结力(下)复习(结构动力学)解析
(完整word版)结构动力学复习 新汇总(word文档良心出品)
结构动力学与稳定复习1.1 结构动力计算与静力计算的主要区别是什么?答:主要区别表现在:(1) 在动力分析中要计入惯性力,静力分析中无惯性力;(2) 在动力分析中,结构的内力、位移等是时间的函数,静力分析中则是不随时间变化的量;(3) 动力分析方法常与荷载类型有关,而静力分析方法一般与荷载类型无关。
1.2 什么是动力自由度,确定体系动力自由度的目的是什么?答:确定体系在振动过程中任一时刻体系全部质量位置或变形形态所需要的独立参数的个数,称为体系的动力自由度(质点处的基本位移未知量)。
确定动力自由度的目的是:(1) 根据自由度的数目确定所需建立的方程个数(运动方程数=自由度数),自由度不同所用的分析方法也不同;(2) 因为结构的动力响应(动力内力和动位移)与结构的动力特性有密切关系,而动力特性又与质量的可能位置有关。
1.3 结构动力自由度与体系几何分析中的自由度有何区别?答:二者的区别是:几何组成分析中的自由度是确定刚体系位置所需独立参数的数目,分析的目的是要确定体系能否发生刚体运动。
结构动力分析自由度是确定结构上各质量位置所需的独立参数数目,分析的目的是要确定结构振动形状。
1.4 结构的动力特性一般指什么?答:结构的动力特性是指:频率(周期)、振型和阻尼。
动力特性是结构固有的,这是因为它们是由体系的基本参数(质量、刚度)所确定的、表征结构动力响应特性的量。
动力特性不同,在振动中的响应特点亦不同。
1.5 什么是阻尼、阻尼力,产生阻尼的原因一般有哪些?什么是等效粘滞阻尼?答:振动过程的能量耗散称为阻尼。
产生阻尼的原因主要有:材料的内摩擦、构件间接触面的摩擦、介质的阻力等等。
当然,也包括结构中安装的各种阻尼器、耗能器。
阻尼力是根据所假设的阻尼理论作用于质量上用于代替能量耗散的一种假想力。
粘滞阻尼理论假定阻尼力与质量的速度成比例。
粘滞阻尼理论的优点是便于求解,但其缺点是与往往实际不符,为扬长避短,按能量等效原则将实际的阻尼耗能换算成粘滞阻尼理论的相关参数,这种阻尼假设称为等效粘滞阻尼。
结构动力学习题解答
然后积分求初始速度
̇̇ d t = θ̇0 = θ 0
0+ 0+ 0+
∫
0
∫ hδ ( t ) d t = h ∫ δ ( t ) d t = h
0 0 0+
;
再积分求初位移
̇̇ d t == h )d t = 0 ; θ0 = θ 0
0+
∫
0
∫
0
̇̇ 、 θ̇ 和 θ 的瞬态响应 这样方程(6)的解就是系统对于初始条件 θ 0 0 0
1.6 求图 1-35 所示系统的固有频率。图中磙子半径为 R,质量为 M,作纯滚动。弹簧刚度 为K 。 解:磙子作平面运动, 其动能 T=T 平动 +T 转动 。
K R M 图 1-35 x
T平动 = T转动
1 ̇2; Mx 2 2 2 ̇ ⎞ 1 ⎛ MR 2 ⎞ ⎛ x ̇⎞ 1 ⎛x = I⎜ ⎟ = ⎜ ⎟⎜ ⎟ ; 2 ⎝R⎠ 2 ⎝ 2 ⎠⎝ R ⎠
U= r 2 1 1 1 1⎛ K A ϕ A 2 + K B ϕ B 2 = K Aϕ A 2 + K B ϕ B 2 = ⎜ K A + K B A 2 2 2 2 2⎜ rB ⎝
(
)
⎞ 2 ⎟ϕ ; ⎟ A ⎠
系统的机械能为
T +U = r 2 1 1⎛ ̇ A2 + ⎜ K A + K B A (m A + m B )rA 2ϕ 4 2⎜ rB 2 ⎝
d (T + U ) = 0 ,进一步得到系 dt
统的运动微分方程; (3) 求解该方程所对应的特征方程的特征根,得到该系统的固有频率。 1.2 叙述用衰减法求单自由度系统阻尼比的方法和步骤。 用衰减法求单自由度系统阻尼比的方法有两个:衰减曲线法和共振法。 方法一:衰减曲线法。 求解步骤: (1)利用试验测得单自由度系统的衰减振动曲线,并测得周期和相邻波峰和波谷 的幅值 Ai 、 Ai +1 。 (2)由对数衰减率定义 δ = ln(
结构动力学课件PPT
my cy ky FP (t)
§2-5 广义单自由度体系:刚体集合
➢刚体的集合(弹性变形局限于局部弹性 元件中)
➢分布弹性(弹性变形在整个结构或某些 元件上连续形成)
➢只要可假定只有单一形式的位移,使得 结构按照单自由度体系运动,就可以按 照单自由度体系进行分析。
E2-1
x
p( x,t
)
=p
)
3
B'
M I1
E'
D'
F' G'
A
D
E
B
F
G
C
fD1
fI1
fS1
f D2
f I2
f S2
a
2a
a aa a
Z(t )
f S1
k1(EE')
3 4
k1Z (t )
f D1
d c1( dt
DD')
1 4
c1Z (t )
fS2
k1(GG')
1 3
k2
Z
(t
)
fD2 c2Z (t)
f
I1
m1
1 2
Z(t)
3. 有限单元法
—— 将有限元法的思想用于解决结构的动力计算问题。
要点:
▪ 先把结构划分成适当(任意)数量的单元;
▪ 对每个单元施行广义坐标法,通常取单元的节点位移作 为广义坐标;
▪ 对每个广义坐标取相应的位移函数 (插值函数);
▪ 由此提供了一种有效的、标准 化的、用一系列离散坐标 表示无限自由度的结构体系。
建立体系运动方程的方法
▪ 直接平衡法,又称动静法,将动力学问题转化为任一时刻 的静力学问题:根据达朗贝尔原理,把惯性力作为附加的 虚拟力,并考虑阻尼力、弹性力和作用在结构上的外荷载, 使体系处于动力平衡条件,按照静力学中建立平衡方程的 思路,直接写出运动方程。
[美]R.克里夫《结构动力学》补充详解及习题解
前言结构动力学是比较难学的一门课程,但是你一旦学会并且融会贯通,你就会为成为结构院士、大师和总工垫定坚实的基础。
结构动力学学习的难点主要有以下两个方面。
1 概念难理解,主要表现在两个方面,一是表达清楚难,如果你对概念理解的很透彻,那么你写的书对概念的表述也会言简意赅,切中要害(克里夫的书就是这个特点),有的书会对一个概念用了很多文字进行解释,但是还是没有说清楚,也有的书受水平限制,本身表述就不清楚。
二是理解难,有点只可意会不可言传的味道,老师讲的头头是道,自己听得云山雾绕。
2 公式推导过程难,一是力学知识点密集,推导过程需要力学概念清析,并且需要每一步的力学公式熟悉;二是需要一定的数学基础,而且有的是在本科阶段并没有学习的数学知识。
克里夫《结构动力学》被称为经典的结构动力学教材,但是也很难看懂。
之所以被称为经典,主要就是对力学的概念表达的语言准确,概念清楚。
为什么难懂呢?是因为公式的推导过程比较简单,省略过多。
本来公式的推导过程既需要力学概念清楚也需要数学公式熟悉,但是一般人不是力学概念不清楚,就是数学公式不熟悉,更有两者都不熟悉者。
所以在学习过程中感觉很难,本学习详解是在该书概念清楚的基础上,对力学公式推导过程进行详细推导,并且有的加以解释,帮助你在学习过程中加深理解和记忆。
达到融会贯通,为你成为结构院士、大师和总工垫定坚实的基础。
以下黑体字是注释,其它为原书文字。
[美] R∙克里夫《结构动力学》辅导学习详解第1章结构动力学概述… …第Ⅰ篇单自由度体系第2章基本动力体系的组成… …§2-5 无阻尼自由振动分析如上一节所述,有阻尼的弹簧-质量体系的运动方程可表示为mv̈(t)+cv̇(t)+kν(t)=p(t)(2-19)其中ν(t)是相对于静力平衡位置的动力反应;p(t)是作用于体系的等效荷载,它可以是直接作用的或是支撑运动的结构。
为了获得方程(2-19)的解,首先考虑方程右边等于零的齐次方程,即mv̈(t)+cv̇(t)+kν(t)=0(2-20)mv(t)+kν(t)=0(2-20a)此处公式应该为mv(t)+kν(t)=0,因为该节是无阻尼自由振,而且(2-20)的解,式(2-21)也是公式mv(t)+kν(t)=0的解在作用力等于零时产生的运动称为自由振动,现在要研究的即为体系的自由振动反应。
结构力学课后答案第10章结构动力学
10-34试说明用振型分解法求解多自由度体系动力响应的基本思想,这一方法是利用了振动体系的何种特性
10-35试用振型分解法计算题10-32。
解:
刚度矩阵 质量矩阵
其中
由刚度矩阵和质量矩阵可得:
则 应满足方程
其稳态响应为:
同理:
显然最大位移
10-36试用振型分解法计算题10-31结构作有阻尼强迫振动时,质量处的最大位移响应。已知阻尼比ξ1=ξ2=。
得振型方程:
)
,令
,由频率方程D=0
解得: ,
,
(c)
解:
图 图
(1) , ,
(2)振型方程
。
令 ,频率方程为:
(3)当 时,设
当 时,设
绘出振型图如下:
第一振型 第二振型
(d)
解:
#
图 图
频率方程为:
取 代入整理得:
其中
~
振型方程为:
将 代入(a)式中的第一个方程中,得:
绘出振型图如下:
第一振型 第二振型
\
解:
若 为静力荷载,弹簧中反力为 。
已知图示体系为静定结构,具有一个自由度。设为B点处顺时针方向转角 为坐标。建立动力方程:
则弹簧支座的最大动反力为 。
10-21设图a所示排架在横梁处受图b所示水平脉冲荷载作用,试求各柱所受的最大动剪力。已知EI=6×106Nm2,t1=,FP0=8×104N。
(a)
设 ,
;
使 ,则
(2)
设
如果使速度响应最大,则 最大,设 ,显然要求 最小。使: 得 。
(3)
令 显然要求 最小。
则 解的:
《结构力学习题集》(下)-结构的动力计算习题及答案
第九章 结构的动力计算一、判断题:1、结构计算中,大小、方向随时间变化的荷载必须按动荷载考虑。
2、仅在恢复力作用下的振动称为自由振动。
3、单自由度体系其它参数不变,只有刚度EI 增大到原来的2倍,则周期比原来的周期减小1/2。
4、结构在动力荷载作用下,其动内力与动位移仅与动力荷载的变化规律有关。
5、图示刚架不计分布质量和直杆轴向变形,图a 刚架的振动自由度为2,图b 刚架的振动自由度也为2。
6、图示组合结构,不计杆件的质量,其动力自由度为5个。
7、忽略直杆的轴向变形,图示结构的动力自由度为4个。
8、由于阻尼的存在,任何振动都不会长期继续下去。
9、设ωω,D 分别为同一体系在不考虑阻尼和考虑阻尼时的自振频率,ω与ωD 的关系为ωω=D 。
二、计算题:10、图示梁自重不计,求自振频率ω。
l l /411、图示梁自重不计,杆件无弯曲变形,弹性支座刚度为k ,求自振频率ω。
l /2l /212、求图示体系的自振频率ω。
l l0.5l 0.513、求图示体系的自振频率ω。
EI = 常数。
ll 0.514、求图示结构的自振频率ω。
l l15、求图示体系的自振频率ω。
EI =常数,杆长均为l 。
16、求图示体系的自振频率ω。
杆长均为l 。
17、求图示结构的自振频率和振型。
l /2l /2l /18、图示梁自重不计,W EI ==⨯⋅2002104kN kN m 2,,求自振圆频率ω。
B2m2m19、图示排架重量W 集中于横梁上,横梁EA =∞,求自振周期ω。
EIEIW20、图示刚架横梁∞=EI 且重量W 集中于横梁上。
求自振周期T 。
EIEIWEI 221、求图示体系的自振频率ω。
各杆EI = 常数。
a aa22、图示两种支承情况的梁,不计梁的自重。
求图a 与图b 的自振频率之比。
l /2l/2(a)l /2l /2(b)23、图示桁架在结点C 中有集中重量W ,各杆EA 相同,杆重不计。
求水平自振周期T 。
结构动力学例题复习题含答案-2021年推荐必备
结构动力学例题复习题第十六章结构动力学【例 16- 1 】不计杆件分布质量和轴向变形,确定图 16-6 所示刚架的动力自由度。
图 16-6【解】各刚架的自由度确定如图中所示。
这里要注意以下两点:1.在确定刚架的自由度时,引用受弯直杆上任意两点之间的距离保持不变的假定。
根据这个假定并加入最少数量的链杆以限制刚架上所有质量的位置,则刚架的自由度数目即等于所加链杆数目。
2.集中质量的质点数并不一定等于体系的自由度数,而根据自由度的定义及问题的具体情形确定。
【例 16- 2 】试用柔度法建立图 16-7a 所示单自由度体系,受均布动荷载作用的运动方程。
【解】本题特点是,动荷载不是作用在质量上的集中荷载。
对于非质量处的集中动荷载的情况,在建立运动方程时,一般采用柔度法较为方便。
设图 a 质量任一时刻沿自由度方向的位移为 y (向下为正)。
把惯性力、阻尼力及动荷载,均看作是一个静荷载,则在其作用下体系在质量处的位移y ,由叠加原理(见图 b 、 c 、 d 及 e ),则式中,,。
将它们代入上式,并注意到,,得图 16-7经整理后可得式中,,称为等效动荷载或等效干扰力。
其含义为:直接作用于质量上所产生的位移和实际动荷载引起的位移相等。
图 a 的相当体系如图 f 所示。
【例 16- 3 】图 16-8 a 为刚性外伸梁, C 处为弹性支座 , 其刚度系数为,梁端点 A 、 D 处分别有和质量,端点 D 处装有阻尼器 c ,同时梁 BD 段受有均布动荷载作用,试建立刚性梁的运动方程。
【解】因为梁是刚性的,这个体系仅有一个自由度,故它的动力响应可由一个运动方程来表达,方程可以用直接平衡法来建立。
这个单自由度体系可能产生的位移形式如图 b 所示,可以用铰 B 的运动作为基本量,而其它一切位移均可利用它来表示。
图 16-8以顺时针向为正。
则 A 点有位移和加速度; D 点有位移和加速度及速度; C 点约束反力为。
由,有将惯性力、阻尼力及约束反力代入上式,得经整理,运动方程为小结:例 16- 2 及例 16- 3 讨论的是单自由度的一般情况下的运动方程的建立。
结构动力学复习
强迫振动和固有运动出现拍的现象,即时而相互增强,时而相互抵消;
最大总响应比最大稳态响应大:总动力放大因数为
共振:r=1时,用假定解求解
(2)粘滞阻尼SDOF系统简谐激励运动方程:
稳态响应与激励不同相位,稳态响应的解可写成:
则稳态响应方程可以写成:
其中:
(2)非周期激励——傅立叶积分:它是由傅立叶级数,令周期T1无穷大得来的。
傅立叶变换对:
(3)复频响应与单位脉冲响应的关系:
第八章连续系统
(1)轴向变形基本假定:横截面保持为平面,并垂直于杆件的轴;材料为线弹性;在给定截面上,材料特征为常数,也可随X面变。
三个基本方程式:
线弹性杆的轴向振动运动方程:
横向强迫振动的运动方程:
该公式只是对于相对长的薄壁梁成立。
边界条件:固定端
简支端
外力-自由端
(3)哈密顿原理:
(4)铁木辛科梁:以哈密顿原理推导的运动方程和边界条件,考虑剪切变形和转动惯量。也适用短粗梁。
第九章连续系统自由振动
(1)轴向自由振动:
边界条件:固定端
自由端
(2)伯努利-欧拉梁横向自由振动:
第一章结构的动力学引言
(1)动力问题与静力问题的两大区别:(1)动力荷载随着时间的变化,即激励的与时俱变性质,动力荷载是一个随时间变化的幅值、方向和作用点,由此得到与时俱变的挠度和应力,就构成了动力响应;(2)加速度在结构动力问题中起了主要作用,如果惯性力对结构的挠度和内应力有显著影响时,就需要研究它的动力问题了。
根据阻尼因数的大小分为:弱阻尼(),临界阻尼()和过阻尼()
弱阻尼:为阻尼固有圆频率,为
相应的为阻尼周期,为
结构动力学复习题全解
*本章讨论结构在动力荷载作用下的反应。 **学习本章注重动力学的特征------惯性力。 *结构动力计算的目的在于确定结构在动力荷载作用下的位移、内力等量值随时间变化 的规律,从而找出其最大值作为设计的依据。 *动力学研究的问题:动态作用下结构或构件的强度、刚度及稳定性分析。 一、 本章重点 1.振动方程的建立 2.振动频率和振型的计算 3.振型分解法求解多自由度体系 4.最大动位移及最大动应力 二、 基础知识 1.高等数学 2.线性代数 3.结构力学 三、 动力荷载的特征 1.大小和方向是时间 t 的函数 例如:地震作用,波浪对船体的作用,风荷载,机械振动等 2.具有加速度,因而产生惯性力 四、 动力荷载的分类 1.周期性动力荷载 例如:①机械运转产生的动力荷载,②打桩时的锤击荷载。 P(t) P(t)
Δt 时间内,干扰力的作用近似的看作是初速度为 v (t ) = 的自由振动。 由(3)式可知:
p∆t p ( ∆t ) 2 ,初位移为 y(t ) = =0 m 2m
y(t ) = y 0 cosωt +
v0 p∆t sinωt sinωt = ω mω
---------------------(9)
& (t ) FD= - C y
,称为粘滞阻尼力,阻尼力 与运动方向相反。
一切引起振动衰减的因素均称为阻尼,包括 EI ①材料的内摩擦引起的机械能转化为热能消失 ②周围介质对结构的阻尼(如,空气的紫力) ③节点,构件与支座连接之间的摩擦阻力 ④通过基础散失的能量 2.弹性恢复力 FE= - K y(t) ,K 为侧移刚度系数,弹性恢复力 与运动方向相反。 3.惯性力
,阻尼系数为 C ,横梁具有分布质量 m =
m L
。
结力复习题及答案
结力复习题及答案一、选择题1. 根据胡克定律,弹簧的弹性系数与弹簧的形变成正比,与弹簧的原长成反比。
()A. 正确B. 错误答案:B2. 静定结构和超静定结构的主要区别在于()。
A. 材料的强度B. 连接的刚度C. 受力的复杂性D. 内力的分布情况答案:D二、填空题1. 在结构力学中,______是指在给定外力作用下,结构内部各点的应力和应变状态。
答案:应力分析2. 梁的挠度计算中,通常采用______法或______法。
答案:弯矩分配;弯矩平衡三、简答题1. 简述结构力学中,静定结构和超静定结构的定义及其区别。
答案:静定结构是指在给定的外力作用下,结构的内力和位移可以通过静力平衡方程唯一确定的结构。
超静定结构则是指在给定的外力作用下,结构的内力和位移不能仅通过静力平衡方程唯一确定,需要额外的几何约束条件。
两者的主要区别在于超静定结构比静定结构多出了一些内部的几何约束,这些约束使得超静定结构在受力时能够产生更多的内力分布情况。
2. 描述梁的弯曲正应力和剪切应力的计算公式。
答案:梁的弯曲正应力计算公式为:\[ \sigma = \frac{My}{I} \]其中,\( \sigma \) 表示正应力,\( M \) 表示弯矩,\( y \) 表示距离中性轴的距离,\( I \) 表示截面惯性矩。
梁的剪切应力计算公式为:\[ \tau = \frac{VQ}{It} \]其中,\( \tau \) 表示剪切应力,\( V \) 表示剪力,\( Q \) 表示剪力臂,\( I \) 表示截面惯性矩,\( t \) 表示截面厚度。
四、计算题1. 给定一个简支梁,其长度为L,均布荷载为w,求梁的最大弯矩和最大挠度。
答案:最大弯矩发生在梁的中点,其值为:\[ M_{\text{max}} = \frac{wL^2}{8} \]最大挠度也发生在梁的中点,其值为:\[ \delta_{\text{max}} = \frac{5wL^4}{384EI} \]其中,\( E \) 表示材料的弹性模量,\( I \) 表示截面惯性矩。
结构动力学思考题解答
结构动力学思考题made by 李云屹思考题一1、结构动力学与静力学的主要区别是什么?结构的运动方程有什么不同?主要区别为:(1)动力学考虑惯性力的影响,静力学不考虑惯性力的影响;(2)动力学中位移等量与时间有关,静力学中位移等量不随时间变化;(3)动力学的求解方法通常与荷载类型有关,静力学一般无关。
运动方程的不同:动力学的运动方程包括位移项、速度项和加速度项;静力学的平衡方程只包括位移项。
2、什么是动力自由度?什么是静力自由度?区分动力自由度和静力自由度的意义是什么?动力自由度:确定结构体系质量位置的独立参数;静力自由度:确定结构体系在空间中的几何位置的独立参数。
意义:通过适当的假设,当静力自由度数大于动力自由度数时,使用动力自由度可以减少未知量,简化计算,提高计算效率。
3、采用集中质量法、广义坐标法和有限元法都可以使无限自由度体系简化为有限自由度体系,它们所采用的手法有什么不同?4、在结构振动的过程中引起阻尼的原因有哪些?(1)材料的内摩擦或材料变形引起的热耗散;(2)构件连接处或结构构件与非结构构件之间的摩擦;(3)结构外部介质的阻尼。
5、在建立结构运动方程时,如考虑重力的影响,动位移的运动方程有无改变?如果满足条件:(1)线性问题;(2)重力的影响预先被平衡;则动位移的运动方程不会改变,否则会改变。
思考题二1、刚度系数k ij和质量系数m ij的直接物理意义是什么?如何直接用m ij的物理概念建立梁单元的质量矩阵[M]?k ij:由第j自由度的单位位移所引起的第i自由度的力;m ij:由第j自由度的单位加速度所引起的第i自由度的力。
依次令第j(j=1,2,3,4)自由度产生单位加速度,而其他的广义坐标处保持静止,使用平衡方程解出第i自由度上的力,从而得到m ij,集成得到质量矩阵[M]。
2、如何用刚度矩阵和质量矩阵,以矩阵的形式表示多自由度体系的势能和动能?{}[]{}1=2TT u M u {}[]{}1=2TV u K u3、建立多自由度体系运动方程的直接动力平衡法和拉格朗日方程法的优缺点是什么? (1)直接动力平衡法:优点:概念直观,易于通过各个结构单元矩阵建立整体矩阵,便于计算机编程。
李廉锟《结构力学》(第5版)(下册)课后习题-第12章 结构动力学【圣才出品】
第12章 结构动力学复习思考题1.怎样区别动力荷载与静力荷载?动力计算与静力计算的主要差别是什么?答:(1)静力荷载:指施力过程缓慢,不致使结构产生显著的加速度,因而可以略去惯性力影响的荷载;动力荷载:指将使结构产生不容忽视的加速度,因而必须考虑惯性力的影响的荷载。
主要差别在于是否考虑惯性力的影响。
(2)计算上的差别:①计算式中是否加入惯性力的数值;②静力计算时,结构处于平衡状态,荷载的大小、方向、作用点及由它引起的结构的内力、位移等各种量值都不随时间而变化;而动力计算时,结构将发生振动,各种量值均随时间而变化;③动力分析方法常与荷载类型有关,而静力分析方法与荷载类型无关。
2.何谓结构的振动自由度?它与机动分析中的自由度有何异同?如何确定结构的振动自由度?答:(1)结构振动的自由度是指结构在弹性变形过程中确定全部质点位置所需的独立参数的数目。
(2)机动分析中的自由度简称静力自由度(又称动力自由度)。
①两者相同点:在数学意义上是一致的,都是强调体系空间质量所需的几何参量的个数。
②不同点:静力自由度是机构移动即刚体位移,排除了各个组成部件的变形运动;而动力自由度是变形位移导致机构位置改变,即体系变形过程质量的运动自由度。
(3)确定结构振动自由度的两种方法:①直接由确定质点位置所需的独立参数数目来判定;②加入最少数量的链杆以限制刚架上所有质点的位置,则该刚架的振动自由度数目即等于所加入链杆的数目。
3.建立振动微分方程有哪两种基本方法?每种方法所建立的方程代表什么条件?答:(1)建立振动微分方程的两种基本方法:刚度法和柔度法。
(2)刚度法代表力的平衡条件,柔度法代表变形协调条件。
4.为什么说结构的自振频率和周期是结构的固有性质?怎样改变它们?答:(1)自振频率和周期是结构的固有性质的原因:结构的自振频率和周期只取决于结构自身的质量和刚度,反映着结构固有的动力特性,而外部干扰力只能影响振幅和初相角的大小并不能改变结构的自振频率。
结构动力学复习
8.建立运动方程的方法特点?(1)D’ Alembert原理:矢量方法,直观,建立了动平衡概念(2)虚位移原理:半矢量法,可以处理复杂分布质量和弹性问题(3)哈密顿原理:标量方法,表达简洁(4)Lagrange方程:标量方法,运用面广
5.广义力的概念及性质?广义力为广义坐标对应的力,是虚位移对广义坐标的偏导数。广义力是标量而非矢量,广义力与广义坐标的乘积具有功的量纲。
6.阻尼力的概念,产生阻尼力的物理机制有哪些?引起结构能量的耗散,使结构的振幅逐渐变小的这种作用称为阻尼,也称为阻尼力.物理机制:(1)固体材料变形时引起的内摩擦或材料快速应变引起的热耗散(2)结构连接部位的摩擦,混凝土微裂缝的张开闭合结构部件与非结构构件之间的摩擦(3)结构周围外部介质引起的阻尼
3.结构动力计算的特点(与静力学的区别):1、动力反应要计算全部时间点上的一系列解,比静力问题复杂且要消耗更多的计算时间。2、与静力问题相比,由于动力反应中结构的位置随时间迅速变化,从而产生惯性力,惯性力对结构的反应又产生重要影响。
4.结构离散化方法的种类、实质?离散化方法有:集中质量法、广义坐标法、有限元法。离散化方法的实质就是把无限自由度问题转化为有限自由度的过程。
确定荷载根据时间变化规律可分为:周期荷载、非周期性荷载。周期性荷载分为:简谐荷载(荷载随时间周期性变化,并可以用简谐函数表示;正弦、余弦荷载)、非简谐荷载(荷载随时间作周期变化,是时间t的周期函数,但不能简单的用简谐函数表示;平稳情况下波浪对堤坝的动水压力、轮船螺旋桨产生的推力)。非周期荷载可分为:冲击荷载(荷载的幅值在很短时间内急剧增大或急剧减小;爆炸引起的冲击波、突加重量)、一般任意荷载(荷载的幅值变化复杂,难以用解析函数表示的荷载;由环境振动引起的地震动、地震引起的地震动、脉动风的风压)
结构动力学复习重点整理笔记
结构动⼒学复习重点整理笔记1.结构动⼒分析的⽬的:确定动⼒荷载作⽤下结构的内⼒和变形,并通过动⼒分析确定结构的动⼒特性。
2、动⼒荷载的类型:是否随时间变化:静荷载、动荷载是否已预先确定:确定性荷载(⾮随机)、⾮确定性荷载(随机)确定性荷载是荷载随时间的变化规律已预先确定,是完全已知的时间过程;⾮确定性荷载是荷载随时间变化的规律预先不可以确定,是⼀种随机过程。
随时间的变化规律:周期荷载:简谐荷载、⾮简谐周期荷载⾮周期荷载:冲击荷载、⼀般任意荷载简谐荷载:荷载随时间周期性变化,并可以⽤简谐函数表⽰。
⾮简谐荷载:荷载随时间周期性变化,不能简单地⽤简谐函数表⽰。
(平稳情况下波浪对堤坝的动⽔压⼒)冲击荷载:荷载的幅值在短时间内急剧增⼤或急剧减⼩。
(爆炸引起冲击波)⼀般任意荷载:荷载的幅值变化复杂,难以⽤解析函数表⽰的荷载。
(地震引起的地震动风压时程)3、结构动⼒计算的特点(与静⼒计算的差异):1)动⼒反应要计算全部时间点上的⼀系列解,⽐静⼒问题复杂且要消耗更多的计算时间2)考虑惯性⼒的影响,是结构动⼒学和静⼒学的⼀个本质的,重要的区别。
4、结构离散化⽅法实质:把⽆限⾃由度问题转化为有限⾃由度的过程种类:集中质量法、⼴义坐标法、有限元法5、有限元法与⼴义坐标法相似,有限元法采⽤了型函数的概念,但不同于⼴义坐标法在全部体系结构上插值,⽽是采⽤分⽚插值,因此型函数表达式形状可相对简单。
与集中质量法相⽐,有限元中的⼴义坐标也采⽤了真实的物理量,具有直接、直观的优点,这与集中质量法相同。
6、⼴义坐标:能决定质点系⼏何位臵的彼此独⽴的量,称为该体系⼴义坐标;选择原则:使解题⽅便。
7、动⼒⾃由度:结构体系在任意瞬时的⼀切可能的变形中,决定全部质量位臵所需的独⽴参数的数⽬。
数⽬与结构体系约束情况有关。
静⼒⾃由度是使结构体系静定所需要的独⽴约束数⽬。
前者是由于系统的弹性变形⽽引起各质点的位移分量;后者指结构中的刚体由于约束不够⽽产⽣的刚体运动。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
k11
k12
12m1
1 7.5661
8.欲使图示体系的自振频率增大,在下述办法中可采用:
A.增大质量m; C.减小梁的EI;
m EI
B.将质量m 移至梁的跨中位置 ; D.将铰支座改为固定支座 。
k 1
m m
(D )
9.图 示 体 系 的 自 振 频 率 3EI1 / (mh3) 。 ( )
m
EI=oo
EI1
EI1
h
k 6EI1 , k 6EI1
h3
m mh3
10.图示体系 EI 2105 kN m2, 20s-1, k 3105 N/m, P 5103 N, W 10kN。 求质点处最大动位移和最大动弯矩 。
Psin t
k W
2m
2m
解:
1 (1 21 2 1 2) 1 1
Psin t
A
W
l /2
l /2
3l 16 5l 32 M1
解:自振频率
B
1 ( 1 l l 3l 1 l l 2 l 2)
EI 2 4 32 2 4 2 3 4
l3 ( 1 3 ) EI 48 256
要点:
结构动力学
1. 单自由度体系的自由振动,自振频率 (刚度法和柔度法) 2. 单自由度体系的强迫振动,动力系数,动内力和动位
移幅值(振幅) 3. 多自由度体系的自由振动的频率及主振型的计算 (刚度
法和柔度法) 4. 多自由度体系受同步简谐动荷作用下的动内力和动位
移幅值的计算
掌握所涉及到的所有公式。
2 1 [( k11 k22 ) ( k11 k22 )2 4(k11k22 k12k21) ]
2 m1 m2
m1 m2
m1m2
两个主振型为
1 1.673
EI ml3 ,
2 5.07
EI ml 3
Y (1) 1
Y (1) 2
k11
k12
12m1
1 0.0661
Y (2) 1
Y (2) 2
k
3
12EI l3
36EI l3
自振频率为
k 36EI
m
ml 3
M1
动力系数
1
1
2 2
1 1 18
36
2
最大动力弯矩
M max
M st
P 2 M1 36EI
Pl 3
18EI
M1
l3
6EI l2
Pl/3 Pl/6
Pl /3
Pl/6 Pl/3
Pl /3
Pl /3
Pl /3
M1
M D max 图
得
1
12EI ml4 ,
2
48EI ml4
主振型
Y (1) 1
Y (1) 2
12m2
11m1
1
12
2
Y (2) 1
12m2
1
Y (2) 2
11m1
1
22
12.已知W 12kN, P 8kN,转速 n 300r / min , EI 5105 kN m2 , l 8 kN m2 , l 8m 。 求 B 截面的最大弯矩 MB 。
EI 2
3
2k 2
4 1 3EI 4k
1/ m 1/ m(4 / 3EI 1/ 4k) 34.16s1
1/ (1 2 / 2 ) 1.522 YDmax yst 1.522 510(4 / 3EI +1/ 4k) 0.006m
MDmax Mst 1.522 5103 7.61kN m
m EI
3EI
P 1 l
1 (1 ll 2l)
EI 2
3
1 l l l 2l3
3EI
3EI
l
1 3EI /(2ml3) m
3. 图示体系各柱EI =常数,柱高均为l, (18EI / (ml3 )) 。求最 大动力弯矩。
Psin t
EI= oo m
6EI l 2 k
解:刚架水平侧移刚度系数为
例题:
1.图 示 悬 臂 梁 不 计 杆 件 本 身 的 质 量 ,已 知 在 B
点 作 用 的 竖 向 单 位 力 可 使 B 点 下 移 l3 / 3EI ,则 此 结 构 的 自 振 频 率 等 于 ml3 / 3EI 。( )
A
EI
l
m
B
1 3EI /(ml3)
m
2.图 示 体 系 杆 长 均 为 l ,其 自 振 频 率为 3EI / 2ml3 。
4(11 22
2 12
)
2
两个自振频率为
12
1
1
0.0829EA /(ma)
22
1
2
0.624EA /(ma)
两个主振型为
Y (1) 1
Y (1) 2
12m
11m
1
12
1 5.031
Y (2) 1
12m
1
Y (2) 2
11m
1
22
0.1987
5.图 为 两 个 自 由 度 振 动 体 系 ,其 自 振 频 率 是
m a
Psin t
2a
2a
P1 1
解:柔度系数
11
1 EI
(1 2
aa
2 3
a
1 2
a 4a
2 3
a)
5a3 3EI
a a M1 P
Pa MP
自振频率
1 3EI /(5ma3) m11
1P
1 EI
(1 2
Pa 4a
1 2
a)
Pa3 EI
代入动力平衡方程
(m
2 11
1) A
1P
k 7.61 M Dmax 图 ( kN. m )
11.求 图 示 体 系 的 自 振 频 率 和 主 振 型。
m EI
y1 解:
EI1
EI1
l
k11
24EI1 l3
; k12
k21
24EI1 l3
; k22
72EI1 l3
2m EI
y2 频率方程为
2EI1 2EI1
l
l
(k11 2m1)(k22 2m2 ) k12k21 0
指质点按下列方式振动时的频率:
A.任 意 振 动 ;
B.沿 x 轴 方 向 振 动 ;
C.沿 y 轴 方 向 振 动 ; D.按 主 振 型 形 式 振 动。
x y
(D )
6.如 图 示 体 系 : / 2,各 杆 EI = 常 数 ,不 计 杆 件 自 重 。求 振 幅 并 作 动 力 弯 矩 图 。
0
得
A 4Pa3 / 3EI
惯性力幅值
I1
m
2A
P 5
动弯矩幅值
M max M P M1I1
Pa/5
1.1 Pa
M max 图
7.求图示体系的自振频率和主振型。m1 m,m2 2m
m2 2 EI
m1 EI l
2EI l
解:
3EI
3EI
51EI
k11 l 3 , k12 l 3 , k22 l 3
4.求 图 示 桁 架 的 自 振 频 率 和 主 振 型。EA = 常 数 。
a m
a
a
解: 结构的柔度系数:
11 2a / EA
22 (11.656)a / EA
12 2a / EA
0
0
0
0
1
1
M1
P1 1
2
2
2
0
1
1
M2
P2 1
1,2 m(11 22 ) m
(11
22 )2