人教版初三九年级数学《二次函数复习》优秀课件

合集下载

人教版九年级数学上册《二次函数y=ax2的图象与性质》二次函数PPT精品课件

人教版九年级数学上册《二次函数y=ax2的图象与性质》二次函数PPT精品课件

课堂检测
巩固练习
对应训练
第二十二章 二次函数
《超越训练》 P34:例2+达标训练
课堂检测
基础巩固题
第二十二章 二次函数
1.函数y=2x2的图象的开口向上 , 对称轴y轴
是 (0,0) ; 在对称轴的左侧,y随x的增大而 减小 ,
,顶点 y
在对称轴的右侧, y随x的增大而 增大 .
O
x
2.函数y=-3x2的图象的开口 向下 ,对称 y轴
2
口大小与a的大小有什么关系?
的图象开
当a<0时,a越小(即a的绝对 值越大),开口越小.
-4 -2 -2
24
-4
-6
y 1 x2 2
-8
y x2
y 2x2
对于抛物线 y = ax 2 ,|a|越大,抛物线的开口越小.
知识探究 归纳
y=ax2 图象
位置开 口方向
对称性 顶点最值
增减性
第二十二章 二次函数
1.y=x2的图象是一条抛物线; 2.图象开口向上; 3.图象关于y轴对称; 4.顶点( 0 ,0 ); 5.图象有最低点.
y y=x2
o
x
知识探究
第二十二章 二次函数
说说二次函数y=-x2的图象有哪些性质,并与同伴交
流.
1.y=-x2的图象是一条 抛物线;
y
o
x
2.图象开口向下;
3.图象关于y轴对称;
画出函数y=-x2的图象.
x … -3 -2 -1 0 1 2 3 …
y=-x2 … -9 -4 -1 0 -1 -4 -9 …
y -4 -2 0 2 4 x
-3
-6 -9

新人教九年级数学上册第二十二章二次函数复习课件

新人教九年级数学上册第二十二章二次函数复习课件

专题七 综合应用—呈抛物线形状实物的几何探究
例7 跳绳时,绳甩到最高处的形状可近似的看为抛物线,如图, 正在甩绳的甲、乙两名同学拿绳的手间距为4米,距地面均为1米, 丙、丁同学分别站在距甲拿绳的手水平距离1米、2.5米处,绳子 甩到最高处,刚好通过他们的头顶,已知丙同学的身高是1.5米. (1)请你算一算丁同学的身高. 丙 (1,1.5)
A.开口向下,顶点坐标(5,3) B.开口向上,顶点坐标(5,3) C.开口向下,顶点坐标(-5,3) D.开口向上,顶点坐标(-5,3)
2.当a>0, b<0,c>0时,下列图象有可能是抛物线y=ax2+bx+c的是
( A ) y y
y
y
O A
x
O B
x
O
C
x
O
x
D
3.将二次函数y=2x2-1的图象沿y轴向上平移2个单位,所得到的图象
(2)由图象可知当-1<x<3时,函数的图象位于x轴的上方, 所以不等式的解集为-1<x<3; (3)由图象可知,在x轴的右侧,y随着x的增大而减小, ∴y随着x的增大而减小的x的取值范围为x>1; (4)要使得有ax2+bx+c=k两个不相等的实数根,即直线x=k与 二次函数图象有两个交点,∴k的取值范围为k<5.
甲 1m
2.5m 4m 1<s<3

课堂小结
二次函数的 定 义
二次函数的概念 及 图 象 特 征 用数形结合 的方法去研 究和运用
二次函数
二次函数的 图象及性质
二次函数的 应 用
建立二次函数模型, 将实际问题数学化, 运用二次函数知识 解 决 实 际 问 题

人教版九年级初中数学上册第二十二章二次函数-二次函数与一元二次方程PPT课件

人教版九年级初中数学上册第二十二章二次函数-二次函数与一元二次方程PPT课件

新知探究
二次函数y=ax2+bx+c的图象和x轴交点的横坐标与一元二次方程ax2+bx+c=0的
根有什么关系?
抛物线y=ax2+bx+c(a≠0)
一元二次方程ax2+bx+c=0
与x轴的公共点的个数
(a≠0)的根的情况
b2-4ac>0
有两个
有两个不相等的实数根
b2-4ac=0
有一个
有两个相等的实数根
P(2,-2)
重复上述过程,不断缩小根的范围,根所在两端的值就越来越
接近根的值.因而可以作为根的近似值。
尝试求出方程y = 2 − 2 − 2两个根的近似值?
课堂练习
1. 抛物线 = 2 + 2 − 3与轴的交点个数有(
. 0个
. 1个
C.2个
C ).
D.3个
【分析】解二次函数 = 2 + 2 − 3得1 =
第二十二章 二次函数
2 2 . 2 二次函数与一元二次方程
人教版九年级(初中)数学上册
授课老师:XX
前 言
学习目标
1.二次函数与一元二次方程之间的联系。
2.二次函数的图象与x轴交点的三种位置关系。
3.利用二次函数图象求它的实数根。
重点难点
重点:让学生理解二次函数与一元二次方程之间的联系。
难点:让学生理解函数图象交点问题与对应方程间的相互转化,及用图象求方程

x1=x2 =-
x
2
与x轴没有
交点
一元二次方程
ax2+bx+c=0
(a≠0)的根
x
没有实数根
新知探究

人教版数学中考复习《二次函数的图象及性质》精品教学课件ppt优秀课件

人教版数学中考复习《二次函数的图象及性质》精品教学课件ppt优秀课件

A(x,y)
B(-x,y)
x
... -2 -1.5 -1 -0.5 0 0.5
1 1.5
2
...
y=x2
...
4 2.25
1 0.25 0
0.25
1
2.25
4
...
y= - x2 ... -4 -2.25 -1 -0.25 0
-0.25
-1
-2.25 -4
...
函数图象画法
注意:列表时自变量 取值要y均 匀 2和对称。
y x2
当当当当xx==xx--==2112时 时时 时,,,,yyyy====--41--14
当a>0时,在对称轴的 左侧,y随着x的增大而
减小。
当a>0时,在对称轴的 右侧,y随着x的增大而
增大。
当当当当xx==xx--==2112时时时时,,,,yyyy====4114
当a<0时,在对称轴的 左侧,y随着x的增大而
3
3
( 3,6)
( 3,6)
谢谢观看
Thank You!
这对对这对条称对这对称条称抛,称条称轴抛,物y轴抛,。轴物y线。轴物y就线轴关就线是关就于是关它于是y它于的轴y它的轴y的轴 对称轴。
对称轴与抛物线的交点
叫做抛物线的顶点。
1、观察右图, 并完成填空。
2、练习2 3、想一想
4、练习4
二次函数y=ax2的性质 1、顶点坐标与对称轴 2、位置与开口方向 3、增减性与极值
4. 点的位置及其坐标特征: ①.各象限内的点: ②.各坐标轴上的点: ③.各象限角平分线上的点: ④.对称于坐标轴的两点: ⑤.对称于原点的两点:
y
Q(b,-b)

人教版九级上册数学优质课件二次函数复习优质课件

人教版九级上册数学优质课件二次函数复习优质课件

人教版九级上册数学优质课件二次函 数复习 优质课 件
思维导图 例题示范
例1
如图,已知二次函数 y 1 x2 bx c 的图象经过A(2,0)、 2
B(0,-6)两点。
(1)求这个二次函数的解析式;
解:(1)将点A(2,0)、B(0,-6)代入得:c226b c 0 ,
解得:bc
4 6
解:(3)存在,点P的坐标为 (0, 2) 。 3
AD长度固定,只需找到点P使AP+PD最小即可,找到点A关于y轴的 对称点A',连接A'D,则A'D与y轴的交点即是点P的位置。
人教版九年 级级 上上 册册 数学数优学质课课件件二第次二函十数二复章习 优二质次课函件数 复习课件(共20张PPT)
人教版九年 级级 上上 册册 数学数优学质课课件件二第次二函十数二复章习 优二质次课函件数 复习课件(共20张PPT)
人教版九年 级级 上上 册册 数学数优学质课课件件二第次二函十数二复章习 优二质次课函件数 复习课件(共20张PPT)
人教版九年 级级 上上 册册 数学数优学质课课件件二第次二函十数二复章习 优二质次课函件数 复习课件(共20张PPT)
思维导图 例题示范
例2
某商店销售一种销售成本为40元/千克的水产品,若按50元/ 千克销售,一个月可售出500千克,销售价每涨价1元,月销售量 就减少10千克。 (1)写出月销售利润y与售价x之间的函数关系式。
人教版九年级上册 数学 课件 第二十二章 二次函数 复习课件(共20张PPT)
思维导图 例题示范
例2
某商店销售一种销售成本为40元/千克的水产品,若按50元/ 千克销售,一个月可售出500千克,销售价每涨价1元,月销售量 就减少10千克。 (2)销售单价定为55元时,计算月销售量与销售利润。

人教版数学九年级上册第二十二章《二次函数》课件(共22张)

人教版数学九年级上册第二十二章《二次函数》课件(共22张)
解:因为第1档次的产品一天能生产 95 件,每件利润 6 元,每 提高一个档次,每件利润增加 2 元,但一天产量减少 5 件, 所以第 x 档次,提高了(x−1)档,利润增加了 2(x−1)元. 所以 y=[6+2(x−1)][95−5(x−1)], 即 y=−10x2+180x+400(其中 x 是正整数,且1≤x≤10).
2.一个圆柱的高等于底面半径,写出它的表面积 S 与底面半径 r 之间的关系式.
解:由圆柱的表面积=2×圆柱的底面积+圆柱的侧面积, 得 S=2πr2+2πr•r=4πr2.
3.如图,矩形绿地的长、宽各增加 x m,写出扩充后的绿地的面 积 y 与 x 的关系式.
解:由图可得,扩充后的绿地的面积y(m2)与 x(m) 之间的函数关系式是y=(30+x)(20+x)=x2+50x+600, 即 y=x2+50x+600.
这个函数与我们学过的函数不同,其中自变量x的最高次数是2. 这类函数具有哪些性质呢?这就是本章要学习的二次函数.
合作探究
n 个球队参加比赛,每两队之间进行一场比赛,比赛的场次数 m 与球队数 n 有什么关系?
分析:每个球队要与其他 (n-1) 个球队各比赛一场,甲队对乙队的比赛与乙
队对甲队的比赛是同一场比赛,所以比赛的场次数为
形如 y=ax²+bx+c (a,b,c是常数,a≠ 0)的函数叫做二次函数.其中 x 是自变量,a,b,c 分别是二次项系数、一次项系数和常数项.
(1)等号左边是变量y,右边是关于自变量x的整式; (2)a,b,c为常数,且a≠ 0; (3)等式的右边最高次数为 2,可以没有一次项和常数项,但 不能没有二次项.

九年级数学上册(人教版)《二次函数》复习参考课件

九年级数学上册(人教版)《二次函数》复习参考课件

c>0
c=0 c<0
x
(3)a、b确定对称轴
x=-
b 2a
的位置:
ab>0 ab=0 ab<0
(4)Δ确定抛物线与x轴的交点个数:
Δ>0
Δ=0 Δ<0
1/4/2023
(1)a确定抛物线的开口方向:
a>0
a<0
y
(2)c确定抛物线与y轴的交点位置:
•0 (0,c)
c>0
c=0 c<0
x
(3)a、b确定对称轴
(2)
a>0时,ymin=
4ac-b2 4a
a<0时,ymax=44aca-b2
1/4/2023
一、定义
使用
二、图象的特点 和性质
一般式
解析式
范围
y=ax2+bx+c
已知任意 三个点
三、解析式的求法
已知顶点
四、图象位置与a、顶点式 b、c、 的正负 关系
y=a(x-h)2+k
(h,k)及 另一点
已知与x
3
• •C(0,-2–) • M(-1,-2)
例(5:1)求已抛知物二线次开函口数方y=向—12,x2对+x称-—32轴和顶点M的坐标。
(2)设抛物线与y轴交于C点,与x轴交于A、B两点,求C,
A,B的坐标。
(3)画出函数图象的示意图。
(4)求ΔMAB的周长及面积。
(5)x为何值时,y随的增大而减小,x为何值时,y有最大
1/4/2023
本章知识结构图
实际问题
归纳 性质
实际问题 的答案
1/4/2023
利用二次函数的图像 和性质求解

人教版九年级上册22.1二次函数的图象和性质 复习课件(共32张PPT)

人教版九年级上册22.1二次函数的图象和性质 复习课件(共32张PPT)

o
2
x
5
10
15
D.(4,3)
4
例 3 ( 2 ) ( 山 东 中 考 ) 抛 物 线 y = a x ²+ b x + c 经 过 点 A ( - 2 , 7 ) , B(6,7)C(3,-8),则该抛物线上纵坐标为-8的另一个点D 的坐标是
例 3 ( 3 ) ( 上 海 中 考 ) 抛 物 线 2 ( x + m ) ²+ n ( m , n 是 常 数 )
y
8
6
4
2
10
5
o
5
x
10
15
2
4
例 3 , 如 图 已 知 抛 物 线 y = x ²+ b x + c 的 对 称 轴 为 x = 2 , 点
A,B均在抛物线上,且AB与x轴平行,其中点A的坐标为
(0,3),则点B的坐标为(

8y
6 4
x=2
A.(2,3) B.(3,2)
2A
B
C.(3,3)
5
二次函数的解析式(三种形式解析式)
一 般 式 : y = a x ²+ b x + c ( a ≠ ᄋ )
顶 点 式 : y = a ( x - h ) ²+ k ( a8, h , k 为 常 数 , 且 a ≠ ᄋ )
两根式:y=a(x-x1)(x-x2)(a≠ᄋ,x1,x2是抛物线与x轴两交点
解析式为
6
y
4
2
A(-1,0)
B(3,0)
15
10
5
O
x5
10
2
4
∙x 3
2)2 2∙(x +例2) 43:如图,在平面直角坐标系xOy中,抛8 物线C1的顶点为A(-1, -4),且过点B(-3,0)。

九年级数学《二次函数总复习》课件

九年级数学《二次函数总复习》课件

与时间x(min)成正比例.药物燃烧后,y与x成反比例(如所
示),现测得药物8min燃毕,此时室内空气中每立方米的药
量为6mg,请根据题中所提供的信息,解答下列问题:
(1)药物燃烧时,y关于x 的函数关系式为: ________, 自
变量x 的取值范围是:_______,药物燃烧后y关于x的函
数关系式为_______.
四边形OEBF的面积为2,则k的值是____。
y
C
E
O
B
F x
A
x
•(-3,0)
A
•(1,0)
0
E
B
x
• ••
DF
⑩如图,在坐标系内有一点G,G关于X轴对称点G‘,
若四边形AGBG’是正方形,求过A、B、G三点的抛
物线。
•G‘ y
• • • (-3,0)
A
(1,0) H0 B x
• G
当堂检测
1、 二次函数的图象如图所示,则在下列各不等式 中成立的个数是____________
C o
B
A(1,m) x
(4)连接BC,求三角形 ⊿ COB的面积;
例2、已知反比例函数 y =
k x
的图象经过点A(1,4)
(1 )①求此反比例函数 的解析式;
②并判断点B(-4,-1)是否在此函数图像上。
(2)根据图像得, 若y ﹥ 1, 则x的取值范围-----------
y 4 A(1,4)
例5:已知二次函数y=ax2+bx+c如图,
(1)①判断a,b,c正负。 ② a+b+c 0, a-b+c 0,b-2a 0。
(2) 已知二次函数y=ax2+bx+c如图,且过C(0, 3)

人教版九年级数学上册第22章二次函数章末复习课件 (共68张ppt)

人教版九年级数学上册第22章二次函数章末复习课件 (共68张ppt)

(4)当图像与x轴 有两个交点时, b2-4ac>0;当图像与x轴只有一个 交点时, b2-4ac=0; 当图像与x轴没有交点时, b2-4ac<0. (5)图像过点(1, a+b+c)和点(-1, a-b+c), 再根据图像上的点的位置可 确定式子a+b+c和a-b+c的符号.
例1 已知二次函数y=ax2+bx+c的图像如图22-Z-1所示, 那么下
二次函数 的图像和
性质
开口方向
a>0, 图像开口向上 a<0, 图像开口向下
对称轴
a, b同号, 对称轴在y轴左侧 a, b异号, 对称轴在y轴右侧
烦烦烦鬼鬼鬼鬼 鬼鬼鬼鬼跟鬼鬼 鬼鬼鬼g鬼鬼
二次函数 的图像和
性质
a>0 增减性
a<0
最值
二次函数 的解析式
y=ax²+bx+c(a≠0)(一般式) y=a(x-h)²&#(a≠0)(交点式)
【要点指导】研究二次函数的图像的平移、轴对称变换过程, 实 际 就是确定变换后所得图像的二次函数解析式, 研究变换后的图 像和性质 的过程, 关键是找到变换后图像上的特殊点(如抛物线的 顶点), 从而得出 函数解析式, 最后利用二次函数的性质解答.
例4 如图22-Z-3, 在平面直角坐标系 xOy中, 将抛物线y=2x2沿y轴 向上平移1个单 位长度, 再沿x轴向右平移2个单位长度, 平移 后所 得抛物线的顶点记作A, 直线x=3与平移 后的抛物线相交于点B, 与 直线OA相交于点C. (1)求平移后的抛物线的函数解析式; (2)求点C的坐标及△ABC的面积.
例2 已知二次函数的图像以A(-1, 4)为顶点, 且过点B(2, -5). (1)求该函数的解析式; (2)求该函数图像与坐标轴的交点坐标.

人教版初三九年级数学《二次函数复习PPT课件》优秀课件

人教版初三九年级数学《二次函数复习PPT课件》优秀课件
• 二次函数的特殊形式: • y=ax2 • y=ax2+c • y=a(x-h)2+k
函数的图象及性质
抛物线
开口方 对称轴 顶点 最 增

坐标 值 减

y = ax2 y = ax2 + k y = a(x – h )2 y = a(x – h )2 + k
a>0向上 y轴 a<0向下
(0,0)
y
y
y
y
o x
A
o
o
x
x
B
C
o
的 图象过点(0,5). (1)求m的值,并写出二次函数的表达式; (2)求出二次函数图象的顶点坐标、对称轴.
12.某旅社有客房120间,每间客房的月租金为 50元,每天都客满,旅社装修后要提高租金, 经市场调查,如果一间客房的日租金增加5元, 则客房每天出租会减少6间,不考虑其它因素, 旅社将每间客房的日租金提高到多少元时,客房 日租金的总收入最高?比装修前的日租金总收入 增加多少元?
2.函数y=5(x-3)2-2的图象可由函数y=5x2的图象沿 x轴向 平移 个单位,再沿y轴向 平移 个单 位得到.
3.二次函数y=a(x+k)2+k(a≠0),无论k取什么实数, 图象顶点必在( ). A.直线y=-x上 B.x轴上 C.直线y=x上 D.y 轴上
4.将函数y=-x2-2x化为y=a(x-h) 2+k的形式

.
5.函数y=-2x2+8x-8的顶点坐标为
.
6.函数y=2x2+8x-8的对称轴为
.
7.若所求的二次函数的图象与抛物线y=2x2-4x-1 有相同的顶点,并且在对称轴左侧,y随x的增大而 增大,在对称轴右侧,y随x的增大而减小,则所求 的二次函数的解析式为( )

第22章《二次函数》复习课PPT课件(人教版)

第22章《二次函数》复习课PPT课件(人教版)
形?若存在,求点N的坐标;若不存在,请说明理由
三、课堂练习
N M
N
重视知识归纳; 重视基本概念; 重视典型题型; 重视每日小练; 重视错题整理; 避免盲目大意。
九年级数学
第22章 《二次函数》 复习(2)
定形图 性 义式象 质
坦洲实验中学初三数学
一、知识回顾
归纳知识:
(1)开a口的向符上号:由抛物a线>0的开口y 方向确定
开口向下
(2)c的符号:
a<0
o
x
由抛物线与y轴的交点位置确定.
交点在y轴正半轴
c>0
y
交点在y轴负半轴
c<0
交点是坐标原点
c=0
ox
∴ OE=DE=1.5 即D(1.5,-1.5)
设直线OD为y=kx,代入D点坐标得y= -x
令x2-2x-3 = -x
二、典型例题
证明: b2-4ac=[-(2m-1)]2-4×1×(m2-m-2) =4m2-4m+1-4m2+4m+8 =9
即b2-4ac >0 ∴ 抛物线与x轴有两个不同的交点
三、课堂练习
C
一次函数y=ax+b经过的象限与a, b符号关系 A选项,经过一二四象限, a<0, b>0 B选项,经过一二三象限,a>0, b>0 C选项,经过一三四象限, a>0, b<0 D选项,经过一三四象限,a>0, b<0
三、课堂练习
·B
A2
6
三、课堂练习
-1·
·5
与x,y轴交点
-5·
二、典型例题
解:令x=0,解得y=m2-m-2 令y=0,得x2-(2m-1) x+m2-m-2=0 [x-(m-2)][x-(m+1)]=0

初三数学复习《二次函数》(专题复习)PPT课件

初三数学复习《二次函数》(专题复习)PPT课件

面积问题
面积问题
在二次函数中,可以通过求函数与坐标轴的交点来计算图形的面积。例如,当函数与x轴交于两点时 ,可以计算这两点之间的面积;当函数与y轴交于一点时,可以计算这一点与原点之间的面积。这些 方法在解决实际问题时非常有用,例如在计算利润、产量等方面。
求解方法ቤተ መጻሕፍቲ ባይዱ
求出二次函数与x轴和y轴的交点坐标,然后根据这些坐标计算图形的面积。对于更复杂的问题,可能 需要使用积分或其他数学方法来求解。
05
综合练习与提高
基础练习题
巩固基础 覆盖全面 由浅入深
基础练习题主要针对二次函数的基本概念、性质和公 式进行设计,旨在帮助学生巩固基础知识,提高解题的 准确性和速度。
基础练习题应涵盖二次函数的各个方面,包括开口方 向、顶点坐标、对称轴、与坐标轴的交点等,确保学生 对二次函数有全面的了解。
题目难度应从易到难,逐步引导学生深入理解二次函 数,从简单的计算到复杂的综合题,逐步提高学生的解 题能力。
初三数学复习《二次函数》(专题复习)ppt课 件
目录 Contents
• 二次函数的基本概念 • 二次函数的解析式 • 二次函数的图像与性质 • 二次函数的实际应用 • 综合练习与提高
01
二次函数的基本概念
二次函数的定义
总结词
理解二次函数的定义是掌握其性 质和图像的基础。
详细描述
二次函数是形式为$f(x) = ax^2 + bx + c$的函数,其中$a, b, c$是 常数,且$a neq 0$。这个定义表 明二次函数具有两个变量$x$和 $y$,并且$x$的最高次数为2。
03
二次函数的图像与性质
开口方向
总结词:根据二次项系数a的正负判断开口方向 a>0时,开口向上

二次函数(1)PPT课件(人教版)

二次函数(1)PPT课件(人教版)
九年级上册人教版数学
第二十二章 二次函数
22.1 二次函数的图象和性质
22.1.1 二次函数
1.一般地,形如 y=ax2+bx+c(a,b,c 是常数,a≠0)的函数,叫做 __二__次__函__数_,其中 x 是自变量,a,b,c 分别是函数解析式的_二__次__项___系数、 一__次__项___系数和常数项.
14.边长为4 m的正方形中间挖去一个边长为x(m)(x<4)的小正方形,剩 余的四方框的面积为y(m2),则y与x之间的函数关系式为y_=__1_6_-__x_2_(_0_<__x_<_,4) 它是_二__次____函数.

15.若y=(m-1)xm2+2m-1+3. (1)m取什么值时,此函数是二次函数? (2)m取什么值时,此函数是一次函数?
解 : 降 低 x 元 后 , 所 销 售 的 件 数 是 (500 + 100x) , 则 y = (13.5 - 2.5 - x)(500+100x),即y=-100x2+600x+5500(0<x≤11)
18.如图,在△ABC中,∠B=90°,AB=12 mm,BC=24 mm,动点P 从点A开始沿边AB向B以2 mm/s的速度移动(不与点B重合),动点Q从点B开 始沿边BC向C以4 mm/s的速度移动(不与点C重合).如果P,Q分别从A,B 同时出发,设运动的时间为x s,四边形APQC的面积为y mm2.
C.y=12(x-1)(x+4)不是二次函数 D.在 y=1- 2x2 中,一次项系数为 1
3.若y=(a+3)x2-3x+2是二次函数,则a的取值范围是__a_≠_-__3___. 4.对于二次函数y=1-3x+2x2,其二次项系数、一次项系数及常数 项的和是__0__. 5.已知两个变量x,y之间的关系式为y=(a-2)x2+(b+2)x-3. (1)当___a≠__2____时,x,y之间是二次函数关系; (2)当___a_=__2_且__b_≠_-__2_____时,x,y之间是一次函数关系.

人教版九年级数学上册22章二次函数专题复习课件

人教版九年级数学上册22章二次函数专题复习课件
教学目标:
• 1、会根据抛物线y=ax2+bx+c的图确定a、b、 c、△的符号
• 2、会根据抛物线y=ax2+bx+c的图,判断 a+b+c,a-b+c,2a±b等的符号
一般地,形如y=ax²+bx+c(a、b、
c是常数且a≠0)的函数叫做x的二次函 数。
y ax2 bx c
a x2 b x c a a
2、已知:二次函数y=ax2+bx+c的图象 如图所示,下列结论中:①abc>0; ②b=2a;③a+b+c<0;④a+b-c>0; ⑤a-b+c>0正确的个数是 ( C )
y
A、2个 B、3个
C、4个 D、5个
-1 o 1 x
< m>1
C
x … ﹣1 0
1
2
y … 10 5 2 1
0<x<4
3… 2…
2
由x=-1时抛物线上的点的位置确定
C.2a+b>0 (5)a+b+c的符号:
由x=1时抛物线上的点的位置确定
D.4a-2b+c<0
4、抛物线y=ax2+bx+c如图所示,试确定a、b、c、△的符号:
由x=-1时抛物线上的点的位置确定 2a+b>0 D. 二次函数与一元二次方程的关系:
X= - b/2a<1
注意抛物 线的对称 性
三种特殊形式的抛物线:
抛物线系数和图像的关系:
检测一
1、抛物线y=ax2+bx+c如图所示,试确定a、 b、c、△的符号:
y
a>0,

人教版九年级数学《二次函数》总复习课件(公开课)

人教版九年级数学《二次函数》总复习课件(公开课)

若抛物线y=ax2+bx+c与x轴有交点,则
b2 – 4ac ≥0
判别式: b2-4ac
b2-4ac>0
b2-4ac=0
二次函数
y=ax2+bx+ c
与x(轴有a≠两0个)不
同的交点 (x1,0) (x2,0)
与x轴有唯一个
交点 ( b ,0) 2a
b2-4ac<0
与x轴没有 交点
图象
y
O
x y
O
二次函数复习课
1、二次函数的定义
• 定义: y=ax² + bx + c ( a 、 b 、 c 是常数, a ≠ 0 )
• 定义要点:①a ≠ 0 ②最高次数为2

③代数式一定是整式
• 练习:1、y=-x²,y=2x²-2/x,y=100-5 x²,
• y=3 x²-2x³+5,其中是二次函数的有____个。
解:∵二次函数的最大值是2 ∴抛物线的顶点纵坐标为2 又∵抛物线的顶点在直线y=x+1上 ∴当y=2时,x=1 ∴顶点坐标为( 1 , 2) ∴设二次函数的解析式为y=a(x-1)2+2 又∵图象经过点(3,-6) ∴-6=a (3-1)2+2 ∴a=-2 ∴二次函数的解析式为y=-2(x-1)2+2
当x b 时, y最小值为 4ac b2
2a
4a
y=ax2+bx+c(a<0)
b 2a
,
4ac 4a
b2
直线x b
2a
由a,b和c的符号确定
a<0,开口向下
在对称轴的左侧,y随着x的增大而增大. 在对称 轴的右侧, y随着x的增大而减小.

《二次函数》PPT优秀课件

《二次函数》PPT优秀课件
说一说以上二次函数解析式的各项系数.
链接中考
1.下列函数解析式中,一定为二次函数的是( C )
A.y=3x-1 C.s=2t2-2t+1
B.y=ax2+bx+c
D.y=x2+
1
2
x
链接中考
2.已知函数 y=(m²﹣m)x²+(m﹣1)x+m+1. (1)若这个函数是一次函数,求m的值; (2)若这个函数是二次函数,则m的值应怎样? 解:(1)根据一次函数的定义,得m2﹣m=0,
探究新知
素养考点 1 二次函数的识别
例1 下列函数中是二次函数的有 ①⑤⑥ .
①√ y= 2x2 2
×③y x2(1 x2 ) 1
最高次数是4
⑤√ y=x( x 1)
×②y 2x2 x(1 2x) a=0
×④y
1 x2
x2
√⑥y
x4 x2 x2 1
=x2
二次函数:y=ax²+bx+c(a,b,c为常数,a≠0)
素养目标
2. 能根据实际问题中的数量关系列出二次函数 解析式,并能指出二次函数的项及各项系数.
1.掌握二次函数的定义,并能判断所给函数 是否是二次函数.
探究新知
知识点 1 二次函数的概念
问题1 正方体的六个面是全等的正方形(如下图),设正方
形的棱长为x,表面积为y,显然对于x的每一个值, y都 有一个对应值,即y是x的函数,它们的具体关系可以表 示为 y=6x2①.
探究新知
方法点拨
运用定义法判断一个函数是否为二次函数的 步骤: (1)将函数解析式右边整理为含自变量的代 数式,左边是函数(因变量)的形式; (2)判断右边含自变量的代数式是否是整式; (3)判断自变量的最高次数是否是2; (4)判断二次项系数是否不等于0.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
x(元)130 150 165
y (台) 70 50 35
再见!
新人教实验版数学九年级(下)26.1二次函数
知识回顾
二次函数的概念 二次函数的关系式 二次函数的图象及性质 各种形式的二次函数的关系
习题巩固
二次函数的概念
• 形如y=ax2+bx+c(a,b,c是常数,a≠0) 的函数,叫做二次函数,其中,是自变量, 分别是函数表达式的二次项系数,一次项 系数和常数项。
13.某产品每件的成本价是120元,试销阶段,每件产品 的销售价x(元)与产品的日销售量y(台)之间的函数关系如 下表: x(元)130150165y (台)705035并且日销售量y是每件 售价x的一次函数. (1)求y与x之间的函数关系; (2)为获得最大利润,每件产品的销售价应定为多少元? 此时每日销售的利润是多

.
5.函数y=-2x2+8x-8的顶点坐标为
.
6.函数y=2x2+8x-8的对称轴为
.
7.若所求的二次函数的图象与抛物线y=2x2-4x-1 有相同的顶点,并且在对称轴左侧,y随x的增大而 增大,在对称轴右侧,y随x的增大而减小,则所求 的二次函数的解析式为( )
A.y=-x2+2x-4 B.y=ax2-2ax+a-3(a>0) C.y=-x2-4x-5 D.y=ax2-2ax+a-3(a<0)
a>0向上 y轴 ( 0 , k ) a<0向下
a>0向上 直线x=h ( h , 0 ) a<0向下
a>0向上 a<0向下 直线x=h
(h,k)
二次函数y=ax2+bx+c(a≠0)
a(xb)24acb2 2a 4a
对称轴为:直x线 b , 2a
顶点坐标是:2ba
,
4acb2 4a

各种形式的二次函数的关系
左 y = a( x – h )2 + k 上






y = ax2 + k
y = a(x – h )2
上下平移 y = ax2 左右平移
结论: 一般地,抛物线 y = a(x-h)2+k与 y = ax2形状相同,位置不同。
1.抛物线y=(x-3)2的开口方向 ,对称轴是 ,顶 点坐标为 ,在对称轴左侧,即x 时,y随x增大 而 ;在对称轴右侧,即x 时,y随x增大而 , 当x= 时,y有最 值为 .
2.函数y=5(x-3)2-2的图象可由函数y=5x2的图象沿 x轴向 平移 个单位,再沿y轴向 平移 个单 位得到.
3.二次函数y=a(x+k)2+k(a≠0),无论k取什么实数, 图象顶点必在( ). A.直线y=-x上 B.x轴上 C.直线y=x上 D.y 轴上
4.将函数y=-x2-2x化为y=a(x-h) 2+k的形式
y
y
y
y
o xAoFra bibliotekox
x
B
C
o
x
D
11.已知二次函数y=(m-2)x2+(m+3)x+m+2的 图象过点(0,5). (1)求m的值,并写出二次函数的表达式; (2)求出二次函数图象的顶点坐标、对称轴.
12.某旅社有客房120间,每间客房的月租金为 50元,每天都客满,旅社装修后要提高租金, 经市场调查,如果一间客房的日租金增加5元, 则客房每天出租会减少6间,不考虑其它因素, 旅社将每间客房的日租金提高到多少元时,客房 日租金的总收入最高?比装修前的日租金总收入 增加多少元?
• 二次函数的特殊形式: • y=ax2 • y=ax2+c • y=a(x-h)2+k
函数的图象及性质
抛物线
开口方 对称轴 顶点 最 增

坐标 值 减

y = ax2 y = ax2 + k y = a(x – h )2 y = a(x – h )2 + k
a>0向上 y轴 a<0向下
(0,0)
8.若b<0,则函数y=2x2+bx-5的图象的顶点在( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限
9.设抛物线y=x2-4x+c的顶点在x轴上,则c为 .
10.二次函数y=ax2+bx+c经过点(3,6)和-1,6) ,则
对称轴为
.
11.如图,在同一坐标系中,函数y=ax+b与 y=ax2+bx(ab≠0)的图象只可能是( )
相关文档
最新文档