯泡进行寿命测试,那么这千个灯泡就是总体,从中抽取一百个进行检测,这一百个灯泡的集合就是样本,这一千个灯泡的寿命的平均值和标准差还有合格率等描述特征的数值就是参数,这一百个灯泡的寿命的平均值和标准差还有合格率等描述特征的数值就是统计量,变量就是说明现象某种特征的概念,比如说灯泡的寿命。
《统计学》第四版
统计课后思考题答案
第一章思考题

统计学第四版答案

统计学第四版答案

第1章统计和统计数据指出下面的变量类型。

(1)年龄。

(2)性别。

(3)汽车产量。

(4)员工对企业某项改革措施的态度(赞成、中立、反对)。

(5)购买商品时的支付方式(现金、信用卡、支票)。

详细答案:(1)数值变量。

(2)分类变量。

(3)数值变量。

(4)顺序变量。

(5)分类变量。

一家研究机构从IT从业者中随机抽取1000人作为样本进行调查,其中60%回答他们的月收入在5000元以上,50%的人回答他们的消费支付方式是用信用卡。

(1)这一研究的总体是什么样本是什么样本量是多少(2)“月收入”是分类变量、顺序变量还是数值变量(3)“消费支付方式”是分类变量、顺序变量还是数值变量详细答案:(1)总体是“所有IT从业者”,样本是“所抽取的1000名IT从业者”,样本量是1000。

(2)数值变量。

(3)分类变量。

一项调查表明,消费者每月在网上购物的平均花费是200元,他们选择在网上购物的主要原因是“价格便宜”。

(1)这一研究的总体是什么(2)“消费者在网上购物的原因”是分类变量、顺序变量还是数值变量详细答案:(1)总体是“所有的网上购物者”。

(2)分类变量。

某大学的商学院为了解毕业生的就业倾向,分别在会计专业抽取50人、市场营销专业抽取30、企业管理20人进行调查。

(1)这种抽样方式是分层抽样、系统抽样还是整群抽样(2)样本量是多少详细答案:(1)分层抽样。

(2)100。

第3章用统计量描述数据第五章1.23.4.5.6.7.(1)(%,%)。

(2)(%,%)。

详细答案:(,)。

详细答案:139。

详细答案:57。

769。

第6章假设检验。

贾俊平统计学第四版课后答案

贾俊平统计学第四版课后答案

第三章节:数据的图表展示…………………………………………………1 第四章节:数据的概括性度量……………………………………………….15 第六章节:统计量及其抽样分布……………………………………………26 第七章节:参数估计………………………………………………. …………28 第八章节:假设检验……………………………………………….. …………38 第九章节:列联分析……………………………………………….. …………41 第十章节:方差分析……………………………………………….. …………43 3. 要求:(1)指出上面的数据属于什么类型。

顺序数据 3.31、确定组数: ()l g 40l g () 1.60206111 6.32l g (2)l g 20.30103n K =+=+=+=,取k=62、确定组距:组距=( 最大值 - 最小值)÷ 组数=(49-25)÷6=4,取53、分组频数表销售收入(万元)频数频率%累计频数累计频率%<= 25 1 2.5 1 2.5 26 - 30 5 12.5 6 15.0 31 - 35 6 15.0 12 30.0 36 - 40 14 35.0 26 65.0 41 - 45 10 25.0 36 90.0 46+ 4 10.0 40100.0总和40100.0频数246810121416<= 2526 - 3031 - 3536 - 4041 - 4546+销售收入频数频数3.4data605040302010data Stem-and-Leaf PlotFrequency Stem & Leaf3.00 1 . 889 5.00 2 . 01133 7.00 2 . 6888999 2.00 3 . 13 3.00 3 . 569 3.00 4 . 123 3.00 4 . 667 3.00 5 . 012 1.00 5 . 7Stem width: 10 Each leaf: 1 case(s)3.6解:(1)根据上面的数据进行适当的分组,编制频数分布表,并计算出累积频数和累积频率。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

统计课后思考题答案第一章思考题1.1什么是统计学统计学是关于数据的一门学科,它收集,处理,分析,解释来自各个领域的数据并从中得出结论。

1.2解释描述统计和推断统计描述统计;它研究的是数据收集,处理,汇总,图表描述,概括与分析等统计方法。

推断统计;它是研究如何利用样本数据来推断总体特征的统计方法。

1.3统计学的类型和不同类型的特点统计数据;按所采用的计量尺度不同分;(定性数据)分类数据:只能归于某一类别的非数字型数据,它是对事物进行分类的结果,数据表现为类别,用文字来表述;(定性数据)顺序数据:只能归于某一有序类别的非数字型数据。

它也是有类别的,但这些类别是有序的。

(定量数据)数值型数据:按数字尺度测量的观察值,其结果表现为具体的数值。

统计数据;按统计数据都收集方法分;观测数据:是通过调查或观测而收集到的数据,这类数据是在没有对事物人为控制的条件下得到的。

实验数据:在实验中控制实验对象而收集到的数据。

统计数据;按被描述的现象与实践的关系分;截面数据:在相同或相似的时间点收集到的数据,也叫静态数据。

时间序列数据:按时间顺序收集到的,用于描述现象随时间变化的情况,也叫动态数据。

1.4解释分类数据,顺序数据和数值型数据答案同1.31.5举例说明总体,样本,参数,统计量,变量这几个概念对一千灯泡进行寿命测试,那么这千个灯泡就是总体,从中抽取一百个进行检测,这一百个灯泡的集合就是样本,这一千个灯泡的寿命的平均值和标准差还有合格率等描述特征的数值就是参数,这一百个灯泡的寿命的平均值和标准差还有合格率等描述特征的数值就是统计量,变量就是说明现象某种特征的概念,比如说灯泡的寿命。

1.6变量的分类变量可以分为分类变量,顺序变量,数值型变量。

变量也可以分为随机变量和非随机变量。

经验变量和理论变量。

1.7举例说明离散型变量和连续性变量离散型变量,只能取有限个值,取值以整数位断开,比如“企业数”连续型变量,取之连续不断,不能一一列举,比如“温度”。

1.8统计应用实例人口普查,商场的名意调查等。

1.9统计应用的领域经济分析和政府分析还有物理,生物等等各个领域。

第二章思考题2.1什么是二手资料?使用二手资料应注意什么问题与研究内容有关,由别人调查和试验而来已经存在,并会被我们利用的资料为“二手资料”。

使用时要进行评估,要考虑到资料的原始收集人,收集目的,收集途径,收集时间使用时要注明数据来源。

2.2比较概率抽样和非概率抽样的特点,指出各自适用情况概率抽样:抽样时按一定的概率以随机原则抽取样本。

每个单位别抽中的概率已知或可以计算,当用样本对总体目标量进行估计时,要考虑到每个单位样本被抽到的概率。

技术含量和成本都比较高。

如果调查目的在于掌握和研究对象总体的数量特征,得到总体参数的置信区间,就使用概率抽样。

非概率抽样:操作简单,时效快,成本低,而且对于抽样中的统计学专业技术要求不是很高。

它适合探索性的研究,调查结果用于发现问题,为更深入的数量分析提供准备。

它同样使用市场调查中的概念测试(不需要调查结果投影到总体的情况)。

2.3除了自填式,面访式和电话式还有什么搜集数据的办法试验式和观察式等2.4自填式,面访式和电话式各自的长处和弱点自填式;优点:1调查组织者管理容易2成本低,可进行大规模调查3对被调查者,可选择方便时间答卷,减少回答敏感问题压力。

缺点:1返回率低2不适合结构复杂的问卷,调查内容有限3调查周期长4在数据搜集过程中遇见问题不能及时调整。

面访式;优点:1回答率高2数据质量高3在调查过程中遇见问题可以及时调整。

缺点:1成本比较高2搜集数据的方式对调查过程的质量控制有一定难度3对于敏感问题,被访者会有压力。

电话式;优点:1速度快2对调查员比较安全3对访问过程的控制比较容易。

缺点:1实施地区有限2调查时间不能过长3使用的问卷要简单4被访者不愿回答时,不易劝服。

2.5老师说这个内容不讲,应该不会考实验数据的2.6如何控制调查中的回答误差对于理解误差,我会去学习一定的心理学知识,对于记忆误差,我会尽量去缩短所涉及的时间范围,对于有意识的误差,我要做好被调查者的心理工作,要遵守职业道德,为被调查者保密,尽量在问卷中不涉及敏感问题。

2.7怎么减少无回答对于随机误差,要提高样本容量,对于系统误差,只有做好准备工作并做好补救措施。

比如说要一百份的问卷回复,就要做好一百二十到一百三十的问卷准备,进行面访式的时候要尽量的劝服不愿意回答的被访者,以小物品的馈赠提高回复率。

第三章思考题3.1数据预处理内容数据审核(完整性和准确性;适用性和实效性),数据筛选和数据排序。

3.2分类数据和顺序数据的整理和图示方法各有哪些分类数据:制作频数分布表,用比例,百分比,比率等进行描述性分析。

可用条形图,帕累托图和饼图进行图示分析。

顺序数据:制作频数分布表,用比例,百分比,比率。

累计频数和累计频率等进行描述性分析。

可用条形图,帕累托图和饼图,累计频数分布图和环形图进行图示分析。

3.3数据型数据的分组方法和步骤分组方法:单变量值分组和组距分组,组距分组又分为等距分组和异距分组。

分组步骤:1确定组数2确定各组组距3根据分组整理成频数分布表3.4直方图和条形图的区别1条形图使用图形的长度表示各类别频数的多少,其宽度固定,直方图用面积表示各组频数,矩形的高度表示每一组的频数或频率,宽度表示组距,2直方图各矩形连续排列,条形图分开排列,3条形图主要展示分类数据,直方图主要展示数值型数据。

3.5绘制线图应注意问题时间在横轴,观测值绘在纵轴。

一般是长宽比例10:7的长方形,纵轴下端一般从0开始,数据与0距离过大的话用折断符号折断。

3.6饼图和环形图的不同饼图只能显示一个样本或总体各部分所占比例,环形图可以同时绘制多个样本或总体的数据系列,其图形中间有个“空洞”,每个样本或总体的数据系类为一个环。

3.7茎叶图比直方图的优势,他们各自的应用场合茎叶图既能给出数据的分布情况,又能给出每一个原始数据,即保留了原始数据的信息。

在应用方面,直方图通常适用于大批量数据,茎叶图适用于小批量数据。

3.8鉴别图标优劣的准则P75明确有答案,我就不写了。

3.9制作统计表应注意的问题1,合理安排统计表结构2表头一般包括表号,总标题和表中数据的单位等内容3表中的上下两条横线一般用粗线,中间的其他用细线4在使用统计表时,必要时可在下方加注释,注明数据来源。

公式:组中值=(上限+下限)/2第4章 数据的概括性度量4.1一组数据的分布特征可以从哪几个方面进行测度?数据分布特征可以从三个方面进行测度和描述:一是分布的集中趋势,反映各数据向其中心值靠拢或集中的程度;二是分布的离散程度,反映各数据远离其中心值的趋势;三是分布的形状,反映数据分布的偏态和峰态。

4.2怎样理解平均数在统计学中的地位?平均数在统计学中具有重要的地位,是集中趋势的最主要的测度,主要适用于数值型数据,而不适用于分类数据和顺序数据。

4.3简述四分位数的计算方法。

四分位数是一组数据排序后处于25%和75%位置上的值。

根据未分组数据计算四分位数时,首先对数据进行排序,然后确定四分位数所在的位置,该位置上的数值就是四分位数。

4.4对于比率数据的平均为什么采用几何平均?在实际应用中,对于比率数据的平均采用几何平均要比算数平均更合理。

从公式∏+=+=n1i i n G G 11)()(中也可看出,G 就是平均增长率。

4.5简述众数、中位数和平均数的特点和应用场合。

众数是一组数据分布的峰值,不受极端值的影响,缺点是具有不唯一性。

众数只有在数据量较多时才有意义,数据量较少时不宜使用。

主要适合作为分类数据的集中趋势测度值。

中位数是一组数据中间位置上的代表值,不受极端值的影响。

当数据的分布偏斜较大时,使用中位数也许不错。

主要适合作为顺序数据的集中趋势测度值。

平均数对数值型数据计算的,而且利用了全部数据信息,在实际应用中最广泛。

当数据呈对称分布或近似对称分布时,三个代表值相等或相近,此时应选择平均数。

但平均数易受极端值的影响,对于偏态分布的数据,平均数的代表性较差,此时应考虑中位数或众数。

4.6简述异众比率、四分位差、方差或标准差的适用场合对于分类数据,主要用异众比率来测量其离散程度;对于顺序数据,虽然也可以计算异众比率,但主要使用四分位差来测量其离散程度;对于数值型数据,虽然可以计算异众比率和四分位差,但主要使用方差或标准差来测量其离散程度。

4.7标准分数有哪些用途?标准分数给出了一组数据中各数值的相对位置。

在对多个具有不同量纲的变量进行处理时,常需要对各变量进行标准化处理。

它还可以用来判断一组数据是否有离群数据。

4.8为什么要计算离散系数?方差和标准差是反映数据分散程度的绝对值,一方面其数值大小受原变量值本身水平高低的影响,也就是与变量的平均数大小有关;另一方面,它们与原变量的计量单位相同,采用不同计量单位的变量值,其离散程度的测度值也就不同。

因此,为消除变量值水平高低和计量单位不同对离散程度测度值的影响,需要计算离散系数。

4.9测度数据分布形状的统计量有哪些?对分布形状的测度有偏态和峰态,测度偏态的统计量是偏态系数,测度峰态的统计量是峰态系数。

第五章 概率与概率分布5.1频率与概率有什么关系?在相同条件下随机试验n 次,某事件A 出现m 次,则比值m/n 称为事件A 发生的频率。

随着n 的增大,该频率围绕某一常数p 波动,且波动幅度逐渐减小,趋于稳定,这个频率的稳定值即为该事件的概率。

5.2独立性与互斥性有什么关系?互斥事件一定是相互依赖(不独立)的,但相互依赖的事件不一定是互斥的。

不互斥事件可能是独立的,也可能是不独立的,但独立事件不可能是互斥的。

5.3根据自己的经验体会举几个服从泊松分布的随机变量的实例。

如某种仪器每月出现故障的次数、一本书一页中的印刷错误、某一医院在某一天内的急诊病人数等5.4根据自己的经验体会举几个服从正态分布的随机变量的实例。

如某班某次的考试成绩、某地区成年男性的身高、某公司年销售量、同一车间产品的质量等第六章思考题6.1 统计量:设X1,X2…,Xn 是从总体X 中抽取的容量为n 的一个样本,如果由此样本构造一个函数T (X1,X2…,Xn ),不依赖于任何未知参数,则称函数T(X1,X2…,Xn)是一个统计量。

原因:为了使统计推断成为可能。

6.2 T1和T2是6.3 P1596.4 统计量加工过程中一点信息都不损失的统计量为充分统计量6.5 自由度:独立变量的个数 6.6 χ2分布:设 ,则 2),(~2σμN X )1,0(~N X Z σμ-=F 分布:设若U 为服从自由度为n 1的χ2分布,即U ~χ2(n 1),V 为服从自由度为n 2的χ2分布,即V ~χ2(n 2),且U 和V 相互独立,则称F 为服从自由度n 1和n 2的F 分布,记为6.7 抽样分布:样本统计量的概率分布是一种理论概率分布随机变量是 样本统计量6.8 中心极限定理:设从均值为μ,方差为σ 2的一个任意总体中抽取容量为n 的样本,当n 充分大时,样本均值的抽样分布近似服从均值为μ、方差为σ2/n 的正态分布第七章思考题7.1 估计量:用于估计总体参数的随机变量估计值:估计参数时计算出来的统计量的具体值7.2 评价估计量的标准:无偏性:估计量抽样分布的数学期望等于被估计的总体参数有效性:对同一总体参数的两个无偏点估计量 ,有更小标准差的估计量更有效 一致性:随着样本容量的增大,估计量的 值越来越接近被估计的总体参数7.3 置信区间:由样本统计量所构造的总体参数的估计区间7.4 95%的置信区间指用某种方法构造的所有区间中有95%的区间包含总体参数的真值。

相关文档
最新文档