九年级数学 生活中图形的旋转
初中数学九年级旋转知识点总结
旋转是数学中的一个重要概念,主要是围绕一些中心点将图形绕着一些轴旋转一定的角度。
在初中数学九年级的课程中,学生会接触到旋转的一些基本知识点,下面是对这些知识点进行总结。
1.旋转概念旋转是指将一个平面图形绕一些固定点旋转一定角度,得到一个新的图形的操作。
固定点称为旋转中心,角度称为旋转角度。
2.旋转中心旋转中心是旋转的基准点,围绕该点进行旋转。
可以是图形上的任意一点,也可以是图形外的一点。
3.旋转角度旋转角度是指图形绕旋转中心旋转的角度,用度来表示,常用的旋转角度有90度、180度、270度和360度。
4.旋转方向旋转方向分为顺时针和逆时针两种。
顺时针旋转是指沿着顺时针方向绕旋转中心旋转,逆时针旋转是指沿着逆时针方向绕旋转中心旋转。
5.旋转对称性旋转对称性是指一个图形经过旋转后与原来的位置、大小和形状完全相同。
旋转对称性有以下几种:-旋转对称:图形与它的一些旋转位置完全相同。
-旋转中心对称:图形围绕旋转中心旋转180度后与原来的位置完全相同。
-旋转中心旋转:图形围绕旋转中心旋转90度、180度或270度后与原来的位置完全相同。
6.旋转的性质旋转具有以下几个基本性质:-旋转不改变图形的面积。
-旋转不改变图形的内外角度。
-旋转不改变图形的对称性。
-旋转后的图形与原图形相似。
7.旋转图形的坐标变换当一个图形绕一些旋转中心旋转一定角度后,图形上的每个点都会发生坐标的变化。
对于二维平面上的点P(x,y),绕坐标原点逆时针旋转a度后,点的新坐标为P':- P'(x',y') = (x\cdot\cos{a}-y\cdot\sin{a},x\cdot\sin{a}+y\cdot\cos{a})8.旋转图形的运用旋转图形可以用来验证一些几何性质,解决一些几何问题。
比如可以通过旋转来证明两线段相等,两角相等,以及判断两个图形是否相似等等。
初中数学九年级旋转知识点
初中数学九年级旋转知识点在初中数学九年级,旋转是一个重要的几何变换方法。
通过旋转,我们可以改变图形的位置和方向,从而帮助我们解决一些几何问题。
本文将介绍九年级数学中与旋转相关的知识点,包括旋转的定义、旋转的性质以及旋转的应用。
一、旋转的定义旋转是指将一个图形绕着固定点旋转一定角度,保持图形内部的点与固定点的距离保持不变。
旋转的固定点称为旋转中心,旋转的角度称为旋转角度。
九年级数学中常用的旋转角度有90度、180度和270度。
二、旋转的性质1. 旋转保持图形面积不变:无论如何旋转一个图形,它的面积都保持不变。
2. 旋转保持图形周长不变:无论如何旋转一个图形,它的周长也保持不变。
3. 旋转保持图形对称性不变:如果一个图形是对称的,那么它的旋转图形也将保持对称性。
三、旋转的应用1. 确定旋转后的图形:通过给出旋转中心和旋转角度,我们可以确定旋转后的图形。
例如,给出一个三角形ABC,旋转中心为点O,旋转90度,我们可以通过连接OA、OB和OC来确定旋转后的图形。
2. 解决几何问题:旋转常常被用于解决一些几何问题。
例如,在证明两个图形相似时,可以通过旋转一个图形使其与另一个图形重合,从而得到相似的证明。
3. 观察图形性质:通过观察旋转后的图形,我们可以揭示一些图形的性质。
例如,通过旋转正方形,可以发现旋转后的图形仍然是正方形,这说明正方形具有旋转对称性。
四、注意事项在进行旋转时,需要注意以下几点:1. 旋转角度是逆时针方向旋转:九年级数学中的旋转一般都是逆时针方向旋转,所以在进行旋转时需要根据旋转角度确定旋转方向。
2. 旋转中心的选择:选择旋转中心时,需要注意选择一个能够旋转整个图形的点,使得旋转后的图形可以被完全覆盖。
3. 使用适当的工具:在实际操作中,可以使用直尺、量角器等几何工具来进行旋转操作,以确保旋转的准确性。
总结:初中数学九年级的旋转知识点是我们在几何学习中重要的一部分。
通过学习旋转的定义、性质和应用,我们可以更好地理解和解决与旋转相关的问题。
九年级数学旋转知识点总结
九年级数学旋转知识点总结数学中的旋转,是指图形在平面内绕某一点或者某一直线旋转成相似的图形。
在九年级的数学学习中,旋转是一个重要的知识点,它有着广泛的应用。
下面是对九年级数学旋转知识点的总结。
一、旋转的基本概念在数学中,旋转就是将一个点或一个图形绕某一点或某一直线旋转一定角度,得到与原图形形状相似的新图形。
旋转可以分为顺时针旋转和逆时针旋转两种。
二、旋转的基本性质1. 旋转不改变图形的大小和形状。
2. 旋转保持图形的对称性。
3. 旋转可以使得图形在平面上任意位置进行变换。
三、旋转的表示方法1. 点的旋转:对于给定一个点P(x,y),绕原点旋转θ度,旋转后的点为P'(x', y')。
根据旋转的性质,我们可以得到点的旋转公式:x' = x*cosθ - y*sinθy' = x*sinθ + y*cosθ2. 图形的旋转:对于给定一个图形,绕某一点O旋转θ度,旋转后的图形与原图形相似。
在平面直角坐标系中,可以通过点的旋转来实现对图形的旋转。
四、旋转的应用场景1. 图形的变换:通过旋转,可以实现图形的转动,可以用于制作动画、机械运动等领域。
例如,风电机组的叶片通过旋转来转动风车。
2. 几何问题的解决:旋转在解决几何问题时可以起到关键作用。
例如,在解决平行四边形相关问题时,可以通过旋转把问题转化成熟悉的几何形状进行求解。
3. 数学建模:旋转可以应用于数学建模中,来解决与旋转相关的实际问题。
例如,在建筑设计中,通过数学方法模拟旋转来计算建筑物的结构和力学性能。
五、旋转相关定理1. 旋转定理:旋转不改变图形的面积和周长。
2. 旋转对称性:旋转图形保持图形对称特点不变。
3. 点的旋转定理:若直角坐标系中有点P(x,y)绕原点顺时针旋转θ度得到点Q(x',y'),则有:x' = x*cosθ + y*sinθy' = -x*sinθ + y*cosθ六、旋转的练习题请你计算以下图形绕指定点或直线旋转后的新图形坐标:1. 将点A(3,4)绕原点逆时针旋转90度。
九年级数学旋转知识点梳理
九年级数学旋转知识点梳理在九年级数学课程中,旋转是一个非常重要的知识点。
旋转可以用来描述平面图形或空间图形在固定点周围旋转一定角度后的变化情况。
为了帮助同学们更好地理解和掌握旋转的相关知识,本文将对九年级数学旋转知识点进行详细的梳理和总结。
1. 旋转的基本概念旋转是指平面或空间中的图形围绕某个点旋转一定角度后的变化。
在旋转中,围绕其旋转的点称为旋转中心,围绕旋转中心旋转的角度称为旋转角度。
2. 旋转的相关公式在进行旋转时,我们需要了解一些基本的旋转公式。
对于平面中的旋转,我们可以使用下面的公式:对于点P(x, y)绕原点逆时针旋转θ角度后得到新点P'(x', y')的计算公式如下:x' = x * cosθ - y * sinθy' = x * sinθ + y * cosθ3. 平面图形的旋转平面图形在旋转时,我们需要关注以下几个方面:(1) 旋转角度:指图形旋转的角度,可以是正数、负数或零。
(2) 旋转中心:图形绕其旋转的点,可以是原点或其他给定的点。
(3) 旋转方向:逆时针旋转为正方向,顺时针旋转为负方向。
(4) 旋转位置:图形旋转后的位置,可以是原位置、新位置或相对位置。
4. 平面图形的旋转性质平面图形在旋转中会保持一些性质不变,主要包括:(1) 面积:图形的面积在旋转中保持不变。
(2) 边长:图形的边长在旋转中保持不变。
(3) 平行线:平行线在旋转中仍然是平行的。
(4) 角度:图形中的角度在旋转中保持不变。
5. 旋转的应用旋转在现实生活中有着广泛的应用,主要体现在以下几个方面:(1) 几何建模:旋转可以用于绘制几何图形或进行几何建模,如绘制圆、绘制旋转体等。
(2) 计算机图形学:旋转可以用于计算机图形学中的三维图形变换,实现旋转、平移、缩放等效果。
(3) 机械设计:旋转可以应用于机械设计中的零件旋转、装配、运动仿真等。
6. 旋转的计算方法在进行旋转计算时,我们可以通过几何方法或代数方法来求解:(1) 几何方法:通过绘制旋转图形,根据旋转的性质进行计算。
九年级数学旋转知识点总结
九年级数学旋转知识点总结九年级数学旋转知识点总结九年级数学中的旋转知识点是学生在几何学中学习的重要内容之一。
通过对平面图形的旋转操作,学生可以更好地理解和应用几何学原理,培养空间想象力和逻辑思维能力。
本文将对九年级数学中的旋转知识点进行总结,并对其相关概念和常见题型进行详细讲解。
一、旋转基本概念1. 旋转的定义:旋转是指将一个图形围绕某一点进行转动,保持图形形状和大小不变的操作。
2. 旋转中的基本概念:(1) 旋转中心:图形旋转的固定点。
(2) 旋转角度:旋转的角度大小,通常用度数表示。
(3) 旋转方向:图形旋转时顺时针或逆时针的方向。
二、旋转的基本性质1. 旋转的角度:一个图形旋转后,原形与变形之间的对应点与旋转中心的连线所成的角度大小是相等的,即旋转角度相等。
2. 旋转角的正负:顺时针旋转角度为负值,逆时针旋转角度为正值。
3. 旋转的性质:旋转操作不改变图形的形状和大小,保持图形的对称性。
三、旋转的常见图形1. 旋转的平面图形:点、线、线段、角、三角形、四边形等。
2. 旋转的空间图形:圆、球体等。
四、旋转的常见题型及解题方法1. 旋转图形的对称性:通过旋转可以得到与原图形相似的新图形,根据旋转中的对称性可以快速判断图形的对称性质。
2. 旋转图形的等角性:利用旋转的角度和方向,可以验证等角图形的特点,如全等三角形、相似四边形等。
3. 旋转图形的变换:根据给定的旋转中心、角度和方向,进行图形的旋转操作,并分析新图形的特征。
4. 旋转图形的坐标表示:对于平面坐标系中的点、线段、图形等,可以通过旋转公式计算其新的坐标位置。
五、旋转的应用1. 平面图形的构造:通过将已知的图形旋转得到新的图形,进行几何图形的构造。
2. 图形的变换:旋转是一种常用的图形变换方法,可以改变图形的朝向和位置。
3. 证明与推理:利用旋转的性质,可以推导证明几何命题、解决几何问题,提高数学的证明和推理能力。
总之,九年级数学中的旋转知识点是几何学中的重要内容,旋转的基本概念、性质和常见图形需要学生进行深入理解和掌握。
人教版九年级数学上《第23章旋转》课件
∴∠B=∠G=90°
由题意知AG=AB,又 AH=AH.
∴Rt△AGH≌Rt△ABH(HL)
∴HG=HB.
证法2:连结BG, ∵四边形ABCD,AEFG都
是正方形.
∴∠ABC=∠AGF=90°
由题意知AG=AB, ∴∠AGB=∠ABG, ∴∠HGB=∠HBG ∴HG=HB.
6。下列图形均可以由“基本图案”通过变换得到。 (1)通过平移变换但不能通过旋转变换得到的图案 是____①_⑤; (2)可以通过旋转变换但不能通过平移变换得到的 图案是____ ②⑥ (3)既可以由平移变换,也可以由旋转变换得到的 图案是_____ ③④
(3)将关键点沿指定的方向旋转指 定的角度; (4)连结各点,得到原图形旋转 后的图形.
例3.把△AOB绕点O逆时针方向旋 转90°,画出旋转后的图形.
错解:旋转时,
把∠AOB′看作
90°进行了旋 转.
正解:
按逆时针方向把 OA旋转到OA′,使 ∠AOA′=90°, 把OB旋转到OB′, 使∠BOB′=90°, 如图.
∵∠EDF=45°, ∴∠FDM=45°. ∴△DEF与△DMF关于DF 成轴对称, ∴EF=FM. △BEF的周长=BE+EF+BF
=BE+(FC+CM)+BF=BE+FC+AE+BF
=(BE+AE)+(FC+BF)=BA+BC=2,
所以△BEF的周长为2.
例11.如图,水渠旁有一大块L形耕 地,要画一条直线为分界线,把耕 地平均分成两块,分别承包给两个
人,BC边是灌溉用的水渠的一岸.每
块土地都要有水渠,怎么平分土地 才能满足每个人的需要?
人教版九年级数学上册《图形的旋转》精品课件
3.时钟的时针在不停旋转,(1)从上午8时到上午11时,时针 旋转的旋转角是多少度?(2)从上午8时到上午9时呢?
O
O
O
O
解:时针匀速旋转一周(360°)需要12小时,每小时 转360° ÷12=30°
(1)30°×3=90 °
(2)30 °×1=30°
如图,把四边形AOBC绕点O旋转得到四边形DOEF, 在这个旋转过程中: (1)旋转中心? (2)旋转方向? (3)经过旋转,找出点A、B的对应点? (4)图中哪个角是旋转角? (5)四边形AOBC与四边形DOEF的形状、
大小有何关系? (6) AO与DO的长度有什么关系?BO与EO呢? (7)∠AOD与∠BOE
(1)旋转前、后的图形全等。 (2)对应点到旋转中心的距离相等。 (3)对应点与旋转中心所连线段的夹角等于旋转角。
同学们,再见!
(6)OA与OD的长度有什么关系?OB与OE呢?OC与OF呢?
相等
(7)∠AOD与∠BOE、∠COF的大小有什么关系呢? 相等
A B/
C/
B
A/OC来自一个图形和它经过旋转所得到的图形中
(1)旋转前、后的图形全等。
(2)对应点到旋转中心的距离相等。
(3)对应点与旋转中心所连线段的夹角等于旋转角。
A FB
如图,E是正方形ABCD中CD边上任意一点,以点A为中心,把△ADE顺时针 旋转90°,画出旋转后的图形。
【分析】关键是确定△ADE三个顶点的对应点, 即它们旋转后的位置。
D
解:因为点A是旋转中心,所以它的对应点是它本身。
正方形ABCD中,AD=AB,∠DAB=90°,所以旋转后
九年级旋转知识点归纳总结
九年级旋转知识点归纳总结旋转是数学中的一个重要概念,也是九年级数学课程中的一个重点知识点。
本文将对九年级旋转知识点进行归纳总结,包括旋转的基本定义、旋转图形的性质以及旋转的应用。
一、旋转的基本定义旋转是指将一个点或一幅图形绕着某一点旋转一定角度后,得到的新点或新图形。
在数学中,通常将绕着坐标平面上的原点旋转作为基本定义。
二、旋转图形的性质1. 旋转图形的对应点在一个图形经过旋转后,每一个点都与原来图形上的某一点存在对应关系。
这个对应关系可以通过旋转角度和旋转方向来确定。
2. 旋转图形的对称性绕着一个点旋转的图形在旋转前后保持对称。
如果旋转角度是360度的整数倍,那么旋转后的图形与旋转前的图形完全重合。
3. 旋转图形的角度关系在一个旋转图形中,旋转前后每两个相对的角度之和为360度。
这就是旋转图形中角度的平分原理。
三、旋转的应用旋转在几何图形的变换中有着广泛应用,并且在实际生活中也有一些实际的应用场景。
1. 图形的旋转变换通过旋转变换可以将图形按一定角度旋转,从而使得原本无规律的图形变得有规律,更美观。
例如,一个正方形可以通过旋转变换成一个六边形。
2. 游戏和艺术中的旋转在游戏和艺术领域中,旋转被广泛运用。
例如,电子游戏中的3D 模型,通过旋转操作可以让玩家从不同角度观察模型;绘画和雕塑中的旋转是非常常见的手段,可以展示更多的细节和视角。
3. 旋转的几何证明旋转在几何证明中也有非常重要的地位。
通过旋转变换可以使得一些几何命题的证明更加简洁、明了。
例如,可以通过旋转证明两条平行线之间的角度关系、相似三角形之间的角度关系等。
综上所述,旋转是九年级数学课程中的一个重要知识点。
掌握旋转的基本定义和性质,了解旋转的应用场景,将有助于深入理解几何变换的概念,提高数学解题和几何证明的能力。
希望本文对九年级学生们的数学学习有所启发和帮助。
图形的旋转及旋转作图知识点总结和重难点精析
图形的旋转及旋转作图知识点总结和重难点精析在九年级数学中,图形的旋转及旋转作图是一个重要知识点,它不仅在几何学中有着广泛应用,也在实际生活中具有许多应用场景。
本文将对该知识点进行总结,并针对重难点进行精析,以帮助学生更好地掌握这一部分内容。
一、知识点总结1.旋转条件:图形旋转需要确定一个中心点,同时需指定绕该中心点旋转的角度。
2.旋转性质:旋转前后的图形是全等的;对应点到旋转中心的距离相等;对应点与旋转中心连线所成的角相等。
3.作图方法:先确定旋转中心和旋转角度,然后作出图形旋转后的对应点,最后连接对应点形成旋转后的图形。
二、重难点精析1.确定旋转中心:旋转中心的选择可以是图形上的任意一点,但不同的选择会影响到旋转后图形的形状和大小,因此需要学生有一定的空间感知能力。
2.旋转角度的确定:旋转角度的确定是影响旋转作图的关键因素,角度错误会导致旋转后的图形与原图形不一致。
学生需要熟练掌握角度的测量和计算方法。
3.对应点的确定:对应点的确定是旋转作图的重点之一,学生需要细心观察图形,通过对应点到旋转中心距离相等的特点,正确作出旋转后的对应点。
4.连接对应点:连接对应点时,要注意对应点与旋转中心连线所成的角相等的特点,正确作出旋转后的图形。
特别是在作较复杂的图形旋转时,需要有一定的空间思维能力。
三、题目解析【例题】如图所示,已知三角形ABC,请以点A为中心,将三角形ABC逆时针旋转90度,作出旋转后的三角形AB'C'。
【解析】1.确定旋转中心:本题中旋转中心为点A。
2.确定旋转角度:本题中要求将三角形ABC逆时针旋转90度。
3.确定对应点:根据对应点到旋转中心距离相等的性质,可以作出旋转后的对应点B'和C'。
4.连接对应点:根据对应点与旋转中心连线所成的角相等的性质,可以作出旋转后的三角形AB'C'。
具体步骤如下:(1) 画出点A的水平线和垂直线,作为辅助线。
九年级上册 旋转知识点
九年级上册旋转知识点旋转知识点旋转是几何学中的一个重要概念,它在我们的日常生活和数学学科中都有着广泛的应用。
在九年级上册的数学课程中,我们将学习有关旋转的基本知识和技巧。
本文将围绕旋转知识点展开,探讨旋转的定义、性质以及应用。
一、旋转的定义和性质1.1 旋转的定义旋转是指一个图形以某个固定点为中心,按照一定的角度绕该中心点旋转。
在数学中,我们常用坐标系来描述旋转的过程。
以平面坐标系为例,对于一个点P(x, y),以原点O为中心,按照逆时针方向旋转θ角度后得到点P'(x', y'),那么点P'的坐标可以通过旋转公式计算得出。
1.2 旋转的性质旋转具有以下几个性质:(1)旋转保持距离不变:在旋转过程中,图形上任意两点之间的距离在旋转后保持不变。
(2)旋转保持角度不变:在旋转过程中,图形上任意两条线段之间的夹角在旋转后保持不变。
(3)旋转满足合成律:若将一个图形绕A旋转得到的结果再绕B旋转,与直接将图形绕某个点C旋转得到的结果相同。
(4)旋转是可逆的:对于一个旋转变换,可以通过逆时针旋转相同的角度实现逆变换。
二、旋转的应用举例旋转在许多实际问题中具有广泛的应用。
以下是旋转在几个不同领域中的应用举例。
2.1 几何学中的旋转在几何学中,旋转被广泛应用于图形的变换。
例如,通过旋转可以得到图形的对称图形,从而帮助我们探索图形的性质和关系。
另外,旋转还可以用于构造各种几何体,如球体、圆柱体等。
2.2 物理学中的旋转在物理学中,旋转是描述物体旋转运动的重要概念。
例如,地球的自转和公转运动使得我们有了白天和黑夜、不同季节的变化。
旋转还与转动惯量、角动量等物理量有关。
2.3 生物学中的旋转在生物学中,旋转可以描述生物体的运动方式。
例如,蜜蜂在空中飞行时会以身体某一点为中心旋转飞行,这种旋转飞行方式减小了空气阻力,使得蜜蜂能够更加灵活地飞行。
2.4 工程学中的旋转在工程学中,旋转被广泛应用于机械设计和运动控制系统中。
初中数学九年级旋转知识点总结
旋转是数学中的一个重要概念,初中数学九年级的旋转知识点主要涉及到平面上的图形的旋转。
下面是对旋转知识点的详细总结。
一、旋转的基本概念旋转是指将一个平面上的图形绕着一个圆心旋转一定角度后得到的新图形。
旋转可以分为顺时针旋转和逆时针旋转两种。
二、旋转的基本要素1.旋转中心:旋转时固定不动的点,通常用O表示。
2.旋转角度:图形绕旋转中心旋转的角度,通常用θ表示。
3.旋转方向:图形绕旋转中心旋转的方向,可为顺时针或逆时针。
三、旋转的基本性质1.旋转前后的对应关系:旋转前后,图形上的各个点在对应的位置。
2.旋转角度的正负性:顺时针旋转时,旋转角度为负值;逆时针旋转时,旋转角度为正值。
3.旋转的复合性:对一个图形连续旋转两次,相当于对这个图形进行一次旋转,旋转角度为两次旋转角度的和。
四、旋转的具体操作1.给定旋转中心和旋转角度,旋转一个点:将给定点与旋转中心连接,然后以旋转角度为自由度,将连接线旋转相应角度,确定旋转点的新位置。
2.给定旋转中心和旋转角度,旋转一条线段:将给定线段上的两个端点分别旋转,得到旋转线段的两个端点,然后连接这两个点得到旋转线段。
3.给定旋转中心和旋转角度,旋转一个多边形:将多边形上的各个顶点依次旋转,得到旋转多边形的各个顶点,然后连接这些点得到旋转多边形。
五、旋转的性质与判定1.旋转过程中的不变性:旋转前后,图形的形状、大小和角度不变。
2.图形的旋转对称性:图形相对于旋转中心旋转一定角度后,与原图形完全重合。
3.旋转角度的关系:相交的两个线段,经过旋转后的线段之间的夹角等于它们旋转前的夹角。
4.旋转中心判定:判断一个点关于一个给定点旋转一定角度后的位置。
六、旋转的运用1.添加旋转对称部分:先将一个图形旋转一定角度,然后与旋转前的图形拼接,可以得到一个具有旋转对称性的图形。
2.图形的旋转判定:给定一个图形,根据旋转的要素和性质,判断该图形能否通过旋转得到另一个图形。
3.旋转变换的应用:在解决实际问题时,可以运用旋转变换来简化问题的处理过程,比如地球绕太阳的自转等。
九年级数学旋转的知识点
九年级数学旋转的知识点九年级数学中,旋转是一个重要的几何变换,它在解决各种几何问题中起着重要的作用。
本文将介绍九年级数学中旋转的基本概念、性质以及相关例题,以帮助同学们更好地理解和掌握这一知识点。
1. 旋转的基本概念旋转是指在平面内,绕着一个点旋转图形,使得图形在平面上转动。
旋转可以分为顺时针旋转和逆时针旋转两种。
常用的表示方法是以旋转中心为原点,旋转角度为正,顺时针旋转为负。
2. 旋转的性质(1)旋转是一个保角变换,即旋转前后的两条线段之间的夹角相等。
(2)旋转是一个保距变换,即旋转前后的两条线段的长度相等。
(3)旋转不改变图形的对称性,即旋转前后的图形具有相同的对称性。
3. 点、线和图形的旋转(1)点的旋转:点的旋转只是将一个点绕旋转中心旋转一定角度,并保持距离不变。
(2)线的旋转:线的旋转是通过将线段的两个端点绕旋转中心旋转一定角度,并保持线段长度不变。
(3)图形的旋转:图形的旋转是将整个图形绕旋转中心旋转一定角度,并保持图形的形状和大小不变。
4. 旋转的变换规律(1)旋转180度:一个图形绕旋转中心旋转180度后,得到的图形与原图关于旋转中心对称。
(2)旋转90度或270度:一个图形绕旋转中心旋转90度或270度后,得到的图形与原图关于旋转中心垂直对称。
(3)旋转360度:一个图形绕旋转中心旋转360度后,得到的图形与原图完全相同。
5. 旋转的应用举例(1)构造一个正方形:通过旋转一个合适的线段,可以构造一个正方形。
(2)判断图形是否重合:通过判断图形旋转一周后是否与原图形重合,可以判断两个图形是否重合。
(3)辅助解题:在解决一些几何问题时,通过对图形进行旋转可以得到一些有用的信息。
通过以上的介绍,希望同学们对九年级数学中旋转的知识点有了更深入的了解。
在学习和应用中,同学们可以灵活运用旋转的性质和规律,解决各种几何问题。
同时,建议同学们多做练习,加深对旋转的理解和运用能力。
祝大家在数学学习中取得更好的成绩!。
九年级数学知识点旋转
九年级数学知识点旋转旋转是几何学中的一个重要概念,也是九年级数学中的一项重要知识点。
通过旋转,我们可以改变几何图形的位置和形状,进而解决一些与几何相关的问题。
本文将介绍九年级数学中的旋转知识点,包括旋转的定义、旋转的性质、旋转的公式以及旋转在几何问题中的应用。
一、旋转的定义旋转是指围绕一个中心点,将一个图形按照一定的角度转动的操作。
在旋转中,中心点是固定不动的,只有图形发生位置和形状的改变。
旋转可以使得图形在平面上发生移动,使得我们可以观察到图形在不同位置和不同角度下的特征。
二、旋转的性质1. 旋转可以改变图形的位置和形状,但不改变图形的面积和周长。
这是因为旋转只是对图形进行了转动操作,而没有改变图形内部的构造和尺寸。
2. 旋转不改变图形的对称性。
如果一个图形具有对称性,那么它的旋转图形也将具有相同的对称性。
3. 旋转操作可以通过多次重复进行。
如果我们将一个图形按照一定的角度旋转一次之后,再按照同样的角度再次进行旋转,那么我们将得到一个新的图形,这个新的图形是原图形旋转后的结果。
三、旋转的公式在几何中,我们可以使用一些公式来描述旋转的操作。
关于旋转的公式有以下几种:1. 计算旋转中心:给定一个图形和它在旋转后的位置,我们可以通过求解方程组来计算旋转中心。
假设原图形中某点坐标为(x, y),它在旋转后的位置为(x', y'),则有如下方程组:x' = x * cosθ - y * sinθy' = x * sinθ + y * cosθ其中,(x', y')为旋转后点的坐标,θ为旋转的角度。
2. 计算旋转后的坐标:将一个点绕旋转中心旋转一定的角度,可以使用如下公式计算旋转后的坐标:x' = (x - h) * cosθ - (y - k) * sinθ + hy' = (x - h) * sinθ + (y - k) * cosθ + k其中,(x, y)为原始点的坐标,(x', y')为旋转后点的坐标,(h, k)为旋转中心的坐标,θ为旋转的角度。
九年级数学旋转教案5篇
九年级数学旋转教案5篇让学生体会图形变换在生活中的应用,利用图形变换进行图案设计,感受图案带来的美感和数学的应用价值,是每个教师的责任。
今天在这里整理了一些九年级数学旋转教案5篇最新,我们一起来看看吧!九年级数学旋转教案1第二课时旋转教学内容:教材第5~6页例3和例题4。
教学目标:1、通过生活事例,使学生初步了解图形的旋转变换。
结合生活实际,能初步感知旋转现象,探索它的特征和性质。
、通过动手操作,使学生会在方格纸上将一个简单图形旋转90。
3.初步学会运用旋转的方法在方格纸上设计图案,发展学生的空间观念。
4.欣赏图形的旋转变换所创造出的美,培养学生的审美能力;感受旋转在生活中的应用,体会数学的价值。
教学重点:1.理解图形旋转变换的含义。
2.探索图形旋转的特征和性质。
教学难点:能在方格纸上将一个简单图形旋转90度。
教学准备:课件教学过程:一、创设游戏情境,引入新课师:同学们,大家玩过“俄罗斯方块”的游戏吗?出示课件:师:如果现在让你来玩,你准备怎么操作?(把黄色的图形顺时针旋转90。
,放在右边的角落。
) 师:用手示范一下怎样就是顺时针旋转呢?师:(用手做出示范)那与之相反的是什么旋转呢?(逆时针旋转。
) (出示动画:黄色图形顺时针旋转90。
后下落) 出示:“俄罗斯方块”游戏画面二师:这次又怎么操作呢?(把紫色的图形逆时针旋转90。
,放在左边角落里。
)(出示动画:紫色图形逆时针旋转90。
后下落) 出示:“俄罗斯方块”游戏画面三:师:这次谁来玩?(把蓝色的图形顺时针或逆时针旋转90。
) (出示动画:蓝色图形逆时针旋转90。
后下落)1.揭示课题师:刚才,我们在玩游戏的过程中,大家反复地提到一个词“旋转”这节课,我们就来研究“旋转”。
板书课题。
2.联系生活师:生活中,你还见过哪些旋转现象?(风扇、陀螺、旋转木马、钟表、车轮……)同学们的思维真开阔,下面我们一起来体验一下旋转的现象吧!起立,一起来左转2圈,右转2圈。
人教版九年级数学上册第23章 旋转 旋转及其性质
点 B的对应点的坐标为 ___________
( ,3) .
1.本节课我们学习了哪些知识?
(旋转的概念;旋转的性质)
2.旋转的三要素是什么?
(旋转中心、旋转角、旋转方向)
同学们,我们又学习了一个新的变换,相信大家和之
(1)△A'B'C'可以看成由△ABC经过怎样的运动得到 的?
(2)△A'B'C'和△ABC的形状和大小有什么关系?
(旋转)
(形状相同,大小相等)
(3)请画出点A旋转到点A'所经过的路线.思考点A的运动路线,由此能得
到OA与OA'有什么关系?
(图略;相等)
(4)你还能发现哪些有同样关系的线段?
(OC=OC' OB=OB', AB=A'B', AC=A'C', BC=B'C')
因为四边形ABCD是正方形,
所以 ∠ = ∠ + ∠ = °, = , ∠ = ∠ = °,所
以∠FAB=∠EAD,∠FBA=90°=∠D,所以△ ≅△ ,所以 =
=
+ = 所以 =
+ = .
前的变换放在一起理解会有不同的收获.
教材习题:完成课本59页练习2,3题以及61页练习1,2,3题.
作业本作业:完成 对应练习.
实践性作业:试着用数学语言描述家中钟表时针的运动过程.
A.点A
B.点B
C.点C
D.点D
变式:如图,点E是正方形ABCD的边CD上一点,过点A作 ⊥ 交CB的延长线
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
作法:
C
1. 将点A绕点O顺时针旋转60˚, 得点C;
A D
2. 将点B绕点O顺时针旋转60 ˚, 得点D ;
O
3. 连接CD, 则线段CD即为所求 作.
B
图形的旋转作法
简单的旋转作图
E
A B C D
例3 如图,△ABC绕C点旋转
后,顶点A得对应点为点D. 试
确定顶点B对应点的位置以及旋 转后的三角形.
A
F
A
F
B
O
E
B
E
C
D
C
D
简单的旋转作图
例1 将A点绕O点沿顺时针方向旋转60˚.
作法:
点的旋转作法
1. 以点O为圆心,OA长为半径画 圆;
2. 连接OA, 用量角器或三角板 (限特殊角)作出∠AOB=60°, 与圆周交于B点;
O
B
A
3. B点即为所求作.
简单的旋转作图
例2 将线段AB绕O点沿顺时针方向旋转60˚.
旋转角度是:
90°
观察如图所示的图案,它可以看做是什么
“基本图案”通过怎样的旋转而得到的? 基本图案是: 四角星 两个相邻的
旋转中心是:
旋转方向是:
图案中心
顺时针
旋转角度是:
180°
第三关: 如图:香港特别行政区区徽是由五个同样的
花瓣组成的,它可以看做是什么“基本图案” 通过怎样的旋转而得到的? 基本图案是: 一个花瓣
例 钟表的分针匀速旋转一周需要 60分 (1)指出它的旋转中心; (2)经过20分,分针旋转了多少度?
它的旋转中心是钟表的轴心 (右图中表盘面的中心位置)
(2) 360 60
O
120
×20 =120°
动态演示
第一关:
1、右图可以看做是一个菱形通过几次
旋转得到的?每次旋转了多少度? 2、你用“旋转”来分析图案 的形成过程时, 能完整的描述 出来吗? 基本图案是: 一个菱形 旋转中心是:图案中心
旋转方向是: 顺时针 旋转角度 是:60°120°180°240ቤተ መጻሕፍቲ ባይዱ300°
第二关:
观察如图所示的图案,它可以看做是什么 “基本图案”通过怎样的旋转而得到的? 基本图案是: 一个四角星
旋转中心是:
旋转方向是:
图案中心
顺时针
旋转角度是: 90°180°270°
观察如图所示的图案,它可以看做是什么“基 本图案”通过怎样的旋转而得到的? 基本图案是: 的四角星 旋转中心是: 旋转方向是: 两个相对 图案中心 顺时针
1. 旋转的定义:在平面内,将一个图形绕一个定点沿 着某个方向转动一定的角度,这样的图形运动称为 旋转. 这个定点称为旋转中心,转动的角称为旋转 角. 2. 旋转的性质: ① 旋转不改变图形的大小与形状; ② 旋转前后两图形任意一对对应点与旋转中心的连 线所成的角都是旋转角,对应点到旋转中心的距 离相等. 3. 旋转的判定方法:利用旋转的性质判定旋转的存在. 4. 旋转的普遍性:旋转广泛存在于我们的生活中. 5. 简单性与复杂性:简单图形旋转的复合可以产生复 杂且美妙的图案,可见复杂性蕴藏于简单性之中. 研究旋转的规律可以帮助我们化繁为简,化难为易.
A D A G O D
H
G O H
B F
C
B F
C
如图:正方形ABCD与正方形EFGH边长相等,
这个图案可以看做是哪个“基本图案”通 过怎样的旋转得到的?
A
D
A D
G
O
H G
O
H
B F
C
B
F
C
第五关:
如图,O是六个正三角形的公共顶点,正六
边形ABCDEF能否看做是某条线段绕O点旋转
若干次所形成的图形?
AO=DO BO=EO (4)旋转角是什么? (5)∠AOD与∠BOE有什么大小关系? ∠AOD和∠BOE都是旋转角
C F B D A O E
∠AOD=∠BOE
●旋转前后,两图形的大小不变、
形状不变;
●
旋转前后,两图形任意一对对应
点与旋转中心的连线所成的角都是 旋转角,旋转角相等;对应点到旋 转中心的距离相等.
2、如图,ΔDEF是由△ABC绕某一中心 旋转一定的角度得到,请你找出这旋转中心.
C
A B
D
E F
.O
旋转中心在对应点连线的垂直平分线上。
2.在等腰直角△ABC中,∠C=900, BC=2cm,如果以AC的中点O为旋 转中心,将这个三角形旋转1800, 点B落在点B′处,求BB′的长度.
B/
O
C C/
对 比 一 下
平移和旋转的异同: 1、相同:都是一种运动;运动前后不改变图形的 形状和大小 2、不同 运动方向 运动量大小的衡量
平移 旋转
直线 顺时针或逆时针
移动的距离 转动的角度
如图,如果把钟表的指针看做四边形AOBC, 它绕O点旋转得到四边形DOEF. 在这个旋转过程中: (1)旋转中心是什么? (2)经过旋转,点A、B分别移动到什么位置? 旋转中心是点O (3)AO与DO的长有什么关系? 点D和点E的位置 BO与EO呢?
作法一:
1. 连接CD;
2. 以CB为一边,作∠BCE,使得∠BCE=∠ACD ;
3. 在射线CB上截取CE,使得CE=CB;
4. 连接DE,则△DEC即为所求作.
例题 已知线段AB和点O,请画出
线段AB绕点O按逆时针旋转1000后 的图形.
M
B′ A′
N
B
O A
例题 ⑴如图,画出△ABC绕点A按逆 时针方向旋转900后的对应三角形; ⑵如果点D是AC的中点,那么经过上述 旋转后,点D旋转到什么位置?请在图中 将点D的对应点 C B' D′表示出来. C' (3).如果 D AD=1cm,那么点 D' D旋转过的路径 B A 是多少?
A A/
B
3.已知:如图,在△ABC中,∠BAC=1200, 以BC为边向形外作等边三角形△BCD, 把△ABD绕着点D按顺时针方向旋转600 后得到△ECD,若AB=3,AC=2,求 ∠BAD的度数与AD的长.
E A C
B
D
简单的旋转作图
练习1 将下图中大写字母N绕它右下侧的顶点按顺时针方向旋 转90˚,作出旋转后的图案.
回顾与小结
谢 谢 大 家
旋转中心是:
旋转方向是:
图案中心
顺时针
旋转角度是: 72°144°216°288°
第四关:
如图:正方形ABCD与正方形EFGH边长相等, 这个图案可以看做是哪个“基本图案”通过
怎样的旋转得到的?
E A D A D
G
O
H G
O
H
B F
C B F
C
如图:正方形ABCD与正方形EFGH边长相等,这
个图案可以看做是哪个“基本图案”通过怎样 的旋转得到的?