高中数学导数及其应用导数在研究函数中的应用函数的最大小值与导数学案

合集下载

高中选修2《函数的最大小值与导数》教案设计

高中选修2《函数的最大小值与导数》教案设计

课题:函数的最大(小)值与导数---导数在研究函数中的应用教材:普通高中课程标准实验教科书人教版A版选修2-2 一.【教学目标】1.知识目标(1)理解函数的最值与极值的区别和联系。

(2)掌握用导数法求函数的最大值与最小值的方法和步骤。

2.能力目标(1)通过在教师引导下学生自主探索新知的过程,培养学生观察、分析、归纳的自学能力,为学生学习的可持续发展打下基础。

(2)培养学生的数学语言表达和数学符号表示能力。

3.情感和价值目标(1)让学生感受数学问题探索的乐趣和成功的喜悦,激发学生学习数学的兴趣和信心。

(2)提高学生的数学能力,培养学生的创新精神、实践能力和理性精神。

二.【教学重点、难点】1.教学重点:利用导数求函数的最大值和最小值。

2.教学难点:函数的最大值、最小值与函数的极大值和极小值的区别和联系。

三.【教学方法与手段】1. 教学方法:启发探究式教学法2. 教学手段:多媒体、实物投影 四.【教学过程】 【复习引入】复习:函数极大值、极小值是怎样定义的?函数最大值、最小值又是怎样定义的?【设计意图】通过复习前面所学的极值的概念,也通过展现学生作业中出现的书写形式:把极大值)(x f 写成max )(x f ,从而回顾函数最值的概念。

为后面探索最值与极值的关系作了铺垫。

【探究新知】观察图中定义在闭区间[]b a ,上的函数)(x f 的图象。

图中哪些是极大值,哪些是极小值 你能找出所给函数的最大值和最小值吗? 答:2()f x 是极大值,)(1x f 与3()f x 是极小值。

)(b f 是最大值,3()f x 是最小值观察所给的4个图像,探究:函数的最值与极值有什么关系?【设计意图】让学生观察所给出的函数图像,讨论函数最值与极值的联系与区别,同时让学生发表各自的见解。

在学生讨论的过程中可以作适当的提示。

比如:1)闭区间[]b a,上的函数)(xf的最值一定存在吗?个数是多少?那极值?2)函数最值可以在哪里取得?函数极值可以在哪里取得?3)函数的极值与最值之间有没有必然的联系?小结1:函数的最值与极值之间的联系与区别:(1)整体与局部的关系函数的最值是一个整体性概念,是比较整个定义域内的所有函数值得出,具有绝对性;函数的极值是一个局部性概念,是比较极值点左右的函数值得出的,具有相对性。

推荐高中数学第一章导数及其应用1.3导数在研究函数中的作用1.3.2极大值与极小值教学案苏教版选修2_2

推荐高中数学第一章导数及其应用1.3导数在研究函数中的作用1.3.2极大值与极小值教学案苏教版选修2_2

1.3.2 极大值与极小值[对应学生用书P16]已知y=f(x)的图象(如图).问题1:当x=a时,函数值f(a)有何特点?提示:在x=a的附近,f(a)最小,f(a)并不一定是y=f(x)的最小值.问题2:当x=b时,函数值f(b)有何特点?提示:在x=b的附近,f(b)最大,f(b)并不一定是y=f(x)的最大值.1.观察下图中的函数图象,发现函数图象在点P处从左侧到右侧由“上升”变为“下降”(函数由单调递增变为单调递减),这时在点P附近,点P的位置最高,亦即f(x1)比它附近点的函数值都要大,我们称f(x1)为函数f(x)的一个极大值.2.类似地,上图中f(x2)为函数的一个极小值.3.函数的极大值、极小值统称为函数的极值.观察图(Ⅰ).问题1:试分析在函数取得极大值的x1的附近左右两侧导数的符号有什么变化?提示:左侧导数大于0,右侧导数小于0.问题2:试分析在函数取得极小值的x2的附近左右两侧导数的符号有什么变化?提示:左侧导数小于0,右侧导数大于0.1.极大值与导数之间的关系如下表:增减2.极小值与导数之间的关系如下表:减增1.极值是一个局部概念,它只是某个点的函数值与它附近的函数值比较是最大或最小,并不意味着它在整个定义域内是最大或最小.2.函数的极值并不惟一(如图所示).3.极大值和极小值之间没有确定的大小关系,如图所示,f(x1)是极大值,f(x4)是极小值,而f(x4)>f(x1).[对应学生用书P17](1)f (x )=x 3-3x 2-9x +5; (2)f (x )=ln xx.[思路点拨] 按求函数极值的步骤求解,要注意函数的定义域.[精解详析] (1)函数f (x )=x 3-3x 2-9x +5的定义域为R ,且f ′(x )=3x 2-6x -9.解方程3x 2-6x -9=0,得x 1=-1,x 2=3.当x 变化时,f ′(x )与f (x )的变化情况如下表:因此,函数f (x )的极大值为f (-1)=10; 极小值为f (3)=-22.(2)函数f (x )=ln xx 的定义域为(0,+∞),且f ′(x )=1-ln xx2.令f ′(x )=0,解得x =e.当x 变化时,f ′(x )与f (x )的变化情况如下表:因此函数f (x )的极大值为f (e)=e ,没有极小值.[一点通] (1)求可导函数极值的步骤: ①求导数f ′(x ); ②求方程f ′(x )=0的根;③检查f′(x)的值在方程f′(x)=0的根左右的符号,如果左正右负,那么f(x)在这个根处取得极大值;如果左负右正,那么f(x)在这个根处取得极小值.(2)注意事项:①不要忽视函数的定义域;②要正确地列出表格,不要遗漏区间和分界点.1.函数f(x)的定义域为开区间(a,b),导函数f′(x)在(a,b)内的图象如图所示,则函数f(x)在开区间(a,b)内有________个极小值.解析:由图可知,在区间(a,x1),(x2,0),(0,x3)内f′(x)>0;在区间(x1,x2),(x3,b)内f′(x)<0.即f(x)在(a,x1)内单调递增,在(x1,x2)内单调递减,在(x2,x3)内单调递增,在(x3,b)内单调递减.所以,函数f(x)在开区间(a,b)内只有一个极小值,极小值为f(x2).答案:12.关于函数f(x)=x3-3x2有下列命题,其中正确命题的序号是________.①f(x)是增函数;②f(x)是减函数,无极值;③f(x)的增区间是(-∞,0)和(2,+∞),减区间为(0,2);④f(0)=0是极大值,f(2)=-4是极小值.解析:f′(x)=3x2-6x,令f′(x)=0,则x=0或x=2.易知当x∈(-∞,0)时,f′(x)>0;当x∈(0,2)时,f′(x)<0;当x∈(2,+∞)时,f′(x)>0.所以f(x)的单调增区间是(-∞,0)和(2,+∞),减区间是(0,2);极大值为f(0),极小值为f (2).答案:③④3.设f (x )=a ln x +12x +32x +1,其中a ∈R ,曲线y =f (x )在点(1,f (1))处的切线垂直于y 轴.(1)求a 的值;(2)求函数f (x )的极值.解:(1)因f (x )=a ln x +12x +32x +1,故f ′(x )=a x -12x2+32.由于曲线y =f (x )在点(1,f (1))处的切线垂直于y 轴,故该切线斜率为0,即f ′(1)=0,从而a -12+32=0,解得a =-1.(2)由(1)知f (x )=-ln x +12x +32x +1(x >0), f ′(x )=-1x -12x2+32=3x2-2x -12x2=+-2x2.令f ′(x )=0,解得x 1=1,x 2=-13(因x 2=-13不在定义域内,舍去).当x ∈(0,1)时,f ′(x )<0,故f (x )在(0,1)上为减函数; 当x ∈(1,+∞)时,f ′(x )>0, 故f (x )在(1,+∞)上为增函数. 故f (x )在x =1处取得极小值f (1)=3.[例2] 已知f (x 的值.[思路点拨] 解答本题可先求f ′(x ),利用x =-1时有极值0这一条件建立关于a ,b 的方程组.解方程组可得a ,b 的值,最后将a ,b 代入原函数验证极值情况.[精解详析] ∵f (x )在x =-1时有极值0且f ′(x )=3x 2+6ax +b , ∴⎩⎪⎨⎪⎧-=0,-=0,即⎩⎪⎨⎪⎧3-6a +b =0,-1+3a -b +a2=0.解得⎩⎪⎨⎪⎧a =1,b =3或⎩⎪⎨⎪⎧a =2,b =9.当a =1,b =3时,f ′(x )=3x 2+6x +3=3(x +1)2≥0,所以f (x )在R 上为增函数,无极值,故舍去. 当a =2,b =9时,f ′(x )=3x 2+12x +9=3(x +1)(x +3).当x ∈(-∞,-3)时,f (x )为增函数; 当x ∈(-3,-1)时,f (x )为减函数; 当x ∈(-1,+∞)时,f (x )为增函数.所以f (x )在x =-1时取得极小值,因此a =2,b =9.[一点通] 已知函数极值情况,逆向应用确定函数的解析式,进而研究函数性质时,注意两点:(1)常根据取极值点处导数为0和极值两个条件列方程组,利用待定系数法求解. (2)因为导数值等于零不是此点取极值的充要条件,所以利用待定系数法求解后必须验证根的合理性.4.已知函数f (x )=x 3+ax 2+bx +a 2在x =1处有极值为10,则ab =________. 解析:f ′(x )=3x 2+2ax +b ,由题意可知:⎩⎪⎨⎪⎧=0,=10,即⎩⎪⎨⎪⎧2a +b +3=0,a2+a +b +1=10,得⎩⎪⎨⎪⎧a =4b =-11或⎩⎪⎨⎪⎧a =-3,b =3.当a =-3,b =3时,f ′(x )=3x 2-6x +3=3(x -1)2,易知在x =1的左右两侧都有f ′(x )>0, 即函数f (x )在R 上是单调递增的, 因此f (x )在x =1处并不存在极值,故⎩⎪⎨⎪⎧a =4,b =-11.ab =-44.答案:-445.已知函数y =3x -x 3+m 的极大值为10,则m 的值为________ . 解析:y ′=3-3x 2=3(1+x )(1-x ), 令y ′=0得x 1=-1,x 2=1,经判断知极大值为f (1)=2+m =10,m =8. 答案:86.已知函数f (x )=ax 3+bx 2-3x 在x =±1处取得极值.讨论f (1)和f (-1)是函数f (x )的极大值还是极小值.解:∵f ′(x )=3ax 2+2bx -3,依题意,f ′(1)=f ′(-1)=0,即⎩⎪⎨⎪⎧3a +2b -3=0,3a -2b -3=0.解得a =1,b =0,∴f (x )=x 3-3x , ∴f ′(x )=3x 2-3=3(x +1)(x -1), 令f ′(x )=0,得x =-1,x =1,所以f (-1)=2是极大值,f (1)=-2是极小值.[例3] 已知a为实数,函数f(x)=-x3+3x+a.(1)求函数f(x)的极值,并画出其图象(草图);(2)当a为何值时,方程f(x)=0恰好有两个实数根?[精解详析] (1)由f(x)=-x3+3x+a,得f′(x)=-3x2+3,令f′(x)=0,得x=-1或x=1.当x∈(-∞,-1)时,f′(x)<0;当x∈(-1,1)时,f′(x)>0;当x∈(1,+∞)时,f′(x)<0.所以函数f(x)的极小值为f(-1)=a-2;极大值为f(1)=a+2.由单调性、极值可画出函数f(x)的大致图象,如图所示.这里,极大值a+2大于极小值a-2.(2)结合图象,当极大值a+2=0或极小值a-2=0时,曲线f(x)与x轴恰有两个交点,即方程f(x)=0恰有两个实数根.综上,当a=±2时,方程恰有两个实数根.[一点通] 极值问题的综合应用主要涉及极值的正用和逆用,以及与单调性问题的综合,题目着重考查已知与未知的转化,以及函数与方程的思想、分类讨论的思想在解题中的应用,在解题过程中,熟练掌握单调区间问题以及极值问题的基本解题策略是解决综合问题的关键.7.在例3中当a在什么范围内取值时,曲线y=f(x) 与x轴仅有一个交点?解:函数f(x)的大致图象如图所示:当函数f(x)的极大值a+2<0或极小值a-2>0时,曲线y=f(x)与x轴仅有一个交点,所以所求实数a的范围是a<-2或a>2.8.已知x=3是函数f(x)=a ln(1+x)+x2-10x的一个极值点.(1)求a;(2)求函数f (x )的单调区间;(3)若直线y =b 与函数y =f (x )的图象有3个交点,求b 的取值范围. 解:(1)因为f ′(x )=a1+x +2x -10,所以f ′(3)=a4+6-10=0,因此a =16.(2)由(1)知,f (x )=16ln(1+x )+x 2-10x ,x ∈(-1,+∞). f ′(x )=-4x +1+x,当x ∈(-1,1)∪(3,+∞)时,f ′(x )>0,当x ∈(1,3)时,f ′(x )<0,所以f (x )的单调增区间是(-1,1)和(3,+∞),f (x )的单调减区间是(1,3).(3)由(2)知,f (x )在(-1,1)内单调递增,在(1,3)内单调递减,在(3,+∞)上单调递增,且当x =1或x =3时,f ′(x )=0,所以f (x )的极大值为f (1)=16ln 2-9, 极小值为f (3)=32ln 2-21,所以要使直线y =b 与y =f (x )的图象有3个交点,当且仅当f (3)<b <f (1). 因此b 的取值范围为(32ln 2-21,16ln 2-9).根据可导函数极值的定义、方法、步骤,要弄清以下几点:(1)极大(小)值未必是最大(小)值,可以有多个数值不同的极大(小)值; (2)极大(小)值是局部充分小的领域内的最大(小)值;(3)极大(小)值只能在区间的内点取得,常数函数没有极大值,也没有极小值; (4)f ′(x 0)=0只是可导函数f (x )在x 0取得极值的必要条件,不是充分条件.[对应课时跟踪训练(七)]一、填空题1.已知函数f (x )的定义域为(a ,b ),导函数f ′(x )在区间(a ,b )上的图象如图所示,则函数y =f (x )在(a ,b )上极大值点的个数为________.解析:极大值点在导函数f ′(x 0)=0处,且满足x 0左侧为正,右侧为负,由图象知有3个.答案:32.(新课标全国卷Ⅰ改编)函数f (x ) 在x =x 0 处导数存在.若p :f ′(x 0)=0;q :x =x 0是f (x )的极值点,则p 是q 的________条件.解析:设f (x )=x 3,f ′(0)=0,但是f (x )是单调增函数,在x =0处不存在极值,故若p 则q 是一个假命题,由极值的定义可得若q 则p 是一个真命题.故p 是q 的必要不充分条件.答案:必要不充分3.若函数f (x )=x ·2x在x 0处有极小值,则x 0=________. 解析:f ′(x )=2x+x ·2x ln 2, 令f ′(x )=0,得x =-1ln 2.答案:-1ln 24.设a ∈R ,若函数y =e ax+3x ,x ∈R 取极值的点大于0,则a 的取值范围是________. 解析:令x =f (x ),则f ′(x )=a e ax+3, 函数f (x )取极值的点大于0, 即f ′(x )=a e ax+3=0有正根.当f ′(x )=a e ax +3=0成立时,显然有a <0, 此时x =1a ln ⎝ ⎛⎭⎪⎫-3a ,由x >0可得a <-3. 答案:(-∞,-3)5.(福建高考改编)设函数f (x )的定义域为R ,x 0(x 0≠0)是f (x )的极大值点,以下结论一定正确的是________.①∀x ∈R ,f (x )≤f (x 0); ②-x 0是f (-x )的极小值点; ③-x 0是-f (x )的极小值点; ④-x 0是-f (-x )的极小值点. 解析:不妨取函数f (x )=x 3-x ,则x =-33为f (x )的极大值点,但f (3)>f ⎝ ⎛⎭⎪⎫-33,∴排除①;取函数f (x )=-(x -1)2,则x =1是f (x )的极大值点,但-1不是f (-x )的极小值点,∴排除②;-f (x )=(x -1)2,-1不是-f (x )的极小值点,∴排除③,∵-f (-x )的图象与f (x )的图象关于原点对称,由函数图象的对称性可得-x 0应为函数-f (-x )的极小值点,∴填④.答案:④ 二、解答题6.已知函数f (x )=13x 3-4x +4,求函数的极值,并画出函数的大致图象.解:(1)f ′(x )=x 2-4.解方程x 2-4=0,得x 1=-2,x 2=2.当x 变化时,f ′(x )、f (x )的变化情况如下表:从上表看出,当x =-2时,函数有极大值,且极大值为f (-2)=283;而当x =2时,函数有极小值,且极小值为f (2)=-43.函数f (x )=13x 3-4x +4的图象如图所示.7.已知函数f(x)=x3-3ax-1,a≠0.(1)求f(x)的单调区间;(2)若f(x)在x=-1处取得极值,直线y=m与y=f(x)的图象有三个不同的交点,求m 的取值范围.解:(1)∵f′(x)=3x2-3a=3(x2-a).当a<0时,对x∈R,有f′(x)>0,∴当a<0时,f(x)的单调增区间为(-∞,+∞);当a>0时,由f′(x)>0解得x<-a,或x>a,由f′(x)<0解得-a<x<a,∴当a>0时,f(x)的单调增区间为(-∞,-a),(a,+∞),f(x)的单调减区间为(-a,a).(2)∵f(x)在x=-1处取得极值,f′(-1)=3×(-1)2-3a=0.∴a=1.∴f(x)=x3-3x-1,f′(x)=3x2-3.由f′(x)=0解得x1=-1,x2=1,由(1)中f(x)的单调性可知,f(x)在x=-1处取得极大值f(-1)=1,在x=1处取得极小值f(1)=-3.∵直线y=m与函数y=f(x)的图象有三个不同的交点,结合f(x)的单调性可知m的取值范围是(-3,1).8.(重庆高考)已知函数f(x)=a e2x-b e-2x-cx(a,b,c∈R)的导函数f′(x)为偶函数,且曲线y =f (x )在点(0,f (0))处的切线的斜率为4-c .(1)确定a ,b 的值;(2)若c =3,判断f (x )的单调性; (3)若f (x )有极值,求c 的取值范围. 解:(1)对f (x )求导得f ′(x )=2a e 2x+2b e-2x-c ,由f ′(x )为偶函数,知f ′(-x )=f ′(x ), 即2(a -b )(e 2x-e-2x)=0,所以a =b .又f ′(0)=2a +2b -c =4-c ,故a =1,b =1. (2)当c =3时,f (x )=e 2x-e -2x-3x ,那么f ′(x )=2e 2x +2e-2x-3≥22e2x·2e-2x -3=1>0,故f (x )在R 上为增函数. (3)由(1)知f ′(x )=2e 2x+2e -2x-c ,而2e 2x+2e-2x≥22e2x·2e-2x =4,当x =0时等号成立. 下面分三种情况进行讨论.当c <4时,对任意x ∈R ,f ′(x )=2e 2x+2e-2x-c >0,此时f (x )无极值; 当c =4时,对任意x ≠0,f ′(x )=2e 2x +2e-2x-4>0,此时f (x )无极值;当c >4时,令e 2x=t ,注意到方程2t +2t -c =0有两根t 1,2=c±c2-164>0,即f ′(x )=0有两个根x 1=12ln t 1或x 2=12ln t 2.当x 1<x <x 2时f ′(x )<0;又当x >x 2时,f ′(x )>0,从而f (x )在x =x 2处取得极小值. 综上,若f (x )有极值,则c 的取值范围为(4,+∞).。

《函数的最大(小)值与导数》参考教案

《函数的最大(小)值与导数》参考教案

《函数的最大(小)值与导数》参考教案一、教学目标1. 让学生理解函数的最大值和最小值的概念,并掌握求解函数最大值和最小值的方法。

2. 让学生掌握导数的定义和性质,并能运用导数求解函数的极值。

3. 培养学生运用数学知识解决实际问题的能力。

二、教学内容1. 函数的最大值和最小值的概念。

2. 求解函数最大值和最小值的方法。

3. 导数的定义和性质。

4. 运用导数求解函数的极值。

5. 实际问题中的应用。

三、教学重点与难点1. 教学重点:函数的最大值和最小值的求解方法,导数的定义和性质,运用导数求解函数的极值。

2. 教学难点:导数的运算规则,运用导数求解复杂函数的最大值和最小值。

四、教学方法1. 采用讲解、演示、练习、讨论相结合的教学方法。

2. 使用多媒体课件辅助教学,提高学生的学习兴趣。

3. 引导学生通过合作、探究、实践等方式,提高解决问题的能力。

五、教学过程1. 导入:通过生活中的实例,引入函数的最大值和最小值的概念。

2. 讲解:讲解求解函数最大值和最小值的方法,并举例演示。

3. 练习:让学生独立完成练习题,巩固所学知识。

4. 讲解:讲解导数的定义和性质,并举例演示。

5. 练习:让学生独立完成练习题,巩固所学知识。

6. 讲解:讲解如何运用导数求解函数的极值,并举例演示。

7. 练习:让学生独立完成练习题,巩固所学知识。

8. 讨论:分组讨论实际问题,运用所学知识解决问题。

9. 总结:对本节课的内容进行总结,回答学生提出的问题。

10. 作业:布置作业,巩固所学知识。

六、教学评价1. 课堂表现:观察学生在课堂上的参与程度、提问回答等情况,了解学生的学习状态。

2. 练习题:评估学生在练习题中的表现,检验学生对知识的掌握程度。

3. 实际问题解决:评估学生在讨论实际问题时的表现,检验学生运用知识解决问题的能力。

4. 作业:评估学生的作业完成情况,检验学生对知识的掌握程度。

七、教学资源1. 教材:《数学分析》2. 多媒体课件3. 练习题4. 实际问题案例八、教学进度安排1. 第一课时:介绍函数的最大值和最小值的概念,讲解求解方法。

「精品」高中数学第一章导数及其应用1.3导数在研究函数中的作用1.3.3最大值与最小值教学案苏教版选修2_2

「精品」高中数学第一章导数及其应用1.3导数在研究函数中的作用1.3.3最大值与最小值教学案苏教版选修2_2

1.3.3 最大值与最小值[对应学生用书P19]1.问题:如何确定你班哪位同学最高?提示:方法很多,可首先确定每个学习小组中最高的同学,再比较每组的最高的同学,便可确定班中最高的同学.2.如图为y=f(x),x∈[a,b]的图象.问题1:试说明y=f(x)的极值.提示:f(x1),f(x3)为函数的极大值,f(x2),f(x4)为函数的极小值.问题2:你能说出y=f(x),x∈[a,b]的最值吗?提示:函数的最小值是f(a),f(x2),f(x4)中最小的,函数的最大值是f(b),f(x1),f(x3)中最大的.3.函数y=g(x),y=h(x)在闭区间[a,b]的图象都是一条连续不断的曲线(如下图所示).问题1:两函数的最大值和最小值分别是什么?提示:函数y=g(x)的最大值为g(a),最小值是其极小值g(c);函数y=h(x)的最大值为h(b),最大值为h(a).问题2:函数的最大值和最小值是否都在区间的端点处取得?提示:不一定.问题3:函数的极值与函数的最值是同一个问题吗?提示:不是.1.最大值与最小值(1)如果在函数定义域I内存在x0,使得对任意的x∈I,总有f(x)≤f(x0),则称f(x0)为函数在定义域上的最大值.最大值是相对函数定义域整体而言的,如果存在最大值,那么最大值惟一.(2)如果在函数定义域I内存在x0,使得对任意的x∈I,总有f(x)≥f(x0),则称f(x0)为函数在定义域上的最小值.最小值是相对函数定义域整体而言的,如果存在最小值,那么最小值惟一.2.求f(x)在区间[a,b]上的最大值与最小值的步骤(1)求f(x)在区间(a,b)上的极值;(2)将第(1)步中求得的极值与f(a),f(b)比较,得到f(x)在区间[a,b]上的最大值与最小值.1.函数的最值是一个整体性的概念.函数极值是在局部上对函数值的比较,具有相对性;而函数的最值则是表示函数在整个定义域上的情况,是对整个区间上的函数值的比较.2.函数在一个闭区间上若存在最大值或最小值,则最大值或最小值只能各有一个,具有惟一性,而极大值和极小值可能多于一个,也可能没有,例如:常数函数就既没有极大值也没有极小值.3.极值只能在区间内取得,最值则可以在端点处取得,有极值的不一定有最值,有最值的也未必有极值;极值有可能成为最值,最值只要不在端点处取必定是极值.[对应学生用书P19][例1][思路点拨]求f x→令f x=0得到相应的x的值→列表→确定函数取极值的点→求极值与端点处的函数值→比较大小确定最值[精解详析] f′(x)=-4x3+4x,令f′(x)=-4x(x+1)(x-1)=0,得x=-1,x=0,x=1.当x变化时,f′(x)及f(x)的变化情况如下表:所以当x=-3时,f(x)取最小值-60;当x=-1或x=1时,f(x)取最大值4.[一点通] 求函数的最值需要注意的问题:(1)用导数求函数的最值与求函数的极值方法类似,在给定区间是闭区间时,极值要和区间端点的函数值进行比较,并且要注意取极值的点是否在区间内;(2)当函数多项式的次数大于2或用传统方法不易求解时,可考虑用导数的方法求解.1.已知函数f(x)=x3-12x+8在区间[-3,3]上的最大值与最小值分别为M,m.则M-m=________.解析:令f′(x)=3x2-12=0,解得x=±2.计算f(-3)=17,f(-2)=24,f(2)=-8,f(3)=-1,所以M=24,m=-8,故M-m=32.答案:322.求函数f(x)=e x(3-x2)在区间[2,5]上的最值.解:∵f(x)=3e x-e x x2,∴f′(x)=3e x-(e x x2+2e x x)=-e x(x2+2x-3)=-e x(x+3)(x-1),∵在区间[2,5]上,f′(x)=-e x(x+3)(x-1)<0,即函数f(x)在区间[2,5]上是单调递减函数,∴x=2时,函数f(x)取得最大值f(2)=-e2;x =5时,函数f (x )取得最小值f (5)=-22e 5.[例2] 3,最小值为-29,求a ,b 的值.[思路点拨] 根据导数与单调性之间的关系求解,由于f (x )既有最大值,又有最小值,因此a ≠0,要注意对参数的取值情况进行讨论.[精解详析] 由题设知a ≠0,否则f (x )=b 为常数函数,与题设矛盾. 取导得f ′(x )=3ax 2-12ax =3ax (x -4). 令f ′(x )=0,得x 1=0,x 2=4(舍). (1)∵当a >0时,如下表:∴当x =0时,f (x )取得最大值,f (0)=3,∴b =3. 又f (-1)=-7a +3>f (2)=-16a +3, ∴最小值f (2)=-16a +3=-29,a =2. (2)∵当a <0时,如下表:∴当x =0时,f (x )取得最小值, ∴b =-29.又f (-1)=-7a -29<f (2)=-16a -29, ∴最大值f (2)=-16a -29=3,a =-2.综上,⎩⎪⎨⎪⎧a =2,b =3或⎩⎪⎨⎪⎧a =-2,b =-29.[一点通] 解决由函数的最值来确定参数问题的关键是利用函数的单调性确定某些极值就是函数的最值,同时由于系数a 的符号对函数的单调性有直接的影响,其最值也受a的符号的影响,因此,需要进行分类讨论.本题是运用最值的定义,从逆向出发,由已知向未知转化,通过待定系数法,列出相应的方程,从而得出参数的值.3.已知函数f (x )=12x 2-a ln x ,a ∈R .(1)若a =2,求函数在点(1,f (1))处的切线方程; (2)求f (x )在区间[1,e]上的最小值. 解:(1)a =2时,f (x )=12x 2-2ln x ,f (1)=12,f ′(x )=x -2x,f ′(1)=-1,故切线方程为y -12=-(x -1),即2x +2y -3=0.(2)依题意,x >0,f ′(x )=x -a x =1x(x 2-a ),①a ≤1时,因为x ∈[1,e],1≤x 2≤e 2,所以f ′(x )≥0(当且仅当x =a =1时等号成立),所以f (x )在区间[1,e]上单调递增,最小值为f (1)=12.②a ≥e 2时,因为1≤x 2≤e 2,所以f ′(x )≤0(当且仅当x =e ,a =e 2时等号成立),所以f (x )在区间[1,e]上单调递减,最小值为f (e)=12e 2-a .③1<a <e 2时,解f ′(x )=1x(x 2-a )=0得x =±a (负值舍去),f ′(x )的符号和f (x )的单调性如下表:f (x )在区间[1,e]上的最小值为f ()a =12a -12a ln a .综上所述,a ≤1时,f (x )的最小值为f (1)=12;1<a <e 2时,f (x )的最小值为f ()a =12a -12a ln a ;a ≥e 2时,f (x )的最小值为f (e)=12e 2-a .4.已知函数f (x )=ax 2+1(a >0),g (x )=x 3+bx .(1)若曲线y =f (x )与曲线y =g (x )在它们的交点(1,c )处具有公共切线,求a ,b 的值; (2)当a =3,b =-9时,若函数f (x )+g (x )在区间[k,2]上的最大值为28,求k 的取值范围.解:(1)f ′(x )=2ax ,g ′(x )=3x 2+b .因为曲线y =f (x )与曲线y =g (x )在它们的交点(1,c )处具有公共切线,所以f (1)=g (1),且f ′(1)=g ′(1),即a +1=1+b ,且2a =3+b , 解得a =3,b =3.(2)记h (x )=f (x )+g (x ),当a =3,b =-9时,h (x )=x 3+3x 2-9x +1, h ′(x )=3x 2+6x -9.令h ′(x )=0,得x 1=-3,x 2=1.h (x )与h ′(x )在(-∞,2]上的变化情况如下:由此可知:当k ≤-3时,函数h (x )在区间[k,2]上的最大值为h (-3)=28; 当-3<k <2时,函数h (x )在区间[k,2]上的最大值小于28. 因此,k 的取值范围是(-∞,-3].[例3] (1)求f (x )的最小值h (t );(2)若h (t )<-2t +m ,对t ∈(0,2)恒成立,求实数m 的取值范围. [思路点拨] (1)可通过配方求函数f (x )的最小值;(2)h (t )<-2t +m ,即m >h (t )+2t 恒成立,从而可转化为求h (t )+2t 的最大值问题解决.[精解详析] (1)∵f (x )=t (x +t )2-t 3+t -1(x ∈R ,t >0),∴当x =-t 时,f (x )取得最小值f (-t )=-t 3+t -1,即h (t )=-t 3+t -1. (2)令g (t )=h (t )+2t =-t 3+3t -1. 则g ′(t )=-3t 2+3=-3(t -1)(t +1). 令g ′(t )=0,得t 1=1,t 2=-1(舍去). 列表:由表可知,g (t )在(0,2)内有最大值1.∵h (t )<-2t +m 在(0,2)恒成立等价于m >g (t )在(0,2)内恒成立. ∴m >1.即实数m 的取值范围是(1,+∞).[一点通] 有关恒成立问题,一般是转化为求函数的最值问题.求解时要确定这个函数,看哪一个变量的范围已知,即函数是以已知范围的变量为自变量的函数.一般地,λ≥f (x )恒成立⇔λ≥[f (x )]max ;λ≤f (x )恒成立⇔λ≤[f (x )]min .5.已知g (x )=ln x -a ,若g (x )<x 2在(0,e]上恒成立,求a 的取值范围. 解:g (x )<x 2即ln x -a <x 2,所以a >ln x -x 2,故g (x )<x 2在(0,e]上恒成立也就是a >ln x -x 2在(0,e]上恒成立. 设h (x )=ln x -x 2,则h ′(x )=1x -2x =1-2x 2x,由h ′(x )=0及0<x ≤e 得x =22. 当0<x <22时h ′(x )>0,当22<x ≤e 时h ′(x )<0, 即h (x )在⎝ ⎛⎭⎪⎫0,22上为增函数,在⎝ ⎛⎦⎥⎤22,e 上为减函数, 所以当x =22时h (x )取得最大值为h ⎝ ⎛⎭⎪⎫22=ln 22-12. 所以g (x )<x 2在(0,e]上恒成立时,a 的取值范围为⎝ ⎛⎭⎪⎫ln22-12,+∞. 6.设函数f (x )=e x-ax -2. (1)求f (x )的单调区间;(2)若a =1,k 为整数,且当x >0时,(x -k )f ′(x )+x +1>0,求k 的最大值. 解:(1)f (x )的定义域为(-∞,+∞),f ′(x )=e x-a . 若a ≤0,则f ′(x )>0,所以f (x )在(-∞,+∞)上单调递增. 若a >0,则当x ∈(-∞,ln a )时,f ′(x )<0; 当x ∈(ln a ,+∞)时,f ′(x )>0, 所以,f (x )在(-∞,ln a )上单调递减, 在(ln a ,+∞)上单调递增. (2)由于a =1,所以(x -k )f ′(x )+x +1=(x -k )(e x-1)+x +1. 故当x >0时,(x -k )f ′(x )+x +1>0等价于k <x +1e x-1+x (x >0).① 令g (x )=x +1e x -1+x ,则g ′(x )=-x e x-1x -2+1=exx -x -x-2. 由(1)知,函数h (x )=e x-x -2在(0,+∞)上单调递增.而h (1)<0,h (2)>0,所以h (x )在(0,+∞)上存在惟一的零点.故g ′(x )在(0,+∞)上存在惟一的零点.设此零点为α,则α∈(1,2).当x ∈(0,α)时,g ′(x )<0;当x ∈(α,+∞)时,g ′(x )>0.所以g (x )在(0,+∞)上的最小值为g (α).又由g ′(α)=0,可得e α=α+2,所以g (α)=α+1∈(2,3). 由于①式等价于k <g (α),故整数k 的最大值为2.1.函数的最大值与最小值:在闭区间[a ,b ]上连续的函数f (x )在[a ,b ]上必有最大值与最小值;但在开区间(a ,b )内连续的函数f (x )不一定有最大值与最小值.例如:函数f (x )=1x在(0,+∞)上连续,但没有最大值与最小值.2.设函数f (x )在[a ,b ]上连续,在(a ,b )内可导,求f (x )在[a ,b ]上的最大值和最小值的步骤如下(1)求f (x )在(a ,b ) 内的极值.(2)将f (x )的各极值与f (a ),f (b )比较,确定f (x )的最大值与最小值. 3.求实际问题的最大值(最小值)的方法在实际问题中,如果函数在区间内只有一个极值点,那么只要根据实际意义判定是最大值还是最小值即可,不必再与端点的函数值比较.[对应课时跟踪训练(八)]一、填空题1.函数f (x )=x -sin x ,x ∈⎣⎢⎡⎦⎥⎤π2,π的最大值是________.解析:∵f (x )=x -sin x ,∴f ′(x )=1-cos x ≥0.∴函数f (x )=x -sin x 在⎣⎢⎡⎦⎥⎤π2,π上为单调增函数, ∴当x =π时,f (x )取最大值π. 答案:π2. 函数y =ln xx的最大值为________.解析:y ′=xx -ln x ·x ′x 2=1-ln xx 2,令y ′=0,则x =e.因此函数f (x )的最大值为f (e)=1e .答案:1e3.函数f (x )=x ·e -x,x ∈[0,4]的最小值为________. 解析:f ′(x )=e -x-x ·e -x=e -x(1-x ), 令f ′(x )=0,得x =1.而f (0)=0,f (1)=1e ,f (4)=4e 4.因此函数f (x )的最小值为0. 答案:04.已知函数y =-x 2-2x +3在[a,2]上的最大值为154,则a =________.解析:y ′=-2x -2,令y ′=0,得x =-1. 而f (-1)=-1+2+3=4≠154,∴a >-1. 而f (2)=-4-4+3=-5, 因此f (a )=-a 2-2a +3=154,解得a =-32(舍去)或a =-12.答案:-125.函数f (x )=ax 4-4ax 3+b (a >0)在[1,4])上的最大值为3,最小值为-6,则a +b =________.解析:f ′(x )=4ax 3-12ax 2(a >0,x ∈[1,4]).由f ′(x )=0,得x =0(舍),或x =3,可得x =3时,f (x )取到最小值为b -27a . 又f (1)=b -3a ,f (4)=b , 因此f (4)为最大值.由⎩⎪⎨⎪⎧b =3,b -27a =-6.解得⎩⎪⎨⎪⎧a =13,b =3.所以a +b =103.答案:103二、解答题6.已知函数f (x )=a ln x +1(a >0).(1)若a =2,求函数f (x )在(e ,f (e))处的切线方程;(2)当x >0时,求证:f (x )-1≥a ⎝⎛⎭⎪⎫1-1x .解:(1)当a =2时,f (x )=2ln x +1,f ′(x )=2x ,f (e)=3,k =f ′(e)=2e, 所以函数f (x )在(e ,f (e))处的切线方程为 y -3=2e(x -e),即2x -e y +e =0. (2)令g (x )=f (x )-1-a ⎝ ⎛⎭⎪⎫1-1x =a ln x -a ⎝ ⎛⎭⎪⎫1-1x (x >0), 则g ′(x )=a x -ax 2=a x -x 2,由g ′(x )=0,得x =1.当0<x <1时,g ′(x )<0,g (x )在(0,1)上单调递减;当x >1时,g ′(x )>0,g (x )在(1,+∞)上单调递增.所以g (x )在x =1处取得极小值,也是最小值.因此g (x )≥g (1)=0,即f (x )-1≥a ⎝ ⎛⎭⎪⎫1-1x . 7.已知函数f (x )=-x 3+3x 2+9x +a .(1)求f (x )的单调递减区间;(2)若f (x )在区间[-2,2]上的最大值为20,求它在该区间上的最小值.解:(1)f ′(x )=-3x 2+6x +9=-3(x 2-2x -3)=-3(x +1)(x -3).令f ′(x )<0,则-3(x +1)(x -3)<0,解得x <-1或x >3.∴函数f (x )的单调递减区间为(-∞,-1),(3,+∞).(2)结合(1),令f ′(x )=0,得x =-1或x =3.又∵x ∈[-2,2],∴x =-1.当-2<x <-1时,f ′(x )<0;当-1<x <2时,f ′(x )>0.∴x =-1是函数f (x )的极小值点,该极小值也就是函数f (x )在[-2,2]上的最小值, 即f (x )min =f (-1)=a -5.又函数f (x )的区间端点值为f (2)=-8+12+18+a =a +22,f (-2)=8+12-18+a =a +2.∵a +22>a +2,∴f (x )max =a +22=20,∴a =-2.此时f (x )min =a -5=-2-5=-7.8.已知函数f (x )=ax 4ln x +bx 4-c (x >0)在x =1处取得极值-3-c ,其中a ,b ,c 为常数.若对任意x >0,不等式f (x )≥-2c 2恒成立,求c 的取值范围.解:由题意知f (1)=-3-c .因此b -c =-3-c ,从而b =-3.对f (x )求导,得f ′(x )=4ax 3ln x +ax 4×1x+4bx 3=x 3(4a ln x +a +4b ). 由题意知f ′(1)=0,得a +4b =0,解得a =12.因为f ′(x )=48x 3ln x (x >0),令f ′(x )=0,解得x =1.当0<x <1时,f ′(x )<0,此时f (x )为减函数;当x >1时,f ′(x )>0,此时f (x )为增函数.所以f (x )在x =1处取得极小值f (1)=-3-c ,并且此极小值也是最小值.所以要使f (x )≥-2c 2(x >0)恒成立,只需-3-c ≥-2c 2即可.整理得2c 2-c -3≥0,解得c ≥32或c ≤-1. 所以c 的取值范围为(-∞,-1]∪⎣⎢⎡⎭⎪⎫32,+∞.。

高中数学第一章导数及其应用1.3导数在研究函数中的作用1.3.3极大值与极小值(2)学案苏教版选修2_2

高中数学第一章导数及其应用1.3导数在研究函数中的作用1.3.3极大值与极小值(2)学案苏教版选修2_2

极大值与极小值(2)教学过程一、问题情境问题1已知f(x)=x3-3x2-9x+11.(1) 写出函数f(x)的单调区间;(2) 讨论函数f(x)的极值.[规范板书]解f'(x)=3(x+1)(x-3),令f'(x)=0,得x1=-1,x2=3.(1) 单调递减区间为(-1,3),单调递增区间为(-∞,-1),(3,+∞).(2) 极大值为f(-1)=16,极小值为f(3)=-16.二、数学建构问题2你能作出上述函数f(x)=x3-3x2-9x+11的草图吗?[2]问题3你能从图上看出函数的哪些性质?[3]问题4你能对引例1进行变式,得到新的问题吗?[4]三、数学运用【例1】已知f(x)=x3-3x2-9x+11,设a为实数,函数g(x)=f(x)+a, 求a的取值范围,使曲线y=g(x)与x轴:(1) 有1个交点;(2) 恰有2个交点;(3) 有3个交点.(见学生用书P21)[处理建议]由学生讨论、研究,并适当地变题,呈现结论.[规范板书]解(1) 曲线y=g(x)与x轴仅有1个交点,即g(x)极小值>0,或者g(x)极大值<0,由问题1得-16+a>0或16+a<0,即a>16或a<-16.(2) a=±16.(3) -16<a<16.[题后反思]有效利用图形语言,并强调解题的规范性.【例2】若函数f(x)=x3-3x2-9x+11,根据下列条件,分别求实数t的取值范围:(1) f(x)在区间(t,t+2)上单调递减;(2) f(x)在区间(t,t+2)上单调递增.(见学生用书P22)[处理建议]先由学生口答,教师在学生中交流,了解学生的思考过程,投影学生的解题过程,纠正出现的错误.[规范板书]解(1) 由前知所以-1≤t≤1.(2) 由问题1知t≥3或t+2≤-1,即t≤-3或t≥3.[题后反思]若函数f(x)=x3-3x2-9x+11在区间(t,t+2)上不单调,你能否求出实数t的取值范围?*【例3】已知x=1是函数f(x)=mx3-3(m+1)x2+nx+1的一个极值点,其中m,n∈R,m≠0.(1) 求m与n的关系表达式;(2) 求f(x)的单调区间.[规范板书]解(1) f'(x)=3mx2-6(m+1)x+n,由f'(1)=0得n=3m+6.(2) 由(1)得f'(x)=3mx2-6(m+1)x+3m+6=3m(x-1).当m>0时,单调递增区间为(-∞,1),,单调递减区间为.当m<0时,单调递增区间为,单调递减区间为,(1,+∞).[题后反思]此题是逆向思维题,已知极值求参数的值,解题时充分利用f'(x)=0,同时注意单调性对极值的限制.根据导数法解决函数的单调性和极值问题,具有一般性,解题时强调解题的规范性.*【例4】探究函数g(x)=-ax(x>0)的单调性和极值.[规范板书]解g'(x)=-a,x>0.当a≤0时,g'(x)>0,单调递增区间为(0,+∞),函数无极值;当a>0时,令g'(x)>0,即-a>0,解得0<x<;令g'(x)<0,即-a<0,解得x>.所以单调递增区间为,单调递减区间为.所以函数极大值为f=.四、课堂练习1.设a∈R,若函数y=e x+ax(x∈R)有大于0的极值点,则实数a的取值范围为(-∞,-1).2.若函数f(x)=-x3+ax2+1(a∈R)在(-2,3)内有2个不同的极值点,求实数a的取值范围.解f'(x)=-3x2+2ax.由题意知f'(x)在(-2,3)上有两个不同的实数解,解得a∈(-3,0)∪.五、课堂小结1.用导数处理函数极值中的参数讨论问题,主要有两类运用:一是对导数等于0的根的讨论,二是关于单调区间的判断的问题.2.注意领会分类讨论的思想、数形结合的思想、函数和方程的思想在解题中的灵活运用.。

1.3导数在研究函数中的应用教学设计教案

1.3导数在研究函数中的应用教学设计教案

1.3导数在研究函数中的应用教学设计教案第一篇:1.3导数在研究函数中的应用教学设计教案教学准备1.教学目标(1)使学生理解函数的最大值和最小值的概念,能区分最值与极值的概念(2)使学生掌握用导数求函数最值的方法和步骤2.教学重点/难点【教学重点】:利用导数求函数的最大值和最小值的方法.【教学难点】:函数的最大值、最小值与函数的极大值和极小值的区别与联系.熟练计算函数最值的步骤3.教学用具多媒体4.标签1.3.3函数的最大(小)值与导数教学过程第二篇:3.3 导数在研究函数中的应用教学设计教案教学准备1.教学目标知识与技能1.正确理解利用导数判断函数的单调性的原理;2.掌握利用导数判断函数单调性的方法。

过程与方法通过知识的探究过程培养学生细心观察、认真分析、严密推理的良好思维习惯,让学生感知从具体到抽象、从特殊到一般、从感性到理性的认知过程.情感、态度与价值观通过在教学过程中让学生多动手、多观察、勤思考、善总结,引导学生养成自主学习的学习习惯.2.教学重点/难点教学重点探索并应用函数的单调性与导数的关系求单调区间;教学难点探索函数的单调性与导数的关系。

3.教学用具多媒体4.标签教学过程教学过程设计复习引入请同学们思考函数单调性的概念?函数 y = f(x)在给定区间 D上,D=(a , b)当 x1、x 2 ∈D且 x 1< x 2 时①都有 f(x 1)< f(x 2),则 f(x)在D上是增函数;②都有 f(x 1)>f(x 2),则 f(x)在D上是减函数;若f(x)在D上是增函数或减函数,D称为单调区间,则f(x)在D 上具有严格的单调性。

【师】判断函数单调性有哪些方法?①定义法;②图象法;③已知函数以前,我们主要采用定义法去判断函数的单调性.在函数y=f(x)比较复杂的情况下,比较f(x1)与f(x2)的大小并不容易.如果利用导数来判断函数的单调性就比较简单.让学生自由发言,教师不急于下结论,而是继续引导学生:欲知结论怎样,让我们一起来观察、研探。

函数最大(小)值与导数教案

函数最大(小)值与导数教案

函数最大(小)值与导数教案一、教学目标1. 让学生理解函数最大值和最小值的概念,知道它们在数学分析中的重要性。

2. 引导学生掌握利用导数求函数最大值和最小值的方法。

3. 培养学生运用数学知识解决实际问题的能力。

二、教学内容1. 函数最大值和最小值的概念。

2. 利用导数求函数最大值和最小值的方法。

3. 实际例子中的应用。

三、教学方法采用讲解、演示、练习、讨论相结合的方法,让学生在理解函数最大值和最小值的概念的基础上,学会利用导数求解实际问题。

四、教学步骤1. 引入函数最大值和最小值的概念,通过图形和实际例子让学生直观地理解。

2. 讲解利用导数求函数最大值和最小值的方法,引导学生掌握判断极值点和确定最大值、最小值的方法。

3. 布置练习题,让学生巩固所学知识。

4. 通过讨论,让学生理解在实际问题中如何运用函数最大值和最小值。

五、课后作业1. 复习本节课所学内容,整理笔记。

2. 完成课后练习题,加深对函数最大值和最小值以及导数的应用的理解。

3. 选择一个实际问题,尝试运用函数最大值和最小值的知识进行解决。

六、教学评价通过课堂表现、课后作业和练习题的成绩,评价学生对函数最大值和最小值以及导数求解方法的掌握程度。

七、教学资源1. 教学PPT。

2. 课后练习题及答案。

3. 实际问题案例。

八、教学时长1课时(40分钟)九、教学难点1. 函数最大值和最小值的概念。

2. 利用导数求函数最大值和最小值的方法。

十、教学准备1. 提前准备教学PPT。

2. 准备课后练习题及答案。

3. 收集实际问题案例。

六、教学拓展1. 引导学生思考:在求函数最大值和最小值时,还有哪些方法可以运用?2. 讲解其他求解函数最大值和最小值的方法,如构造法、函数图像分析法等。

3. 对比各种方法的应用范围和优缺点,让学生学会选择合适的方法解决问题。

七、教学实践1. 安排一次课堂实践,让学生分组讨论并解决一个实际问题。

2. 各组汇报讨论成果,教师进行点评和指导。

高中数学第一章导数及其应用1_3导数在研究函数中的作用1_3_2极大值与极小值教学案苏教版

高中数学第一章导数及其应用1_3导数在研究函数中的作用1_3_2极大值与极小值教学案苏教版

1.3.2 极大值与极小值[对应学生用书P16]已知y=f(x)的图象(如图).问题1:当x=a时,函数值f(a)有何特点?提示:在x=a的附近,f(a)最小,f(a)并不一定是y=f(x)的最小值.问题2:当x=b时,函数值f(b)有何特点?提示:在x=b的附近,f(b)最大,f(b)并不一定是y=f(x)的最大值.1.观察下图中的函数图象,发现函数图象在点P处从左侧到右侧由“上升”变为“下降”(函数由单调递增变为单调递减),这时在点P附近,点P的位置最高,亦即f(x1)比它附近点的函数值都要大,我们称f(x1)为函数f(x)的一个极大值.2.类似地,上图中f(x2)为函数的一个极小值.3.函数的极大值、极小值统称为函数的极值.观察图(Ⅰ).问题1:试分析在函数取得极大值的x1的附近左右两侧导数的符号有什么变化?提示:左侧导数大于0,右侧导数小于0.问题2:试分析在函数取得极小值的x2的附近左右两侧导数的符号有什么变化?提示:左侧导数小于0,右侧导数大于0.1.极大值与导数之间的关系如下表:增减2.极小值与导数之间的关系如下表:减增1.极值是一个局部概念,它只是某个点的函数值与它附近的函数值比较是最大或最小,并不意味着它在整个定义域内是最大或最小.2.函数的极值并不惟一(如图所示).3.极大值和极小值之间没有确定的大小关系,如图所示,f (x 1)是极大值,f (x 4)是极小值,而f (x 4)>f (x 1).[对应学生用书P17][例1] (1)f (x )=x 3-3x 2-9x +5; (2)f (x )=ln x x.[思路点拨] 按求函数极值的步骤求解,要注意函数的定义域.[精解详析] (1)函数f (x )=x 3-3x 2-9x +5的定义域为R ,且f ′(x )=3x 2-6x -9.解方程3x 2-6x -9=0,得x 1=-1,x 2=3.当x 变化时,f ′(x )与f (x )的变化情况如下表:因此,函数f (x )的极大值为f (-1)=10; 极小值为f (3)=-22.(2)函数f (x )=ln x x的定义域为(0,+∞),且f ′(x )=1-ln x x2. 令f ′(x )=0,解得x =e.当x 变化时,f ′(x )与f (x )的变化情况如下表:因此函数f (x )的极大值为f (e)=e ,没有极小值.[一点通] (1)求可导函数极值的步骤: ①求导数f ′(x ); ②求方程f ′(x )=0的根;③检查f ′(x )的值在方程f ′(x )=0的根左右的符号,如果左正右负,那么f (x )在这个根处取得极大值;如果左负右正,那么f (x )在这个根处取得极小值.(2)注意事项:①不要忽视函数的定义域;②要正确地列出表格,不要遗漏区间和分界点.1.函数f (x )的定义域为开区间(a ,b ),导函数f ′(x )在(a ,b )内的图象如图所示,则函数f (x )在开区间(a ,b )内有________个极小值.解析:由图可知,在区间(a ,x 1),(x 2,0),(0,x 3)内f ′(x )>0; 在区间(x 1,x 2),(x 3,b )内f ′(x )<0. 即f (x )在(a ,x 1)内单调递增, 在(x 1,x 2)内单调递减, 在(x 2,x 3)内单调递增, 在(x 3,b )内单调递减.所以,函数f (x )在开区间(a ,b )内只有一个极小值, 极小值为f (x 2). 答案:12.关于函数f (x )=x 3-3x 2有下列命题,其中正确命题的序号是________.①f (x )是增函数;②f (x )是减函数,无极值;③f (x )的增区间是(-∞,0)和(2,+∞),减区间为(0,2);④f (0)=0是极大值,f (2)=-4是极小值.解析:f ′(x )=3x 2-6x ,令f ′(x )=0,则x =0或x =2. 易知当x ∈(-∞,0)时,f ′(x )>0; 当x ∈(0,2)时,f ′(x )<0; 当x ∈(2,+∞)时,f ′(x )>0.所以f (x )的单调增区间是(-∞,0)和(2,+∞),减区间是(0,2);极大值为f (0),极小值为f (2).答案:③④3.设f (x )=a ln x +12x +32x +1,其中a ∈R ,曲线y =f (x )在点(1,f (1))处的切线垂直于y 轴.(1)求a 的值;(2)求函数f (x )的极值.解:(1)因f (x )=a ln x +12x +32x +1,故f ′(x )=a x -12x 2+32. 由于曲线y =f (x )在点(1,f (1))处的切线垂直于y 轴,故该切线斜率为0,即f ′(1)=0,从而a -12+32=0,解得a =-1.(2)由(1)知f (x )=-ln x +12x +32x +1(x >0), f ′(x )=-1x -12x +32=3x 2-2x -12x=x +x -2x.令f ′(x )=0,解得x 1=1,x 2=-13(因x 2=-13不在定义域内,舍去).当x ∈(0,1)时,f ′(x )<0,故f (x )在(0,1)上为减函数; 当x ∈(1,+∞)时,f ′(x )>0, 故f (x )在(1,+∞)上为增函数. 故f (x )在x =1处取得极小值f (1)=3.[例2] 已知f b 的值.[思路点拨] 解答本题可先求f ′(x ),利用x =-1时有极值0这一条件建立关于a ,b 的方程组.解方程组可得a ,b 的值,最后将a ,b 代入原函数验证极值情况.[精解详析] ∵f (x )在x =-1时有极值0且f ′(x )=3x 2+6ax +b ,∴⎩⎪⎨⎪⎧f-=0,f -=0,即⎩⎪⎨⎪⎧3-6a +b =0,-1+3a -b +a 2=0.解得⎩⎪⎨⎪⎧a =1,b =3或⎩⎪⎨⎪⎧a =2,b =9.当a =1,b =3时,f ′(x )=3x 2+6x +3=3(x +1)2≥0,所以f (x )在R 上为增函数,无极值,故舍去. 当a =2,b =9时,f ′(x )=3x 2+12x +9=3(x +1)(x +3).当x ∈(-∞,-3)时,f (x )为增函数; 当x ∈(-3,-1)时,f (x )为减函数; 当x ∈(-1,+∞)时,f (x )为增函数.所以f (x )在x =-1时取得极小值,因此a =2,b =9.[一点通] 已知函数极值情况,逆向应用确定函数的解析式,进而研究函数性质时,注意两点:(1)常根据取极值点处导数为0和极值两个条件列方程组,利用待定系数法求解. (2)因为导数值等于零不是此点取极值的充要条件,所以利用待定系数法求解后必须验证根的合理性.4.已知函数f (x )=x 3+ax 2+bx +a 2在x =1处有极值为10,则ab =________. 解析:f ′(x )=3x 2+2ax +b ,由题意可知:⎩⎪⎨⎪⎧f=0,f =10,即⎩⎪⎨⎪⎧2a +b +3=0,a 2+a +b +1=10,得⎩⎪⎨⎪⎧a =4b =-11或⎩⎪⎨⎪⎧a =-3,b =3.当a =-3,b =3时,f ′(x )=3x 2-6x +3=3(x -1)2,易知在x =1的左右两侧都有f ′(x )>0, 即函数f (x )在R 上是单调递增的, 因此f (x )在x =1处并不存在极值,故⎩⎪⎨⎪⎧a =4,b =-11.ab =-44.答案:-445.已知函数y =3x -x 3+m 的极大值为10,则m 的值为________ . 解析:y ′=3-3x 2=3(1+x )(1-x ), 令y ′=0得x 1=-1,x 2=1,经判断知极大值为f (1)=2+m =10,m =8. 答案:86.已知函数f (x )=ax 3+bx 2-3x 在x =±1处取得极值.讨论f (1)和f (-1)是函数f (x )的极大值还是极小值.解:∵f ′(x )=3ax 2+2bx -3,依题意,f ′(1)=f ′(-1)=0,即⎩⎪⎨⎪⎧3a +2b -3=0,3a -2b -3=0.解得a =1,b =0,∴f (x )=x 3-3x , ∴f ′(x )=3x 2-3=3(x +1)(x -1), 令f ′(x )=0,得x =-1,x =1,所以f (-1)=2是极大值,f (1)=-2是极小值.[例3] 已知a (1)求函数f (x )的极值,并画出其图象(草图); (2)当a 为何值时,方程f (x )=0恰好有两个实数根? [精解详析] (1)由f (x )=-x 3+3x +a , 得f ′(x )=-3x 2+3,令f ′(x )=0,得x =-1或x =1.当x ∈(-∞,-1)时,f ′(x )<0;当x ∈(-1,1)时,f ′(x )>0; 当x ∈(1,+∞)时,f ′(x )<0.所以函数f (x )的极小值为f (-1)=a -2; 极大值为f (1)=a +2.由单调性、极值可画出函数f (x )的大致图象,如图所示.这里,极大值a +2大于极小值a -2.(2)结合图象,当极大值a +2=0或极小值a -2=0时,曲线f (x )与x 轴恰有两个交点,即方程f (x )=0恰有两个实数根.综上,当a =±2时,方程恰有两个实数根.[一点通] 极值问题的综合应用主要涉及极值的正用和逆用,以及与单调性问题的综合,题目着重考查已知与未知的转化,以及函数与方程的思想、分类讨论的思想在解题中的应用,在解题过程中,熟练掌握单调区间问题以及极值问题的基本解题策略是解决综合问题的关键.7.在例3中当a 在什么范围内取值时,曲线y =f (x ) 与x 轴仅有一个交点? 解:函数f (x )的大致图象如图所示:当函数f (x )的极大值a +2<0或极小值a -2>0时,曲线y =f (x )与x 轴仅有一个交点,所以所求实数a 的范围是a <-2或a >2.8.已知x =3是函数f (x )=a ln(1+x )+x 2-10x 的一个极值点. (1)求a ;(2)求函数f (x )的单调区间;(3)若直线y =b 与函数y =f (x )的图象有3个交点,求b 的取值范围. 解:(1)因为f ′(x )=a1+x +2x -10,所以f ′(3)=a4+6-10=0,因此a =16.(2)由(1)知,f (x )=16ln(1+x )+x 2-10x ,x ∈(-1,+∞). f ′(x )=x 2-4x +1+x,当x ∈(-1,1)∪(3,+∞)时,f ′(x )>0,当x ∈(1,3)时,f ′(x )<0,所以f (x )的单调增区间是(-1,1)和(3,+∞),f (x )的单调减区间是(1,3). (3)由(2)知,f (x )在(-1,1)内单调递增,在(1,3)内单调递减,在(3,+∞)上单调递增,且当x =1或x =3时,f ′(x )=0,所以f (x )的极大值为f (1)=16ln 2-9, 极小值为f (3)=32ln 2-21,所以要使直线y =b 与y =f (x )的图象有3个交点,当且仅当f (3)<b <f (1). 因此b 的取值范围为(32ln 2-21,16ln 2-9).根据可导函数极值的定义、方法、步骤,要弄清以下几点:(1)极大(小)值未必是最大(小)值,可以有多个数值不同的极大(小)值; (2)极大(小)值是局部充分小的领域内的最大(小)值;(3)极大(小)值只能在区间的内点取得,常数函数没有极大值,也没有极小值;(4)f′(x0)=0只是可导函数f(x)在x0取得极值的必要条件,不是充分条件.[对应课时跟踪训练(七)]一、填空题1.已知函数f(x)的定义域为(a,b),导函数f′(x)在区间(a,b)上的图象如图所示,则函数y=f(x)在(a,b)上极大值点的个数为________.解析:极大值点在导函数f′(x0)=0处,且满足x0左侧为正,右侧为负,由图象知有3个.答案:32.(新课标全国卷Ⅰ改编)函数f(x) 在x=x0处导数存在.若p:f′(x0)=0;q:x=x0是f(x)的极值点,则p是q的________条件.解析:设f(x)=x3,f′(0)=0,但是f(x)是单调增函数,在x=0处不存在极值,故若p则q是一个假命题,由极值的定义可得若q则p是一个真命题.故p是q的必要不充分条件.答案:必要不充分3.若函数f(x)=x·2x在x0处有极小值,则x0=________.解析:f′(x)=2x+x·2x ln 2,令f′(x)=0,得x=-1ln 2.答案:-1ln 24.设a∈R,若函数y=e ax+3x,x∈R取极值的点大于0,则a的取值范围是________.解析:令x=f(x),则f′(x)=a e ax+3,函数f(x)取极值的点大于0,即f′(x)=a e ax+3=0有正根.当f′(x)=a e ax+3=0成立时,显然有a<0,此时x =1a ln ⎝ ⎛⎭⎪⎫-3a ,由x >0可得a <-3. 答案:(-∞,-3)5.(福建高考改编)设函数f (x )的定义域为R ,x 0(x 0≠0)是f (x )的极大值点,以下结论一定正确的是________.①∀x ∈R ,f (x )≤f (x 0); ②-x 0是f (-x )的极小值点; ③-x 0是-f (x )的极小值点; ④-x 0是-f (-x )的极小值点. 解析:不妨取函数f (x )=x 3-x ,则x =-33为f (x )的极大值点,但f (3)>f ⎝ ⎛⎭⎪⎫-33,∴排除①;取函数f (x )=-(x -1)2,则x =1是f (x )的极大值点,但-1不是f (-x )的极小值点,∴排除②;-f (x )=(x -1)2,-1不是-f (x )的极小值点,∴排除③,∵-f (-x )的图象与f (x )的图象关于原点对称,由函数图象的对称性可得-x 0应为函数-f (-x )的极小值点,∴填④.答案:④ 二、解答题6.已知函数f (x )=13x 3-4x +4,求函数的极值,并画出函数的大致图象.解:(1)f ′(x )=x 2-4.解方程x 2-4=0,得x 1=-2,x 2=2.当x 变化时,f ′(x )、f (x )的变化情况如下表:从上表看出,当x =-2时,函数有极大值,且极大值为f (-2)=283;而当x =2时,函数有极小值,且极小值为f (2)=-43.函数f (x )=13x 3-4x +4的图象如图所示.7.已知函数f (x )=x 3-3ax -1,a ≠0.(1)求f (x )的单调区间;(2)若f (x )在x =-1处取得极值,直线y =m 与y =f (x )的图象有三个不同的交点,求m 的取值范围.解:(1)∵f ′(x )=3x 2-3a =3(x 2-a ).当a <0时,对x ∈R ,有f ′(x )>0,∴当a <0时,f (x )的单调增区间为(-∞,+∞);当a >0时,由f ′(x )>0解得x <-a ,或x >a ,由f ′(x )<0解得-a <x <a ,∴当a >0时,f (x )的单调增区间为(-∞,-a ),(a ,+∞),f (x )的单调减区间为(-a ,a ).(2)∵f (x )在x =-1处取得极值, f ′(-1)=3×(-1)2-3a =0.∴a =1.∴f (x )=x 3-3x -1,f ′(x )=3x 2-3.由f ′(x )=0解得x 1=-1,x 2=1,由(1)中f (x )的单调性可知, f (x )在x =-1处取得极大值f (-1)=1,在x =1处取得极小值f (1)=-3.∵直线y =m 与函数y =f (x )的图象有三个不同的交点,结合f (x )的单调性可知m 的取值范围是(-3,1).8.(重庆高考)已知函数f (x )=a e 2x -b e -2x -cx (a ,b ,c ∈R )的导函数f ′(x )为偶函数,且曲线y =f (x )在点(0,f (0))处的切线的斜率为4-c .(1)确定a ,b 的值;(2)若c =3,判断f (x )的单调性;(3)若f (x )有极值,求c 的取值范围.解:(1)对f (x )求导得f ′(x )=2a e 2x +2b e -2x -c ,由f ′(x )为偶函数,知f ′(-x )=f ′(x ),即2(a -b )(e 2x -e -2x )=0,所以a =b .又f ′(0)=2a +2b -c =4-c ,故a =1,b =1.(2)当c =3时,f (x )=e 2x -e-2x -3x ,那么f ′(x )=2e 2x +2e -2x -3≥22e 2x ·2e -2x -3=1>0,故f (x )在R 上为增函数.(3)由(1)知f ′(x )=2e 2x +2e-2x -c , 而2e 2x +2e -2x ≥22e 2x ·2e -2x =4,当x =0时等号成立.下面分三种情况进行讨论.当c <4时,对任意x ∈R ,f ′(x )=2e 2x +2e-2x -c >0,此时f (x )无极值; 当c =4时,对任意x ≠0,f ′(x )=2e 2x +2e-2x -4>0,此时f (x )无极值;当c >4时,令e 2x =t ,注意到方程2t +2t -c =0有两根t 1,2=c ±c 2-164>0, 即f ′(x )=0有两个根x 1=12ln t 1或x 2=12ln t 2. 当x 1<x <x 2时f ′(x )<0;又当x >x 2时,f ′(x )>0,从而f (x )在x =x 2处取得极小值. 综上,若f (x )有极值,则c 的取值范围为(4,+∞).。

函数最大(小)值与导数教案

函数最大(小)值与导数教案

函数最大(小)值与导数教案一、教学目标1. 让学生理解函数的极值概念,掌握函数的极大值和极小值的求法。

2. 引导学生理解导数与函数单调性的关系,能够运用导数判断函数的单调性。

3. 培养学生运用导数解决实际问题的能力,提高学生的数学应用意识。

二、教学内容1. 函数的极值概念2. 函数的极大值和极小值的求法3. 导数与函数单调性的关系4. 运用导数解决实际问题三、教学重点与难点1. 教学重点:函数的极值概念,函数的极大值和极小值的求法,导数与函数单调性的关系。

2. 教学难点:运用导数解决实际问题。

四、教学方法与手段1. 教学方法:采用讲解、演示、练习、讨论相结合的方法。

2. 教学手段:利用多媒体课件辅助教学,结合板书进行讲解。

五、教学安排1课时教案一、导入新课通过复习导数的基本概念,引导学生回顾导数的计算公式,为新课的学习做好铺垫。

二、讲解函数的极值概念1. 定义:如果函数在某一区间内的任意一点的导数都小于(或大于)0,在这个区间内函数是单调递减(或单调递增)的。

2. 极值:在函数的单调区间内,如果函数在某一点取得局部最大值或最小值,这一点称为函数的极大值点或极小值点。

三、讲解函数的极大值和极小值的求法1. 求极值的方法:求出函数的导数,令导数为0,解方程得到可能的极值点。

2. 判断极值点的性质:根据导数的符号变化来判断极值点的性质。

如果导数从正变负,函数在这一点取得极大值;如果导数从负变正,函数在这一点取得极小值。

四、讲解导数与函数单调性的关系1. 单调性判断:如果函数的导数大于0,函数是单调递增的;如果函数的导数小于0,函数是单调递减的。

2. 单调区间:函数的单调递增区间为导数大于0的区间,单调递减区间为导数小于0的区间。

五、运用导数解决实际问题1. 问题提出:如何求解函数在实际问题中的最大值和最小值?2. 方法指导:建立函数模型,求出函数的导数,分析导数的符号变化,找出函数的极值点,根据实际意义选取合适的极值点作为最大值或最小值。

高中数学《导数在研究函数中的应用》教案新人教A版选修

高中数学《导数在研究函数中的应用》教案新人教A版选修

高中数学《导数在研究函数中的应用》教案新人教A版选修教案章节一:导数的概念及计算1. 教学目标(1) 理解导数的定义及其几何意义。

(2) 学会计算常见函数的导数。

(3) 能够运用导数研究函数的单调性。

2. 教学重点与难点(1) 重点:导数的定义,导数的计算。

(2) 难点:导数在研究函数单调性中的应用。

3. 教学过程(1) 导入:回顾函数的图像,引导学生思考如何判断函数的单调性。

(2) 讲解:介绍导数的定义,通过几何意义解释导数表示函数在某点的瞬时变化率。

(3) 练习:计算基本函数的导数,引导学生发现导数的计算规律。

(4) 应用:利用导数判断函数的单调性,举例说明。

4. 课后作业(1) 复习导数的定义及计算方法。

(2) 练习判断给定函数的单调性。

教案章节二:导数在研究函数极值中的应用1. 教学目标(1) 理解极值的概念。

(2) 学会利用导数研究函数的极值。

(3) 能够运用极值解决实际问题。

2. 教学重点与难点(1) 重点:极值的概念,利用导数研究函数的极值。

(2) 难点:实际问题中极值的应用。

3. 教学过程(1) 导入:回顾上一节课的内容,引导学生思考如何利用导数研究函数的极值。

(2) 讲解:介绍极值的概念,讲解如何利用导数求函数的极值。

(3) 练习:举例求解函数的极值,引导学生发现求极值的规律。

(4) 应用:运用极值解决实际问题,如最优化问题。

4. 课后作业(1) 复习极值的概念及求解方法。

(2) 练习求解给定函数的极值。

教案章节三:导数在研究函数凹凸性中的应用1. 教学目标(1) 理解凹凸性的概念。

(2) 学会利用导数研究函数的凹凸性。

(3) 能够运用凹凸性解决实际问题。

2. 教学重点与难点(1) 重点:凹凸性的概念,利用导数研究函数的凹凸性。

(2) 难点:实际问题中凹凸性的应用。

3. 教学过程(1) 导入:回顾上一节课的内容,引导学生思考如何利用导数研究函数的凹凸性。

(2) 讲解:介绍凹凸性的概念,讲解如何利用导数判断函数的凹凸性。

高中数学 第一章 导数及其应用 1.3 导数在研究函数中的应用 1.3.3 函数的最大(小)值与导数

高中数学 第一章 导数及其应用 1.3 导数在研究函数中的应用 1.3.3 函数的最大(小)值与导数

1.3.3 函数的最大(小)值与导数(一)学习目标 1.理解函数最值的概念,了解其与函数极值的区别与联系.2.会求某闭区间上函数的最值.知识点函数的最大(小)值与导数如图为函数y=f(x),x∈[a,b]的图象.思考1 观察区间[a,b]上函数y=f(x)的图象,试找出它的极大值、极小值.答案极大值为f(x1),f(x3),极小值为f(x2),f(x4).思考2 结合图象判断,函数y=f(x)在区间[a,b]上是否存在最大值,最小值?若存在,分别为多少?答案存在,f(x)min=f(a),f(x)max=f(x3).梳理(1)函数的最大(小)值的存在性一般地,如果在区间[a,b]上函数y=f(x)的图象是一条连续不断的曲线,那么它必有最大值和最小值.(2)一般地,求函数y=f(x)在[a,b]上的最大值与最小值的步骤如下:①求函数y=f(x)在(a,b)内的极值;②将函数y=f(x)的各极值与端点处的函数值f(a),f(b)比较,其中最大的一个是最大值,最小的一个是最小值.1.函数的最大值不一定是函数的极大值.( √)2.函数f(x)在区间[a,b]上的最大值与最小值一定在区间端点处取得.( ×)3.有极值的函数一定有最值,有最值的函数不一定有极值.( ×)类型一 求函数的最值命题角度1 利用导数直接求最值 例1 求下列各函数的最值:(1)f (x )=-x 4+2x 2+3,x ∈[-3,2]; (2)f (x )=x 3-3x 2+6x -2,x ∈[-1,1]. 考点 利用导数求函数的最值 题点 利用导数求不含参数函数的最值 解 (1)f ′(x )=-4x 3+4x , 令f ′(x )=-4x (x +1)(x -1)=0,得x =-1,x =0,x =1.当x 变化时,f ′(x )及f (x )的变化情况如下表:∴当x =-3时,f (x )取最小值-60; 当x =-1或x =1时,f (x )取最大值4.(2)f ′(x )=3x 2-6x +6=3(x 2-2x +2)=3(x -1)2+3,∵f ′(x )在[-1,1]内恒大于0,∴f (x )在[-1,1]上为增函数.故当x =-1时,f (x )min =-12;当x =1时,f (x )max =2.即f (x )的最小值为-12,最大值为2.反思与感悟 求解函数在固定区间上的最值,需注意以下几点 (1)对函数进行准确求导,并检验f ′(x )=0的根是否在给定区间内. (2)研究函数的单调性,正确确定极值和端点函数值. (3)比较极值与端点函数值的大小,确定最值. 跟踪训练1 求下列函数的最值. (1)f (x )=x -1ex;(2)f (x )=12x +sin x ,x ∈[0,2π].考点 利用导数求函数的最值 题点 利用导数求不含参数函数的最值 解 (1)函数f (x )=x -1ex的定义域为R .f ′(x )=1·e x-e x(x -1)(e x )2=2-xe x , 当f ′(x )=0时,x =2, 当f ′(x )>0时,x <2, 当f ′(x )<0时,x >2.所以f (x )在(-∞,2)上单调递增,在(2,+∞)上单调递减, 所以f (x )无最小值,且当x =2时,f (x )max =f (2)=1e 2.(2)f ′(x )=12+cos x ,x ∈[0,2π],令f ′(x )=0,得x =23π或x =43π.因为f (0)=0,f (2π)=π,f ⎝ ⎛⎭⎪⎫23π=π3+32,f⎝ ⎛⎭⎪⎫43π=23π-32, 所以当x =0时,f (x )有最小值f (0)=0, 当x =2π时,f (x )有最大值f (2π)=π. 命题角度2 对参数讨论求最值例2 已知函数f (x )=e x -ax 2-bx -1,其中a ,b ∈R ,e =2.718 28…为自然对数的底数. 设g (x )是函数f (x )的导函数,求函数g (x )在区间[0,1]上的最小值. 考点 利用导数求函数的最值 题点 利用导数求含参数函数的最值 解 因为f (x )=e x-ax 2-bx -1, 所以g (x )=f ′(x )=e x-2ax -b , 又g ′(x )=e x-2a , 因为x ∈[0,1],1≤e x≤e, 所以:(1)若a ≤12,则2a ≤1,g ′(x )=e x-2a ≥0,所以函数g (x )在区间[0,1]上单调递增,g (x )min =g (0)=1-b .(2)若12<a <e2,则1<2a <e ,于是当0<x <ln(2a )时,g ′(x )=e x-2a <0, 当ln(2a )<x <1时,g ′(x )=e x-2a >0, 所以函数g (x )在区间[0,ln(2a )]上单调递减, 在区间[ln(2a ),1]上单调递增,g (x )min =g (ln(2a ))=2a -2a ln(2a )-b .(3)若a ≥e 2,则2a ≥e,g ′(x )=e x-2a ≤0,所以函数g (x )在区间[0,1]上单调递减,g (x )min =g (1)=e -2a -b .综上所述,当a ≤12时,g (x )在区间[0,1]上的最小值为1-b ;当12<a <e2时,g (x )在区间[0,1]上的最小值为2a -2a ln(2a )-b ; 当a ≥e2时,g (x )在区间[0,1]上的最小值为e -2a -b .引申探究1.若a =1,b =-2,求函数g (x )在区间[0,1]上的最小值. 解 因为a =1,b =-2,g (x )=f ′(x )=e x -2x +2,又g ′(x )=e x-2,令g ′(x )=0, 因为x ∈[0,1],解得x =ln 2,已知当x =ln 2时,函数取极小值,也是最小值,故g (x )min =g (ln 2)=2-2ln 2+2=4-2ln 2.2.当b =0时,若函数g (x )在区间[0,1]上的最小值为0,求a 的值. 解 当b =0时,因为f (x )=e x-ax 2-1, 所以g (x )=f ′(x )=e x-2ax ,又g ′(x )=e x-2a ,因为x ∈[0,1],1≤e x≤e , 所以:(1)若a ≤12,则2a ≤1,g ′(x )=e x-2a ≥0,所以函数g (x )在区间[0,1]上单调递增,g (x )min =g (0)=1,不符合题意.(2)若12<a <e2,则1<2a <e ,于是当0<x <ln(2a )时,g ′(x )=e x-2a <0, 当ln(2a )<x <1时,g ′(x )=e x-2a >0, 所以函数g (x )在区间[0,ln(2a )]上单调递减, 在区间[ln(2a ),1]上单调递增,g (x )min =g (ln(2a ))=2a -2a ln(2a )=0,解得a =e2不符合题意,舍去.(3)若a ≥e 2,则2a ≥e,g ′(x )=e x-2a ≤0,所以函数g (x )在区间[0,1]上单调递减,g (x )min =g (1)=e -2a =0,解得a =e 2.反思与感悟 对参数进行讨论,其实质是讨论导函数大于0,等于0,小于0三种情况.若导函数恒不等于0,则函数在已知区间上是单调函数,最值在端点处取得;若导函数可能等于0,则求出极值点后求极值,再与端点值比较后确定最值.跟踪训练2 已知a 是实数,函数f (x )=x 2(x -a ),求f (x )在区间[0,2]上的最大值. 考点 利用导数求函数的最值 题点 利用导数求含参数函数的最值 解 f ′(x )=3x 2-2ax .令f ′(x )=0,解得x 1=0,x 2=2a 3.①当2a3≤0,即a ≤0时,f (x )在[0,2]上单调递增,从而f (x )max =f (2)=8-4a . ②当2a3≥2,即a ≥3时,f (x )在[0,2]上单调递减,从而f (x )max =f (0)=0.③当0<2a 3<2,即0<a <3时,f (x )在⎣⎢⎡⎦⎥⎤0,2a 3上单调递减,在⎣⎢⎡⎦⎥⎤2a 3,2上单调递增,从而f (x )max =⎩⎪⎨⎪⎧8-4a ,0<a ≤2,0,2<a <3,综上所述,f (x )max =⎩⎪⎨⎪⎧8-4a ,a ≤2,0,a >2.类型二 由函数的最值求参数例3 已知函数f(x)=ax3-6ax2+b,x∈[-1,2]的最大值为3,最小值为-29,求a,b的值.考点导数在最值问题中的应用题点已知最值求参数解由题设知a≠0,否则f(x)=b为常函数,与题设矛盾.求导得f′(x)=3ax2-12ax=3ax(x-4),令f′(x)=0,得x1=0,x2=4(舍去).①当a>0,且当x变化时,f′(x),f(x)的变化情况如下表:由表可知,当x=0时,f(x)取得极大值b,也就是函数在[-1,2]上的最大值,∴f(0)=b=3.又f(-1)=-7a+3,f(2)=-16a+3<f(-1),∴f(2)=-16a+3=-29,解得a=2.②当a<0时,同理可得,当x=0时,f(x)取得极小值b,也就是函数在[-1,2]上的最小值,∴f(0)=b=-29.又f(-1)=-7a-29,f(2)=-16a-29>f(-1),∴f(2)=-16a-29=3,解得a=-2.综上可得,a=2,b=3或a=-2,b=-29.反思与感悟已知函数在某区间上的最值求参数的值(或范围)是求函数最值的逆向思维,一般先求导数,利用导数研究函数的单调性及极值点,探索最值点,根据已知最值列方程(不等式)解决问题.其中注意分类讨论思想的应用.跟踪训练3 已知函数h(x)=x3+3x2-9x+1在区间[k,2]上的最大值是28,求k的取值范围.考点导数在最值问题中的应用题点已知最值求参数解∵h(x)=x3+3x2-9x+1,∴h′(x)=3x2+6x-9.令h′(x)=0,得x1=-3,x2=1,当x变化时,h′(x),h(x)的变化情况如下表:当x=-3时,取极大值28;当x=1时,取极小值-4.而h(2)=3<h(-3)=28,如果h(x)在区间[k,2]上的最大值为28,则k≤-3.1.如图所示,函数f (x )导函数的图象是一条直线,则( )A .函数f (x )没有最大值也没有最小值B .函数f (x )有最大值,没有最小值C .函数f (x )没有最大值,有最小值D .函数f (x )有最大值,也有最小值 考点 导数在最值问题中的应用 题点 最值与极值的综合应用 答案 C解析 由导函数图象可知,函数f (x )只有一个极小值点1, 即f (x )在x =1处取得最小值,没有最大值.2.函数f (x )=x 3-3x +1在闭区间[-3,0]上的最大值和最小值分别是( ) A .1,-1 B .1,-17 C .3,-17D .9,-19考点 利用导数求函数的最值 题点 利用导数求不含参数函数的最值 答案 C解析 f ′(x )=3x 2-3=3(x -1)(x +1),令f ′(x )=0,得x =±1.又f (-3)=-27+9+1=-17,f (0)=1,f (-1)=-1+3+1=3,1∉[-3,0]. 所以最大值为3,最小值为-17. 3.函数f (x )=ln xx的最大值为( )A .e -1B .eC .e 2D.103考点 利用导数求函数的最值 题点 利用导数求不含参数函数的最值 答案 A解析 令f ′(x )=(ln x )′x -ln x ·x ′x 2=1-ln xx2=0, 解得x =e.当x >e 时,f ′(x )<0;当0<x <e 时,f ′(x )>0.f (x )极大值=f (e)=1e ,且函数在定义域内只有一个极值,所以f (x )max =1e.4.函数f (x )=2x 3-6x 2+m (m 是常数)在区间[-2,2]上有最大值3,则在区间[-2,2]上的最小值为________.考点 导数在最值问题中的应用 题点 已知最值求参数 答案 -37解析 f ′(x )=6x 2-12x =6x (x -2),由题意知,在区间[-2,2]上,x =0是f (x )的最大值点, ∴f (x )max =f (0)=m =3.∵f (-2)=-16-24+3=-37,f (2)=16-24+3=-5, ∴f (x )min =-37.5.已知函数f (x )=ax 3+bx +c 在点x =2处取得极值c -16. (1)求a ,b 的值;(2)若f (x )有极大值28,求f (x )在[-3,3]上的最小值. 考点 导数在最值问题中的应用 题点 最值与极值的综合应用解 (1)因为f (x )=ax 3+bx +c ,故f ′(x )=3ax 2+b . 由于f (x )在点x =2处取得极值c -16,故有⎩⎪⎨⎪⎧f ′(2)=0,f (2)=c -16,即⎩⎪⎨⎪⎧12a +b =0,8a +2b +c =c -16,化简得⎩⎪⎨⎪⎧12a +b =0,4a +b =-8,解得a =1,b =-12.(2)令f ′(x )=0,得x 1=-2,x 2=2.当x ∈(-∞,-2)时,f ′(x )>0,故f (x )在(-∞,-2)上为增函数; 当x ∈(-2,2)时,f ′(x )<0,故f (x )在(-2,2)上为减函数; 当x ∈(2,+∞)时,f ′(x )>0,故f (x )在(2,+∞)上为增函数.由此可知f (x )在x 1=-2处取得极大值,f (-2)=16+c ,f (x )在x 2=2处取得极小值,f (2)=c -16.由题设条件知16+c =28得c =12.此时f (-3)=9+c =21,f (3)=-9+c =3,f (2)=-16+c =-4.因此,f(x)在[-3,3]上的最小值为f(2)=-4.1.求函数在闭区间上的最值,只需比较极值和端点处的函数值即可;若函数在一个开区间内只有一个极值,这个极值就是最值.2.已知最值求参数时,可先确定参数的值,用参数表示最值时,应分类讨论.一、选择题1.设M,m分别是函数f(x)在[a,b]上的最大值和最小值,若M=m,则f′(x)( ) A.等于0 B.小于0C.等于1 D.不确定考点导数在最值问题中的应用题点已知最值求导数答案 A解析因为M=m,所以f(x)为常数函数,故f′(x)=0,故选A.2.函数f(x)=x4-4x(|x|<1)( )A.有最大值,无最小值B.有最大值,也有最小值C.无最大值,有最小值D.既无最大值,也无最小值考点利用导数求函数中参数的取值范围题点最值存在性问题答案 D解析f′(x)=4x3-4=4(x-1)(x2+x+1).令f′(x)=0,得x=1.又x∈(-1,1)且1∉(-1,1),∴该方程无解,故函数f(x)在(-1,1)上既无极值也无最值,故选D.3.函数f(x)=2x+1x,x∈(0,5]的最小值为( )A.2 B.3C.174D.22+12考点利用导数求函数的最值题点利用导数求不含参数函数的最值答案 B解析 由f ′(x )=1x -1x2=32x -1x2=0,得x =1, 且当x ∈(0,1)时,f ′(x )<0,当x ∈(1,5]时,f ′(x )>0, ∴当x =1时,f (x )最小,最小值为f (1)=3.4.若函数f (x )=a sin x +13sin 3x 在x =π3处有最值,则a 等于( )A .2B .1 C.233D .0考点 导数在最值问题中的应用 题点 已知最值求参数 答案 A解析 ∵f (x )在x =π3处有最值,∴x =π3是函数f (x )的极值点.又∵f ′(x )=a cos x +cos 3x ,∴f ′⎝ ⎛⎭⎪⎫π3=a cos π3+cos π=0,解得a =2. 5.已知函数f (x ),g (x )均为[a ,b ]上的可导函数,在[a ,b ]上连续且f ′(x )<g ′(x ),则f (x )-g (x )的最大值为( )A .f (a )-g (a )B .f (b )-g (b )C .f (a )-g (b )D .f (b )-g (a )考点 利用导数求函数的最值 题点 利用导数求不含参数函数的最值 答案 A解析 令F (x )=f (x )-g (x ),∵f ′(x )<g ′(x ), ∴F ′(x )=f ′(x )-g ′(x )<0, ∴F (x )在[a ,b ]上单调递减, ∴F (x )max =F (a )=f (a )-g (a ).6.已知函数f (x )=-x 2-2x +3在区间[a,2]上的最大值为154,则a 等于( )A .-32B.12C .-12D.12或-32考点 导数在最值问题中的应用 题点 已知最值求参数 答案 C解析 由题意知a <2,令f ′(x )=-2x -2=0, 则x =-1.当a ≤-1时,最大值为4,不符合题意. 当-1<a <2时,f (x )在[a,2]上是减函数,f (a )最大,-a 2-2a +3=154,解得a =-12或a =-32(舍去).所以a =-12.7.已知函数f (x )=-x 3+ax 2-4在x =2处取得极值,若m ,n ∈[-1,1],则f (m )+f ′(n )的最小值是( ) A .15 B .-15 C .10D .-13考点 利用导数求函数的最值 题点 利用导数求含参数函数的最值 答案 D解析 f ′(x )=-3x 2+2ax ,由函数f (x )在x =2处取得极值知f ′(2)=0, 即-3×4+2a ×2=0,∴a =3,由此可得f (x )=-x 3+3x 2-4,f ′(x )=-3x 2+6x ,易知f (x )在区间[-1,0)上单调递减,在区间(0,1]上单调递增, ∴当m ∈[-1,1]时,f (m )min =f (0)=-4.又f ′(x )=-3x 2+6x 的图象开口向下,且对称轴为直线x =1, ∴当n ∈[-1,1]时,f ′(n )min =f ′(-1)=-9. 故f (m )+f ′(n )的最小值为-13. 二、填空题 8.函数f (x )=4xx 2+1(x ∈[-2,2])的最大值是________,最小值是________. 考点 导数在最值问题中的应用题点 最值与极值的综合应用 答案 2 -2解析 f ′(x )=4(x 2+1)-4x ×2x(x 2+1)2=4(1-x 2)(x 2+1)2=4(1+x )(1-x )(x 2+1)2, 令f ′(x )=0,得x 1=-1,x 2=1.由f (-2)=-85,f (-1)=-2,f (1)=2,f (2)=85,∴f (x )max =2,f (x )min =-2.9.已知函数f (x )=-23x 3+2ax 2+3x (a >0)的导数f ′(x )的最大值为5,则在函数f (x )图象上的点(1,f (1))处的切线方程是________. 考点 导数在最值问题中的应用 题点 已知最值求参数 答案 15x -3y -2=0解析 ∵f ′(x )=-2x 2+4ax +3 =-2(x -a )2+3+2a 2, ∴f ′(x )max =3+2a 2=5, ∵a >0,∴a =1.∴f ′(x )=-2x 2+4x +3,f ′(1)=-2+4+3=5.又f (1)=-23+2+3=133,∴所求切线方程为y -133=5(x -1).即15x -3y -2=0.10.函数f (x )=12e x (sin x +cos x )在区间⎣⎢⎡⎦⎥⎤0,π2上的值域为________.考点 利用导数求函数的最值 题点 利用导数求不含参数函数的最值答案 ⎣⎢⎡⎦⎥⎤12,12π2e解析 f ′(x )=12e x (sin x +cos x )+12e x (cos x -sin x )=e xcos x ,当0≤x ≤π2时,f ′(x )≥0,⎣⎦2故f (x )的最大值为f ⎝ ⎛⎭⎪⎫π2=12π2e ,f (x )的最小值为f (0)=12.11.已知y =f (x )是奇函数,当x ∈(0,2)时,f (x )=ln x -ax ⎝ ⎛⎭⎪⎫a >12,当x ∈(-2,0)时,f (x )的最小值为1,则a 的值为________. 考点 导数在最值问题中的应用 题点 已知最值求参数 答案 1解析 由题意知,当x ∈(0,2)时,f (x )的最大值为-1. 令f ′(x )=1x -a =0,得x =1a,当0<x <1a时,f ′(x )>0;当x >1a时,f ′(x )<0.∴f (x )max =f ⎝ ⎛⎭⎪⎫1a =-ln a -1=-1,解得a =1.12.已知函数f (x )=e x-2x +a 有零点,则a 的取值范围是__________. 考点 利用导数求函数中参数的取值范围 题点 最值与零点问题 答案 (-∞,2ln 2-2]解析 由题意知e x-2x +a =0有根, 即a =2x -e x, 令g (x )=2x -e x,则g ′(x )=2-e x,令g ′(x )=0,解得x =ln 2. 而g (x )在(-∞,ln 2)上单调递增, 在(ln 2,+∞)上单调递减, ∴g (x )max =2ln 2-e ln 2=2ln 2-2,∴a ≤2ln 2-2. 三、解答题13.已知函数f (x )=a ln x -bx 2,a ,b ∈R ,且曲线y =f (x )在x =1处与直线y =-12相切.(1)求a ,b 的值;⎣⎦e 考点 利用导数求函数的最值 题点 利用导数求不含参数函数的最值 解 (1)f ′(x )=a x-2bx .由曲线y =f (x )在x =1处与直线y =-12相切,得⎩⎪⎨⎪⎧f ′(1)=0,f (1)=-12,即⎩⎪⎨⎪⎧a -2b =0,-b =-12,解得⎩⎪⎨⎪⎧a =1,b =12.(2)由(1),得f (x )=ln x -12x 2,定义域为(0,+∞).f ′(x )=1x-x =1-x2x.令f ′(x )>0,得0<x <1,令f ′(x )<0,得x >1,所以f (x )在⎣⎢⎡⎭⎪⎫1e ,1上单调递增,在(1,e]上单调递减,所以f (x )在⎣⎢⎡⎦⎥⎤1e ,e 上的最大值为f (1)=-12. 四、探究与拓展14.已知函数f (x )=13x 3-x 2-x +m 在[0,1]上的最小值为13,则实数m 的值为________.考点 导数在最值问题中的应用 题点 已知最值求参数 答案 2解析 由f (x )=13x 3-x 2-x +m ,可得f ′(x )=x 2-2x -1, 令x 2-2x -1=0,可得x =1± 2. 当x ∈(1-2,1+2)时,f ′(x )<0, 即函数f (x )在(1-2,1+2)上是减函数,即f (x )在[0,1]上为减函数,故f (x )在[0,1]上的最小值为f (1),所以13-1-1+m =13,解得m =2.15.已知函数f (x )=ln x +ax.(1)当a <0时,求函数f (x )的单调区间;(2)若函数f (x )在[1,e]上的最小值是32,求a 的值.考点 导数在最值问题中的应用 题点 已知最值求参数解 函数f (x )=ln x +a x的定义域为(0,+∞), f ′(x )=1x -a x 2=x -ax 2,(1)∵a <0,∴f ′(x )>0,故函数在其定义域(0,+∞)上单调递增. (2)当x ∈[1,e]时,分如下情况讨论:①当a <1时,f ′(x )>0,函数f (x )单调递增,其最小值为f (1)=a <1,这与函数在[1,e]上的最小值是32相矛盾;②当a =1时,函数f (x )在[1,e]上单调递增,其最小值为f (1)=1,同样与最小值是32相矛盾;③当1<a <e 时,函数f (x )在[1,a )上有f ′(x )<0,f (x )单调递减,在(a ,e]上有f ′(x )>0,f (x )单调递增,所以,函数f (x )的最小值为f (a )=ln a +1,由ln a +1=32,得a = e.④当a =e 时,函数f (x )在[1,e]上有f ′(x )≤0,f (x )单调递减,其最小值为f (e)=2,这与最小值是32相矛盾;⑤当a >e 时,显然函数f (x )在[1,e]上单调递减,其最小值为f (e)=1+ae >2,仍与最小值是32相矛盾; 综上所述,a 的值为 e.。

《函数的最大(小)值与导数》参考教案

《函数的最大(小)值与导数》参考教案

一、教学目标1. 让学生理解函数的最大值和最小值的概念,掌握函数的最大值和最小值的求解方法。

2. 让学生掌握导数的定义,了解导数在研究函数单调性、极值等方面的应用。

3. 培养学生运用数学知识解决实际问题的能力。

二、教学内容1. 函数的最大值和最小值的概念。

2. 利用导数求函数的最大值和最小值。

3. 函数的单调性及其与导数的关系。

4. 函数的极值及其与导数的关系。

5. 实际问题中的最大值和最小值问题。

三、教学重点与难点1. 教学重点:函数的最大值和最小值的求解方法,导数在研究函数单调性、极值等方面的应用。

2. 教学难点:利用导数求函数的最大值和最小值的具体步骤,理解导数与函数单调性、极值之间的关系。

四、教学方法与手段1. 采用讲解、例题、练习、讨论相结合的教学方法。

2. 使用多媒体课件,直观展示函数图像,帮助学生理解函数的最大值、最小值和导数之间的关系。

五、教学过程1. 引入:通过生活中的实例,如购物、optimization problems等,引导学生思考函数的最大值和最小值问题。

2. 讲解:讲解函数的最大值和最小值的概念,介绍利用导数求函数最大值和最小值的方法。

3. 例题:挑选典型例题,引导学生运用导数求解函数的最大值和最小值。

4. 练习:学生自主练习,巩固求解函数最大值和最小值的方法。

5. 讨论:分组讨论,分享解题心得,互相学习。

6. 总结:对本节课的内容进行总结,强调导数在研究函数单调性、极值等方面的重要性。

7. 作业:布置相关作业,让学生进一步巩固所学知识。

六、教学评估1. 课堂练习:监测学生在课堂上的学习效果,通过练习题目的完成情况了解学生对函数最大值和最小值概念以及导数应用的掌握程度。

2. 课后作业:评估学生对课堂所学知识的吸收情况,作业应包括不同难度的题目,以检测学生的理解力和应用能力。

3. 小组讨论:观察学生在小组讨论中的参与程度和合作能力,以及他们能否运用所学知识解决实际问题。

高中数学《导数在研究函数中的应用》教案新人教A版选修

高中数学《导数在研究函数中的应用》教案新人教A版选修

高中数学《导数在研究函数中的应用》教案新人教A版选修教学目标:1. 理解导数的基本概念及其几何意义;2. 学会利用导数研究函数的单调性、极值和最值;3. 掌握导数在实际问题中的应用。

教学重点:1. 导数的基本概念及其几何意义;2. 利用导数研究函数的单调性、极值和最值;3. 导数在实际问题中的应用。

教学难点:1. 导数的计算;2. 利用导数解决实际问题。

第一章:导数的基本概念1.1 导数的定义1. 引入导数的定义;2. 讲解导数的几何意义;3. 举例说明导数的计算方法。

1.2 导数的计算1. 讲解导数的计算规则;2. 举例练习导数的计算;3. 引导学生发现导数的计算规律。

第二章:利用导数研究函数的单调性2.1 单调性的定义1. 引入单调性的概念;2. 讲解单调性的判断方法;3. 举例说明单调性的应用。

2.2 利用导数判断函数的单调性1. 引入导数与单调性的关系;2. 讲解利用导数判断函数单调性的方法;3. 举例练习利用导数判断函数单调性。

第三章:利用导数研究函数的极值3.1 极值的概念1. 引入极值的概念;2. 讲解极值的判断方法;3. 举例说明极值的求解方法。

3.2 利用导数求函数的极值1. 引入导数与极值的关系;2. 讲解利用导数求函数极值的方法;3. 举例练习利用导数求函数极值。

第四章:利用导数研究函数的最值4.1 最值的概念1. 引入最值的概念;2. 讲解最值的求解方法;3. 举例说明最值的应用。

4.2 利用导数求函数的最值1. 引入导数与最值的关系;2. 讲解利用导数求函数最值的方法;3. 举例练习利用导数求函数最值。

第五章:导数在实际问题中的应用5.1 应用导数解决实际问题1. 引入导数在实际问题中的应用;2. 讲解导数在实际问题中的解题思路;3. 举例说明导数在实际问题中的应用。

5.2 利用导数解决优化问题1. 引入优化问题的概念;2. 讲解利用导数解决优化问题的方法;3. 举例练习利用导数解决优化问题。

全国通用版版高中数学第一章导数及其应用1.3导数在研究函数中的应用1.3.3函数的最大(小)值与导数二学案新人

全国通用版版高中数学第一章导数及其应用1.3导数在研究函数中的应用1.3.3函数的最大(小)值与导数二学案新人

1.3.3 函数的最大(小)值与导数(二)学习目标 1.理解极值与最值的关系,并能利用其求参数的范围.2.能利用导数解决一些简单的恒成立问题.知识点用导数求函数f(x)最值的基本方法(1)求导函数:求函数f(x)的导函数f′(x);(2)求极值嫌疑点:即f′(x)不存在的点和f′(x)=0的点;(3)列表:依极值嫌疑点将函数的定义域分成若干个子区间,列出f′(x)与f(x)随x变化的一览表;(4)求极值:依(3)的表中所反应的相关信息,求出f(x)的极值点和极值;(5)求区间端点的函数值;(6)求最值:比较极值嫌疑点和区间端点的函数值后,得出函数f(x)在其定义域内的最大值和最小值.类型一由极值与最值关系求参数范围例1 若函数f(x)=3x-x3在区间(a2-12,a)上有最小值,则实数a的取值范围是( ) A.(-1,11) B.(-1,4)C.(-1,2] D.(-1,2)考点利用导数求函数中参数的取值范围题点最值存在性问题答案 C解析由f′(x)=3-3x2=0,得x=±1.当x变化时,f′(x),f(x)的变化情况如下表:x (-∞,-1)-1(-1,1)1(1,+∞) f′(x)-0+0-f(x)↘-2↗2↘由此得a2-12<-1<a,解得-1<a<11.又当x ∈(1,+∞)时,f (x )单调递减, 且当x =2时,f (x )=-2.∴a ≤2. 综上,-1<a ≤2.反思与感悟 函数在开区间内存在最值,则极值点必落在该区间内.跟踪训练1 若函数f (x )=x 3-6bx +3b 在(0,1)内有最小值,则实数b 的取值范围是( ) A .(0,1) B .(-∞,1)C .(0,+∞)D.⎝ ⎛⎭⎪⎫0,12 考点 利用导数求函数中参数的取值范围 题点 最值存在性问题 答案 D解析 由题意得,函数f (x )=x 3-6bx +3b 的导数f ′(x )=3x 2-6b 在(0,1)内有零点, 且f ′(0)<0,f ′(1)>0,即-6b <0,且(3-6b )>0, ∴0<b <12,故选D.类型二 与最值有关的恒成立问题例2 已知函数f (x )=x 3+ax 2+bx +c 在x =-23与x =1处都取得极值.(1)求a ,b 的值及函数f (x )的单调区间;(2)若对x ∈[-1,2],不等式f (x )<c 2恒成立,求实数c 的取值范围. 考点 利用导数求函数中参数的取值范围 题点 利用导数求恒成立中参数的取值范围 解 (1)由f (x )=x 3+ax 2+bx +c , 得f ′(x )=3x 2+2ax +b ,因为f ′(1)=3+2a +b =0,f ′⎝ ⎛⎭⎪⎫-23=43-43a +b =0,解得a =-12,b =-2,所以f ′(x )=3x 2-x -2=(3x +2)(x -1),令f ′(x )=0,得x =-23或x =1,当x 变化时,f ′(x ),f (x )的变化情况如下表:所以函数f (x )的单调递增区间为⎝ ⎛⎭⎪⎫-∞,-23,(1,+∞);单调递减区间为⎝ ⎛⎭⎪⎫-23,1. (2)由(1)知,f (x )=x 3-12x 2-2x +c ,x ∈[-1,2],当x =-23时,f ⎝ ⎛⎭⎪⎫-23=2227+c 为极大值,因为f (2)=2+c ,所以f (2)=2+c 为最大值.要使f (x )<c 2(x ∈[-1,2])恒成立,只需c 2>f (2)=2+c , 解得c <-1或c >2.故实数c 的取值范围为(-∞,-1)∪(2,+∞). 引申探究若本例中条件不变,“把(2)中对x ∈[-1,2],不等式f (x )<c 2恒成立”改为“若存在x ∈[-1,2],不等式f (x )<c 2成立”,结果如何?解 由典例解析知当x =1时,f (1)=c -32为极小值,又f (-1)=12+c >c -32,所以f (1)=c -32为最小值.因为存在x ∈[-1,2],不等式f (x )<c 2成立, 所以只需c 2>f (1)=c -32,即2c 2-2c +3>0,解得c ∈R .故实数c 的取值范围为R .反思与感悟 分离参数求解不等式恒成立问题的步骤跟踪训练2 (1)已知函数f (x )=2x ln x ,g (x )=-x 2+ax -3对一切x ∈(0,+∞),f (x )≥g (x )恒成立,则a 的取值范围是________. 考点 利用导数求函数中参数的取值范围 题点 利用导数求恒成立中参数的取值范围 答案 (-∞,4]解析 由2x ln x ≥-x 2+ax -3,得a ≤2ln x +x +3x .设h (x )=2ln x +3x+x (x >0). 则h ′(x )=(x +3)(x -1)x2, 当x ∈(0,1)时,h ′(x )<0,h (x )单调递减, 当x ∈(1,+∞)时,h ′(x )>0,h (x )单调递增. ∴h (x )min =h (1)=4. ∴a ≤4.(2)设L 为曲线C :y =ln x x在点(1,0)处的切线.①求L 的方程;②证明:除切点(1,0)之外,曲线C 在直线L 的下方. 考点 利用导数求函数中参数的取值范围 题点 恒成立中的证明问题 ①解 设f (x )=ln x x,则f ′(x )=1-ln x x2, 所以f ′(1)=1,所以L 的方程为y =x -1.②证明 设g (x )=x -1-f (x ),除切点外,曲线C 在直线L 的下方等价于∀x >0且x ≠1,g (x )>0.g (x )满足g (1)=0,且g ′(x )=1-f ′(x )=x 2-1+ln x x 2.当0<x <1时,x 2-1<0,ln x <0, 所以g ′(x )<0,故g (x )在(0,1)上单调递减; 当x >1时,x 2-1>0,ln x >0, 所以g ′(x )>0,故g (x )在(1,+∞)上单调递增; 所以,∀x >0且x ≠1,g (x )>g (1)=0. 所以除切点外,曲线C 在直线L 的下方.1.函数f (x )=x e -x,x ∈[0,4]的最大值是( ) A .0 B.1e C.4e 4 D.2e 2考点 利用导数求函数的最值 题点 利用导数求不含参数函数的最值 答案 B解析 f ′(x )=e -x-x e -x=e -x(1-x ), ∴当0≤x ≤1时,f ′(x )≥0,f (x )单调递增, 当1≤x ≤4时,f ′(x )≤0,f (x )单调递减, ∴当x =1时,f (x )max =f (1)=1e .故选B.2.函数f (x )=x ln x 的最小值为( ) A .e 2B .-eC .-e -1D .-103考点 利用导数求函数的最值 题点 利用导数求不含参数函数的最值 答案 C解析 ∵f (x )=x ln x ,定义域是(0,+∞), ∴f ′(x )=1+ln x , 令f ′(x )>0,解得x >1e ,令f ′(x )<0,解得0<x <1e,∴函数在⎝ ⎛⎭⎪⎫0,1e 上单调递减,在⎝ ⎛⎭⎪⎫1e ,+∞上单调递增, 故当x =1e 时,函数取最小值-1e,故选C.3.已知函数f (x )=e x-x +a ,若f (x )>0恒成立,则实数a 的取值范围是( ) A .(-1,+∞) B .(-∞,-1) C .[-1,+∞)D .(-∞,-1]考点 利用导数求函数中参数的取值范围 题点 利用导数求恒成立中参数的取值范围 答案 A解析 f ′(x )=e x-1, 令f ′(x )>0,解得x >0,令f′(x)<0,解得x<0,故f(x)在(-∞,0)上单调递减,在(0,+∞)上单调递增,故f(x)min=f(0)=1+a,若f(x)>0恒成立,则1+a>0,解得a>-1,故选A.4.已知函数f(x)=x3-3x2+2,x1,x2是区间[-1,1]上任意两个值,M≥|f(x1)-f(x2)|恒成立,则M的最小值是________.考点利用导数求函数中参数的取值范围题点利用导数求恒成立中参数的取值范围答案 4解析f′(x)=3x2-6x=3x(x-2),当-1≤x<0时,f′(x)>0,f(x)单调递增,当0<x≤1时,f′(x)<0,f(x)单调递减,所以当x=0时,f(x)取得极大值,也为最大值,f(0)=2,又f(-1)=-2,f(1)=0,所以f(x)的最小值为-2,对[-1,1]上任意x1,x2,|f(x1)-f(x2)|≤f(x)max-f(x)min=4,所以M≥|f(x1)-f(x2)|恒成立,等价于M≥4,即M的最小值为4.5.已知函数f(x)=ax4ln x+bx4-c(x>0)在x=1处取得极值-3-c,其中a,b,c为常数.(1)试确定a,b的值;(2)讨论函数f(x)的单调区间;(3)若对任意x>0,不等式f(x)≥-2c2恒成立,求实数c的取值范围.考点利用导数求函数中参数的取值范围题点利用导数求恒成立中参数的取值范围解(1)由f(x)在x=1处取得极值-3-c知f(1)=b-c=-3-c,得b=-3.又f′(x)=4ax3ln x+ax4·1x+4bx3=x3(4a ln x+a+4b),由f′(1)=0,得a+4b=0,a=-4b=12.(2)由(1)知f′(x)=48x3ln x(x>0).令f′(x)=0,得x=1.当0<x<1时,f′(x)<0,f(x)为减函数;当x>1时,f′(x)>0,f(x)为增函数.因此,f (x )的单调递减区间为(0,1),单调递增区间为(1,+∞).(3)由(2)知f (1)=-3-c 既是极小值,也是(0,+∞)内的最小值,要使f (x )≥-2c 2(x >0)恒成立,只需-3-c ≥-2c 2,即2c 2-c -3≥0. 从而(2c -3)(c +1)≥0,解得c ≥32或c ≤-1.故实数c 的取值范围为(-∞,-1]∪⎣⎢⎡⎭⎪⎫32,+∞.1.若函数在开区间内存在最值,则极值点必落在已知区间内.2.已知不等式在某一区间上恒成立,求参数的取值范围:一般先分离参数,再转化为求函数在给定区间上的最值问题求解;若不能分离,则构造函数,利用函数的性质求最值.一、选择题1.已知函数f (x )=x 3-px 2-qx 的图象与x 轴切于(1,0)点,则f (x )在[-1,1]上的最大值、最小值分别为( ) A .0,-4 B.427,-4 C.427,0 D .2,0考点 利用导数求函数的最值 题点 利用导数求不含参数函数的最值 答案 B 解析 由题意得⎩⎪⎨⎪⎧f (1)=0,f ′(1)=0,即⎩⎪⎨⎪⎧p +q =1,3-2p -q =0,得⎩⎪⎨⎪⎧p =2,q =-1.则f (x )=x 3-2x 2+x ,f ′(x )=3x 2-4x +1, 令f ′(x )=0得x =1或x =13,由f ⎝ ⎛⎭⎪⎫13=427,f (-1)=-4,f (1)=0,∴f (x )max =427,f (x )min =-4.2.已知a ,b 为正实数,函数f (x )=ax 3+bx +2在[0,1]上的最大值为4,则f (x )在[-1,0]上的最小值为( ) A .0 B.32 C .-2D .2考点 利用导数求函数的最值 题点 利用导数求含参数函数的最值 答案 A解析 因为a ,b 为正实数, 所以f (x )=ax 3+bx +2是增函数,函数f (x )=ax 3+bx +2在[0,1]上的最大值f (1)=a +b +2=4,a +b =2. 在[-1,0]上的最小值为f (-1)=-(a +b )+2=0.3.若关于x 的不等式x 3-3x +3+a ≤0恒成立,其中-2≤x ≤3,则实数a 的最大值为( ) A .1 B .-1 C .-5D .-21考点 利用导数求函数中参数的取值范围 题点 利用导数求恒成立问题中参数的取值范围 答案 D解析 若关于x 的不等式x 3-3x +3+a ≤0恒成立, 则a ≤-x 3+3x -3在[-2,3]上恒成立, 令f (x )=-x 3+3x -3,x ∈[-2,3], 则f ′(x )=-3x 2+3=-3(x +1)(x -1), 令f ′(x )>0,解得-1<x <1, 令f ′(x )<0,解得x >1或x <-1,故f (x )在[-2,-1)上单调递减,在(-1,1)上单调递增,在(1,3]上单调递减, 而f (-2)=-1,f (-1)=-5,f (1)=-1,f (3)=-21, 故a ≤-21,故a 的最大值是-21.4.当x ∈(0,3)时,关于x 的不等式e x-x -2mx >0恒成立,则实数m 的取值范围是( ) A.⎝ ⎛⎭⎪⎫-∞,e -12 B.⎝⎛⎭⎪⎫e -12,+∞C .(-∞,e +1)D .(e +1,+∞)考点 利用导数求函数中参数的取值范围 题点 利用导数求恒成立问题中参数的取值范围 答案 A解析 当x ∈(0,3)时,关于x 的不等式e x-x -2mx >0恒成立,即为2m +1<exx在(0,3)上的最小值,令f (x )=e x x ,则f ′(x )=e x(x -1)x2, 当0<x <1时,f ′(x )<0,f (x )单调递减; 当1<x <3时,f ′(x )>0,f (x )单调递增. 可得f (x )在x =1处取得最小值e , 即有2m +1<e ,可得m <e -12.5.若函数f (x )=-x 3-3x 2+1在[a ,+∞)上的最大值为1,则a 的取值范围是( ) A .[-3,+∞) B .(-3,+∞) C .(-3,0)D .[-3,0]考点 导数在最值问题中的应用 题点 已知最值求参数 答案 D解析 ∵f (x )=-x 3-3x 2+1, ∴f ′(x )=-3x 2-6x ,令f ′(x )=-3x 2-6x =0,解得x =0或x =-2, 当x 变化时,f ′(x ),f (x )的变化情况如下表:由f (x )=1,得-x 3-3x 2+1=1, 解得x =0或x =-3. 当x >0时,f (x )<f (0)=1, 当x <-3时,f (x )>f (-3)=1,又f (x )=-x 3-3x 2+1在[a ,+∞)上的最大值为1, ∴a 的取值范围为[-3,0].6.关于函数f (x )=(2x -x 2)e x的命题: ①f (x )>0的解集是{x |0<x <2}; ②f (-2)是极小值,f (2)是极大值; ③f (x )没有最小值,也没有最大值. 其中正确的命题是( ) A .①②B .①②③C .②③D .①③考点 导数在最值问题中的应用 题点 最值与极值的综合应用 答案 A解析 ①由于e x>0,所以f (x )>0,即需2x -x 2>0解得{x |0<x <2},①正确. ②因为f (x )=(2x -x 2)e x的定义域是R ,f ′(x )=(2-2x )e x +(2x -x 2)e x =(2-x 2)e x ,令f ′(x )=0,得x =-2或x = 2.当x 变化时,f ′(x ),f (x )的变化情况如下表:所以f (-2)是极小值,f (2)是极大值,②正确. ③由图象(图略)知f (2)为最大值,无最小值,③错误.7.若函数f (x )=x 3-3x 在(a,6-a 2)上有最大值,则实数a 的取值范围是( ) A .(-7,-1) B .(-7,-1] C .(-7,-2)D .(-7,-2]考点 利用导数求函数中参数的取值范围 题点 最值存在性问题 答案 D解析 由题意知f (x )=x 3-3x , 所以f ′(x )=3x 2-3=3(x +1)(x -1), 当x <-1或x >1时,f ′(x )>0; 当-1<x <1时,f ′(x )<0, 故x =-1是函数f (x )的极大值点,f (-1)=-1+3=2,令x 3-3x =2,解得x =2,由题意得⎩⎪⎨⎪⎧a <6-a 2,a <-1,6-a 2>-1,6-a 2≤2,解得-7<a ≤-2. 二、填空题8.已知f (x )=-x 2+mx +1在区间[-2,-1]上的最大值就是函数f (x )的极大值,则m 的取值范围是________.考点 利用导数求函数中参数的取值范围 题点 最值存在性问题 答案 [-4,-2]解析 f ′(x )=m -2x ,令f ′(x )=0,得x =m2.由题意得m2∈[-2,-1],故m ∈[-4,-2].9.已知e 是自然对数的底数,若函数f (x )=e x的图象始终在函数g (x )=x -a 图象的上方,则实数a 的取值范围是________. 考点 利用导数求函数中参数的取值范围 题点 利用导数求恒成立问题中参数的取值范围 答案 (-1,+∞)解析 由题意知f (x )-g (x )=e x-x +a >0,对一切实数x 恒成立, 令h (x )=e x-x +a ,则h (x )min >0, ∵h ′(x )=e x-1, 令h ′(x )=0得x =0,当x <0时,h ′(x )<0,则h (x )在(-∞,0)上单调递减, 当x >0时,h ′(x )>0,则h (x )在(0,+∞)上单调递增, ∴当x =0时,h (x )取得极小值,即最小值为h (0)=1+a , ∴1+a >0,即a >-1.10.已知函数f (x )=ax 3-3x +1,且对任意x ∈(0,1],f (x )≥0恒成立,则实数a 的取值范围是________.考点 利用导数求函数中参数的取值范围 题点 利用导数求恒成立问题中参数的取值范围 答案 [4,+∞)解析 当x ∈(0,1]时,不等式ax 3-3x +1≥0可化为a ≥3x -1x3.设g (x )=3x -1x3,x ∈(0,1],则g ′(x )=3x 3-(3x -1)·3x 2x6=-6⎝ ⎛⎭⎪⎫x -12x4.令g ′(x )=0,得x =12.当x 变化时,g ′(x ),g (x )的变化情况如下表:因此g (x )的最大值等于极大值g ⎝ ⎛⎭⎪⎫12=4,则实数a 的取值范围是[4,+∞).11.已知函数f (x )=ax -ln x ,g (x )=e x-ax ,其中a 为正实数,若f (x )在(1,+∞)上无最小值,且g (x )在(1,+∞)上是单调递增函数,则实数a 的取值范围为________. 考点 利用导数求函数中参数的取值范围 题点 最值存在性问题 答案 [1,e]解析 ∵f (x )=ax -ln x (x >0), ∴f ′(x )=a -1x =ax -1x,若f (x )在(1,+∞)上无最小值, 则f (x )在(1,+∞)上单调, ∴f ′(x )≥0在(1,+∞)上恒成立, 或f ′(x )≤0在(1,+∞)上恒成立,∴a ≥1x 或a ≤1x ,而函数y =1x在(1,+∞)上单调递减,∴当x =1时,函数y 取得最大值1, ∴a ≥1或a ≤0,而a 为正实数,故a ≥1,① 又∵g (x )=e x -ax ,∴g ′(x )=e x-a ,∵函数g (x )=e x-ax 在区间(1,+∞)上单调递增, ∴g ′(x )=e x-a ≥0在区间(1,+∞)上恒成立, ∴a ≤(e x)min 在区间(1,+∞)上恒成立. 而e x>e ,∴a ≤e.② 综合①②,a ∈[1,e]. 三、解答题12.已知函数f (x )=x 3-ax 2+bx +c (a ,b ,c ∈R ).(1)若函数f (x )在x =-1和x =3处取得极值,试求a ,b 的值;(2)在(1)的条件下,当x ∈[-2,6]时,f (x )<2|c |恒成立,求实数c 的取值范围. 考点 利用导数求函数中参数的取值范围 题点 利用导数求恒成立问题中参数的取值范围 解 (1)f ′(x )=3x 2-2ax +b ,∵函数f (x )在x =-1和x =3处取得极值, ∴-1,3是方程3x 2-2ax +b =0的两根. ∴⎩⎪⎨⎪⎧-1+3=2a3,-1×3=b3,∴⎩⎪⎨⎪⎧a =3,b =-9.(2)由(1)知f (x )=x 3-3x 2-9x +c ,令f ′(x )=3x 2-6x -9=0,得x =-1或x =3. 当x 变化时,f ′(x ),f (x )的变化情况如下表:而f (-1)=c +5,f (3)=c -27,f (-2)=c -2,f (6)=c +54,∴当x ∈[-2,6]时,f (x )的最大值为c +54, 要使f (x )<2|c |恒成立,只需c +54<2|c |. 当c ≥0时,c +54<2c ,∴c >54; 当c <0时,c +54<-2c ,∴c <-18.故实数c 的取值范围是(-∞,-18)∪(54,+∞). 13.已知函数f (x )=ax 2+x +aex,若当x ∈[0,2]时,f (x )≥1e2恒成立,求a 的取值范围.考点 利用导数求函数中参数的取值范围 题点 利用导数求恒成立问题中参数的取值范围 解 f ′(x )=-ax 2+(2a -1)x +1-ae x=-(ax +1-a )(x -1)ex. 当a =0时,令f ′(x )=0,得x =1.在(0,1)上,有f ′(x )>0,函数f (x )单调递增;在(1,2)上,有f ′(x )<0,函数f (x )单调递减.又f (0)=0,f (2)=2e 2,故函数f (x )的最小值为f (0)=0,结论不成立.当a ≠0时,令f ′(x )=0,得x 1=1,x 2=1-1a.若a <0,则f (0)=a <0,结论不成立. 若0<a ≤1,则1-1a≤0.在(0,1)上,有f ′(x )>0,函数f (x )单调递增;在(1,2)上,有f ′(x )<0,函数f (x )单调递减.只需⎩⎪⎨⎪⎧f (0)≥1e 2,f (2)≥1e2,得到⎩⎪⎨⎪⎧a ≥1e 2,a ≥-15,所以1e2≤a ≤1.若a >1,则0<1-1a<1,函数在x =1-1a处有极小值,只需⎩⎪⎨⎪⎧f ⎝ ⎛⎭⎪⎫1-1a ≥1e 2,f (2)≥1e2,得到⎩⎨⎧2a -1≥11ea--,a ≥-15.因为2a -1>1,11ea--<1,所以a >1.综上所述,a 的取值范围是a ≥1e 2.四、探究与拓展14.设直线x =t 与函数f (x )=x 2,g (x )=ln x 的图象分别交于点M ,N ,则当|MN |达到最小时t 的值为( ) A .1 B.12 C.52 D.22考点 利用导数求函数的最值 题点 利用导数求不含参数函数的最值 答案 D解析 由题意画出函数图象如图所示, 由图可以看出|MN |=y =t 2-ln t (t >0).y ′=2t -1t=2t 2-1t =2⎝ ⎛⎭⎪⎫t +22⎝ ⎛⎭⎪⎫t -22t.当0<t <22时,y ′<0,可知y 在⎝⎛⎭⎪⎫0,22上单调递减; 当t >22时,y ′>0,可知y 在⎝ ⎛⎭⎪⎫22,+∞上单调递增. 故当t =22时,|MN |有极小值也是最小值. 15.已知函数f (x )=ln x +a (1-x ). (1)讨论f (x )的单调性;(2)当f (x )有最大值,且最大值大于2a -2时,求a 的取值范围. 考点 利用导数求函数中参数的取值范围 题点 已知最值求参数解 (1)f (x )的定义域为(0,+∞),f ′(x )=1x-a .若a ≤0,则f ′(x )>0,所以f (x )在(0,+∞)上单调递增.若a >0,则当x ∈⎝⎛⎭⎪⎫0,1a 时,f ′(x )>0;当x ∈⎝ ⎛⎭⎪⎫1a,+∞时,f ′(x )<0.所以f (x )在⎝⎛⎭⎪⎫0,1a 上单调递增,在⎝ ⎛⎭⎪⎫1a ,+∞上单调递减.综上,当a ≤0时,f (x )在(0,+∞)上单调递增,当a >0时,f (x )在⎝⎛⎭⎪⎫0,1a 上单调递增,在⎝ ⎛⎭⎪⎫1a,+∞上单调递减. (2)由(1)知,当a ≤0时,f (x )在(0,+∞)上无最大值;当a >0时,f (x )在x =1a处取得极大值且为最大值,最大值为f ⎝ ⎛⎭⎪⎫1a =ln ⎝ ⎛⎭⎪⎫1a +a ⎝ ⎛⎭⎪⎫1-1a=-lna +a -1.因此f ⎝ ⎛⎭⎪⎫1a >2a -2等价于ln a +a -1<0.令g (a )=ln a +a -1,则g (a )在(0,+∞)上单调递增,g (1)=0. 于是,当0<a <1时,g (a )<0;当a >1时,g (a )>0. 因此,a 的取值范围是(0,1).。

人教A版高中数学选修导数在研究函数中的应用教案

人教A版高中数学选修导数在研究函数中的应用教案

§3.3.2函数的极值与导数教学目标:1.理解极大值、极小值的概念;2.能够运用判别极大值、极小值的方法来求函数的极值;3.掌握求可导函数的极值的步骤;教学重点:极大、极小值的概念和判别方法,以及求可导函数的极值的步骤. 教学难点:对极大、极小值概念的理解及求可导函数的极值的步骤. 教学过程: 创设情景观察图3.3-8,我们发现,t a =时,高台跳水运动员距水面高度最大.那么,函数()h t 在此点的导数是多少呢?此点附近的图像有什么特点?相应地,导数的符号有什么变化规律?放大t a =附近函数()h t 的图像,如图3.3-9.可以看出()h a ';在t a =,当t a <时,函数()h t 单调递增,()0h t '>;当t a >时,函数()h t 单调递减,()0h t '<;这就说明,在t a =附近,函数值先增(t a <,()0h t '>)后减(t a >,()0h t '<).这样,当t 在a 的附近从小到大经过a 时,()h t '先正后负,且()h t '连续变化,于是有()0h a '=.对于一般的函数()y f x =,是否也有这样的性质呢?附:对极大、极小值概念的理解,可以结合图象进行说明.并且要说明函数的极值是就函数在某一点附近的小区间而言的. 从图象观察得出,判别极大、极小值的方法.判断极值点的关键是这点两侧的导数异号 新课讲授一、 导入新课观察下图中P 点附近图像从左到右的变化趋势、P 点的函数值以及点P 位置的特点3.3-83.3-9o a x 1 xx 3 bx yP (x 1,f (x 1)) y=f (x ) Q (x 2,f (x 2))函数图像在P点附近从左侧到右侧由“上升”变为“下降”(函数由单调递增变为单调递减),在P点附近,P点的位置最高,函数值最大二、学生活动学生感性认识运动员的运动过程,体会函数极值的定义.三、数学建构观察右图可以看出,函数在x=0的函数值比它附近所有各点的函数值都大,我们说f (0)是函数的一个极大值;函数在x=2的函数值比它附近所有各点的函数值都小,我们说f (2)是函数的一个极小值。

高中数学第三章导数及其应用3.3导数在研究函数中的应用3.3.2函数的极值与导数学案新人教A版选修1_1

高中数学第三章导数及其应用3.3导数在研究函数中的应用3.3.2函数的极值与导数学案新人教A版选修1_1

3.3.2 函数的极值与导数学习目标:1.了解极值的概念、理解极值与导数的关系.(难点)2.掌握利用导数求函数极值的步骤,能熟练地求函数的极值.(重点)3.会根据函数的极值求参数的值.(难点)[自主预习·探新知]1.极小值点与极小值若函数f(x)满足:(1)在x=a附近其他点的函数值f(x)≥f(a);(2)f′(a)=0;(3)在x=a附近的左侧f′(x)<0,在x=a附近的右侧f′(x)>0,则点a叫做函数y=f(x)的极小值点,f(a)叫做函数y=f(x)的极小值.2.极大值点与极大值若函数f(x)满足:(1)在x=b附近其他点的函数值f(x)≤f(b);(2)f′(b)=0;(3)在x=b附近的左侧f′(x)>0,在x=b附近的右侧f′(x)<0,则点b叫做函数y=f(x)的极大值点,f(b)叫做函数y=f(x)的极大值.思考:(1)区间[a,b]的端点a,b能作为极大值点或极小值点吗?(2)若函数f(x)在区间[a,b]内存在一点c,满足f′(c)=0,则x=c是函数f(x)的极大值点或极小值点吗?[提示](1)不能,极大值点和极小值点只能是区间内部的点.(2)不一定,若在点c的左右两侧f′(x)符号相同,则x=c不是极大值点或极小值点,若在点c的左右两侧f′(x)的符号不同,则x=c是函数f(x)的极大值点或极小值点.3.极值的定义(1)极小值点、极大值点统称为极值点.(2)极大值与极小值统称为极值.4.求函数y=f(x)的极值的方法解方程f′(x)=0,当f′(x0)=0时,(1)如果在x0附近的左侧f′(x)>0,右侧f′(x)<0,那么f(x0)是极大值.(2)如果在x0附近的左侧f′(x)<0,右侧f′(x)>0,那么f(x0)是极小值.[基础自测]1.思考辨析(1)导数值为0的点一定是函数的极值点.()(2)函数的极大值一定大于极小值.( )(3)在可导函数的极值点处,切线与x轴平行或重合.( )(4)函数f (x )=1x有极值.( )[答案] (1)× (2)× (3)√ (4)× 2.函数y =x 3+1的极大值是( )A .1B .0C .2D .不存在D [y ′=3x 2≥0,则函数y =x 3+1在R 上是增函数,不存在极大值.] 3.若x =-2与x =4是函数f (x )=x 3+ax 2+bx 的两个极值点则有( )【导学号:97792153】A .a =-2,b =4B .a =-3,b =-24C .a =1,b =3D .a =2,b =-4B [f ′(x )=3x 2+2ax +b ,依题意有x =-2和x =4是方程3x 2+2ax +b =0的两个根,所以有-2a 3=-2+4,b3=-2×4,解得a =-3,b =-24.][合 作 探 究·攻 重 难]函数f (x )的极小值是( )图3­3­8A .a +b +cB .3a +4b +cC .3a +2bD .c(2)求下列函数的极值: ①f (x )=13x 3-x 2-3x +3;②f (x )=2xx 2+1-2. [解析] (1)由f ′(x )的图象知,当x <0时,f ′(x )<0, 当0<x <2时,f ′(x )>0,当x >2时,f ′(x )<0 因此当x =0时,f (x )有极小值,且f (0)=c ,故选D. [答案] D(2)①函数的定义域为R ,f ′(x )=x 2-2x -3.令f ′(x )=0,得x =3或x =-1.当x 变化时,f ′(x ),f (x )的变化情况如下表:↗↘↗∴x =-1是f (x )的极大值点,x =3是f (x )的极小值点,且f (x )极大值=3,f (x )极小值=-6.②函数的定义域为R ,f ′(x )=x 2+-4x 2x 2+2=-x -x +x 2+2.令f ′(x )=0,得x =-1或x =1.当x 变化时,f ′(x ),f (x )的变化情况如下表:↘↗↘当x =-1时,函数f (x )有极小值,且f (-1)=-22-2=-3;当x =1时,函数f (x )有极大值,且f (1)=22-2=-1.1.求下列函数的极值. (1)f (x )=2x +8x;(2)f (x )=3x+3ln x .[解] (1)因为f (x )=2x +8x,所以函数的定义域为{x |x ∈R 且x ≠0},f ′(x )=2-8x2,令f ′(x )=0,得x 1=-2,x 2=2.当x 变化时,f ′(x ),f (x )的变化情况如下表:当x =2时,f (x )有极小值8.(2)函数f (x )=3x+3ln x 的定义域为(0,+∞),f ′(x )=-3x 2+3x=x -x 2,令f ′(x )=0,得x =1.当x 变化时,f ′(x ),f (x )的变化情况如下表:因此,当x =1【导学号:97792154】[思路探究] f (x )在x =-1处有极值0有两方面的含义:一方面x =-1为极值点,另一方面极值为0,由此可得f ′(-1)=0,f (-1)=0.[解] ∵f ′(x )=3x 2+6ax +b 且函数f (x )在x =-1处有极值0,∴⎩⎪⎨⎪⎧f -=0,f -=0,即⎩⎪⎨⎪⎧3-6a +b =0,-1+3a -b +a 2=0,解得⎩⎪⎨⎪⎧a =1,b =3或⎩⎪⎨⎪⎧a =2,b =9.当a =1,b =3时,f ′(x )=3x 2+6x +3=3(x +1)2≥0,此时函数f (x )在R 上为增函数,无极值,故舍去.当a =2,b =9时,f ′(x )=3x 2+12x +9=3(x +1)(x +3). 当x ∈(-∞,-3)时,f ′(x )>0,此时f (x )为增函数;当x ∈(-3,-1)时,f ′(x )<0,此时f (x )为减函数; 当x ∈(-1,+∞)时,f ′(x )>0,此时f (x )为增函数. 故f (x )在x =-1处取得极小值. ∴a =2,b =9.2.(1)函数f (x )=x 3-ax 2-bx +a 2在x =1时有极值10,则a ,b 的值为( ) A .a =3,b =-3或a =-4,b =11 B .a =-4,b =2或a =-4,b =11 C .a =-4,b =11 D .以上都不对C [f ′(x )=3x 2-2ax -b .由题意知⎩⎪⎨⎪⎧f =3-2a -b =0,f=1-a -b +a 2=10,解得⎩⎪⎨⎪⎧a =3,b =-3或⎩⎪⎨⎪⎧a =-4,b =11.当a =3,b =-3时,f ′(x )=3(x +1)2≥0,不合题意,故a =-4,b =11.] (2)函数f (x )=13x 3-x 2+ax -1有极值点,求a 的取值范围.[解] f ′(x )=x 2-2x +a ,由题意,方程x 2-2x +a =0有两个不同的实数根,所以Δ=4-4a >0,解得a <1.所以a 的取值范围为(-∞,1).1.如何画三次函数f (x )=ax 3+bx 2+cx +d (a ≠0)的大致图象?提示:求出函数的极值点和极值,根据在极值点左右两侧的单调性画出函数的大致图象. 2.三次函数f (x )=ax 3+bx 2+c (a ≠0)的图象和x 轴一定有三个交点吗?提示:不一定,三次函数的图象和x 轴交点的个数和函数极值的大小有关,可能有一个也可能有两个或三个.已知a 为实数,函数f (x )=-x 3+3x +a (1)求函数f (x )的极值,并画出其图象(草图)(2)当a为何值时,方程f(x)=0恰好有两个实数根.[思路探究] (1)求出函数f(x)的极值点和极值,结合函数在各个区间上的单调性画出函数的图象.(2)当极大值或极小值恰好有一个为0时,方程f(x)=0恰好有两个实数根.[解] (1)由f(x)=-x3+3x+a,得f′(x)=-3x2+3,令f′(x)=0,得x=-1或x=1.当x∈(-∞,-1)时,f′(x)<0;当x∈(-1,1)时,f′(x)>0;当x∈(1,+∞)时,f′(x)<0.所以函数f(x)的极小值为f(-1)=a-2;极大值为f(1)=a+2.由单调性、极值可画出函数f(x)的大致图象,如图所示,(2)结合图象,当极大值a+2=0时,有极小值小于0,此时曲线f(x)与x轴恰有两个交点,即方程f(x)=0恰有两个实数根,所以a=-2满足条件;当极小值a-2=0时,有极大值大于0,此时曲线f(x)与x轴恰有两个交点,即方程f(x)=0恰好有两个实数根,所以a=2满足条件.综上,当a=±2时,方程恰有两个实数根.的图象有三个不同的交点,即方程1.下列四个函数中,能在x=0处取得极值的是( )①y=x3;②y=x2+1;③y=cos x-1;④y=2x.A.①②B.②③C.③④ D.①③B[①④为单调函数,不存在极值.]2.函数f(x)的定义域为R,导函数f′(x)的图象如图3­3­9所示,则函数f(x)( )图3­3­9A.无极大值点,有四个极小值点B.有三个极大值点,两个极小值点C.有两个极大值点,两个极小值点D.有四个极大值点,无极小值点C[当f′(x)的符号由正变负时,f(x)有极大值,当f′(x)的符号由负变正时,f(x)有极小值.由函数图象易知,函数有两个极大值点,两个极小值点.]3.函数y=-3+48x-x3的极小值是__________;极大值是________.-131 125[y′=-3x2+48=-3(x+4)(x-4),∵当x∈(-∞,-4)∪(4,+∞)时,y′<0;当x∈(-4,4)时,y′>0,∴x=-4时,y取到极小值-131,x=4时,y取到极大值125.]4.已知函数f (x )=x 3+3ax 2+3(a +2)x +1既有极大值又有极小值,则实数a 的取值范围是________.(-∞,-1)∪(2,+∞) [f ′(x )=3x 2+6ax +3(a +2), ∵函数f (x )既有极大值又有极小值, ∴方程f ′(x )=0有两个不相等的实根. ∴Δ=36a 2-36(a +2)>0.即a 2-a -2>0,解之得a >2或a <-1.] 5.已知函数f (x )=ax 2+b ln x 在x =1处有极值12.(1)求a ,b 的值.(2)判断函数f (x )的单调区间,并求极值.【导学号:97792155】[解] (1)因为f (x )=ax 2+b ln x , 所以f ′(x )=2ax +b x. 又函数f (x )在x =1处有极值12.故⎩⎪⎨⎪⎧f =0,f =12,即⎩⎪⎨⎪⎧2a +b =0,a =12,解得a =12,b =-1.(2)由(1)可知f (x )=12x 2-ln x .其定义域为(0,+∞). 且f ′(x )=x -1x=x +x -x.令f ′(x )=0,则x =-1(舍去)或x =1. 当x 变化时,f ′(x ),f (x )的变化情况如表:上只有极小值f (1)=12,无极大值.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3.3.3 函数的最大(小)值与导数学习目标:1.能够区分极值与最值两个不同的概念.(易混点)2.掌握在闭区间上函数的最大值、最小值(其中多项式函数一般不超过三次)的求法.(重点)3.能根据函数的最值求参数的值.(难点)[自 主 预 习·探 新 知]1.函数f (x )在区间[a ,b ]上的最值如果在区间[a ,b ]上函数y =f (x )的图象是一条连续不断的曲线,则该函数在[a ,b ]上一定能够取得最大值和最小值,并且函数的最值必在极值点或区间端点取得.思考:若函数f (x )在区间[a ,b ]上只有一个极大值点x 0,则f (x 0)是函数f (x )在区间[a ,b ]上的最大值吗?[提示] 根据极大值和最大值的定义知,f (x 0)是函数f (x )在区间[a ,b ]上的最大值. 2.求函数y =f (x )在[a ,b ]上的最值的步骤 (1)求函数y =f (x )在(a ,b )内的极值.(2)将函数y =f (x )的各极值与端点处的函数值f (a ),f (b )进行比较,其中最大的一个是最大值,最小的一个是最小值.[基础自测]1.思考辨析(1)函数的最大值一定是函数的极大值. ( ) (2)开区间上的单调连续函数无最值.( )(3)函数f (x )在区间[a ,b ]上的最大值和最小值一定在两个端点处取得.( ) (4)函数f (x )=1x在区间[-1,1]上有最值.( )[答案] (1)× (2)√ (3)× (4)×2.函数f (x )=x 3-3x 2+2在区间[-1,1]上的最大值是( ) A .-2 B .0 C .2 D .4C [f ′(x )=3x 2-6x ,令f ′(x )=0得x =0或x =2. 由f (-1)=-2,f (0)=2,f (1)=0得f (x )max =f (0)=2.]3.函数y =x -sin x ,x ∈⎣⎢⎡⎦⎥⎤π2,π的最大值是( ) 【导学号:97792160】A .π-1 B.π2-1 C .π D .π+1C [y ′=1-cos x >0,故函数y =x -sin x ,x ∈⎣⎢⎡⎦⎥⎤π2,π是增函数,因此当x =π时,函数有最大值,且y max =π-sin π=π.][合 作 探 究·攻 重 难]求函数的最值求下列各函数的最值.(1)f (x )=2x 3-3x 2-12x +5,x ∈[-2,1]; (2)f (x )=e x (3-x 2),x ∈[2,5].[解] (1)f ′(x )=6x 2-6x -12,令f ′(x )=0得x =-1或x =2, 又x ∈[-2,1],故x =-1,且f (-1)=12. 又因为f (-2)=1,f (1)=-8, 所以,当x =-1时,f (x )取最大值12. 当x =1时,f (x )取最小值-8. (2)∵f (x )=3e x -e x x 2, ∴f ′(x )=3e x -(e x x 2+2e xx ) =-e x (x 2+2x -3) =-e x(x +3)(x -1).∵在区间[2,5]上,f ′(x )=-e x(x +3)(x -1)<0, 即函数f (x )在区间[2,5]上单调递减, ∴x =2时,函数f (x )取得最大值f (2)=-e 2;x =5时,函数f (x )取得最小值f (5)=-22e 5.[规律方法] 求函数在闭区间上最值的步骤 第一步 求f ′(x ),解方程f ′(x )=0 第二步 确定在闭区间上方程f ′(x )=0的根 第三步 求极值、端点值,确定最值. 1.求下列各函数的最值.(1)f (x )=-x 3+3x ,x ∈[-3,3]; (2)f (x )=x 2-54x(x <0).[解] (1)f ′(x )=3-3x 2=3(1-x )(1+x ). 令f ′(x )=0,得x =1或x =-1,当x 变化时,f ′(x ),f (x )的变化情况如下表:x-3 (-3,-1(-1, 1)1 (1,3) 3-1)f ′(x )- 0 + 0 - f (x )↘极小值↗极大值↘-18所以x =1和x =-1是函数在[-3,3]上的两个极值点,且f (1)=2,f (-1)=-2. 又因为f (x )在区间端点处的取值为f (-3)=0,f (3)=-18, 所以f (x )max =2,f (x )min =-18. (2)f ′(x )=2x +54x2.令f ′(x )=0,得x =-3.当x 变化时,f ′(x ),f (x )的变化情况如下表:x (-∞,-3)-3 (-3,0) f ′(x ) - 0 + f (x )↘极小值↗所以x =-3时,f (x )取得极小值,也就是最小值, 故f (x )的最小值为f (-3)=27,无最大值.含参数的函数的最值问题已知a 是实数,函数f (x )=x 2(x -a ),求f (x )在区间[0,2]上的最大值.【导学号:97792161】[思路探究] 求导→讨论a 的正负→判断[0,2]上的单调性→得最值. [解] f ′(x )=3x 2-2ax ,令f ′(x )=0,解得x 1=0,x 2=2a 3.当2a3≤0,即a ≤0时,f (x )在[0,2]上单调递增, 从而f (x )max =f (2)=8-4a .当2a3≥2,即a ≥3时,f (x )在[0,2]上单调递减, 从而f (x )max =f (0)=0. 当0<2a3<2,即0<a <3时,f (x )在⎣⎢⎡⎦⎥⎤0,2a 3上单调递减,在⎣⎢⎡⎦⎥⎤2a 3,2上单调递增,从而f (x )max =⎩⎪⎨⎪⎧8-4a ,0<a ≤2,0,2<a <3,综上所述,f (x )max =⎩⎪⎨⎪⎧8-4a ,a ≤2,0,a >2.[规律方法] 1.含参数的函数最值问题的两类情况(1)能根据条件确定出参数,从而化为不含参数函数的最值问题.(2)对于不能求出参数值的问题,则要对参数进行讨论,其实质是讨论导函数大于0,等于0,小于0三种情况.若导函数恒不等于0,则函数在已知区间上是单调函数,最值在端点处取得;若导函数可能等于0,则求出极值点后求极值,再与端点值比较后确定最值.2.已知函数最值求参数值(范围)的思路已知函数在某区间上的最值求参数的值(范围)是求函数最值的逆向思维,一般先求导数,利用导数研究函数的单调性及极值点,用参数表示出最值后求参数的值或范围.[跟踪训练]2.已知函数f (x )=ax 3-6ax 2+b ,x ∈[-1,2]的最大值为3,最小值为-29,求a ,b 的值.[解] 由题设知a ≠0,否则f (x )=b 为常函数,与题设矛盾.求导得f ′(x )=3ax 2-12ax =3ax (x -4),令f ′(x )=0,得x 1=0,x 2=4(舍去).(1)当a >0时,且x 变化时f ′(x ),f (x )的变化情况如下表:x -1 (-1,0) 0 (0,2) 2 f ′(x )+ 0- f (x )-7a +b↗b↘-16a +b由表可知,当x =0时,f (x )取得极大值b ,也就是函数在[-1,2]上的最大值,∴f (0)=b =3.又f (-1)=-7a +3,f (2)=-16a +3<f (-1), ∴f (2)=-16a +3=-29,解得a =2.(2)当a <0时,同理可得,当x =0时,f (x )取得极小值b ,也就是函数在[-1,2]上的最小值,∴f (0)=b =-29.又f (-1)=-7a -29,f (2)=-16a -29>f (-1), ∴f (2)=-16a -29=3,解得a =-2. 综上可得,a =2,b =3或a =-2,b =-29.与最值有关的恒成立问题1.比较两个函数式的大小,常用什么方法? 提示:常用差比较法.2.函数最值和“恒成立”问题有什么联系?提示:解决“恒成立”问题,可将问题转化为函数的最值问题.如f (x )>0恒成立,只要f (x )的最小值大于0即可.对含参不等式的恒成立问题,求参数范围时,可先分离参数.设f (x )=ln x ,g (x )=f (x )+f ′(x ). (1)求g (x )的单调区间和最小值;(2)讨论g (x )与g ⎝ ⎛⎭⎪⎫1x 的大小关系;(3)求a 的取值范围,使g (a )-g (x )<1a对任意x >0成立.[思路探究] (1)求出g (x )的表达式是解题的关键;(2)构造辅助函数,结合单调性求解;(3)显然g (x )的最值决定了参数a 的取值范围。

[解] (1)由题设知f (x )的定义域为(0,+∞),且f ′(x )=1x,所以g (x )=ln x +1x所以g ′(x )=x -1x 2,令g ′(x )=0,得x =1, 当x ∈(0,1)时,g ′(x )<0, 当x ∈(1,+∞)时,g ′(x )>0,故g (x )的单调递减区间是(0,1),单调递增区间是(1,+∞).因此,x =1是g (x )的唯一极值点,且为极小值点,从而是最小值点,所以g (x )的最小值为g (1)=1.(2)g ⎝ ⎛⎭⎪⎫1x=-ln x +x , 设h (x )=g (x )-g ⎝ ⎛⎭⎪⎫1x=2ln x -x +1x,则h ′(x )=-x -12x 2.当x =1时,h (1)=0,即g (x )=g ⎝ ⎛⎭⎪⎫1x; 当x ∈(0,1)∪(1,+∞)时,h ′(x )<0,h ′(1)=0, 因此,h (x )在(0,+∞)内单调递减.当0<x <1时,h (x )>h (1)=0,即g (x )>g ⎝ ⎛⎭⎪⎫1x ;当x >1时,h (x )<h (1)=0,即g (x )<g ⎝ ⎛⎭⎪⎫1x. (3)因为g (a )-g (x )<1a对任意x >0成立,即ln a <g (x )对任意x >0成立. 由(1)知,g (x )的最小值为1, 所以ln a <1,解得0<a <e.[规律方法] 分离参数求解不等式恒成立问题3.已知函数f (x )=(x +1)ln x -x +1.若xf ′(x )≤x 2+ax +1恒成立,求a 的取值范围.【导学号:97792162】[解] f ′(x )=x +1x+ln x -1 =ln x +1x,xf ′(x )=x ln x +1,而xf ′(x )≤x 2+ax +1(x >0)等价于ln x -x ≤a . 令g (x )=ln x -x ,则g ′(x )=1x-1.当0<x <1时,g ′(x )>0;当x ≥1时,g ′(x )≤0,x =1是g (x )的最大值点,所以g (x )≤g (1)=-1.综上可知,a 的取值范围是[-1,+∞).[当 堂 达 标·固 双 基]1.函数y =ln xx的最大值为( )A .e -1B .eC .e 2D.103A [函数y =ln xx的定义域为(0,+∞).y ′=1-ln x x 2,由1-ln xx2=0得x =e , 当0<x <e 时,y ′>0, 当x >e 时,y ′<0.因此当x =e 时,函数y =ln x x 有最大值,且y max =1e=e -1.]2.若函数f (x )=x 3-3x -a 在区间[0,3]上的最大值、最小值分别为M ,N ,则M -N 的值为( )A .2B .4C .18D .20 D [f ′(x )=3x 2-3, 令f ′(x )=0得x =±1. 当0≤x <1时,f ′(x )<0; 当1<x ≤3时,f ′(x )>0.则f (1)最小,又f (0)=-a ,f (3)=18-a ,f (3)>f (0),所以最大值为f (3),即M =f (3), N =f (1)⇒M -N =f (3)-f (1)=(18-a )-(-2-a )=20.]3.函数y =x +2cos x 在区间⎣⎢⎡⎦⎥⎤0,π2上的最大值是__________.π6+3 [y ′=1-2sin x =0,解得x =π6,比较0,π6,π2处的函数值,得y max =π6+3.]4.函数f (x )=x 3-12x 2-2x +5,对任意x ∈[1,2]都有f (x )>m ,则实数m 的取值范围是__________.⎝ ⎛⎭⎪⎫-∞,72 [由题意知只要f (x )min>m 即可, 由f ′(x )=3x 2-x -2=0, 得x =-23(舍去)或x =1,易知f (x )min =f (1)=72,所以m <72.]5.已知函数f (x )=1-x x +ln x ,求f (x )在⎣⎢⎡⎦⎥⎤12,2上的最大值和最小值. 【导学号:97792163】[解] f ′(x )=-x -1-x x 2+1x =x -1x2. 由f ′(x )=0,得x =1.∴在⎣⎢⎡⎦⎥⎤12,2上,当x 变化时,f ′(x ),f (x )的变化情况如下表:x12⎝ ⎛⎭⎪⎫12,1 1 (1,2) 2∵f ⎝ ⎛⎭⎪⎫2-f (2)=2-2ln 2=2(ln e 3-ln 16),而e 3>16,∴f ⎝ ⎛⎭⎪⎫12>f (2)>0.∴f (x )在⎣⎢⎡⎦⎥⎤12,2上的最大值为f ⎝ ⎛⎭⎪⎫12=1-ln 2,最小值为0.。

相关文档
最新文档