人教版八年级数学下册第十七章勾股定理导学案(全章)
八年级数学下册 第17章 勾股定理复习导学案(新版)新人教版
学
习
目
标
1.进一步理解勾股 定理及其逆定理,弄清两定理之间的关系。
2.复习直角三角形的有关知识,形成知识体系。
3.运用勾股定理及其逆定理解决问题.
重点:复习直角三角形的有关知识,形成知识体系.
难点:运用勾股定理及其逆定理解决问题。
时间
分配
导入3分钟新课5分钟、练习巩固30分、课堂小结2分
活动二:
1、勾股定理 及其逆定理阐述的是哪种图形的性质及判定?
2、它们阐述的是直角三角形的哪方面(边、角)的性质?
3、你还知道直角三角形的哪些性质?
4、用框图总结直角三角形的性质及判定。
三、课堂练习:
1、在直角三角形ABC中,∠C=90°,
(1)已知a:b=3:4,c=25,求a和b
(2)已知∠A=30°a=3, 求b和c
(3)已知∠A=45°,c=8,求a和b
2、直角△的两边长为8和10,求第三边的长度.
3.已知三角形的三边长为9 ,12 ,15 ,则这个三角形的最大角是____度
4 、△ABC的三边长为9 ,40 ,41 ,则△ABC的面积为____
5、在△AB C中,∠C=90°,AC=3,CB=4.
(1)求△ABC的面积
学案(学习过程)
导案(学法指导)
学
习
过
程
一、导入新课:
在课前自主阅读课本22-33的内容,然后把本章的知识点用框图总结出来。
二、教学新课
活动一:
1、小组内展示自己总结的知识框图,相互交流完善知识框图。
2、每个小组选取一名代表,出示本组的知识框图。
设计意图:通过学生阅读,相互交流,整理知识框图复习本章知识点,自觉内化 到自身的知识体系中。
人教版八年级数学下册 第17章 勾股定理 导学案(1)
八年级(下)数学导学案17.1 勾股定理(一)导学目标:1.了解勾股定理的发现过程,掌握勾股定理的内容,会用面积法证明勾股定理。
2.让学生经历用面积法探索勾股定理的过程,体会数形结合的思想,渗透观察、归纳、猜想、验证的数学方法,体验从特殊到一般的逻辑推理过程。
3.介绍我国古代在勾股定理研究方面所取得的成就,激发学生的爱国热情,促其勤奋学习。
导学重点、难点:1.重点:勾股定理的内容及证明。
2.难点:勾股定理的证明。
导学过程:一.创设情境,引入新知2002年在北京召开了第24届国际数学家大会,它是最高水平的全球性数学科学学术会议,被誉为数学界的“奥运会”.这就是本届大会的会徽的图案.(书P21页)(1) 你见过这个图案吗?(2) 你听说过“勾股定理”吗?(课件展示)二.自主学习,探究新知探究活动1 毕达哥拉斯是古希腊著名的数学家.相传在2500年以前,他在朋友家做客时,发现朋友家用地砖铺成的地面反映了直角三角形的某种特性.(1)现在请你观察一下图1,你能发现什么数量关系吗?(2)如图2中三个正方形A,B,C 的面积有什么关系?等腰直角三角形的三边之间有什么关系?结论: 。
图1 图2 探究活动2 请每个小组内各画一个一般的直角三角形,测量出该直角三角形的三条边长度,并求出三条边长间的关系,然后展示结果各组交流(引出结论)探究活动3 是不是所有的直角三角形都有这样的特点呢?这就需要我们对一个一般的直角三角形进行证明.到目前为止,对这个命题的证明方法已有几百种之多.下面,我们就来看一看P23页我国数学家赵爽是怎样证明这个命题的?(1) 以直角三角形ABC 的两条直角边a 、b 为边作两个正方形.你能通过剪、拼把它拼成弦图的样子吗?(2)面积分别怎样表示?它们有什么关系呢?a bc ACB展示结果,教师予以点评。
探究活动4鼓励学生,用其他面积方法证明该结论,并点评。
由上述四个活动得到勾股定理内容;勾股定理:如果直角三角形的两直角边长分别为b a ,,斜边长为c ,那么222c b a =+。
人教版八年级下册第十七章17.1勾股定理(教案)
其次,在实践活动和小组讨论中,学生们表现出了很高的热情,积极投入到讨论和实验操作中。但我也观察到,有些小组在讨论过程中容易偏离主题,讨论内容与勾股定理的实际应用关系不大。针对这个问题,我需要在今后的教学中加强对学生的引导,确保讨论主题紧扣教学内容,提高课堂效率。
此外,在课堂总结环节,虽然大部分学生能较好地掌握勾股定理的知识点,但仍有少数学生存在疑问。为了帮助这部分学生更好地消化吸收课堂内容,我计划在课后设置答疑时间,鼓励他们提出问题,并及时给予解答。
-对勾股数的理解和应用:学生需要掌握勾股数的概念,并能够找出勾股数,这对于数感和数学直觉有一定要求。
举例解释:
a.在证明过程的难点上,例如,使用面积法证明勾股定理时,学生可能会难以理解如何从一个大正方形中分割出四个相同的直角三角形和一个中间的小正方形,以及如何通过这些图形的面积关系得出勾股定理。
b.在解决复杂问题的难点上,如在一个不规则图形中识别出直角三角形并应用勾股定理,或者在一个实际问题中,如测量旗杆高度时,学生可能不知道如何将问题抽象为直角三角形的模型,并应用勾股定理。
c.在勾股数的应用上,例如,学生可能知道3、4、5是一组勾股数,但不知道如何找出其他勾股数,或不理解勾股数在建筑、工程等领域中的应用。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《勾股定理》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过直角三角形的情形?”比如,在篮球场地的角落,或是楼梯的形状。这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索勾股定理的奥秘。
(二)新课讲授(用时10分钟)
2023年人教版八年级数学下册第十七章《勾股定理》导学案3
cbaDC AB新人教版八年级数学下册第十七章《勾股定理》导学案学习目标:1、了解多种方法验证勾股定理,感受解决同一个问题方法的多样性。
2、通过实例进一步了解勾股定理,应用勾股定理进行简单的计算。
学习过程:活动一 动手做一做1、画出Rt△A B C 令∠C = 90°,直角边A C = 3cm ,B C = 4cm , (1)用刻度尺量出斜边A B = ________ (2)计算:2、探究:222,,AB BC AC 之间的关系:_______________________活动二 毕达哥拉斯的发现1、图中两个小正方形分别为A 、B ,大正方形为C ,则三个正方形 面积之间的关系:____________________________2、设三个正方形围成的等腰直角三角形的直角边为a ,斜边为c ,则 图中等腰直角三角形三边长度之间的关系:_____________________活动三 探索与猜想观察下面两幅图:(每个小正方形的面积为单位1)1(1)你是怎样得到正方形C 的面积的?与同伴交流一下。
(2)猜想命题:如果直角三角形的两条直角边分别为a 、b ,斜边为c ,那么_______________活动四 认识赵爽弦图活动五 证明猜想已知:如图,在边长为c 的正方形中,有四个两直角边 分别为a 、b ,斜边为c 全等的直角三角形,求证: 222a b c +=A 的面积B 的面积C 的面积 左图右图 A B C CBA __________,_____,222===AB BC AC证明:根据同一个图形的面积相等得: 所以 ______________ + ________________________ = ____________ ______________ + ________________________ = _____________________ + ________ = __________勾股定理:直角三角形两条_______的平方和等于_____的平方如果直角三角形的两直角边分别为a 、b ,斜边为c ,那么_________________活动六 证法积累利用下图,模仿上述推导,能否得到相同的结果?(美国第20任总统茄菲尔德的证法)已知,如图, Rt △A D E 和R t △B C E 是两个全等的直角三角形, 其直角边长分别为a 、b ,斜边为c ,这两个直角三角形围成了直角边 为c 的Rt △A B E , 求证: 222a b c +=证明:活动七 活学活用1、如右图,在直角三角形中,X =______,y =______2、在Rt△A B C 中,∠C = 90°, (1)若a = 2,b = 3, 则c = _________ (2)若c = 5,b = 4 ,则 a =3、在Rt △A B C 中,∠A = 90°,a = 7,b = 5,则 c = ___________4、在一个直角三角形中, 两边长分别为3、4,则第三边的长为______________________活动八 学习反馈x 86135y大正小正=S S S Rt +∆4bcca EBABCD BEC Rt ADE Rt ABE Rt S S S S 梯形=++∆∆∆说说你的收获!。
人教版初中数学八年级下册第十七章:勾股定理(全章教案)
第十七章勾股定理教材简析本章的内容包括:勾股定理、勾股定理的逆定理.本章主要研究并揭示直角三角形三边之间的关系的勾股定理与勾股定理的逆定理.勾股定理是一个著名的几何定理,在西方也被称为毕达哥斯拉定理.勾股定理有几百种证明方法,本章主要介绍的是我国古代数学家赵爽的证明方法,这种方法利用直角三角形的面积与正方形的面积关系,数形结合,直观、简洁.勾股定理在数学的发展和现实世界中有着广泛的作用.本章是直角三角形相关知识的延续,同时也让学生进一步认识无理数,充分体现了数学知识的紧密相关性、连续性.在中考中,主要考查勾股定理及三角形判别条件的应用,常与三角形的其他知识结合考查.教学指导【本章重点】勾股定理,勾股定理的逆定理.【本章难点】勾股定理的证明,勾股定理的应用.【本章思想方法】1.体会转化思想,如:应用勾股定理将实际问题转化成数学模型,从而构造直角三角形求解.2.体会和掌握方程思想,如:利用勾股定理求线段长时,往往需要列方程求解.课时计划17.1勾股定理3课时17.2勾股定理的逆定理1课时17.1勾股定理第1课时勾股定理及其证明教学目标一、基本目标【知识与技能】1.了解勾股定理的发现过程.2.掌握勾股定理的内容.3.会用面积法证明勾股定理.【过程与方法】经历观察—猜想—归纳—验证等一系列过程,体会数学定理发现的过程;在观察、猜想、归纳、验证等过程中培养学生的数学语言表达能力和初步的逻辑推理能力.【情感态度与价值观】通过对勾股定理历史的了解,感受数学文化,激发学习兴趣;在探究活动中,体验解决问题的方法的多样性,培养学生的合作交流意识和探索精神.二、重难点目标【教学重点】勾股定理的探究及证明.【教学难点】掌握勾股定理,并运用它解决简单的计算题.教学过程环节1自学提纲,生成问题【5 min阅读】阅读教材P22~P24的内容,完成下面练习.【3 min反馈】1.勾股定理:如果直角三角形的两条直角边长分别为a、b,斜边长为c,那么a2+b2=c2.2.(1)教材P23“探究”,如图,每个方格的面积均为1,请分别算出图中正方形A、B、C、A′、B′、C′的面积.解:A 的面积=4;B 的面积=9;C 的面积=52-4×12×(2×3)=13;所以A +B =C .A ′=9;B ′=25;C ′=82-4×12×(5×3)=34;所以A ′+B ′=C ′.所以直角三角形的两直角边的平方和等于斜边的平方.(2)阅读、理解教材P23~P24“赵爽弦图”证明勾股定理.解:朱实=12ab ;黄实=(a -b )2;正方形的面积=4朱实+黄实=(a -b )2+12ab ×4=a 2+b 2-2ab +2ab =a 2+b 2.又正方形的面积=c 2,所以a 2+b 2=c 2,即直角三角形两直角边的平方和等于第三边的平方.环节2 合作探究,解决问题 活动1 小组讨论(师生互学)【例1】作8个全等的直角三角形,设它们的两条直角边长分别为a 、b ,斜边长为c ,再作三个边长分别为a 、b 、c 的正方形,将它们像下图所示拼成两个正方形.证明:a 2+b 2=c 2.图1图2【互动探索】(引发学生思考)从整体上看,这两个正方形的边长都是a +b ,因此它们的面积相等.我们再用不同的方法来表示这两个正方形的面积,即可证明勾股定理.【证明】由图易知,这两个正方形的边长都是a +b ,∴它们的面积相等.又∵左边的正方形面积可表示为a 2+b 2+12ab ×4,右边的正方形面积可表示为c 2+12ab ×4,∴a 2+b 2+12ab ×4=c 2+12ab ×4,∴a 2+b 2=c 2.【互动总结】(学生总结,老师点评)通过对拼接图形的面积的不同表示方法,建立相等关系,从而验证勾股定理.【例2】 已知在Rt △ABC 中,∠C =90°,a 、b 为两直角边,c 为斜边. (1)若a =3,b =4,则c 2=____,c =____;(2)若a=6,b=8,则c2=____,c=____;(3)若c=41,a=9,则b=____;(4)若c=17,b=8,则a=____.【互动探索】(引发学生思考)根据勾股定理求解.【分析】(1)c2=a2+b2=32+42=25,则c=5.(2) c2=a2+b2=62+82=100,则c=10.(3) 因为c2=a2+b2,所以b=c2-a2=412-92=40.(4)因为c2=a2+b2,所以a=c2-b2=172-82=15.【答案】(1)255(2)10010(3)40(4)15【互动总结】(学生总结,老师点评)本题考查的是勾股定理的应用,如果直角三角形的两条直角边长分别是a、b,斜边长为c,那么a2+b2=c2.a2+b2=c2的常用变形b=c2-a2,a=c2-b2.活动2巩固练习(学生独学)1.在△ABC中,∠C=90°.若a=5,b=12,则c=13;若c=41,a=9,则b=40.2.等腰△ABC的腰长AB=10 cm,底BC为16 cm,则底边上的高为6_cm,面积为48_cm2.3.已知在△ABC中,∠C=90°,BC=a,AC=b,AB=c.(1)若a=1,b=2,求c;(2)若a=15,c=17,求b.解:(1)根据勾股定理,得c2=a2+b2=12+22=5.∵c>0,∴c= 5.(2)根据勾股定理,得b2=c2-a2=172-152=64.∵b>0,∴b=8.活动3拓展延伸(学生对学)【例3】在△ABC中,AB=20,AC=15,AD为BC边上的高,且AD=12,求△ABC 的周长.【互动探索】应考虑高AD在△ABC内和△ABC外的两种情形.【解答】当高AD在△ABC内部时,如图1.在Rt△ABD中,由勾股定理,得BD2=AB2-AD2=202-122=162,∴BD=16.在Rt△ACD中,由勾股定理,得CD2=AC2-AD2=152-122=81,∴CD=9.∴BC=BD+CD=25,∴△ABC的周长为25+20+15=60.当高AD在△ABC外部时,如图2.同理可得,BD=16,CD=9.∴BC=BD-CD=7,∴△ABC的周长为7+20+15=42.综上所述,△ABC的周长为42或60.图1 图2【互动总结】(学生总结,老师点评)题中未给出图形,作高构造直角三角形时,易漏掉钝角三角形的情况.如在本例题中,易只考虑高AD在△ABC内的情形,忽视高AD在△ABC 外的情形.环节3课堂小结,当堂达标(学生总结,老师点评)勾股定理:如果直角三角形的两条直角边长分别为a、b,斜边长为c,那么a2+b2=c2.练习设计请完成本课时对应练习!第2课时勾股定理的应用教学目标一、基本目标【知识与技能】能运用勾股定理解决有关直角三角形的简单实际问题.【过程与方法】经历勾股定理的应用过程,熟练掌握其应用方法,明确应用的条件.【情感态度与价值观】培养合情推理能力,体会数形结合的思维方法,激发学习热情.二、重难点目标【教学重点】勾股定理的简单应用.【教学难点】运用勾股定理建立直角三角形模型解决有关问题.教学过程环节1自学提纲,生成问题【5 min阅读】阅读教材P25的内容,完成下面练习.【3 min反馈】1.勾股定理的内容是:直角三角形两直角边的平方和等于斜边的平方.2.在△ABC中,∠C=90°.若BC=6,AB=10,则AC=8.环节2合作探究,解决问题活动1小组讨论(师生互学)【例1】如图,已知在△ABC中,∠ACB=90°,AB=5 cm,BC=3 cm,CD⊥AB于点D,求CD的长.【互动探索】(引发学生思考)观察图形:“多直角三角形嵌套”图形→已知边长,求高CD →利用等面积法求解.【解答】∵△ABC 是直角三角形,∠ACB =90°,AB =5 cm ,BC =3 cm , ∴由勾股定理,得AC =AB 2-BC 2=4 cm. 又∵S △ABC =12AB ·CD =12AC ·BC ,∴CD =AC ·BC AB =4×35=125(cm).【互动总结】(学生总结,老师点评)由直角三角形的面积求法可知直角三角形两直角边的积等于斜边与斜边上高的积,这个规律也称“弦高公式”,它常与勾股定理联合使用.【例2】 如图,侦察员小王在距离东西向公路400 m 处侦察,发现一辆敌方汽车在公路上疾驶.他赶紧拿出红外测距仪,测得汽车与他相距400 m,10 s 后,汽车与他相距500 m ,你能帮小王算出敌方汽车的速度吗?【互动探索】(引发学生思考)要求敌方汽车的速度,需要算出BC 的长.在Rt △ABC 中利用勾股定理即可求得BC .【解答】由勾股定理,得AB 2=BC 2+AC 2,即5002=BC 2+4002,所以BC =300 m. 故敌方汽车10 s 行驶了300 m ,所以它1 h 行驶的距离为300×6×60=108 000(m), 即敌方汽车的速度为108 km/h.【互动总结】(学生总结,老师点评)用勾股定理解决实际问题的关键是建立直角三角形模型,再代入数据求解.活动2 巩固练习(学生独学)1.等腰三角形的腰长为13 cm ,底边长为10 cm ,则它的面积为( D ) A .30 cm 2 B .130 cm 2 C .120 cm 2D .60 cm 22.直角三角形两直角边长分别为5 cm 、12 cm ,则斜边上的高为6013cm.3.如图,某人欲横渡一条河,由于水流的影响,实际上岸地点C 偏离欲到达地点B 200 m ,结果他在水中实际游了520 m ,求该河流的宽度为多少?解:根据图中数据,运用勾股定理,得AB =AC 2-BC 2=5202-2002=480(m). 即该河流的宽度为480 m. 活动3 拓展延伸(学生对学)【例3】如图1,长方体的高为3 cm ,底面是正方形,边长为2 cm ,现有绳子从D 出发,沿长方体表面到达B ′点,问绳子最短是多少厘米?图1 图2图3【互动探索】可把绳子经过的面展开在同一平面内,有两种情况,分别计算并比较,得到的最短距离即为所求.【解答】如图2,由题易知,DD′=3 cm,B′D′=2×2=4(cm).在Rt△DD′B′中,由勾股定理,得B′D2=DD′2+B′D′2=32+42=25;如图3,由题易知,B′C′=2 cm,C′D=2+3=5 (cm).在Rt△DC′B′中,由勾股定理,得B′D2=B′C′2+C′D2=22+52=29.因为29>25,所以第一种情况绳子最短,最短为5 cm.【互动总结】(学生总结,老师点评)此类题可通过侧面展开图,将要求解的问题放在直角三角形中,问题便迎刃而解.环节3课堂小结,当堂达标(学生总结,老师点评)勾股定理的简单运用:(1)由直角三角形的任意两边的长度,可以应用勾股定理求出第三边的长度.(2) 用勾股定理解决实际问题的关键是建立直角三角形模型,再代入数据求解.练习设计请完成本课时对应练习!第3课时利用勾股定理表示无理数教学目标一、基本目标【知识与技能】进一步熟悉勾股定理的运用,掌握用勾股定理表示无理数的方法.【过程与方法】通过探究用勾股定理表示无理数的过程,锻炼了学生动手操作能力、分类比较能力、讨论交流能力和空间想象能力.【情感态度与价值观】让学生充分体验到了数学思想的魅力和知识创新的乐趣,体会数形结合思想的运用.二、重难点目标【教学重点】探究用勾股定理表示无理数的方法.【教学难点】会用勾股定理表示无理数.教学过程环节1自学提纲,生成问题【5 min阅读】阅读教材P26~P27的内容,完成下面练习.【3 min反馈】1.勾股定理的内容是:直角三角形两直角边的平方和等于斜边的平方.2.教材P27,利用勾股定理在数轴上画出表示1,2,3,4,…的点.3.13的线段是直角边为正整数3,2的直角三角形的斜边.环节2合作探究,解决问题活动1小组讨论(师生互学)【例1】如图所示,数轴上点A所表示的数为a,则a的值是()A.5+1B.-5+1C.5-1D. 5【互动探索】(引发学生思考)先根据勾股定理求出三角形的斜边长,再根据两点间的距离公式即可求出A点的坐标.【分析】图中的直角三角形的两直角边为1和2,∴斜边长为12+22=5,∴-1到A 的距离是5,那么点A所表示的数为5-1.故选C.【答案】C【互动总结】(学生总结,老师点评)本题考查的是勾股定理及两点间的距离公式,解答此题时要注意,确定点A的位置,再根据A的位置来确定a的值.活动2巩固练习(学生独学)1.小明学了利用勾股定理在数轴上找一个无理数的准确位置后,又进一步进行练习:首先画出数轴,设原点为点O,在数轴上的2个单位长度的位置找一个点A,然后过点A作AB ⊥OA,且AB=3.以点O为圆心,OB为半径作弧,设与数轴右侧交点为点P,则点P的位置在数轴上(C)A.1和2之间B.2和3之间C.3和4之间D.4和5之间2.如图,OP=1,过P作PP1⊥OP且PP1=1,根据勾股定理,得OP1= 2 ;再过P1作P1P2⊥OP1且P1P2=1,得OP2=3;又过P2作P2P3⊥OP2且P2P3=1,得OP3=2;….依此继续,得OP2018=2019,OP n=n+1(n为自然数,且n>0).3.利用如图4×4的方格,作出面积为8平方单位的正方形,然后在数轴上表示实数8和-8.解:面积为8平方单位的正方形的边长为8,8是直角边长为2,2的两个直角三角形的斜边长,画图如下:活动3拓展延伸(学生对学)【例2】如图,正方形网格中的每个小正方形边长都是1,每个小格的顶点叫做格点,以格点为顶点分别按下列要求画三角形.(1)在图1中,画一个三角形,使它的三边长都是有理数;(2)在图2中,画一个直角三角形,使它们的三边长都是无理数;(3)在图3中,画一个正方形,使它的面积是10.【互动探索】(1)利用勾股定理,找长为有理数的线段,画三角形即可;(2)先找出几个能构成勾股数的无理数,再画出来即可,如画一个边长2,22,10的三角形;(3)画一个边长为10的正方形即可.【解答】(1)直角三角形的三边分别为3,4,5 ,如图1.(2)直角三角形的三边分别为2,22,10,如图2.(3)画一个边长为10的正方形,如图3.【互动总结】(学生总结,老师点评)本题考查了格点三角形的画法,需仔细分析题意,结合图形,利用勾股定理和正方形的性质即可解决问题.环节3课堂小结,当堂达标(学生总结,老师点评)利用勾股定理表示无理数.练习设计请完成本课时对应练习!17.2勾股定理的逆定理教学目标一、基本目标【知识与技能】掌握勾股定理的逆定理,并能进行简单运用;理解互逆命题的有关概念.【过程与方法】经历探索直角三角形的判定条件过程,理解勾股定理的逆定理.【情感态度与价值观】激发学生解决问题的愿望,体会勾股定理逆向思维所获得的结论,明确其应用范围和实际价值.二、重难点目标【教学重点】掌握勾股定理的逆定理,勾股数,理解互逆命题的有关概念.【教学难点】利用勾股定理的逆定理解决问题.教学过程环节1自学提纲,生成问题【5 min阅读】阅读教材P31~P33的内容,完成下面练习.【3 min反馈】1.(1)勾股定理:如果直角三角形的两直角边长分别为a、b,斜边为c,那么a2+b2=c2.(2)勾股定理的逆定理:如果三角形的三边长a、b、c满足a2+b2=c2;那么这个三角形是直角三角形.2.能够成为直角三角形三条边长的三个正整数,称为勾股数.3.两个命题的题设、结论整好相反,我们把像这样的两个命题叫做互逆命题.如果把其中一个叫做原命题,那么另一个叫做它的逆命题.一般地,原命题成立时,它的逆命题可能成立,也可能不成立.4.一般地,如果一个定理的逆命题经过证明是正确的,那么它也是一个定理,称这两个定理互为逆定理.环节2合作探究,解决问题活动1小组讨论(师生互学)【例1】判断满足下列条件的三角形是否是直角三角形.(1)在△ABC中,∠A=20°,∠B=70°;(2)在△ABC中,AC=7,AB=24,BC=25;(3)△ABC的三边长a、b、c满足(a+b)(a-b)=c2.【互动探索】(引发学生思考)分别已知三角形的边和角,如何判定一个三角形是直角三角形呢?【解答】(1)在△ABC中,∵∠A=20°,∠B=70°,∴∠C=180°-∠A-∠B=90°,即△ABC是直角三角形.(2)∵AC2+AB2=72+242=625,BC2=252=625,∴AC2+AB2=BC2.根据勾股定理的逆定理可知,△ABC是直角三角形.(3)∵(a+b)(a-b)=c2,∴a2-b2=c2,即a2=b2+c2.根据勾股定理的逆定理可知,△ABC是直角三角形.【互动总结】(学生总结,老师点评)判断直角三角形的常用方法有两种:(1)两锐角互余的三角形是直角三角形(即有一个角等于90°的三角形是直角三角形);(2)利用勾股定理的逆定理判断三角形的三边是否满足a2+b2=c2(c为最长边).【例2】写出命题“等腰三角形两腰上的高线长相等”的逆命题,判断这个命题的真假,并说明理由.【互动探索】(引发学生思考)原命题的题设为等腰三角形,结论为腰上的高相等,然后交换题设与结论得到其逆命题;可根据三角形面积公式判断此命题的真假.【解答】命题“等腰三角形两腰上的高线长相等”的逆命题是两边上的高相等的三角形为等腰三角形,此逆命题为真命题.如图,在△ABC中,CD⊥AB,BE⊥AC,且CD=BE.∵BC=BC,∴△CBD≌△BCE(HL),∴∠DBC=∠ECB,∴△ABC为等腰三角形.【互动总结】(学生总结,老师点评)两个命题的题设、结论整好相反,我们把像这样的两个命题叫做互逆命题.一般地,原命题成立时,它的逆命题可能成立,也可能不成立.【例3】某港口位于东西方向的海岸线上.“远航”号“海天”号轮船同时离开港口,各自沿一固定方向航行,“远航”号每小时航行16海里,“海天”号每小时航行12海里.它们离开港口1.5小时后相距30海里.如果知道“远航”号沿东北方向航行,能知道“海天”号沿哪个方向航行吗?【互动探索】(引发学生思考)根据“路程=速度×时间”分别求得PQ、PR的长,再进一步根据勾股定理的逆定理可以证明三角形PQR是直角三角形,从而求解.【解答】根据题意,得PQ=16×1.5=24(海里),PR=12×1.5=18(海里),QR=30海里.∵242+182=302,∴PQ2+PR2=QR2,∴∠QPR=90°.由“远航”号沿东北方向航行可知,∠QPS=45°,∴∠SPR=45°,即“海天”号沿西北方向航行.【互动总结】(学生总结,老师点评)本题考查路程、速度、时间之间的关系,勾股定理的逆定理、方位角等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.活动2巩固练习(学生独学)1.以下列各组数为边长,能组成直角三角形的是(C)A.5,6,7B.10,8,4C.7,25,24D.9,17,152.下列各命题都成立,写出它们的逆命题,这些逆命题成立吗?(1)同旁内角相等,两直线平行;(2)如果两个角是直角,那么这两个角相等.解:(1)“同旁内角相等,两直线平行”的逆命题是两直线平行,同旁内角相等,逆命题不成立.(2)“如果两个角是直角,那么这两个角相等”的逆命题是如果两个角相等,那么两个角是直角,逆命题不成立.3.古希腊的哲学家柏拉图曾指出,如果m表示大于1的整数,a=2m,b=m2-1,c=m2+1,那么a、b、c为勾股数.你认为对吗?如果对,你能利用这个结论得出一些勾股数吗?解:对.因为a2+b2=(2m)2+(m2-1)2=4m2+m4-2m2+1=m4+2m2+1=(m2+1)2,且c2=(m2+1)2,所以a2+b2=c2,即a、b、c是勾股数.m=2时,勾股数为4、3、5;m=3时,勾股数为6、8、10;m=4时,勾股数为8、15、17.4.如图,已知在四边形ABCD中,∠A=90°,AB=2 cm,AD= 5 cm,CD=5 cm,BC=4 cm,求四边形ABCD的面积.解:如图,连结BD.∵∠A=90°,AB=2 cm,AD= 5 cm,∴根据勾股定理,得BD=3 cm.又∵CD=5 cm,BC=4 cm,∴CD2=BC2+BD2,∴△BCD是直角三角形,∴∠CBD=90°,∴S四边形ABCD=S△ABD+S△BCD=12AB·AD+12BC·BD=12×2×5+12×4×3=()5+6cm2.活动3 拓展延伸(学生对学)【例4】在正方形ABCD 中,F 是CD 的中点,E 为BC 上一点,且CE =14CB ,试判断AF 与EF 的位置关系,并说明理由.【互动探索】观察图形,猜测AF ⊥EF .证明△AEF 为直角三角形可得AF ⊥EF .【解答】AF ⊥EF .理由如下:设正方形的边长为4a .∵F 是CD 的中点,CE =14CB , ∴EC =a ,BE =3a ,CF =DF =2a .在Rt △ABE 中,由勾股定理,得AE 2=AB 2+BE 2=16a 2+9a 2=25a 2.在Rt △CEF 中,由勾股定理,得EF 2=CE 2+CF 2=a 2+4a 2=5a 2.在Rt △ADF 中,由勾股定理,得AF 2=AD 2+DF 2=16a 2+4a 2=20a 2.∴AE2=EF2+AF2,∴△AEF为直角三角形,且AE为斜边.∴∠AFE=90°,即AF⊥EF.【互动总结】(学生总结,老师点评)利用三角形三边的数量关系来判定直角三角形,从而推出两线的垂直关系.环节3课堂小结,当堂达标(学生总结,老师点评)1.勾股定理的逆定理:如果三角形的三边长a、b、c满足a2-b2=c2,那么这个三角形是直角三角形.2.能够成为直角三角形三条边长的三个正整数,称为勾股数.3.两个命题的题设、结论整好相反,我们把像这样的两个命题叫做互逆命题.练习设计请完成本课时对应练习!。
最新人教版初二下册数学第十七章《勾股定理》导学案
探索勾股定理-(1)(第1课时)学生姓名:学习目标:会探索勾股定理,会初步利用勾股定理解决实际问题。
重难点:会用勾股定理求直角三角形的边长学习过程:一、课前预习:1、三角形按角的大小可分为:、、。
2、三角形的三边关系:三角形的任意两边之和;任意两边之差。
3、直角三角形的两个锐角;直角三角形中最长边是。
4、在RtΔABC中,两条直角边长分别为a、b,则这个直角三角形的面积可以表示为:。
二、自主探究:探究一:探索直角三角形三边的特殊关系:(1)画一直角三角形,使其两边满足下面的条件,测量第三边的长度,完成下表;(2)猜想:直角三角形的三边关系为。
探究二:如果下图中小方格的边长是1,观察图形,完成下表,并与同学交流:你是怎样得到的?思考:每个图中正方形的面积与三角形的边长有何关系?归纳得出勾股定理。
勾股定理:直角三角形 等于;几何语言表述:如图1.1-1,在Rt ΔABC 中, C = 90°, 则: ; 若BC=a ,AC=b ,AB=c ,则上面的定理可以表示为: 。
三、课堂练习:1、求下图中字母所代表的正方形的面积12米处。
旗4、如图,点C 是以AB 为直径的半圆上一点,∠ACB=90°, AC=3,BC=4,则图中阴影部分的面积是多少?四、课后反思第4题BC A探索勾股定理-(2)(第2课时)学生姓名:学习目标:掌握勾股定理,理解利用拼图验证勾股定理的方法。
能运用勾股定理解决一些实际问题。
重难点:勾股定理的应用。
学习过程: 一、知识回顾:1、直角三角形的勾股定理:2、求下列直角三角形的未知边的长二、自主探究:利用拼图验证勾股定理活动一:用四个全等的直角三角形拼出图1,并思考: 1.拼成的图1中有_______个正方形,___个直角三角形。
2.图中大正方形的边长为_______,小正方形的边长为_______。
3.你能请用两种不同方法表示图1中大正方形的面积,列出一个等式,验证勾股定理吗?分析:大正方形的面积= 边长的平方 =小正方形的面积+ 个直角三角形的面积得: ( + )2= 2+ ×12ab . 化简可得:活动二:用四个全等的直角三角形拼出图2验证勾股定理。
八年级数学下册 17 勾股定理 17.1 勾股定理 17.1.2 勾股定理导学案(新版)新人教版
八年级数学下册 17 勾股定理 17.1 勾股定理17.1.2 勾股定理导学案(新版)新人教版17、1、2 勾股定理》班级小组姓名一、学习目标:毛目标A:能对勾股定理进行灵活变形目标B:能运用勾股定理的数学模型解决现实世界中的实际问题目标C:体会数形结合的数学思想二、问题引领问题A:(1)求出下列直角三角形中未知的边、(2)在长方形ABCD中,宽AB为1m,长BC为2m ,则AC= m、问题B:一个门框的尺寸如图所示,一块长3m,宽2、2m的长方形薄木板能否从门框内通过?为什么?问题C:如图,一架2、6m长的梯子AB斜靠在一竖直的墙AO上,这时AO为2、4 m,如果梯子的顶端A沿墙下滑0、5m,那么梯子底端B 也外移0、5 m吗?三、专题训练训练A :1、若一直角三角形两边长为5和12,则第三边长为、2、已知矩形的长是宽的2倍,其对角线长是5cm,则这个矩形的较长的边为、3、如图,在ΔABC中,CE平分∠ACB,CF平分∠ACD,EF∥BC交AC于M,若EF=5,则CE2 +CF2 = 、第3题第4题4、如图,有两棵树,一棵高10米,另一棵高4米,两树相距8米,一只小鸟从一棵树的树梢飞到另一棵树的树梢,问小鸟至少飞行米、训练B:5、在ΔABC中,AB=15,AC=13,高AD=12,则ΔABC的周长为、6、有一根长70的木棒,要放在长、宽、高分别为30,40,50的木箱中,能放进去吗?简述理由、7、小东拿着一根长竹竿进一个宽3米的城门,他先横着拿进不去,又竖起来拿,结果竿比城门高1米,当他把竿斜着时,两端正好顶着城门的对角,问竿长几米?训练C:8、如图,滑杆在机械槽内运动,∠ACB为直角,已知滑杆AB 长100cm,顶端A在AC上运动,量得滑杆下端B距C点的距离为60cm,当端点B向右移动20cm时,滑杆顶端A下滑多长?9、如图,有一根高为16米的电线杆在点A处断裂,电线杆顶点C落到离电线杆底部B点8米处的地方,求电线杆的断裂处A 离地面的距离、四、课堂小结1、勾股定理的应用;2、分类、转化、方程思想、班级小组姓名五、课后作业1、有一个边长为50dm的正方形洞口,想用一个圆盖盖住这个洞口,圆的直径至少为 dm(结果保留根号)2、一旗杆离地面6m处折断,其顶部落在离旗杆底部8m处,则旗杆折断前高 m、3、如图,山坡上两株树木之间的坡面距离是4米,则这两株树之间的垂直距离是米,水平距离是米、4、已知:如图,等边△ABC的边长是6cm、⑴等边△ABC的高CD= cm、⑵S△ABC= cm、5、如图,分别以Rt△ABC的三边为直径作半圆,其面积分别为、、,且,,则= 、6、如图,直线同侧有三个正方形、、,若、的面积分别为5和12,则的面积为、【能力提升】在△ABC中,∠BAC=120AB=AC=cm,一动点P从B向C以每秒2cm的速度移动,问当P点移动多少秒时,△ABP为直角三角形、。
最新课标RJ人教版 八年级数学 下册第二学期(导学案)第十七章 勾股定理 (第17章全单元 导学案)
第十七章勾股定理一、要点探究探究点1:勾股定理的认识及验证想一想 1.2500年前,毕达哥拉斯去老朋友家做客,看到他朋友家用等腰三角形砖铺成的地面,联想到了正方形A ,B 和C 面积之间的关系,你能想到是什么关系吗?2.右图中正方形A 、B 、C 所围成的等腰直角三角形三边之间有什么特殊关系?3.在网格中一般的直角三角形,以它的三边为边长的三个正方形A 、B 、C是否也有类似的面积关系?(每个小正方形的面积为单位1) 4.正方形A 、B 、C 所围成的直角三角形三条边之间有怎样的特殊关系?思考 你发现了直角三角形三条边之间的什么规律?你能结合字母表示出来吗?猜测:如果直角三角形的两条直角边长分别为a ,b ,斜边长为c ,那么________.活动2 接下来让我们跟着以前的数学家们用拼图法来证明活动1的猜想. 证法 利用我国汉代数学家赵爽的“赵爽弦图”要点归纳: 勾股定理:如果直角三角形的两直角边长分别为a ,b ,斜边长为c ,那么a 2+b 2=c 2.公式变形: a b c探究点2:利用勾股定理进行计算 例1如图,在Rt △ABC 中, ∠C =90°. (1)若a =b =5,求c ; (2)若a =1,c =2,求b .ABC C (1)若a =15,b =8,则c =_______. (2)若c =13,b =12,则a =_______.4.若直角三角形中,有两边长是5和7,则第三边长的平方为_________.5.求斜边长17cm 、一条直角边长15cm 的直角三角形的面积.6.如图,在△ABC 中,AD ⊥BC ,∠B =45°,∠C =30°,AD =1,求△ABC 的周长.能力提升:7.如图,以Rt △ABC 的三边长为斜边分别向外作等腰直角三角形.若斜边AB =3,求△ABE 及阴影部分的面积.第十七章勾股定理2.如图,学校教学楼前有一块长方形长为4米,宽为3米的草坪,有极少数人为了避开拐角走“捷径”,在草坪内走出了一条“径路”,却踩伤了花草. (1)求这条“径路”的长;(2)他们仅仅少走了几步(假设2步为1米)?探究点2:利用勾股定理求两点距离及验证“HL ”思考:在八年级上册中,我们曾经通过画图得到结论:斜边和一条直角边分别相等的两个直角三角形全等.学习了勾股定理后,你能证明这一结论吗?证明:如图,在Rt △ABC 和Rt △A ’ B ’ C ’中,∠C =∠C ’=90°, AB =A ’ B ’,AC =A ’ C ’.求证:△ABC ≌△A ’ B ’ C ’ .证明:在Rt △ABC 和Rt △A ’ B ’ C ’中,∠C=∠C ’=90°,根据勾股定理得BC =_______________,B ’ C ’=_________________. ∵AB=A ’ B ’,AC=A ’ C ’,∴_______=________. ∴____________≌____________ (________).例2 如图,在平面直角坐标系中有两点A (-3,5),B (1,2)求A ,B 两点间的距离.探究点3:利用勾股定理求最短距离想一想:1.在一个圆柱石凳上,若小明在吃东西时留下一点食物在B 处,恰好一只在A 处的蚂蚁捕捉到这一信息,于是它想从A 处爬向B 处,蚂蚁怎么走最近(在以下四条路线中选择一条)?2.若已知圆柱体高为12 c m ,底面半径为3 c m ,π取3,请求出最短路线的长度.要点归纳:立体图形中求两点间的最短距离,一般把立体图形展开成平面图形,连接两点,根据两点之间线段最短确定最短路线.例3 有一个圆柱形油罐,要以A 点环绕油罐建梯子,正好建在A 点的正上方点B 处,问梯子最短需多少米(已知油罐的底面半径是2 m ,高AB 是5 m ,π取3)?变式题 小明拿出牛奶盒,把小蚂蚁放在了点A 处,并在点B 处放上了点儿火腿肠粒,你能帮小蚂蚁找到完成任务的最短路程么?例4 如图,一个牧童在小河的南4km 的A 处牧马,而他正位于他的小屋B 的西8km 北7km 处,他想把他的马牵到小河边去饮水,然后回家.他要完成这件事情所走的最短路程是多少?杆底部B 的距离是( ) A .24m B .12m C m2.如图,一支铅笔放在圆柱体笔筒中,笔筒的内部底面直径是9cm ,内壁高12cm ,则这只铅笔的长度可能是()A.9cmB.12cmC.15cmD.18cm 3.已知点(2,5),(-4,-3),则这两点的距离为_______.4.如图,有两棵树,一棵高8米,另一棵2米,两棵对相距8米.一只鸟从一棵树的树梢飞到另一棵的树梢,问小鸟至少飞行多少?5. 如图,是一个三级台阶,它的每一级的长、宽和高分别等于55cm ,10cm 和6cm ,A 和B 是这个台阶的两个相对的端点,A 点上有一只蚂蚁,想到B 点去吃可口的食物.这只蚂蚁从A 点出发,沿着台阶面爬到B 点,最短线路是多少?能力提升6.为筹备迎接新生晚会,同学们设计了一个圆筒形灯罩,底色漆成白色,然后缠绕红色油纸,如图.已知圆筒的高为108cm ,其横截面周长为36cm ,如果在表面均匀缠绕油纸4圈,应裁剪多长的油纸?第十七章勾股定理...你能在数以下是在数轴上表示出13的点的作图过程,请你把它补充完整.(1)在数轴上找到点A,使OA=______;(2)作直线l____OA,在l上取一点B,使AB=_____;(3)以原点O为圆心,以______为半径作弧,弧与数轴交于C点,则点C即为表示______的点.要点归纳:利用勾股定理表示无理数的方法: (1)利用勾股定理把一个无理数表示成直角边是两个正整数的直角三角形的斜边.(2)以原点为圆心,以无理数斜边长为半径画弧与数轴存在交点,在原点左边的点表示是负无理数,在原点右边的点表示是正无理数.为线段,形成如图所示的数学海螺.例1如图,数轴上点A所表示的数为a ,求a 的值.1.如图,点A 表示的实数是 ( )2.A 为圆心,对角线AC 的长为半径作弧交数轴于点M ,则点M 表示的数为( )3.你能在数轴上画出表示17的点吗?探究点2:勾股定理与网格综合求线段长例2 在如图所示的6×8的网格中,每个小正方形的边长都为1,写出格点△ABC 各顶点的坐标,并求出此三角形的周长.方法总结:勾股定理与网格的综合求线段长时,通常是把线段放在与网格构成的直角三角形中,利用勾股定理求其长度.再用面积法求高.的正方形构成的田字格,只用没有刻度的直尺在这个田字格中最多变式题如图,四边形ABCD是边长为9的正方形纸片,将其沿MN折叠,使点B落在CD边上的B′处,点A的对应点为A′,且B′C=3,求AM的长.求四边形ABCD的面积.1.如图,在边长为1个单位长度的小正方形组成的网格中,点A、B都是格点,则线段AB的长度为()A.5B.6C.7D.252.小明学了利用勾股定理在数轴上作一个无理数后,于是在数轴上的2个单位长度的位置找一个点D,然后点D做一条垂直于数轴的线段CD,CD为3个单位长度,以原点为圆心,以到点C的距离为半径作弧,交数轴于一点,则该点位置大致在数轴上()A.2和3之间B.3和4之间C.4和5之间D.5和6之间3.如图,网格中的小正方形边长均为1,△ABC的三个顶点均在格点上,则AB边上的高为_ ______.4.如图,在四边形ABCD中,AB=AD=8cm,∠A=60°,∠ADC=150°,已知四边形ABCD的周长为32cm,求△BCD的面积.分△AFC的面积.图①图②______=_______,∴∠C____∠C′_____90°,即△ABC是__________三角形.要点归纳:勾股定理的逆定理:如果三角形的三边长a 、b 、c满足a2+b2=c2,那么这个三角形是直角三角形.特别说明:勾股定理的逆定理是直角三角形的判定定理,即已知三角形的三边长,且满足两条较小边的平方和等于最长边的平方,即可判断此三角形为直角三角形,最长边所对应的角为直角.例1(教材P32例1变式题)若△ABC的三边a,b,c满足a:b: c=3:4:5,是判断△ABC的形状.方法总结:已知三角形三边的比例关系判断三角形形状:先设出参数,表示出三条边的长,再用勾股定理的逆定理判断其是否是直角三角形.如果此直角三角形的三边中有两个相同的数,那么该三角形还是等腰三角形.例2(1)若△ABC的三边a,b,c,且a+b=4,ab=1,c=14,试说明△ABC是直角三角形.(2)若△ABC的三边a,b,c 满足a2+b2+c2+50=6a+8b+10c. 试判断△ABC的形状.例3如图,在正方形ABCD中,F是CD的中点,E为BC上一点,且CE=14CB,试判断AF 与EF的位置关系,并说明理由.1.下列各组线段中,能构成直角三角形的是()A.2,3,4 B.3,4,6C.5,12,13 D.4,6,72.一个三角形的三边的长分别是3,4,5,则该三角形最长边上的高是( )A.4 B.3 C.2.5 D.2.43.若△ABC的三边a、b、c满足(a-b)(a2+b2-c2)=0,则△ABC是_______________________.探究点2:勾股数要点归纳:勾股数:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形.满足a 2+b 2=c 2的三个正整数,称为勾股数.常见的勾股数:3,4,5;5,12,13;6,8,10;7,24,25;8,15,17;9,40,41;10,24,26等等.勾股数拓展性质:一组勾股数,都扩大相同倍数k(k 为正整数),得到一组新数,这组数同样是勾股数.例4 下列各组数是勾股数的是 ( ) A.6,8,10 B.7,8,9C.0.3,0.4,0.5 D.52,122,132方法总结:根据勾股数的定义,勾股数必须为正整数,先排除小数,再计算最长边的平方是否等于其他两边的平方和即可. 探究点3:互逆命题与互逆定理想一想 1.前面我们学习了两个命题,分别为:命题1,如果直角三角形的两条直角边长分别为a,b,斜边为c,那么a 2+b 2=c 2;命题2,如果三角形的三边长a ,b ,c 满足a 2+b 2=c 2,那么这个三角形是直角三角形.两个命题的条件和结论分别是什么?2.两个命题的条件和结论有何联系?要点归纳:原命题、逆命题与互逆命题:题设和结论正好相反的两个命题,叫做互逆命题,其中一个叫做原命题,另一个叫做原命题的逆命题.互逆定理:如果一个定理的逆命题经过证明是正确的,那么它也是一个定理,我们称这两个定理互为逆定理.勾股定理与勾股定理的逆定理为互逆定理.;标注有用信息,明确已反偷渡巡逻101号艇在A 处发现其正西方向的C 处有一艘可疑船只正向我沿海靠近,便立即通知在PQ 上B 处巡逻的103号艇注意其动向,经检测,AC=10海里,BC=8海里,AB=6海里,若该船只的速度为12.8海里/时,则可疑船只最早何时进入我领海?分析:根据勾股定理的逆定可得△ABC 是直角三角形,然后利用勾股定理的逆定理及直角三角形的面积公式可求PD ,然后再利用勾股定理便可求CD.例2一个零件的形状如图①所示,按规定这个零件中∠A 和∠DBC 都应为直角,工人师傅量得这个零件各边的尺寸如图②所示,这个零件符合要求吗?1.A、B 、C 三地的两两距离如图所示,A 地在B 地的正东方向,C 在B 地的什么方向?2.如图,是一农民建房时挖地基的平面图,按标准应为长方形,他在挖完后测量了一下,发现AB =DC=8m ,AD=BC =6m ,AC =9m ,请你运用所学知识帮他检验一下挖的是否合格?探究点2:勾股定理及其逆定理的综合应用例3 如图,四边形ABCD 中,∠B =90°,AB =3,BC =4,CD =12,AD =13,求四边形ABCD 的面积.分析:连接AC ,把四边形分成两个三角形.先用勾股定理求出AC 的长度,再利用勾股定理的逆定理判断△ACD 是直角三角形.方法总结:四边形问题对角线是常用的辅助线,它把四边形问题转化成两个三角形的问题.在使用勾股定理的逆定理解决问题时,它与勾股定理是“黄金搭挡”,经常配套使用. 变式题1 如图,四边形ABCD 中,AB ⊥AD ,已知AD=3cm ,AB=4cm ,CD=12cm ,BC=13cm ,求四边形ABCD 的面积.变式题2如图,在四边形ABCD 中,AC ⊥DC ,△ADC 的面积为30 cm 2,DC =12 cm ,AB =3cm ,BC =4cm ,求△ABC 的面积.东25°的方向,且到医院的距离为300m,公园到医院的距离为400m.若公园到超市的距离为500m,则公园在医院的北偏东______的方向.2.五根小木棒,其长度分别为7,15,20,24,25,现将他们摆成两个直角三角形,其中摆放方法正确的是()A B C D3.如图,某探险队的A组由驻地O点出发,以12km/h的速度前进,同时,B组也由驻地O 出发,以9km/h的速度向另一个方向前进,2h后同时停下来,这时A,B两组相距30km.此时,A,B两组行进的方向成直角吗?请说明理由.4. 如图,在△ABC 中,AB=17,BC=16,BC 边上的中线AD=15,试说明:AB=AC.5. 在寻找某坠毁飞机的过程中,两艘搜救艇接到消息,在海面上有疑似漂浮目标A 、B .于是,一艘搜救艇以16海里/时的速度离开港口O (如图)沿北偏东40°的方向向目标A 的前进,同时,另一艘搜救艇也从港口O 出发,以12海里/时的速度向着目标B 出发,1.5小时后,他们同时分别到达目标A 、B .此时,他们相距30海里,请问第二艘搜救艇的航行方向是北偏西多少度?6. 如图,在△ABC 中,AB :BC :CA=3:4:5且周长为36cm ,点P 从点A 开始沿AB 边向 点以每秒2cm 的速度移动,点Q 从点C 沿CB 边向点B 以每秒1cm 的速度移动,如果同时出发,则过3秒时,求PQ 的长.。
人教版数学八年级下册 17.1.3 勾股定理 导学案
17.1.3 勾股定理学习目标:1.会利用勾股定理作长度为无理数的线段.2.会用勾股定理求解直角三角形的边长.一、学前准备1.填空: 在△中,∠,a,b,c分别是∠A,∠B,∠C所对的边,(1)如果15,25,则. (2)如果∠,4,则.(3)如果∠,3,则. (4)如果a、b、c是连续整数,则.二、预习导航(一)预习指导活动1运用勾股定理在数轴上作表示无理数的点(阅读教材第26-27页)2.探究:我们知道数轴上的点有的表示有理数,有的表示无理数,你能在数轴上画出表示的点吗?分析:(1)若能画出长为的线段,就能在数轴上画出表示的点.(2)由勾股定理知,直角边为1的等腰直角三角形,斜边为.因此在数轴上能表示的点.那么长为的线段能否是直角边为正整数的直角三角形的斜边呢?类似的,请在数轴上用尺规作图的方法画出表示、-、的点.3.如图:螺旋状图形是由若干个直角三角形所组成的,其中①是直角边长为1的等腰直角三角形.那么预习疑惑:(二)预习检测4.如图所示,已知1,过P作1⊥,且P11,得1=;再过P1作P1P2⊥1且P1P2=1,得2=;又过P2作P2P3⊥2且P2P3=1,得3=2;…依此法继续作下去,得2019=.三、课堂互动:问题1用勾股定理解直角三角形5.已知:如图,在△中,∠,,4,是边上的高,且,求、、的长.6.如图,四边形中,∥,⊥,⊥,∠,1,求的长.方法总结:四、总结归纳1.你有什么收获?(从知识、方法、规律方面总结)2.你还有哪些疑惑?3.你认为老师上课过程中还有哪些需要注意或改进的地方?4.在展示中,哪位同学是你学习的榜样?哪个学习小组的表现最优秀?教(学)后记:五、达标检测1.如图,由四个边长为1的小正方形构成一个大正方形,连接小正方形的三个顶点,可得到△,则△中边上的高为.《17.1.3 勾股定理》参考答案一、学前准备1.答案:20;4;3;12.二、预习导航2.作图略.3.答案:1;;;;;;;…;;.4. 答案:分析:由勾股定理得4=;得2=1=依此类推可得∴2016=三、课堂互动:5.解:在△中,在△中,.6.解:在直角三角形中,根据两个锐角互余,得∠30°.∵∥,∴∠∠30°,∴22 ,设,则2x,根据勾股定理得:4x22= 4,,2即=四、总结归纳:略。
人教版八年级下册数学 第17章 勾股定理 复习导学案
人教版八年级下册数学第17章 勾股定理 复习导学案中国古代把直角三角形中较短的直角边叫做勾,较长的直角边叫做股,斜边叫做弦.根据《周髀算经》的记载,大约在公元前1100多年前,商高在回答周公关于数学方法的咨询时,明确地回答周公说:“如果一个直角三角形的勾为3,股为4,那么弦就是5。
”而且,经过后人的研究,从《周髀算经》中一些文字的分析,可以认为,商高实际上已经证明了普通意义下的勾股定理。
在国外把勾股定理称为毕达哥拉斯定律,认为它是由古希腊的毕达哥拉斯首先发现并证明这一定理的。
其实,他们可能要比商高发现并证明这一定理晚600年。
基本概念1.勾股定理:直角三角形两直角边的平方和等于斜边的平方。
即222a b c +=。
2.勾股定理的逆定理是判别一个三角形为直角三角形常用的方法。
若三角形的三边长a,b,c 满足222a b c +=,则这个三角形是直角三角形。
勾股定理的证明由于勾股定理的重要性,在历史上有很多人在寻求它的不同证明方法,从远古到今天都有人不断提出勾股定理的新证明,据说,已经有人收集了370多种证明方法。
下面我们选择几种证明如下: (1)商高的证明商高在《周髀算经》中十分简要地给出了勾股定理的证明。
将4个相同的直角三角形ABC 合成如图所示的正方形,图中有两个正 方形,外边的正方形边长为a+b ,内部的小正方形边长为c 。
(2)赵爽的证法三国时期的数学家赵爽在给《周髀算经》这本书作注解时,对勾股定理给出了如下证明。
(3)美国总统的证明美国第20任总统加菲尔德(1831-1881)年轻时曾当过中学教师和校长,他很喜欢数学。
1876年4月1日在美国波士顿出版的《新英格兰教育日志》上,发表了加菲尔德关于勾股定理的一个新证明。
他当时是美国俄亥俄州共和党的众议员。
他在议会上“思想体操”时想到了这种证法,当即获得了两党议员的“一致通过”。
他的证法如图所示:若a 、b 、c 均为自然数,且无1以外的整数公因式当它们满足关系式222a b c +=时,我们称(a 、b 、c )为基本勾股数组。
人教版八年级数学下册第十七章《勾股定理》导学案
新人教版八年级数学下册第十七章《勾股定理》导教学设计一、基础知识点: 1.勾股定理内容:直角三角形两直角边的平方和等于斜边的平方; 表示方法:若是直角三角形的两直角边分别为a ,b ,斜边为c ,那么 a 2b 2c 2勾股定理的由来: 勾股定理也叫商高定理, 在西方称为毕达哥拉斯定理.我国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦. 早在三千多年前,周朝数学家商高就提出了 “勾三,股四, 弦五 ”形式的勾股定理,此后代们进一步发现并证了然直角三角形的三边关系为:两直角边的平方和等于斜边的平方2 .勾股定理的证明勾股定理的证明方法很多,常有的是拼图的方法用拼图的方法考据勾股定理的思路是①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变②依照同一种图形的面积不相同的表示方法,列出等式,推导出勾股定理常有方法以下:方法一: 4SS 正方形 EFGH S 正方形 ABCD , 4 1 ab (b a)2 c 2 ,化简可证.2方法二:DCHEG F b aAcBb aacbccbcaab四个直角三角形的面积与小正方形面积的和等于大正方形的面积.四个直角三AaD4 1ab角形的面积与小正方形面积的和为S c 22ab c 2大正方形面b2c22a 2 a b2b所 以 a 2b 2 2cEa积 为 S ( a b)c 方 法 三 :111BbCS 梯形( a b) (a b) ,S 梯形 2S ADE S ABE2 ab c 2 ,化简得证22 23 .勾股定理的适用范围勾股定理揭穿了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形, 关于锐角三角形和钝角三角形的三边就不拥有这一特色, 所以在应用勾股定理时, 必定了然所察看的对象是直角三角形4.勾股定理的应用 ①已知直角三角形的任意两边长,求第三边在 ABC 中, C 90 ,则ca 2b 2 , bc 2 a 2 , ac 2 b 2 ②知道直角三角形一边,可得别的两边之间的数量关系③可运用勾股定理解决一些实责问题5 .勾股定理的逆定理若是三角形三边长 a , b , c 满足 a 2 b 2c 2 ,那么这个三角形是直角三角形,其中c 为斜边①勾股定理的逆定理是判断一个三角形是否是直角三角形的一种重要方法,它经过“数转化为形 ”来确定三角形的可能形状,在运用这必然理时,可用两小边的平方和 a 2 b 2 与较长边的平方 c 2 作比较,若它们相等时,以a ,b ,c 为三边的三角形是直角三角形;若a 2b2c2,时,以 a ,b, c 为三边的三角形是钝角三角形;若a2b2c2,时,以 a ,b,c为三边的三角形是锐角三角形;②定理中 a ,b, c 及 a2b2c2可是一种表现形式,不能认为是唯一的,如若三角形三边长 a ,b, c 满足 a2c2 b 2,那么以 a ,b, c 为三边的三角形是直角三角形,但是 b 为斜边③勾股定理的逆定理在用问题描述时,不能够说成:当斜边的平方等于两条直角边的平方和时,这个三角形是直角三角形6 .勾股数①能够构成直角三角形的三边长的三个正整数称为勾股数,即 a 2b2c2中, a ,b,c 为正整数时,称 a ,b, c 为一组勾股数②记住常有的勾股数能够提高解题速度,如3,4,5; 6,8,10 ; 5,12,13; 7,24,25 等③用含字母的代数式表示n 组勾股数:n21,2n,n 2 1 ( n2,n 为正整数);2n1,2n22n,2 n22n1n为正整数)m2n2 ,2mn, m2n2( m n,m,n为正整数)(7.勾股定理的应用勾股定理能够帮助我们解决直角三角形中的边长的计算或直角三角形中线段之间的关系的证明问题.在使用勾股定理时,必定掌握直角三角形的前提条件,认识直角三角形中,斜边和直角边各是什么,以便运用勾股定理进行计算,应想法增加辅助线(平时作垂线),构造直角三角形,以便正确使用勾股定理进行求解.8..勾股定理逆定理的应用勾股定理的逆定理能帮助我们经过三角形三边之间的数量关系判断一个三角形是否是直角三角形,在详细计算过程中,应用两短边的平方和与最长边的平方进行比较,切不能不加思考的用两边的平方和与第三边的平方比较而获得错误的结论.9.勾股定理及其逆定理的应用勾股定理及其逆定理在解决一些实责问题或详细的几何问题中,是密不能分的一个整体.平时既要经过逆定理判断一个三角形是直角三角形,又要用勾股定理求出边的长度,二者相辅相成,完成对问题的解决.常CA B D见图形:C CC30°A B A D B B D A10、互抗命题的看法若是一个命题的题设和结论分别是另一个命题的结论和题设,这样的两个命题叫做互抗命题。
最新课标RJ人教版 八年级数学 下册第二学期(导学案)第十七章 勾股定理(第17章全单元 导学案)
第十七章 勾股定理17.1 勾股定理第1课时 勾股定理【学习目标】1.了解勾股定理的发现过程,掌握勾股定理的内容,会用面积法证明勾股定理; 2.培养在实际生活中发现问题总结规律的意识和能力. 学习重点:勾股定理的内容及证明. 学习难点:勾股定理的证明. 学习过程一、自学导航(课前预习) 1、直角△ABC 的主要性质是:∠C=90°(用几何语言表示)(1)两锐角之间的关系:(2)若D 为斜边中点,则斜边中线(3)若∠B=30°,则∠B 的对边和斜边:2、勾股定理证明: 方法一;如图,让学生剪4个全等的直角三角形,拼成如图图形,利用面积证明。
S 正方形=_______________=____________________ 方法二;已知:在△ABC 中,∠C=90°,∠A 、∠B 、∠C 的对边为a 、b 、c 。
求证:a 2+b 2=c 2。
分析:左右两边的正方形边长相等,则两个正方形的面积相等。
左边S=______________右边S=_______________ 左边和右边面积相等,即化简可得。
二、合作交流(小组互助)思考:(图中每个小方格代表一个单位面积)A Bb b b(2)你能发现图1-1中三个正方形A ,B ,C 的面积之间有什么关系吗?图1-2中的呢? 由此我们可以得出什么结论?可猜想:如果直角三角形的两直角边分别为a 、b ,斜边为c ,那么__________________ _____________________________________________________________________。
(三)展示提升(质疑点拨) 1.在Rt △ABC 中,90C ∠=︒ ,(1)如果a=3,b=4,则c=________; (2)如果a=6,b=8,则c=________; (3)如果a=5,b=12,则c=________; (4) 如果a=15,b=20,则c=________. 2、下列说法正确的是( )A.若a 、b 、c 是△ABC 的三边,则222a b c += B.若a 、b 、c 是Rt △ABC 的三边,则222a b c +=C.若a 、b 、c 是Rt △ABC 的三边,90A ∠=︒, 则22a b +D.若a 、b 、c 是Rt △ABC 的三边,90C ∠=︒ ,则222a b c +=3、一个直角三角形中,两直角边长分别为3和4,下列说法正确的是( )A .斜边长为25B .三角形周长为25C .斜边长为5D .三角形面积为204、如图,三个正方形中的两个的面积S1=25,S2=144,则另一个的面积S3为________.5、一个直角三角形的两边长分别为5cm 和12cm,则第三边的长为 。
八年级下(初二下)数学第17章勾股定理 导学案
八年级数学(下)教学案 第1课时班级_______ 姓名______课题:17.1勾股定理 (1) 课型:新授【学习目标】:1.了解勾股定理的发现过程,掌握勾股定理的内容,会用面积法证明勾股定理。
2.培养在实际生活中发现问题总结规律的意识和能力。
学习重点:勾股定理的内容及证明。
学习难点:勾股定理的证明。
学习过程一、自学导航(课前预习) 1、直角△ABC 的主要性质是:∠C=90°(用几何语言表示)(1)两锐角之间的关系:(2)若D 为斜边中点,则斜边中线(3)若∠B=30°,则∠B 的对边和斜边:2、勾股定理证明: 方法一;如图,让学生剪4个全等的直角三角形,拼成如图图形,利用面积证明。
S 正方形=_______________=____________________方法二; 已知:在△ABC 中,∠C=90°,∠A 、∠B 、∠C 的对边为a 、b 、c 。
求证:a 2+b 2=c 2。
分析:左右两边的正方形边长相等,则两个正方形的面积相等。
左边S=______________右边S=_______________ 左边和右边面积相等,即化简可得。
二、合作交流(小组互助)思考:A Bb b b(图中每个小方格代表一个单位面积) (2)你能发现图1-1中三个正方形A ,B ,C 的面积之间有什么关系吗?图1-2中的呢? 由此我们可以得出什么结论?可猜想:如果直角三角形的两直角边分别为a 、b ,斜边为c ,那么__________________ _____________________________________________________________________。
(三)展示提升(质疑点拨) 1.在Rt △ABC 中,90C ∠=︒ ,(1)如果a=3,b=4,则c=________; (2)如果a=6,b=8,则c=________; (3)如果a=5,b=12,则c=________; (4) 如果a=15,b=20,则c=________. 2、下列说法正确的是( )A.若a 、b 、c 是△ABC 的三边,则222a b c += B.若a 、b 、c 是Rt △ABC 的三边,则222a b c +=C.若a 、b 、c 是Rt △ABC 的三边,90A ∠=︒, 则22a b +D.若a 、b 、c 是Rt △ABC 的三边,90C ∠=︒ ,则222a b c +=3、一个直角三角形中,两直角边长分别为3和4,下列说法正确的是( )A .斜边长为25B .三角形周长为25C .斜边长为5D .三角形面积为20 4、如图,三个正方形中的两个的面积S1=25,S2=144,则另一个的面积S3为________. 5、一个直角三角形的两边长分别为5cm 和12cm,则第三边的长为 。
第十七章勾股定理复习导学案
一、第十七章: 《勾股定理》复习学案勾股定理:如果直角三角形的两直角边长分别为, 斜边为, 那么。
直角三角形 b c a2+b2=c2 (数)(形) aa1、变形为: a= ;b= 。
设直角三角形的斜边为c, 两直角边为a和b, 求:(1)已知a=6, b=8, 则c= ;(2) 已知a=3, c=8, 则b= ;(3)已知b=4, c=8, 则a= ;二、勾股定理的逆定理:如果三角形的三边长a, b, c满足 , 那么这个三角形是 . 2(1)已知三条线段长分别是8, 15, 17, 那么这三条线段能围成一个()A.直角三角形 B、锐角三角形 C、钝角三角形 D、无法确定(2)下列各组数不是股数的是()A.5.12.13B.3.4.5C.8、6.17D.15.20、25三、勾股定理与正方形面积3.已知图中所有四边形都是正方形, 且A与C.B与D所成的角都是直角, 其最大正方形的边长为5, 则A, B, C, D四个小正方形的面积之和为4、是一株美丽勾股树, 其四边形正方形, .若正方形A, B, C, D边长分别是3, 5, 2, 3, 则最大正方形E面积是5.在直线l上依次摆放着七个正方形(如上图所示). 已知斜放置的三个正方形的面积分别是1.2.3, 正放置的四个正方形的面积依次是S1.S2.S3.S4, 则S1+S2+S3+S4=_______.四、木板能否通过门框6, 如图, 长4m, 宽3m薄木板(能或不能)从门内通过.7、门高2米, 宽1米, 现有为3米, 宽为2.2米薄木板能否从门框内通过?为什么?五、梯子移动问题8、一个5米长的梯子AB斜靠在一竖直的墙AO上, 这时OB=3米, 如果底端B沿直线OB向右滑动1米到点D, 同时顶端A沿直线向下滑动到点C(如图所示). 求AC.9、如图, 一个2.5米长的梯子AB斜靠在一竖直的墙AO上, 这时梯子顶端A距离墙角O的高度为2米.①求底端B距墙角O多少米?②如果顶端A沿角下滑0.5米至C, 底端也滑动0.5米吗?六、折断问题10、如图, 一棵大树在离地面3m处折断, 树顶端离树底部4m, 则这棵树折断之前的高度是.11.如图, 一木杆在离地某处断裂, 木杆顶部落在离木杆底部8米处, 已知木杆原长16米, 求木杆断裂处离地面多少米?七、飞鸟问题12.如图, 有两棵树, 一棵高10m, 另一棵高4m, 两树相距8m. 一只小鸟从一棵树的树尖飞到另一棵树的树尖, 那么这只小鸟至少要飞行m13.有两棵树, 如图, 一颗高13米, 另一颗高8米, 两树相距12米, 一只小鸟从一棵树的树梢飞到另一颗树的树梢, 至少飞了米。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十七章勾股定理课题:17.1勾股定理(1)学习目标:1 •了解勾股定理的发现过程,掌握勾股定理的内容,会用面积法证明勾股定理2 •培养在实际生活中发现问题总结规律的意识和能力。
3.介绍我国古代在勾股定理研究方面所取得的成就,激发学生的爱国热情,促其勤奋学习学习重点:勾股定理的内容及证明。
学习难点:勾股定理的证明学习过程:、自主学习画一个直角边为3cm和4cm的直角△ ABC用刻度尺量出AB的长。
(勾3,股4,弦5)以上这个事实是我国古代3000多年前有一个叫商高的人发现的,他说:“把一根直尺折成直角,两段连结得一直角三角形,勾广三,股修四,弦隅五。
”这句话意思是说一个直角三角形较短直角边(勾)的长是3,长的直角边(股)的长是4,那么斜边(弦)的长是5。
再画一个两直角边为5和12的直角△ ABC用刻度尺量AB的长。
你是否发现3 +4与5的关系,5 +12和13的关系,即3 +4 ___________ 5,5 +12 ____ 13,那么就有______ 2+ ____ 2= ___ 。
(用勾、股、弦填空)对于任意的直角三角形也有这个性质吗?勾股定理内容文字表述:几何表述:二、交流展示例1、已知:在厶ABC中, Z C=90°,/ A、/ B、/ C的对边为a 、b、c。
求证:a2+ b2=c2。
分析:⑴准备多个三角形模型,利用面积相等进行证明。
⑵拼成如图所示,其等量关系为:4S"S小正=S大正即4X 1X +〔〕2= c2,化简可证2⑶发挥学生的想象能力拼出不同的图形,进行证明。
⑷勾股定理的证明方法,达300余种。
这个古老而精彩的证法,出自我国古代无名数学家之手。
激发学生的民族自豪感,和爱国情怀。
例2已知:在厶ABC 中,/ C=90°,/ A 、/ B 、/ C 的对边为a 、b 、c 。
求证:a 2 + b 2=c 2。
分析:左右两边的正方形边长相等,则两个正方形的面积相等。
左边S= ________ 右边S= ________ 左边和右边面积相等,即化简可得、合作探究1. 已知在 Rt △ ABC 中,/ B=90°,a 、b 、c 是厶 ABC 的三边,则⑴c= _____________ 。
(已知a 、b ,求c ) ⑵a= _____________ 。
(已知口 b 、c ,求 a ) ⑶b= _____________ 。
(已知口 a 、c ,求 b )a 、b 、c ,有a v b v c ,试根据表中已有数的规律,3、4、5 32+42=H 5、12、13 52+122=132 7、24、25 72+242=252 9、 40、 4192+4心41219, b 、c192+b 2=c 23. △ ABC 的三边 a 、b 、c ,(1)若满足 b 2= a 2 + c 2,则 =90 ° ;(2) _______________________________________ 若满足b 2>c 2 + a 2,则/ B 是 角; (3) _______________________________________ 若满足b 2v c 2 + a 2,则/ B 是 角。
四、达标测试1.一个直角三角形,两直角边长分别为 3和4,下列说法正确的是()2. 斜边长为25 B .三角形的周长为25 C .斜边长为5 D .三角形面积为202 .如下表,表中所给的每行的三个数 ab3. 一直角三角形的斜边长比一条直角边长多2,另一直角边长为6,则斜边长为(A. 4 B . 8 C . 10 D . 124•直角三角形的两直角边的长分别是5和12,则其斜边上的高的长为()A. 6 B . 8 C . 80 D . 6013 135、已知,如图1-1-5,折叠长方形(四个角都是直角,对边相等)的一边AD使点D落在五、课后记、自主学习1 .勾股定理的具体内容是:2 .如图,直角△ ABC的主要性质是:/ C=90,(用几何语言表示)⑴两锐角之间的关系:____________________________ ;⑵若D为斜边中点,则斜边中线与斜边的关系:_______________________⑶若/ B=30°,则/ B的对边和斜边的关系:________________________ ;⑷三边之间的关系:____________________________ 。
、交流展示例1、在Rt △ ABC / C=90BC边的点F处,已知AB=8cm BC=10cm 求CF CE课题:教学目标:1.会用勾股定理进行简单的计算。
2重难点:1.重点:勾股定理的简单计算。
217.1勾股定理(2).树立数形结合的思想、分类讨论思想.难点:勾股定理的灵活运用。
图1-1-5⑴已知a=b=5,求c。
⑵已知a=1,c=2,求b。
⑶已知c=17,b=8,求a。
⑷已知a:b=1: 2,c=5,求a。
⑸已知b=15,Z A=30°,求a, c。
分析:刚开始使用定理,让学生画好图形,并标好图形,理清边之间的关系。
⑴已知___________ ,求____________ 边,直接用__________ 理。
⑵⑶已知__________ 和__________ 边,求_____________ ,用勾股定理的变形式。
⑷⑸已知一边和两边比,求未知边。
通过前三题让学生明确在直角三角形中,已知任意两边都可以求出第三边。
后两题让学生明确已知一边和两边关系,也可以求出未知边,学会见比设参的数学方法,体会由角转化为边的关系的转化思想。
例2、已知直角三角形的两边长分别为5和12,求第三边。
分析:已知两边中较大边12可能是直角边,也可能是斜边,因此应分两种情况分别进形计算。
让学生知道考虑问题要全面,体会分类讨论思想。
三、合作探究例3、已知:如图,等边△ ABC的边长是6cm⑴求等边^ ABC的高•⑵求&ABC。
分析:勾股定理的使用范围是在________________ 角形中,因此注意要创造_________ 角形,作—常用的创造 _______________ 三角形的辅助线做法欲求高CD可将其置身于Rt△ ADC或Rt △ BDC中四、达标测试1 •填空题⑴在Rt△ ABC / C=90 , a=8, b=15,则c= __________ 。
⑵在Rt△ ABC / B=90°, a=3, b=4,则c= _________ 。
⑶在Rt△ ABC / C=90°, c=10, a:b=3: 4,则a= ________ , b= ______ 。
⑷一个直角三角形的三边为三个连续偶数,则它的三边长分别为_________________________ 。
⑸已知直角三角形的两边长分别为3cm和5cm,,则第三边长为________________________ 。
⑹已知等边三角形的边长为2cm则它的高为 ________________ ,面积为_____________ 。
2 .已知:如图,在△ ABC中,/ C=6C° , AB=4・..3 , AC=4 AD是BC边上的高,求BC的3 .已知:如图, 四边形ABCD中, AD// BC, AD丄DCAB丄AC, / B=60°, CD=1cm 求BC的长五、课后记AD BA课题:17.1勾股定理(3)学习目标:1 •会用勾股定理解决简单的实际问题。
2 •树立数形结合的思想。
重点:勾股定理的应用。
难点:实际问题向数学问题的转化。
学习过程:一、自主学习填空:在Rt △ ABC / C=90 ,⑴如果a=7, c=25,则b= _______ 。
⑵如果/ A=30°, a=4,则b ___________。
⑶如果/ A=45°, a=3,则c= __________ 。
⑷如果c=10, a-b=2,贝U b= ______ 。
⑸如果a、b、c是连续整数,则a+b+c= __________ 。
⑹如果b=8, a:c=3:5, {贝c= ____ 二、交流展示例1 (教材P25页例1)分析:⑴在实际问题向数学问题的转化过程中,注意勾股定理的使用条件,即门框为长方形,四个角都是直角。
⑵探讨图中有几个直角三角形?图中标字母的线段哪条最长?⑶指出薄木板在数学问题中忽略厚度,只记长度,探讨以何种方式通过?⑷转化为勾股定理的计算,采用多种方法。
⑸小结深化数学建模思想,激发兴趣。
三、合作探究例2 (教材P25页例2)如图,一个3米长的梯子AB,斜靠在一竖直的墙AO上, 这时A0的距离为2.5米.如果梯子的顶端A沿墙下滑0.5 米,那么梯子底端B也外移0.5米吗?(计算结果保留两位小数)O B D O D 分析:要求出梯子的底端B是否也外移0.5米,实际就是求BD的长,而B4ODOB四、达标测试1. 小明和爸爸妈妈十一登香山,他们沿着45度的坡路走了500米,看到了一棵红叶树,这棵红叶树的离地面的高度是 ______________ 米。
2 .如图,山坡上两株树木之间的坡面距离是4、3米,则这两株树之间的垂直距离是_______ 米,水平距离是___________ 米。
3 .如图,一根12米高的电线杆两侧各用 15米的铁丝固定,两个固定点之间的距离测得BC=50米, Z B=60°,则江面的宽度为 _________________ 5.—根32厘米的绳子被折成如图所示的形状钉在 P 、Q 两点,PQ=16!米,且RPL PQ 则RQ=厘米。
6. 有一个边长为1米正方形的洞口,想用一个圆形盖去盖住这个洞口,则圆形盖半径至少为 ______________ 米。
7.如图,原计划从A 地经C 地到B 地修建一条高速公路,后因技术攻关,可以打隧道由 A地到B 地直接修建,已知高速公路一公里造价为300万元,隧道总长为2公里,隧道造价为500万元,AC=80公里,BC=60公里,则改建后可省工程费用是多少?8.如图,钢索斜拉大桥为等腰三角形,支柱高24米,ZB=Z C=30,E 、F 分别为BD CD 中点,试求B 、C 两点之间 的距离,钢索AB 和AE 的长度。
4•如图,欲测量松花江的宽度,沿江岸取B 、C 两点,在江对岸取一点A ,使AC 垂直江岸,BA(精确到1米)五、课后记课题:18.1勾股定理(4)设计:付玲审核:刘建林督办:时间:2012.3教学目标1 •会用勾股定理解决较综合的问题。
2 •树立数形结合的思想。
重难点1.重点:勾股定理的综合应用。
2.难点:勾股定理的综合应用。