应届第二次数学月考试卷

合集下载

第二次月考测评卷(5_6单元)(试题)(含答案)2024-2025学年五年级上册数学人教版

第二次月考测评卷(5_6单元)(试题)(含答案)2024-2025学年五年级上册数学人教版

第二次月考测评卷(5-6单元试卷)2024-2025学年五年级数学上册(人教版)(时间: 90 分钟, 满分: 100分)题号一二三四五总分得分一、填空。

(24分)1. 用字母表示梯形的面积是( );当它的上底与下底相等时,梯形变成了( )形,这时它的面积公式就是( );当它的上底是0时,梯形就变成了( )形,这时它的面积公式就是( )。

2. 两个完全一样的三角形可以拼成一个( )形,三角形的底和高分别与拼成的图形的( )和( )相等。

每个三角形的面积等于拼成的平行四边形面积的( )。

3. m×8×n可以简写成( ),a²=( )×( )。

4. 一个直角三角形的三条边长分别是6厘米,8厘米和10厘米,它斜边上的高是( )厘米。

5. 工地上运来a 吨水泥,每天用去b吨,7天后工地上还剩( )吨,如果a=70,b=8,那么工地上剩下的水泥是( )吨。

6. 一块梯形麦地,上底80米,下底100米,高60米,它的面积是( )平方米,合( )公顷。

7. 买了4千克桔子,每千克a元,买了5千克苹果,每千克 b元,4a+5b表示(),4a-5b表示( )。

8. 用方程解决实际问题的步骤有:①找出( ),用( )表示;②分析实际问题中的( ),列方程;③( )。

9. 估计右边图形的面积。

(每个小方格的边长表示1cm)(2分)二、判断。

(对的画“✔”,错的画“×”)(5分)1. 等式两边同时乘(或除以)同一个数,等式仍成立。

( )2. 方程都是等式,等式都是方程。

( )3. 任何两个面积相等的三角形,都可以拼成一个平行四边形。

( )4. 三角形的面积等于平行四边形面积的一半。

( )5. x·x=2x ( )三、选择。

(将正确答案的序号填在括号里)(10分)1. 下列各式中,是方程的是( )。

A.7x-3=0B. x-1>1C.3.1+0.5=3.62. 一个三角形的底不变,要使面积扩大到它的3倍,高应( )。

江西省校永修县第三中学2023-2024学年八年级上学期第二次月考数学试题(含解析)

江西省校永修县第三中学2023-2024学年八年级上学期第二次月考数学试题(含解析)

2023-2024学年度上学期阶段(二)质量检测试卷八年级数学考生须知:1、全卷满分120分,考试时间120分钟;2、试卷和答题卡都要写上班级、姓名;3、请将答案写在答题卡上的相应位置上,否则不给分.一、选择题(本大题共6个小题,每小题3分,共18分)每小题只有一个正确选项.1中,无理数有()A.2个B.3个C.4个D.5个2.已知△ABC的三条边分别为a,b,c,下列条件不能判断是直角三角形的是()A.a2=b2-c2B.a=6,b=8,c=10C.∠A=∠B+∠C D.∠A:∠B:∠C=5:12:133.《九章算术》中第七章《盈不足》记载了一个问题:“今有共买物,人出八,赢三;人出七,不足四.问人数、物价各几何?”译文:“现有一些人合伙购买物品,若每人出8钱,则多出3钱;若每人出7钱,则还差4钱,问人数、物品价格各是多少?”设有x个人,物品价格为y钱,则下列方程组中正确的是()A.B.C.D.4.直线y=kx+3与y=3x+k在同一坐标系内,其位置可能是()A.B.C.D.5.一辆货车从A地开往B地,一辆小汽车从B地开往A地.同时出发,都匀速行驶,各自到达终点后停止.设货车、小汽车之间的距离为s(千米),货车行驶的时间为t(小时),s与t之间的函数关系如图所示,下列说法中正确的有()①A、B两地相距120千米;②出发1小时,货车与小汽车相遇;③出发1.5小时,小汽车比货车多行驶了60千米;④小汽车的速度是货车速度的2倍.A.1个B.2个C.3个D.4个220.10100100017π8374x yx y=--=⎧⎨⎩8374x yx y=+-=⎧⎨⎩8374x yx y=++=⎧⎨⎩8374x yx y=-+=⎧⎨⎩6.如图,在平面直角坐标系中,(图中的三角形都是等边三角形),一个点从原点O 出发,沿折线移动,每次移动1个单位长度,则点的坐标为()A .B .C .D .二、填空题(本大题共6小题,每小题3分,共18分)7______.8.点A (-2,3)关于x 轴的对称点的坐标为______.9.已知点都在直线上,则大小关系是______.10.如图,Rt △ABC 的周长为24,∠C =90°,且AB :AC =5:4,则BC 的长为______.第10题11.如图,直线y =-x +3与y =mx +n 交点的横坐标为1,则关于x 、y 的二元一次方程组的解为______.第11题12.如图,直线y =2x -4与x 轴和y 轴分别交与A ,B 两点,射线AP ⊥AB 于点A ,若点C 是射线AP 上的一11223341O A AA A A A A ===== 1234n O AA A A A 2023A ()1348,0113482⎛ ⎝11348,2⎛ ⎝()1349,0A '()()124,,2,y y -122y x =-+12,y y3x y mx y n+=-+=⎧⎨⎩个动点,点D是x轴上的一个动点,且以A,C,D为顶点的三角形与△AOB全等,则OD的长为______.第12题三、(本大题共5小题,每小题6分,共30分)13.(1(2)解方程组:14.已知2a-7和a+4是某正数的两个不同的平方根,b-11的立方根是-2.(1)求a、b的值.(2)求a+b的平方根.15.如图,一只小鸟旋停在空中4点,A点到地面的高度AB=20米,A点到地面C点(B、C两点处于同一水平面)的距离AC=25米.若小鸟竖直下降12米到达D点(D点在线段AB上),求此时小鸟到地面C点的距离.16.图(1)、图(2)均是5×5的正方形网格,每个小正方形的边长均为1,每个小正方形的顶点称为格点,点A、B均在格点上,只用无刻度的直尺,分别在给定的网格中按下列要求作△ABC,点C在格点上.图(1)图(2)(1)在图(1)中,△ABC的面积为5;(2)在图(2)中,△ABC是面积为的钝角三角形.)22+-23451x yx y-=+=-⎧⎨⎩5217.若的值.四、(本大题共3小题,每小题8分,共24分)18.某中学八(1)共有45人,该班计划为每名学生购买一套学具,超市现有A 、B 两种品牌学具可供选择.已知1套A 学具和1套B 学具的售价为45元;2套A 学具和5套B 学具的售价为150元.(1)A 、B 两种学具每套的售价分别是多少元?(2)现在商店规定,若一次性购买A 型学具超过20套,则超出部分按原价的6折出售.设购买A 型学具a 套(a >20)且不超过30套,购买A 、B 两种型号的学具共花费w 元.①请写出w 与a 的函数关系式;②请帮忙设计最省钱的购买方案,并求出所需费用.19.先阅读,再解方程组.解方程组时,设a =x +y ,b =x -y ,则原方程组变为,整理,得,解这个方程组,得,即,解得.请用这种方法解下面的方程组:.20.甲、乙两车间一起加工一批零件,同时开始加工,10个小时完成任务.在这个过程中,甲车间的工作效率不变,乙车间在中间停工一段时间维修设备,然后按停工前的工作效率继续加工.设甲、乙两车间各自加工零件的数量为y (个),甲车间加工的时间为x (时),y 与x 之间的函数图象如图所示.(1)甲车间每小时加工零件的个数为______个,这批零件的总个数为______个;(2)求乙车间维护设备后,乙车间加工零件的数量y 与x 之间的函数关系式;(3)在加工这批零件的过程中,当甲、乙两车间共同加工完930个零件时,求甲车间加工的时间.五、(本大题共2小题,每小题9分,共18分)21.如图,已知△ABC 中,∠B =90°,AB =16cm ,BC =12cm ,P 、Q 是△ABC 边上的两个动点,其中点Px y ==22x xy y -+()()623452x y x yx y x y +-⎧-=⎪⎨⎪+--=⎩623452a ba b ⎧+=⎪⎨⎪-=⎩3236452a b a b +=⎧⎨-=⎩86a b =⎧⎨=⎩86x y x y +=⎧⎨-=⎩71x y =⎧⎨=⎩()()()()5316350x y x y x y x y +--=⎧⎪⎨+--=⎪⎩从点A 开始沿A →B 方向运动,且速度为每秒1cm ,点Q 从点B 开始沿B →C →A 方向运动,且速度为每秒2cm ,它们同时出发,同时停止.备用图(1)P 、Q 出发4秒后,求PQ 的长;(2)当点Q 在边CA 上运动时,出发几秒钟后,△CQB 能形成直角三角形?22.如图,已知A (3,0),B (0,4),点D 在y 轴的负半轴上,若将△DAB 沿直线AD 折叠,点B 恰好落在x 轴正半轴上的点C 处.(1)求直线AB 的表达式;(2)求C 、D 的坐标;(3)在直线DA 上是否存在一点P ,使得?若存在,直接写出点P 的坐标;若不存在,请说明理由.六、(本大题共1小题,共12分)我们新定义一种三角形:若一个三角形中存在两边的平方差等于第三边上高的平方,则称这个三角形为勾股高三角形,两边交点为勾股顶点.特例感知①等腰直角三角形______勾股高三角形(请填写“是”或者“不是”);②如图,已知△ABC 为勾股高三角形,其中C 为勾股顶点,CD 是AB 边上的高.若BD =1,AD =2,试求线段CD的长度.10P A B S △深入探究如图,已知△ABC为勾股高三角形,其中C为勾股顶点且CA>CB,CD是AB边上的高.试探究线段AD与CB的数量关系,并给予证明:推广应用如图,等腰△ABC为勾股高三角形,其中AB=AC>BC,CD为AB边上的高,过点D向BC边引平行线与AC 边交于点E.若CE=a,直接写出线段DE的长度(用含a的代数式表示).八年级阶段二数学答案1.【答案】C【分析】根据无理数的定义,即可求解.,,4个.故选:C2.【答案】D.3.【答案】C4.【答案】A【分析】根据一次函数的性质分k>0,k<0两种情形分别分析即可.【详解】解:当时,两条直线都经过第一,二,三象限,四个选项都不符合题意;当时,经过第一,二,四象限,的图象经过第一,三,四象限,只有选项A正确,故选:A.5.【答案】D6.【答案】B【分析】过作轴,垂足为B,求出,,求出前若干个点的坐标,找到规律点的每运动6次循环一次,每循环一次向右移动4个单位,每个周期内点的横坐标变化为:,,计算出2023与6的商和余数,据此得到结果.【详解】解:∵图中的三角形都是等边三角形,边长为1,如图,过作轴,垂足为B,则,∴,3=-k>k<3y kx=+3y x k=+1A1AB x⊥OB1AB A1111,,1,,,12222++++++ 1A1AB x⊥212OB A B==1A B==∴点的坐标为:;点的坐标为:;点的坐标为:;点的坐标为:;点的坐标为:;点的坐标为:;…分析图象可以发现,点的每运动6次循环一次,每循环一次向右移动4个单位,每个周期内点的横坐标变化为:,,,∴点的坐标为,即,故选B .7.【答案】±28.【答案】9.【答案】10.【答案】611.【答案】12.【答案】6或13.(1)1A 12⎛⎝2A ()1,03A ()2,04A 5,2⎛ ⎝5A ()3,06A ()4,0A 1111,,1,,,12222++++++20236337......1÷=2023A 133742⎛⨯+ ⎝113482⎛ ⎝()23-,-12yy >12x y =⎧⎨=⎩2+)22++-.(2)【答案】14.【详解】(1)由题意得:2a -7+a +4=0,b -11=-8,解得:a =1,b =3;(2)∵a =1,b =3,∴a +b =4,4的平方根为±2.【答案】17米【详解】解:由勾股定理得;,∴(米),∵(米),∴在中,由勾股定理得,∴此时小鸟到地面C 点的距离17米.答;此时小鸟到地面C 点的距离为17米.16.点C 到AB,进而可找到点C 所在的直线,与网格的交点即为点C 的位置).(2)如图(3)所示(点拨:由,可知点C 的距离为,进而可找到点C 所在的直线,再结合△ABC 角三角形,且点C在格点处,即可找到点C 的位置)17.【答案】13∵x y,∴x =2,y =,∴x 2-xy ﹢y 2=(x -y )2﹢xy =+1=1318.【详解】解:设A 种品牌的学具售价为x 元,B 种品牌的学具售价为y 元,根据题意有,,解之可得,222=+-34=-1=11x y =⎧⎨=-⎩222222520225BC AC AB =-=-=15BC =20128BD AB AD =-=-=Rt BCD 17CD ==52ABC AB S ==△(2()14525150x y x y +=⎧⎨+=⎩{2520x y ==所以A 、B 两种学具每套的售价分别是25和20元;因为,其中购买A 型学具的数量为a ,则购买费用,即函数关系式为:,;符合题意的还有以下情况:Ⅰ、以的方案购买,因为-5<0,所以时,w 为最小值,即元;Ⅱ、由于受到购买A 型学具数量的限制,购买A 型学具30套w 已是最小,所以全部购买B 型学具45套,此时元元,综上所述,购买45套B 型学具所需费用最省钱,所需费用为:900元.故答案为(1)A 、B 两种学具每套的售价分别是25和20元;(2)①w =-5a +1100,(20<a ≤30);②购买45套B 型学具所需费用最省钱,所需费用为900元.19.【答案】【分析】根据举例,结合换元法a =x +y ,b =x -y ,可得方程组;解方程,可以得到a ,b 的值,代入所设,组成关于x ,y 的方程组,解方程组即可.【详解】解:设,,则原方程组变为,解得,所以,解得.20.【答案】(1)75,1110(2)(3)8.5小时【详解】(1)甲车间每小时加工零件的个数为个;这批零件的总个数为个,故答案为:75,1110;(2)设乙车间维护设备后,y 与x 之间的函数关系式为,()2①2030a <≤()()2025202560%4520w a a =⨯+-⨯⨯+-⨯500153009002051100a a a =+-+-=-+51100w a =-+(2030)a <≤②①30a =5301100950(w =-⨯+=4520900(w =⨯=)950<41x y =⎧⎨=⎩5316350a b a b -=⎧⎨-=⎩a x y =+b x y =-5316350a b a b -=⎧⎨-=⎩53a b =⎧⎨=⎩53x y x y +=⎧⎨-=⎩41x y =⎧⎨=⎩4590y x =-750=7510750360=1110+y kx b =+将点代入,得,解得,∴设乙车间维护设备后,y 与x 之间的函数关系式为;(3)乙车间每小时加工零件的个数为个,设甲车间加工x 小时,则解得,∴甲车间加工8.5小时.21.【详解】(1)解:由题意可得,BQ =2×4=8(cm ),BP =ABAP =161×4=12(cm ),∵∠B =90°,∴PQcm ),即PQ 的长为cm ;(2)解:当BQ ⊥AC 时,∠BQC =90°,∵∠B =90°,AB =16cm ,BC =12cm ,∴AC (cm ),∵,∴,解得cm ,∴CQ(cm ),∴当△CQB 是直角三角形时,经过的时间为:(12+)÷2=9.6(秒);当∠CBQ =90°时,点Q 运动到点A ,此时运动的时间为:(12+20)÷2=16(秒);由上可得,当点Q 在边CA 上运动时,出发9.6秒或16秒后,△CQB 能形成直角三角形.22.【答案】(1)(2),(3)存在,或()()4,90,10,75049010360k b k b +=⎧⎨+=⎩4590k b =⎧⎨=-⎩4590y x =-90245÷=()75452930x x +-=8.5x ===20=22AB BC AC BQ = 16122022BQ ⨯=485BQ =365==365443y x =-+()80C ,()06D -,()14-,()54,【详解】(1)解:设一次函数表达式:,将点的坐标代入得:,解得:,故直线的表达式为:;(2)解:,,由题意得:,,,故点,设点D 的坐标为:,,解得:,故点;(3)解:存在,理由如下:设直线的表达式为,由点、的坐标代入得:,解得:,直线的表达式为:,,,,,,点P 在直线上,设,,解得:或5,y kx b =+()()3004A B ,,,034k b b =+⎧⎨=⎩434k b ⎧=-⎪⎨⎪=⎩AB 443y x =-+()()3004A B ,,,5AB ∴=CD BD =5AC AB ==358OC OA AC ∴=+=+=()80C ,()0m ,CD BD =4m =-6m =-()06D -,AD 11y k x b =+()30A ,()06D -,111036k b b =+⎧⎨=-⎩1126k b =⎧⎨=-⎩AD 26y x =-()04B ,()06D -,10BD ∴=1103152ABD S ∴=⨯⨯= 10P A B S =DA (),26P a a -13102PAB BDP BDA S S S BD a ∴=-=⨯⨯-= 1a =即点P 的坐标为:或.23.【详解】解:特例感知:①等腰直角三角形是勾股高三角形.,∵,∵等腰直角三角形的一条直角边可以看作另一条直角边上的高,∴等腰直角三角形是勾股高三角形,故答案为:是;②∵是边上的高,,,∴,,∵为勾股高三角形,为勾股顶点,是边上的高,∴,∴,解得:或(负值不符合题意,舍去),∴线段;深入探究:.证明:∵为勾股高三角形,为勾股顶点且,是边上的高,∴,∴,∵,∴,∴;推广应用:过点作于,∴,∵等腰为勾股高三角形,且,为边上的高,∴,,由上问可知:,∵,∴,,∵,∴,∴,∴,()14-,()54,=)222a a -=CD AB 1BD =2AD =22221CB CD BD CD =+=+22224CA CD AD CD =+=+ABC C CD AB 222CD CA CB =-()()22241CD CD CD =+-+CD CD =CD AD CB =ABC C CA CB >CD AB 222CA CB CD -=222CA CD CB -=222CA CD AD -=22AD CB =AD CB =A AG ED ⊥G 90AGD ∠=︒ABC AB AC BC =>CD AB 222AC BC CD -=90CDB ∠=︒AD BC =ED BC ∥ADE B ∠=∠AED ACB ∠=∠AB AC =ACB B =∠∠ADE AED ∠=∠AE AD =∵,在和中,,∴,∴,∵为等腰三角形,∴,∵,,,∴,∴,∴线段的长度为.90AGD CDB ∠=∠=︒AGD △CDB △AGD CDB ADG CBD AD CB ∠=∠⎧⎪∠=∠⎨⎪=⎩()AAS AGD CDB △≌△DG BD =ADE 22ED DG BD ==AB AC =AE AD =CE a =BD CE a ==2ED a =DE 2a。

湖南省三湘名校教育联盟2024-2025学年高三上学期11月月考(第二次大联考)数学试题含答案

湖南省三湘名校教育联盟2024-2025学年高三上学期11月月考(第二次大联考)数学试题含答案

湖南省三湘名校教育联盟2024-2025学年高三上学期第二次大联考(11月)数学试题(答案在最后)本试卷共4页.全卷满分150分,考试时间120分钟.注意事项:1.答题前,考生务必将自己的姓名、准考证号填写在本式卷和答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应的答案标号涂黑,如有改动,用橡皮擦干净后,再选涂其他答案;回答非选择题时,将答案写在答题卡上,写在本试卷上无效.3.考试结束后,将本式卷和答题卡一并交回.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{40},{31}A xx B x x =-=-∣∣ ,则集合A B 中所含整数的个数为A.2 B.3C.4D.52.已知3i12iz -=+,则z 的虚部为A.75B.75-C.15-D.153.“202520251ab>”是“33a b >”的A.充分不必要条件 B.必要不充分条件C.充分必要条件D.既不充分也不必要条件4.已知()1sin 104θ︒+=-,则()sin 2110θ︒+=A.78B.18C.18-D.78-5.经研究表明:光源发射出来的粒子在没有被捕获之前属于光子,光子在离开光源后会与各种粒子撞击,其动量可能会改变,导致其速度降低,最终可能改变身份成为其他范围的粒子(如红外线粒子),不再能被人类的感光设备捕获.已知在某次光学实验中,实验组相关人员用人类感光设备捕获了从同一光源发射出来的两个光子A ,B ,通过数学建模与数据分析得知,此时刻在平面直角坐标系中它们的位移所对应的向量分别为(4,3),(2,10)A B s s == ,设光子B 相对光子A 的位移为s ,则s 在A s上的投影向量的坐标为A.43,55⎛⎫⎪⎝⎭B.(2,7)- C.5239,2525⎛⎫⎪⎝⎭ D.43,2525⎛⎫⎪⎝⎭6.已知等差数列{}n a 的前n 项和为n S ,公差为1,2d a =也为等差数列,则d 的值为A.2B.3C.4D.87.已知函数1()ln 2(1)x f x x m x m+=+≠+关于点(,4)n 中心对称,则曲线()y f x =在点(n m -,())f n m -处的切线斜率为A.14 B.74C.38D.1388.ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且πcos cos 2,3b Cc B A +==,则ABC 的内切圆半径的最大值为A.2B.3C.2D.1二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知正数x ,y 满足21x y +=,则A.81xy B.1412x y+ C.22142x y +D.1(1)4x y +10.三棱台111ABC A B C -中,112AB A B =,设AB 的中点为1,E AA 的中点为1,F A E 与BF 交于点1,G A C 与1C F 交于点H ,则A.直线GH 与直线1BB 异面B.1//GH BC C.线段AE 上存在点P ,使得1//BC 平面1A PCD.线段BE 上存在点P ,使得1//BC 平面1A PC11.设函数2()e ,x f x nx n n +=-+∈N ,记()f x 的最小值为n a ,则A.122a a >- B.1n a n +C.()()n f a f n > D.n m n ma a a +>+三.填空题:本题共3小题,每小题5分,共15分.12.已知命题:“2,20x ax ax ∀∈--<R ”为真命题,则a 的取值范围是______.13.已知P 为边长为4的正六边形ABCDEF 内部及其边界上的一点,则AP AB ⋅的取值范围是______.14.三棱锥P ABC -中,AB AC AB AC ==⊥,平面PBC ⊥平面ABC ,且PB PC =.记P ABC -的体积为V ,内切球半径为r ,则21r V-的最小值为______.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(本小题满分13分)已知函数()2cos 2,(0,π)f x x x x =+∈.(1)求()f x 的单调递减区间;(2)若()f x 在π,12m ⎡⎤⎢⎥⎣⎦上的最小值为-2,求m 的取值范围.16.(本小题满分15分)记首项为1的数列{}n a 的前n 项和为n S ,且2(1)n n S n a =+.(1)探究数列n a n ⎧⎫⎨⎬⎩⎭是否为单调数列;(2)求数列{}2na n a ⋅的前n 项和nT .17.(本小题满分15分)如图,四棱柱1111ABCD A B C D -中,四边形ABCD 是菱形,四面体11A BC D 的体积与四面体111A B BC 的体积之差为12,A BD 的面积为(1)求点A 到平面1A BD 的距离;(2)若11111,,2A B A D A B A C BD =⊥=,求锐二面角11A BD C --的余弦值.18.(本小题满分17分)已知函数2()ln 2x f x ax ax x =+-在(0,)+∞上有两个极值点12,x x ,且21x x <.(1)求a 的取值范围;(2)当21(1,e)x x ∈时,证明:122eln ln e 1x x <+<+.19.(本小题满分17分)对于(2,3,)m m = 项数列{}n a ,若满足111m miii i a am ==-=-∑∑,则称它为一个满足“绝对值关联”的m 阶数列.(1)对于一个满足“绝对值关联”的m 阶数列{}n a .证明:存在,{1,2,,}i j m ∈ ,满足0i j a a <;(2)若“绝对值关联”的m 阶数列{}n a 还满足(1,2,,)i a i m λ=,则称{}n a 为“绝对值λ关联”的m 阶数列.①请分别写出一个满足“绝对值34关联”的4阶数列和满足“绝对值1关联”的5阶数列(不必论证,符合要求即可);②若存在“绝对值λ关联”的n 阶数列(2)n ,求λ的最小值(最终结果用常数或含n 的式子表示).三湘名校教育联盟•2025届高三第二次大联考•数学参考答案、提示及评分细则1.【答案】C 【解析】由题意可得{40},{31}A xx B x x =-=-∣∣ ,可得{30}A B x x =- ∣ ,故集合A B 中所含整数有3,2,1,0---,共4个,故选C.2.【答案】A 【解析】由题意可得3i (3i)(12i)32i 6i 17i 12i (12i)(12i)555z ------====++-,故17i 55z =+,其虚部为75,故选A.3.【答案】A 【解析】由202520251ab> 及指数函数的单调性可得0a b > ,令函数3()f x x =,易得()f x 单调递增,故当0a b > 时,一定有33a b >,故充分性成立,但由33a b >只能推出a b >,即必要性不成立,故“20252025a b >1 ”是“33a b >”的充分不必要条件,故选A.4.【答案】A 【解析】由题意可得()1sin 104θ︒+=-,故()()()()2sin 2110sin 90220cos 22012sin 10θθθθ︒︒︒︒︒+=++=+=-+2171248⎛⎫=--= ⎪⎝⎭,故选A.5.【答案】C 【解析】由向量(4,3),(2,10)A B s s == ,可得(2,10)(4,3)(2,7)B A s AB s s ==-=-=-,所以s 在A s 上的投影向量为218135239(4,3),55252525A A A A As s s s s s ⋅-⎛⎫⋅=⨯=⋅= ⎪⎝⎭ ,故选C.6.【答案】C 【解析】易知232222n n d S a n d n d ⎛⎫-=+-+- ⎪⎝⎭也为等差数列,则232222d n d n d ⎛⎫+-+- ⎪⎝⎭为完全平方,则2322(2)02d d d ⎛⎫---= ⎪⎝⎭,解得4d =,故选C.7.【答案】D 【解析】因为()f x 关于点(,4)n 中心对称,所以函数1()()4ln224x n g x f x n x n x m n ++=+-=++-++为奇函数,则240n -=,即2n =,且3ln 2x y x m +=++为奇函数,所以23m +=-,解得5m =-,故1()ln 5x f x x +=+-2,7x n m -=,且6()2(1)(5)f x x x '=-+-,故切线斜率为13(7)8f '=,故选D.8.【答案】B 【解析】设ABC 的内切圆半径为r ,由题意可得cos cos 2b C c B +=,由余弦定理可得2222a b c b ab +-⋅+2222222222222a c b a b c a c b c a ac a a +-+-+-⋅=+==,而11sin ()22ABC S bc A a b c r ==++ ,故2r =⋅2bcb c ++,由余弦定理可得2222cos a b c bc A =+-,则224b c bc bc =+- ,当且仅当b c =时等号成立,而4=2()3b c bc +-,则b c +=,其中4bc ,故33222bc r b c =⋅=++=(24)t t < ,故24(2)6263t r t t -=⋅=-+ .故选B.9.【答案】AC 【解析】对于A :因为21x y +=18xy ,当且仅当2x y =,即11,42x y ==时取等号,故A 正确;对于B :1424(2)8666x y x y x y x y x y y x +++=+=+++=+,当且仅当8x yy x =,即x =1,22y =时取等号,故B 错误;对于C :因为22x y +,则22142x y + ,当且仅当2x y =,即11,42x y ==时取等号,故C 正确;对于D :因为2112(1)1(1)2(1)2222x y x y x y ++⎡⎤+=⨯+⨯=⎢⎥⎣⎦,当且仅当21x y =+,即1,02x y ==时取等号,这与x ,y 均为正数矛盾,故1(1)2x y +<,故D 错误,故选AC.10.【答案】AD 【解析】如图所示,对于A ,因为1BB ⊂/平面11,BC F BB 平面1BC F B =,故1BB 与平面1BC F 的交点为B ,且是唯一的.又因为B ,G ,H 三点不共线,所以GH 不经过点B ,又GH ⊂平面1BC F ,所以直线GH 与直线1BB 没有交点,即直线GH 与直线1BB 异面,故A 正确;对于B ,因为AB 的中点为1,E AA 的中点为F ,所以点G 是1A AB 的重心,:1:2FG GB =,若1//GH BC ,则1:1:2FH HC =,事实上:()()1111111222A H A C A A AC A F A C A F λλλλ==+=+=+112AC λ ,所以H 是1FC 的中点,1:1:2FH HC =不成立,故B 错误;对于CD 选项,如图,取线段BF 的中点Q ,连接1AQ 并延长,交BE于点P ,下证1//BC 平面1A PC :由H 为1C F 的中点可知1//HQ BC ,又1BC ⊂/平面1,A PC HQ ⊂平面1A PC ,所以1//BC 平面1A PC ,故D 正确,C 错误;故选AD.11.【答案】BCD 【解析】由题意可得()e xf x n '=-,当(,ln )x n ∈-∞时,()0,()f x f x '<单调递减,当(ln ,)x n ∈+∞时,()0,()f x f x '>单调递增,故2(ln )ln n a f n n n n n ==+-.对于A :12212,62ln 2,22a a a a ==---=-2ln 20>,即122a a <-,故A 错误;对于B :设函数2()1ln ,,()2ln 1F x x x x x F x x x '+=--∈=--N ,设函数1()2ln 1,()2,1g x x x g x x x '=--=- 时,则()0()g x g x '>⇒单调递增,故()(1)10g x g =>⇒ ()0()F x F x '>⇒单调递增,故22()(1)01ln 0ln 11n F x F n n n n n n n n a n =⇒--⇒+-+⇒+ ,故B 正确;对于C :易知ln n n >,又因为()f x 在(ln ,)x n ∈+∞上单调递增,故(ln )()(1)f n f n f n <<+ ()n f a ,故()()n f a f n >,故C 正确;对于D :[ln ln()][ln n m m n a a a m n m n m n m n +--=+-+++-ln()]n m +,只需证明ln ln()0n m n m +-+>即可,而ln ln e n n m m +=,由e 1(1)x x x >+易得e n m >(1)m n m mn m n +=++,故ln ln()0n m n m +-+>,同理可得ln ln()0m n n m +-+>,故n m n a a +>+m a ,故D 正确,故选BCD .12.【答案】(8,0-]【解析】因为命题“2,20x ax ax ∀∈--<R ”为真命题,当0a =时,20-<成立,当0a ≠时,则280a a a <⎧⎨∆=+<⎩,解得80a -<<,故a 的取值范围是(8,0]-,故答案为(8,0]-.13.【答案】[-8,24]【解析】由题意可得AB 的模为4,根据正六边形的特征及投影的定义可以得到AP 在AB方向上的投影长度的取值范围是[2,6]-,由数量积定义可知AP AB ⋅ 等于AB 的模与AP 在AB 方向上的投影长度的乘积,所以AP AB ⋅的取值范围是[8,24]-,故答案为[8,24]-.14.62+【解析】设三棱锥P ABC -的高为h ,依题意,可取BC 中点O ,连接OA ,OP ,则OA =1,OB OC OP h ===,则PBC 的面积为1,2h BC h ABC ⋅= 的面积112OA BC ⋅=,由21PA PB h ==+可得PBA 的面积为2212h +,于是三棱锥P ABC -2211h h +++,由等体积可知)2211133r hh h +++=⨯,所以2222222122122h h h r h h ++++==+,故21r V-=2222123221122h h h h h ++-+-=+.设函数22211()2x f x x +=+,且0x >,则()f x '=()2222222212121212x x x x x x +=++++,当3,()0,()2x f x f x '<<单调递减,3()02x f x '>>,()f x 单调递增,所以3()622f x f =+ ,所以62h =时,21r V -取得最小值62+62.15.【解析】(1)由题意可得π()32cos 22sin 2,(0,)6f x x x x x π⎛⎫=+=+∈ ⎪⎝⎭,………………2分令π2,(0,π)6z x x =+∈,则π13π,66z ⎛⎫∈ ⎪⎝⎭,因为π13πsin ,,66y z z ⎛⎫=∈ ⎪⎝⎭的单调递减区间是π3π,22⎡⎤⎢⎥⎣⎦,…………………………………………5分且由π3π22z ,得π2π63x ,所以()f x 的单调递减区间是π2π,63⎡⎤⎢⎥⎣⎦.………………………………7分(2)当π,12x m ⎡⎤∈⎢⎥⎣⎦,则πππ2,2636x m ⎡⎤+∈+⎢⎥⎣⎦,因为()f x 在区间π,12m ⎡⎤⎢⎥⎣⎦上的最小值为-2,……9分即sin y z =在ππ,236m ⎡⎤+⎢⎥⎣⎦上的最小值为-1,又因为π13π,66z ⎛⎫∈ ⎪⎝⎭,所以3ππ13π2,266m +< ……12分即2ππ3m < ,故m 的取值范围为2π,π3⎡⎫⎪⎢⎣⎭.……………………………………………………………13分16.【解析】(1)由题意得2(1)n n S n a =+,当2n 时,112n n S na --=,………………………………1分两式作差得112(1),(1)n n n n n a n a na n a na --=+--=,……………………………………………………3分所以11n n a a n n -=-,则数列n a n ⎧⎫⎨⎬⎩⎭为常数数列,………………………………………………………………5分无单调性,故数列n a n ⎧⎫⎨⎬⎩⎭不是单调数列.……………………………………………………………………6分(2)由(1)可得111n a a n ==,所以n a n =,故22an n n a n ⋅=⋅.……………………………………8分所以231222322n n T n =⋅+⋅+⋅++⋅ ,①……………………………………………………………10分23412122232(1)22n n n T n n +=⋅+⋅+⋅++-⋅+⋅ ,②………………………………………………12分①-②得()231112122222222(1)2,12n nn n n n T n n n +++--=++++-⋅=-⋅=---⋅- ……………14分所以1(1)2 2.n n T n +=-⋅+…………………………………………………………………………………15分17.【解析】(1)如图,连接AC 交BD 于点O ,设四棱柱1111ABCD A B C D -的体积为V Sh =(其中S 为菱形ABCD 的面积,h 为四棱柱ABCD -1111A B C D 的高),…………………………………………1分所以1ABDA 的体积为111236S h V ⋅=,同理四面体111A B BC 的体积为111236S h V ⋅=……………2分又因为四边形ABCD 是菱形,所以111122AO OC AC A C ===,所以点A 到平面1A BD 的距离为点1C 到平面1A BD 距离的一半,所以四面体11A BC D 的体积是四面体1ABDA 的体积的两倍,即13V .……4分设点A 到平面1A BD 的距离为d ,则1111233663V V V d =-==⋅………………………………5分解得3d =分(2)如图,连接1OA ,由111A B A C ⊥得1A B AC ⊥,又四边形ABCD 是菱形,所以AC BD ⊥,又11,,A B BD B A B BD =⊂ 平面1A BD ,所以AC ⊥平面1A BD ,又1AO ⊂平面1A BD ,所以1A O AC ⊥,………………………………………………………………………………………………8分又11,A B A D BO BD ==,所以1A O BD ⊥,…………………………………………………………9分又,,BD AC O BD AC =⊂ 平面ABCD ,所以1A O ⊥平面ABCD ,以点O 为原点,OA 为x 轴,OB 为y 轴,1OA 为z 轴,建立如图所示空间直角坐标系,由(1)知12V =,且菱形ABCD的面积为S =,所以h ==………………………………11分依题意,1(0,0,0),((0,1,0),(O C B C -,易得平面1A BD的一个法向量为(0,0)OC =,…………………………………………………12分设平面1BC D 的一个法向量为(,,)n a b c =,又1(0,1,0),(OB OC ==- ,所以100OB n OC n ⎧⋅=⎪⎨⋅=⎪⎩,即00b a c =⎧⎨-=⎩,取(1,0,1)n = ,…………………………………………………13分故111cos ,2||n OC n OC n OC ⋅<>===⋅ ,……………………………………………………14分故锐二面角11A BD C --的余弦值为2.…………………………………………………………………15分【评分细则】本题第二问若考生通过利用几何法来求解二面角11A BD C --的平面角为11π4A OC ∠=,或者利用余弦定理等来直接求解二面角的余弦值,只要过程合理,最终答案正确均给满分,若过程有误或证明过程不严谨酌情扣一定的分数.18【解析】(1)易得()f x 定义域为(0,),()ln f x x a x '+∞=-,显然0a ≠.…………………………1分①当0a <时,()f x '单调递增,不可能有两零点,不合题意.…………………………………………2分②当0a >时,令函数()()g x f x '=,易得()x a g x x'-=,故(0,)x a ∈时,()0,()g x g x '<单调递减(,)x a ∈+∞时,()0,()g x g x '>单调递增,……………………………………………………………4分当e a 时,有()()(1ln )0g x g a a a =- ,不可能有两零点;当e a >时,有()0,(1)10g a g <=>,由零点存在性定理可得()g x 在区间(1,)a 必有一个零点1x .……………………………………………6分()2(2ln )g a a a a =-,令函数()2ln a a a ϕ=-,则2()10a aϕ'=->,即()a ϕ单调递增,故()(e)a ϕϕ>=e 20->,即()20g a >,故()g x 在(,)a +∞上有零点2x ,综上(e,)a ∈+∞.…8分(2)依题意有()()120g x g x ==,即1122ln ln 0x a x x a x -=-=,故得12211221ln ln ln ln x x x x a x x x x -====-2121ln x x x x -,…………………………………………………………10分因此2121122111ln ln ln 1x x x x x x x x x x ==--,令21(1,e)x t x =∈.则1ln ln 1t x t =-,同理2ln ln 1t t x t =-,故12eln ln x x +=e ln 1t t t +-,欲证122eln ln e 1x x <+<+,即证112ln (e 1)e e t t t t t --<<+++,……12分令函数1()ln 2e t m t t t -=-+,函数1()(e 1)ln ,(1,e)e t n t t t t -=+-∈+,只需证明()0,()0m t n t >>即可,又22222(e)2(e 1)(1)e 1()0(e)(e)t t t m t t t t t '+-+-+-==>++,……………………………………………………14分故()m t 是增函数,故()(1)0m t m >=,又222222(e 1)(e)1e ()e 1(e)(e)t t n t t t t t t '⎛⎫+-+==+-- ⎪++⎝⎭,令函数22e ()e 1h t t t =+--,则22e ()10h t t '=->,故()h t 单调递增,故()(1)0h t h >=,………………16分因此21()()0(e)n t h t t '=>+,故()n t 单调递增,故()(1)0n t n >=,故122eln ln e 1x x <+<+得证.17分【评分细则】第一问若考生求完导后用参变分离的方法来求参数范围,只要最终答案正确均给分,第二问也可用其他方法来证明,逻辑正确,严谨可酌情给分.19.【解析】(1)因为{}n a 为满足“绝对值关联”的m 阶数列,假设0i a ,则11110m m m m i i i i i i i i a a a a====-=-=≠∑∑∑∑1(2)m m - ,不满足题意,同理若0i a ,则111101(2)m m m mi i i i i i i i a aa a m m ====-=-+=≠-∑∑∑∑ ,也不满足题意,………………………………4分所以12,,,m a a a 中必有一些数小于0,也必有一些数大于0,不妨设121,,,0,,,,0l k k m a a a a a a +>< (其中1l k m << ),故存在{1,2,,},{,1,,}i l j k k m ∈∈+ ,满足0i j a a <.………………6分(2)①一个满足“绝对值34关联”的4阶数列为:3333,,,4444--;(答案不唯一,符合要求即可)8分一个满足“绝对值1关联”的5阶数列为:222,,,1,1333--;(答案不唯一,符合要求即可)……10分②设(1,2,,)i a i n λ= ,且111n n i i i i a an ==-=-∑∑.不妨设1212,,,0,,,,0k k k n a a a a a a ++< ,其中1k n < ,并记11,k n i i i i k a x a y ==+==∑∑,为方便起见不妨设x y (否则用i a -代替i a 即可),于是得11,n n i i i i ax y a x y ===+=-∑∑,因为111n n i i i i a a n ==-=-∑∑,即()()1x y x y n +--=-,所以11,22n n y x --=,一方面有1()2n y n k λ-=- ,另一方面12n x k λ- .所以1()n n k k n λλλ--+= ,即1n n λ- ,当且仅当n k k -=,即2n k =时等号成立.………13分(i )当n 为偶数时,设*2,n s s =∈N ,则有前s 项为正数,后s 项为负数的数列111,,,n n n n n n --- ,111,,,n n n n n n ------ 是“绝对值1n n -关联”的n 阶数列,又1n n λ- ,所以λ的最小值为1n n -;……………………………………………………………………14分(ii )当n 为奇数时,设*21,n s s =+∈N ,则11(),22n n y n k x k λλ--=- 等价于21s s k λ+- 且s k λ ,即λ不小于21s s k +-与s k中的最大者.……………………………………………………15分当k s =或1s +时,两者中的最大者均为1,有1λ ,当k s <或1k s >+时,有1s k >或121s s k>+-,则有1λ>,所以取k s =或1s +时,λ可能取得最小值1,且有前s 项为正数,后1s +项为负数数列1111,1,,1,,,,111n n n n n n ------+++ 符合题意,所以λ可以取得最小值1.…………………………………………………………………………………………16分综上所述λ的最小值为()*1,21,21n n s s n n s -⎧=⎪∈⎨⎪=+⎩N .……………………………………………………17分。

湖南省长沙市2025届高三上学期第二次月考数学试卷含答案

湖南省长沙市2025届高三上学期第二次月考数学试卷含答案

湖南2025届高三月考试卷(二)数学(答案在最后)命题人、审题人:高三数学备课组时量:120分钟满分:150分一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数11i z =+的虚部是()A.1 B.12 C.12- D.1-【答案】C【解析】【分析】先化简给定复数,再利用虚部的定义求解即可.【详解】因为()()11i 1i 1i 1i 1i 1i 222z --====-++-,所以其虚部为12-,故C 正确.故选:C.2.已知a 是单位向量,向量b 满足3a b -= ,则b 的最大值为()A.2B.4C.3D.1【答案】B【解析】【分析】设,OA a OB b == ,由3a b -= ,可得点B 在以A 为圆心,3为半径的圆上,利用向量的模的几何意义,可得 b 的最大值.【详解】设,OA a OB b == ,因为3a b -= ,即3OA OB BA -== ,即3AB = ,所以点B 在以A 为圆心,3为半径的圆上,又a 是单位向量,则1OA = ,故OB 最大值为134OA AB +=+= ,即 b 的最大值为4.故选:B.3.已知角θ的终边在直线2y x =上,则cos sin cos θθθ+的值为()A.23- B.13- C.23 D.13【答案】D【解析】【分析】由角θ的终边,得tan 2θ=,由同角三角函数的关系得cos 1sin cos 1tan θθθθ=++,代入求值即可.【详解】因为角θ的终边在直线2y x =上,所以tan 2θ=.所以cos 111sin cos 1tan 123θθθθ===+++.故选:D.4.已知函数()2e 33,0,0x a x f x x a x ⎧+-<=⎨+≥⎩对任意的12,x x ∈R ,且12x x ≠,总满足以下不等关系:()()12120f x f x x x ->-,则实数a 的取值范围为()A.34a ≤ B.34a ≥ C.1a ≤ D.1a ≥【答案】D【解析】【分析】由条件判定函数的单调性,再利用指数函数、二次函数的性质计算即可.【详解】()()()12120f x f x f x x x ->⇒- 在上单调递增,又()2e 33,0,0x a x f x x a x ⎧+-<=⎨+≥⎩,当0x <时,()e 33xf x a =+-单调递增,当0x ≥时,()f x 单调递增,只需1330a a +-≤+,解得1a ≥.故选:D.5.如图,圆柱的母线长为4,,AB CD 分别为该圆柱的上底面和下底面直径,且AB CD ⊥,三棱锥A BCD -的体积为83,则圆柱的表面积为()A.10πB.9π2C.4πD.8π【答案】A【解析】【分析】取AB 的中点O ,由13A BCD OCD V S AB -=⋅△,可求解底面半径,即可求解.【详解】设底面圆半径为r ,由AB CD ⊥,易得BC AC BD AD ===,取AB 的中点O ,连接,OC OD ,则,AB OC AB OD ⊥⊥,又OC OD O,OC,OD =⊂ 平面OCD ,所以AB ⊥平面OCD ,所以,11182423323A BCD OCD V S AB r r -=⋅=⨯⨯⨯⨯= ,解得=1,所以圆柱表面积为22π42π10πr r +⨯=.故选:A.6.已知抛物线()2:20C y px p =>的焦点F 到准线的距离为2,过焦点F 的直线l 与抛物线交于,A B 两点,则23AF BF +的最小值为()A.52+ B.5 C.10 D.11【答案】B【解析】【分析】(方法一)首先求出抛物线C 的方程为24y x =,设直线l 的方程为:1x ty =+,与抛物线C 的方程联立,利用根与系数的关系求出21x x 的值,再根据抛物线的定义知11AF x =+,21BF x =+,从而求出23AF BF +的最小值即可.(方法二)首先求出111AF BF+=,再利用基本不等式即可求解即可.【详解】(方法一)因为抛物线C 的焦点到准线的距离为2,故2p =,所以抛物线C 的方程为24y x =,焦点坐标为1,0,设直线l 的方程为:()()11221,,,,x ty A x y B x y =+,不妨设120y y >>,联立方程241y x x ty ⎧=⎨=+⎩,整理得2440y ty --=,则12124,4y y t y y +==-,故221212144y y x x =⋅=,又B =1+2=1+1,2212p BF x x =+=+,则()()12122321312352525AF BF x x x x +=+++=++≥=,当且仅当12,23x x ==时等号成立,故23AF BF +的最小值为5.故选:B.(方法二)由方法一可得121x x =,则11AF BF +211111x x =+++121212211x x x x x x ++==+++,因此23AF BF +()1123AF BF AF BF ⎛⎫=++ ⎪ ⎪⎝⎭235AF BF BF AF =++55≥+=+,当且仅当661,123AF BF =+=+时等号成立,故23AF BF +的最小值为5.故选:B.7.设函数()()cos f x x ϕ=+,其中π2ϕ<.若R x ∀∈,都有ππ44f x f x ⎛⎫⎛⎫+=- ⎪ ⎪⎝⎭⎝⎭.则()y f x =的图象与直线114y x =-的交点个数为()A.1B.2C.3D.4【答案】C【解析】【分析】利用给定条件求出()πcos 4f x x ⎛⎫=- ⎪⎝⎭,再作出图像求解交点个数即可.【详解】对R x ∀∈,都有ππ44f x f x ⎛⎫⎛⎫+=- ⎪ ⎪⎝⎭⎝⎭,所以π4x =是=的一条对称轴,所以()ππZ 4k k ϕ+=∈,又π2ϕ<,所以π4ϕ=-.所以()πcos 4f x x ⎛⎫=- ⎪⎝⎭,在平面直角坐标系中画出()πcos 4f x x ⎛⎫=-⎪⎝⎭与114y x=-的图象,当3π4=-x 时,3π14f ⎛⎫-=- ⎪⎝⎭,11113π3π4164y --=⨯(-=-<-,当5π4x =时,5π14f ⎛⎫=- ⎪⎝⎭,5π5π14111461y =⨯-=->-,当9π4x =时,9π14f ⎛⎫= ⎪⎝⎭,11119π9π4416y =⨯-=-<,当17π4x =时,17π14f ⎛⎫= ⎪⎝⎭,111117π17π4416y =⨯-=->所以如图所示,可知=的图象与直线114y x =-的交点个数为3,故C 正确.故选:C.8.已知定义域为R 的函数()(),f x g x 满足:()()()()()()00,g f x g y f y g x f x y ≠-⋅=-,且()()()()()g x g y f x f y g x y -=-,则下列说法正确的是()A.()01f =B.()f x 是偶函数C.若()()1112f g +=,则()()2024202420242f g -=-D.若()()111g f -=,则()()202420242f g +=【答案】C【解析】【分析】对A ,利用赋值法令0,0x y ==即可求解;对B ,根据题中条件求出()f y x -,再利用偶函数定义即可求解;对C ,先根据题意求出()()001f g -=-,再找出()()11f x g x ---与()()f x g x ⎡⎤-⎣⎦的关系,根据等比数列的定义即可求解;对D ,找出()()11f x g x -+-与()()f x g x ⎡⎤+⎣⎦的关系,再根据常数列的定义即可求解.【详解】对A ,()()()()()f x g y f y g x f x y -⋅=- ,令0,0x y ==,即()()()()()00000f g f g f -⋅=,解得()00f =,故A 错;对B ,根据()()()()()f x g y f y g x f x y -=-,得()()()()()f y g x f x g y f y x -=-,即()()f y x f x y -=--,故()f x 为奇函数,故B 错;对C ,()()()()()g x g y f x f y g x y -=- 令0x y ==,即()()()()()00000g g f f g -=,()00f = ,()()200g g ∴=,又()00g ≠,()01g ∴=,()()001f g ∴-=-,由题知:()()f x yg x y ---()()()()()()()()f x g y f y g x g x g y f x f y ⎡⎤=-⋅--⎣⎦()()()()f y g y f x g x ⎡⎤⎡⎤=+-⎣⎦⎣⎦,令1y =,即()()()()()()1111f x g x f g f x g x ⎡⎤⎡⎤---=+-⎣⎦⎣⎦,()()1112f g += ,()()()()1112f xg x f x g x ⎡⎤∴---=-⎣⎦,即()(){}f xg x -是以()()001f g -=-为首项2为公比的等比数列;故()()()2024202420242024122f g -=-⨯=-,故C 正确;对D ,由题意知:()()f x yg x y -+-()()()()()()()()f xg y f y g x g x g y f x f y =-⋅+-()()()()g y f y f x g x ⎡⎤⎡⎤=-+⎣⎦⎣⎦,令1y =,得()()()()()()1111f x g x g f f x g x ⎡⎤⎡⎤-+-=-+⎣⎦⎣⎦,又()()111g f -=,即()()()()11f x g x f x g x -+-=+,即数列()(){}f xg x +为常数列,由上知()()001f g +=,故()()202420241f g +=,故D 错.故选:C.【点睛】关键点点睛:本题的关键是对抽象函数进行赋值,难点是C ,D 选项通过赋值再结合数列的性质进行求解.二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.下列说法中正确的是()A.一个样本的方差()()()22221220133320s x x x ⎡⎤=-+-++-⎣⎦L ,则这组样本数据的总和等于60B.若样本数据1210,,,x x x 的标准差为8,则数据1221,21,x x -- ,1021x -的标准差为16C.数据13,27,24,12,14,30,15,17,19,23的第70百分位数是23D.若一个样本容量为8的样本的平均数为5,方差为2,现样本中又加入一个新数据5,此时样本容量为9,平均数不变,方差变小【答案】ABD【解析】【分析】对于A ,由题意可得样本容量为20,平均数是3,从而可得样本数据的总和,即可判断;对于B ,根据标准差为8,可得方差为64,从而可得新数据的方差及标准差,即可判断;对于C ,根据百分位数的定义,求出第70百分位数,即可判断;对于D ,由题意可求得新数据的平均数及方差,即可判断.【详解】解:对于A ,因为样本的方差()()()222212201333,20s x x x ⎡⎤=-+-++-⎣⎦ 所以这个样本有20个数据,平均数是3,这组样本数据的总和为32060,⨯=A 正确;对于B ,已知样本数据1210,,,x x x 的标准差为8s =,则264s =,数据121021,21,,21x x x --- 的方差为2222264s =⨯2816=⨯=,故B 正确;对于C ,数据13,27,24,12,14,30,15,17,19,23共10个数,从小到大排列为12,13,14,15,17,19,23,24,27,30,由于100.77⨯=,故选择第7和第8个数的平均数作为第70百分位数,即232423.52+=,所以第70百分位数是23.5,故C 错误;对于D ,某8个数的平均数为5,方差为2,现又加入一个新数据5,设此时这9个数的平均数为x ,方差为2S ,则2285582(55)165,2999x S ⨯+⨯+-====<,故D 正确.故选:ABD.10.已知函数()32f x ax bx =-+,则()A.()f x 的值域为RB.()f x 图象的对称中心为()0,2C.当30b a ->时,()f x 在区间()1,1-内单调递减D.当0ab >时,()f x 有两个极值点【答案】BD【解析】【分析】利用一次函数、三次函数的性质结合分类讨论思想可判定A ,利用函数的奇偶性判定B ,利用导数研究函数的单调性结合特殊值法排除C ,利用极值点的定义可判定D.【详解】对于A :当,a b 至少一个不为0,则()f x 为三次或者一次函数,值域均为;当,a b 均为0时,值域为{}2,错误;对于B :函数()()32g x f x ax bx =-=-满足()()3g x ax bx g x -=-+=-,可知()g x 为奇函数,其图象关于()0,0中心对称,所以()f x 的图象为()g x 的图象向上移动两个单位后得到的,即关于0,2中心对称,正确;对于C :()23f x ax b '=-,当30b a ->时,取1,1a b =-=-,当33,33x ⎛⎫∈- ⎪ ⎪⎝⎭时,()()2310,f x x f x =-+>'在区间33,33⎛⎫- ⎪ ⎪⎝⎭上单调递增,错误;对于D :()23f x ax b '=-,当0ab >时,()230f x ax b '=-=有两个不相等的实数根,所以函数()f x 有两个极值点,正确.故选:BD.11.我国古代太极图是一种优美的对称图.定义:能够将圆O 的周长和面积同时等分成两个部分的函数称为圆O 的一个“太极函数”,则下列命题中正确的是()A.函数()sin 1f x x =+是圆22:(1)1O x y +-=的一个太极函数B.对于圆22:1O x y +=的所有非常数函数的太极函数中,都不能为偶函数C.对于圆22:1O x y +=的所有非常数函数的太极函数中,均为中心对称图形D.若函数()()3f x kx kx k =-∈R 是圆22:1O x y +=的太极函数,则()2,2k ∈-【答案】AD【解析】【分析】根据题意,对于A ,D 利用新定义逐个判断函数是否满足新定义即可,对于B ,C 举反例说明.【详解】对于A ,圆22:(1)1O x y +-=,圆心为0,1,()sin 1f x x =+的图象也过0,1,且0,1是其对称中心,所以()sin 1f x x =+的图象能将圆一分为二,所以A 正确;对于B,C ,根据题意圆22:1O x y +=,如图()331,332313,03231332331,332x x x f x x x x ⎧--<-⎪⎪+-≤≤=⎨⎪+<≤⎪->⎩,与圆交于点()1,0-,1,0,且在x 轴上方三角形面积与x 轴下方个三角形面积之和相等,()f x 为圆O 的太极函数,且()f x 是偶函数,所以B ,C 错误;对于D ,因为()()()()()33()f x k x k x kx kx f x k -=---=--=-∈R ,所以()f x 为奇函数,由()30f x kx kx =-=,得0x =或1x =±,所以()f x 的图象与圆22:1O x y +=的交点为()()1,0,1,0-,且过圆心()0,0,由3221y kx kx x y ⎧=-⎨+=⎩,得()2624222110k x k x k x -++-=,令2t x =,则()232222110k t k t kt -++-=,即()()222110t k t k t --+=,得1t =或22210k t k t -+=,当1t =时,1x =±,当22210k t k t -+=时,若0k =,则方程无解,合题意;若0k ≠,则()4222Δ44k k k k=-=-,若Δ0<,即204k <<时,方程无解,合题意;所以()2,2k ∈-时,两曲线共有两个交点,函数能将圆一分为二,如图,若Δ0=,即2k =±时,函数与圆有4个交点,将圆分成四部分,若Δ0>,即24k >时,函数与圆有6个交点,且均不能把圆一分为二,如图,所以()2,2k ∈-,所以D 正确.故选:AD.【点睛】关键点点睛:本题解题的关键是理解新定义,即如果一个函数过圆心,并且函数图象关于圆心中心对称,且函数将圆分成2部分,不能超过2部分必然合题.如果函数不是中心对称图形,则考虑与圆有2个交点,交点连起来过圆心,再考虑如何让面积相等.三、填空题:本题共3小题,每小题5分,共15分.12.曲线2ln y x x =-在点()1,2处的切线与抛物线22y ax ax =-+相切,则a =__________.【答案】1【解析】【分析】求出曲线2ln y x x =-在点()1,2处的切线方程,由该切线与抛物线22y ax ax =-+相切,联立消元,得到一元二次方程,其Δ0=,即可求得a .【详解】由2ln y x x =-,则12y x'=-,则11x y ='=,曲线2ln y x x =-在点()1,2处的切线方程为21y x -=-,即1y x =+,当0a ≠时,则212y x y ax ax =+⎧⎨=-+⎩,得()2110ax a x -++=,由2Δ(1)40a a =+-=,得1a =.故答案为:1.13.已知椭圆G22+22=1>>0的左、右焦点分别为12,F F ,若P 为椭圆C 上一点,11212,PF F F PF F ⊥ 的内切圆的半径为3c,则椭圆C 的离心率为______.【答案】23【解析】【分析】由内切圆半径的计算公式,利用等面积法表示焦点三角形12PF F 的面积,得到,a c 方程,即可得到离心率e 的方程,计算得到结果.【详解】由题意,可知1PF 为椭圆通径的一半,故21b PF a =,12PF F 的面积为21122b cc PF a⋅⋅=,又由于12PF F 的内切圆的半径为3c,则12PF F 的面积也可表示为()12223c a c +⋅,所以()111222223c c PF a c ⋅⋅=+⋅,即()212223b c ca c a =+⋅,整理得:22230a ac c --=,两边同除以2a ,得2320e e +-=,所以23e =或1-,又椭圆的离心率()0,1e ∈,所以椭圆C 的离心率为23.故答案为:23.14.设函数()()44xf x ax x x =+>-,若a 是从1,2,3,4四个数中任取一个,b 是从4,8,12,16,20,24六个数中任取一个,则()f x b >恒成立的概率为__________.【答案】58##0.625【解析】【分析】根据题意,利用基本不等式,求得2min ()1)f x =+,转化为21)b +>恒成立,结合a 是从1,2,3,4四个数中任取一个,b 是从4,8,12,16,20,24六个数中任取一个,得到基本事件总数有24个,再利用列举法,求得()f x b >成立的基本事件的个数,结合古典概型的概率计算公式,即可求解.【详解】因为0,4a x >>,可得40x ->,则()()441441444x f x ax ax a x a x x x =+=++=-+++---2411)a ≥++=,当且仅当4x =时,等号成立,故2min ()1)f x =+,由不等式()f x b >恒成立转化为21)b >恒成立,因为a 是从1,2,3,4四个数中任取一个,b 是从4,8,12,16,20,24六个数中任取一个,则构成(),a b 的所有基本事件总数有24个,又由()221)1)912,16==+,()221)1319,201)25+=+=,设事件A =“不等式()f x b >恒成立”,则事件A 包含事件:()()1,4,1,8,()()()2,4,2,8,2,12,()()()()3,4,3,8,3,12,3,16,()()()()()()4,4,4,8,4,12,4,16,4,20,4,25共15个,因此不等式()f x b >恒成立的概率为155248=.故答案为:58.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.在ABC V 中,角,,A B C 所对的边分别为,,a b c ,已知()()()sin sin sin b c B C a c A +-=-.(1)求B ;(2)若ABC 的面积为334,且2AD DC = ,求BD 的最小值.【答案】(1)π3B =(2.【解析】【分析】(1)利用正弦定理可得()()()b c b c a c a +-=-,再结合余弦定理得2221cos 22a cb B ac +-==,从而可求解.(2)结合ABC V 的面积可求得3ac =,再由.112333BD BC CA BA BC =+=+,平方后得,()222142993BD c a =++ ,再结合基本不等式即可求解.【小问1详解】由正弦定理得()()()b c b c a c a +-=-,即222a c b ac +-=,由余弦定理可得2221cos 222a cb ac B ac ac +-===,因为()0,πB ∈,所以π3B =.【小问2详解】因为ABC V 的面积为33π,43B =,所以133sin 24ac B =,所以3ac =.因为()11123333BD BC CA BC BA BC BA BC =+=+-=+,所以()()()()22222221421441422cos 999999993BD BA BC BA BC c a ac B c a =++⋅⋅=++=++ ,所以2214212222993333c a c a ++≥⋅⋅+=,当且仅当6,2a c ==时取等号,所以BD .16.已知双曲线E 的焦点在x 轴上,离心率为233,点(在双曲线E 上,点12,F F 分别为双曲线的左、右焦点.(1)求E 的方程;(2)过2F 作两条相互垂直的直线1l 和2l ,与双曲线的右支分别交于A ,C 两点和,B D 两点,求四边形ABCD 面积的最小值.【答案】(1)2213x y -=(2)6【解析】【分析】(1)由222c a b =+和3e =,及点(在双曲线E 上,求出22,a b ,即可求出E 的方程;(2)设直线()()121:2,:2l y k x l y x k =-=--,其中0k ≠,根据题中条件确定2133k <<,再将1l 的方程与2213x y -=联立,利用根与系数的关系,用k 表示AC ,BD 的长,再利用12ABCDS AC BD =,即可求出四边形ABCD 面积的最小值.【小问1详解】因为222c a b =+,又由题意得22243c e a ==,则有223a b =,又点(在双曲线E 上,故229213-=b b,解得221,3b a ==,故E 的方程为2213xy -=.【小问2详解】根据题意,直线12,l l 的斜率都存在且不为0,设直线()()121:2,:2l y k x l y x k=-=--,其中0k ≠,因为12,l l 均与E 的右支有两个交点,所以313,33k k >->,所以2133k <<,将1l 的方程与2213x y -=联立,可得()222213121230k x k x k -+--=.设()()1122,,,A x y C x y ,则2212122212123,1313k k x x x x k k---+==--,所以()222121212114AC k x k x x x x =+-=++-)22222222222311212323114113133113k k k kkk k k k k +⎛⎫---+=+-⨯+ ⎪----⎝⎭,同理)22313k BD k +=-,所以))()()()2222222223131111622313313ABCD kkk S AC BD k kkk+++==⋅⋅=⋅----.令21t k =+,所以241,,43k t t ⎛⎫=-∈⎪⎝⎭,则2222166661616316161131612ABCDt S t t t t t =⋅=⋅=≥-+-⎛⎫-+---+ ⎪⎝⎭,当112t =,即1k =±时,等号成立.故四边形ABCD 面积的最小值为6.17.如图,侧面11BCC B 水平放置的正三棱台11111,24ABC A B C AB A B -==,2,P 为棱11A B 上的动点.(1)求证:1AA ⊥平面11BCC B ;(2)是否存在点P ,使得平面APC 与平面111A B C 的夹角的余弦值为53333?若存在,求出点P ;若不存在,请说明理由.【答案】(1)证明见解析(2)存在,点P 为11A B 中点【解析】【分析】(1)延长三条侧棱交于一点O ,由勾股定理证明OA OB ⊥,OA OC ⊥,根据线面垂直的判定定理得证;(2)建立空间直角坐标系,求出平面111A B C 和平面APC 的法向量,利用向量夹角公式求解.【小问1详解】延长三条侧棱交于一点O ,如图所示,由于11124,2AB A B BB ===22OB OA ==所以22216OA OB AB +==,所以OA OB ⊥,同理OA OC ⊥.又OB OC O = ,,OB OC ⊂平面OBC ,所以OA ⊥平面OBC ,即1AA ⊥平面11BCC B .【小问2详解】由(1)知,,OA OB OA OC OB OC ⊥⊥⊥,如图建立空间直角坐标系,则(()0,0,,0,A C,()()111,,0,A B C ,所以((1110,0,,0,,AA AC A B ==-=,()110,B C =.设)111,0,A P A B λλ===,则1AP AA =+)[]1,0,,0,1A P λ=∈,设平面111A B C 和平面APC 的法向量分别为(),,,m x y z n ==(),,r s t ,所以)01000r t λ⎧=+=⎪⎨+==⎪⎪⎩⎩,取()()1,1,1,1,,m n λλλ==+,则cos ,33m n m n m n ⋅===.整理得212870λλ+-=,即()()21670λλ-+=,所以12λ=或76λ=-(舍),故存在点P (点P 为11A B 中点时),满足题意.18.若无穷正项数列{}n a 同时满足下列两个性质:①存在0M >,使得*,n a M n <∈N ;②{}n a 为单调数列,则称数列{}n a 具有性质P .(1)若121,3nn n a n b ⎛⎫=-= ⎪⎝⎭,(i )判断数列{}{},n n a b 是否具有性质P ,并说明理由;(ii )记1122n n n S a b a b a b =+++ ,判断数列{}n S 是否具有性质P ,并说明理由;(2)已知离散型随机变量X 服从二项分布()1,,02B n p p <<,记X 为奇数的概率为n c .证明:数列{}n c 具有性质P .【答案】(1)(i )数列{}n a 不具有性质P ,数列{}n b 具有性质P ,理由见解析;(ii )数列{}n S 具有性质P ,理由见解析(2)证明见解析【解析】【分析】(1)判断数列是否满足条件①②,可得(i )的结果;利用错位相减法求数列{}n n a b 的前n 项和,再判断是否满足条件①②.(2)先求数列{}n c 的通项公式,再判断是否满足条件①②.【小问1详解】(i )因为21n a n =-单调递增,但无上限,即不存在M ,使得n a M <恒成立,所以数列不具有性质P .因为113nn b ⎛⎫=< ⎪⎝⎭,又数列为单调递减数列,所以数列具有性质P .(ii )数列{}n S 具有性质P .2112113333n n n S -=⋅+⋅++ ,23111121133333n n n S +-=⋅+⋅++ ,两式作差得23121111211222333333n n n n S +-=⋅+⋅+⋅++⋅- ,即1121121212223313333313n n n n n n S ++⎛⎫- ⎪-+⎝⎭=-+-=--,所以111,3n n n S +=-<∴数列{}n S 满足条件①.(){}11210,,3nn n n n n a b n S S S +⎛⎫=->∴<∴ ⎪⎝⎭为单调递增数列,满足条件②.综上,数列{}n S 具有性质P .【小问2详解】因为*0,1,,,X n n =∈N ,若X 为奇数的概率为,n c X 为偶数的概率为n d ,()1[1]nn n c d p p +==-+001112220C (1)C (1)C (1)C (1)n n n n nn n n n p p p p p p p p --=-+-+-++- ①()001112220[1]C ()(1)C ()(1)C ()(1)C ()(1)n n n n n n n n n n p p p p p p p p p p ----=--+--+--++-- ②,2n c -=①②,即1(12)2nn p c --=.所以当102p <<时,0121p <-<,故n c 随着n 的增大而增大,且12n c <.故数列{}n c 具有性质P .19.已知函数()24e 2x f x x x-=-,()2233g x x ax a a =-+--(a ∈R 且2a <).(1)令()()()(),x f x g x h x ϕ=-是()x ϕ的导函数,判断()h x 的单调性;(2)若()()f x g x ≥对任意的()1,x ∈+∞恒成立,求a 的取值范围.【答案】(1)ℎ在(),0∞-和0,+∞上单调递增;(2)(],1-∞.【解析】【分析】(1)需要二次求导,利用导函数的符号分析函数的单调性.(2)法一先利用()()22f g ≥这一特殊情况,探索a 的取值范围,再证明对()1,x ∈+∞时,()()f x g x ≥恒成立;法二利用导数工具求出函数()x ϕ的最小值()0x ϕ,同法一求证(]0,1a ∈时()00x ϕ≥,接着求证()1,2a ∈时()20ϕ<不符合题意即可得解.【小问1详解】()()()2224e 233x x f x g x x x ax a a xϕ-=-=-+-++,定义域为{}0xx ≠∣,所以()()()224e 1223x x h x x x a xϕ--==-+-',所以()()2234e 2220x x x h x x --+=+>'.所以()h x 在(),0-∞和()0,∞+上单调递增.【小问2详解】法一:由题知()()22f g ≥即()()()2232120a a a a ϕ=-+=--≥,即1a ≤或2a ≥,所以1a ≤.下证当1a ≤时,()()f x g x ≥对任意的()1,x ∈+∞恒成立.令()()24e x F x f x x x x -=+=-,则()()()()()222234e 224e 11,0x x x x x F x t x t x x x---+-'=-==>',所以()()224e 11x x F x x --=-'在()1,+∞单调递增,又()20F '=,所以当()1,2x ∈时,()()0,F x F x '<单调递减,当()2,x ∈+∞时,()()0,F F x x '>递单调增,所以()()20F x F ≥=,故()f x x ≥-,要证()()f x g x ≥,只需证()x g x -≥,即证()223130x a x a a -+++≥,令()()22313G x x a x a a =-+++,则()()()222Δ(31)43561151a a a a a a a =+-+=-+=--,若115a ≤≤,则0∆≤,所以()()223130G x x a x a a =-+++≥.若15a <,则对称轴31425a x +=<,所以()G x 在()1,+∞递增,故()()210G x G a >=≥,综上所述,a 的取值范围为(],1-∞.法二:由题知2224e 233x x x ax a a x--≥-+--对任意的()1,x ∈+∞恒成立,即()2224e 2330x x x x ax a a xϕ-=-+-++≥对任意的()1,x ∈+∞恒成立.由(1)知()()224e 1223x x x x a x ϕ--=-+-'在()1,+∞递增,又()13a ϕ'=-.①若0a ≤,则()()()10,x x ϕϕϕ'>≥'在()1,+∞递增,所以()()24110e x a ϕϕ>=-+>,符合;②若0a >,则()130a ϕ=-<',又()112224e 14e (1)(1)(1)a a a a a a a a a ϕ--⎡⎤+=-=-+⎣⎦++',令()124e(1)a m a a -=-+,则()()()14e 21a m a a h a -=-+=',则()14e 2a h a -'=-为单调递增函数,令()0h a '=得1ln2a =-,当()0,1ln2a ∈-时()()0,h a m a ''<单调递减,当()1ln2,a ∞∈-+时()()0,h a m a ''>单调递增,又()()10,00m m ='<',所以当()0,1a ∈时,()()0,m a m a '<单调递减,当()1,a ∈+∞时,()()0,m a m a '>单调递增,所以()()10m a m ≥=,则()12214e (1)0(1)a a a a a ϕ-⎡⎤+'=-+≥⎣⎦+,所以(]01,1x a ∃∈+,使得()00x ϕ'=,即()0200204e 12230x x x a x ---+-=,且当()01,x x ∈时,()()0,x x ϕϕ'<单调递减,当()0,x x ∈+∞时,()()0,x x ϕϕ'>单调递增,所以()()0222min 000004e 233x x x x x ax a a x ϕϕ-==-+-++.若(]0,1a ∈,同法一可证()0222000004e 2330x x x x ax a a x ϕ-=-+-++≥,符合题意.若()1,2a ∈,因为()()()2232120a a a a ϕ=-+=--<,所以不符合题意.综上所述,a 的取值范围为(],1-∞.【点睛】方法点睛:导数问题经常会遇到恒成立的问题.常见的解决思路有:(1)根据参变分离,转化为不含参数的函数最值问题.(2)若()0f x >恒成立,就可以讨论参数不同取值下的函数的单调性和极值与最值,最终转化为()min 0f x >;若()0f x <⇔()max 0f x <.(3)若()()f x g x ≥恒成立,可转化为()()min max f x g x ≥(需在同一处取得最值).。

2022-2023学年高二下学期第二次月考数学试题(解析版)

2022-2023学年高二下学期第二次月考数学试题(解析版)

2024届高二年级下学期第二次月考数学试卷一、单选题(共40分)1. 已知复数满足,( )z ()()31i 1i z --=+z=A.B.C.D.【答案】D 【解析】【分析】先求出复数的代数形式,再求模即可. z 【详解】由得()()31i 1i z --=+,()()()()1i 1i 1i333i 1i 1i 1i z +++=+=+=+--+.z ∴==故选:D.2. 某地政府调查育龄妇女生育意愿与家庭年收入高低的关系时,随机调查了当地3000名育龄妇女,用独立性检验的方法处理数据,并计算得,则根据这一数据以及临界值表,判断育龄妇女生育意27.326χ=愿与家庭年收入高低有关系的可信度( )参考数据如下:,()()()22210.8280.001,7.8790.005, 6.6350.01P P P χχχ≥≈≥≈≥≈.()()223.8410.05, 2.7060.1P P χχ≥≈≥≈A. 低于 B. 低于 C. 高于 D. 高于1%0.5%99%99.5%【答案】C 【解析】【分析】根据临界值表求得正确答案.【详解】由于,()27.326 6.635,7.879χ=∈而,()()227.8790.005, 6.6350.01P P χχ≥≈≥≈所以可信度高于. 99%故选:C3. 已知向量满足,且,则在上的投影向量为( ),a b 10a b ⋅= ()3,4b =- a b A. B.C.D. ()6,8-()6,8-68,55⎛⎫- ⎪⎝⎭68,55⎛⎫-⎪⎝⎭【答案】C 【解析】【分析】向量在向量上的投影向量的定义计算即可.a b【详解】解:因为向量,且,那么,()3,4b =- 10a b ⋅=5b == 所以向量在向量上的投影向量为, a b ()3468cos ,555b a b a a b b b-⋅⎛⎫⋅=⋅=- ⎪⎝⎭ ,,故选:C.4. 已知等比数列的前n 项和为,若,则( ){}n a n S 153n n S t -=⨯+t =A. B. 5C.D.5-53-53【答案】C 【解析】【分析】根据条件得到,,,从而求出,,,再由数列是等比数列得到,1S 2S 3S 1a 2a 3a {}n a 3212a a a a =即可得到.t 【详解】由题意得:,,, 115S a t ==+21215S a a t =+=+312345S a a a t =++=+即,,, 15a t =+210a =330a =因为数列是等比数列,所以, {}n a 3212a a a a =即,解得:,1030510t =+53t =-故选:C .5. 如图,八面体的每一个面都是正三角形,并且四个顶点在同一平面内,下列结论:①,,,A B C D AE平面;②平面平面;③;④平面平面,正确命题的个数//CDF ABE //CDF AB AD ⊥ACE ⊥BDF 为( )A. 1B. 2C. 3D. 4【答案】D 【解析】【分析】根据题意,以正八面体的中心为原点,分别为轴,建立如图所示空间直O ,,OB OC OE ,,x y z 角坐标系,由空间向量的坐标运算以及法向量,对选项逐一判断,即可得到结果.【详解】以正八面体的中心为原点,分别为轴,建立如图所示空间直角坐标系, O ,,OB OC OE ,,x y z 设正八面体的边长为,则2()(()()(0,,,,,0,0,A E C D F 所以,,(()(,,0,AE CD CF ===设面的法向量为,则,解得,取,即CDF (),,n x y z =CD n CF n ⎧⋅==⎪⎨⋅==⎪⎩x z x y =⎧⎨=-⎩1x =()1,1,1n =-又,所以,面,即面,①正确;0AE n ⋅== AE n ⊥AE ⊄CDF AE //CDF 因为,所以,AE CF =- AE //CF 又,面,面,则面,//AB CD AB ⊄CDF CD ⊂CDF //AB CDF 由,平面,所以平面平面,②正确; AB AE A = ,AE AB ⊂ABE AEB //CDF 因为,则,所以,③正确;))(),,BAB AD ==0AB AD ⋅=u u u r u u u rAB AD ⊥易知平面的一个法向量为,平面的一个法向量为,ACE ()11,0,0n =u r BDF ()20,1,0n =u u r因为,所以平面平面,④正确;120n n ⋅=ACE ⊥BDF 故选:D6. 如图,在正三角形的12个点中任取三个点构成三角形,能构成三角形的数量为( )A. 220B. 200C. 190D. 170【答案】C 【解析】【分析】利用间接法,用总数减去不能构成三角形的情况即可.【详解】任取三个点有种,其中三点共线的有种,故能构成三角形个, 312C 353C 33125C 3C 190-=故选:C .7. 已知,分别是双曲线的左、右焦点,过的直线分别交双曲线左、1F 2F ()2222:10,0x y a b a bΓ-=>>1F 右两支于A ,B 两点,点C 在x 轴上,,平分,则双曲线的离心率为( )23CB F A =2BF 1F BC ∠ΓA.B.C.D.【答案】A 【解析】【分析】根据可知,再根据角平分线定理得到的关系,再根据双曲线定23CB F A =2//CB F A 1,BF BC 义分别把图中所有线段用表示出来,根据边的关系利用余弦定理即可解出离心率.,,a b c 【详解】因为,所以∽,23CB F A =12F AF 1F BC △设,则,设,则,. 122FF c =24F C c =1AF t =13BF t =2AB t =因为平分,由角平分线定理可知,, 2BF 1F BC ∠11222142BF F F c BC F C c ===所以,所以, 126BC BF t ==2123AF BC t ==由双曲线定义知,即,,① 212AF AF a -=22t t a -=2t a =又由得,122B F B F a -=2322BF t a t =-=所以,即是等边三角形, 222BF AB AF t ===2ABF △所以.2260F BC ABF ∠=∠=︒在中,由余弦定理知,12F BF 22212121212cos 2BF BF F F F BF BF BF +-∠=⋅⋅即,化简得, 22214942223t t ct t+-=⋅⋅2274t c =把①代入上式得. ce a==故选:A .8. 高斯是德国著名的数学家,近代数学奠基者之一;享有“数学王子“的称号.用他名字定义的函数称为高斯函数,其中表示不超过x 的最大整数,已知数列满足,,()[]f x x =[]x {}n a 12a =26a =,若,为数列的前n 项和,则( )2156n n n a a a +++=[]51log n n b a +=n S 11000n n b b +⎧⎫⎨⎬⋅⎩⎭[]2023S =A. 999 B. 749 C. 499 D. 249【答案】A 【解析】【分析】根据递推关系可得为等比数列,进而可得,由累加法可求解{}1n n a a +-1145n n n a a -+=⨯-,进而根据对数的运算性质可得,根据裂项求和即可求解.151n n a +=+[]51log n n b a n +==【详解】由得,因此数列为公比为5,2156n n n a a a +++=()2115n n n n a a a a +++-=-{}1n n a a +-首项为的等比数列,故,进而根据累加法214a a -=1145n n n a a -+=⨯-得,()()()()1111112024555251n n n n n n n n a a a a a a a a ++---=+++=++-+-++=+- 由于,又,()515log log 51nn a +=+()()()5555log 5log 51log 55log 511nnnnn n <+<⨯⇒<+<+因此,则,故[]51log n n b a n +==()11000100011100011n n n c b b n n n n +⎛⎫===- ⎪⋅⋅++⎝⎭,12110001n n S c c c n ⎛⎫=+++=- ⎪⎝⎭所以, []20231100010001100099920232023S ⎡⎤⎛⎫⎡⎤=-=-= ⎪⎢⎥⎢⎥⎝⎭⎣⎦⎣⎦故选:A【点睛】方法点睛:常见的数列求和的方法有公式法即等差等比数列求和公式,分组求和类似于,其中和分别为特殊数列,裂项相消法类似于,错位相减法类似于n n n c a b =+{}n a {}n b ()11n a n n =+,其中为等差数列,为等比数列等. n n n c a b =⋅{}n a {}n b 二、多选题(共20分)9. 已知方程表示椭圆,下列说法正确的是( )221124x y m m +=--A. m 的取值范围为 B. 若该椭圆的焦点在y 轴上,则 ()4,12()8,12m∈C. 若,则该椭圆的焦距为4 D. 若,则该椭圆经过点6m =10m =(【答案】BC 【解析】【分析】根据椭圆的标准方程和几何性质依次判断选项即可.【详解】A :因为方程表示椭圆,221124x y m m +=--所以,解得,且,故A 错误;12040124m m m m ->⎧⎪->⎨⎪-≠-⎩412m <<8m ≠B :因为椭圆的焦点在y 轴上,221124x y m m +=--所以,解得,故B 正确;4120m m ->->812m <<C :若,则椭圆方程为,6m =22162x y +=所以,从而,故C 正确;222624c a b =-=-=24c =D :若,则椭圆方程为,10m =22126x y +=点的坐标不满足方程,即该椭圆不经过点,故D错误. ((故选:BC.10. 设等差数列的前项和为,,公差为,,,则下列结论正确的是{}n a n n S 10a >d 890a a +>90a <( ) A.0d <B. 当时,取得最大值 8n =n S C.45180a a a ++<D. 使得成立的最大自然数是15 0n S >n 【答案】ABC 【解析】【分析】根据已知可判断,,然后可判断AB ;利用通项公式将转化为可判80a >90a <4518a a a ++9a 断C ;利用下标和性质表示出可判断D.1617,S S 【详解】解:因为等差数列中,,, {}n a 890a a +>90a <所以,,,A 正确; 80a >90a <980d a a =-<当时,取得最大值,B 正确;8n =n S ,C 正确; ()45181193243830a a a a d a d a ++=+=+=<,,()()1611689880S a a a a =+=+>11717917()1702a a S a +==<故成立的最大自然数,D 错误. 0n S >16n =故选:ABC .11. 已知的展开式中第3项与第7项的二项式系数相等,则( ) ()1nx +A.8n =B. 的展开式中项的系数为56 ()1nx +2x C. 奇数项的二项式系数和为128 D. 的展开式中项的系数为56()21nx y +-2xy 【答案】AC 【解析】【分析】利用二项式定理求得的展开通项公式,从而得到关于的方程,解出的值判断AB ,()1nx +n n 利用所有奇数项的二项式系数和为判断C ,根据二项式定理判断D.12n -【详解】因为的展开式通项为,()1nx +1C C k k k kr n n T x x +==所以的展开式的第项的二项式系数为,()1nx +1k +C kn 所以,解得,A 正确; 26C C n n =8n =的系数为,B 错误;2x 28C 28=奇数项的二项式系数和为,C 正确; 1722128n -==根据二项式定理,表示8个相乘,()821x y +-()21x y+-所以中有1个选择,1个选择,6个选择,()21x y+-x 2y-1所以的展开式中项的系数为,D 错误;()21nx y +-2xy ()71187C C 156-=-故选:AC12. 已知小李每天在上班路上都要经过甲、乙两个路口,且他在甲、乙两个路口遇到红灯的概率分别为13,p .记小李在星期一到星期五这5天每天上班路上在甲路口遇到红灯个数之和为,在甲、乙这两个路X 口遇到红灯个数之和为,则( ) Y A. ()54243P X ==B. ()109D X =C. 当时,小李星期一到星期五上班路上恰有3天至少遇到一次红灯的概率为25p =216625D. 当时, 25p =()443E Y =【答案】BC 【解析】【分析】对于AB ,确定,即可求出和,对于C ,表示一天至少遇到红灯15,3X B ⎛⎫ ⎪⎝⎭()4P X =()D X 的概率为,可求出星期一到星期五上班路上恰有3天至少遇到一次红灯的概率的表达式,再将1233p +代入即可求得结果,对于D ,记为周一到周五这五天在乙路口遇到红灯的个数,则25p =ξ()5,B p ξ~,,即可求出.Y X ξ=+()E Y 【详解】对于AB ,小李在星期一到星期五这5天每天上班路上在甲路口遇到红灯个数之和为,且他X 在甲路口遇到红灯的概率为, 13则,15,3X B ⎛⎫ ⎪⎝⎭所以,, ()44511104C 133243P X ⎛⎫⎛⎫==-= ⎪ ⎪⎝⎭⎝⎭()111051339D X ⎛⎫=⨯⨯-= ⎪⎝⎭所以A 错误,B 正确,对于C ,由题意可知一天至少遇到一次红灯的概率为, ()112111333p p ⎛⎫---=+ ⎪⎝⎭则小李星期一到星期五上班路上恰有3天至少遇到一次红灯的概率为, 32351212C 13333p p ⎛⎫⎛⎫+--⎪ ⎪⎝⎭⎝⎭当时,, 25p =323233551212122122216C 1C 13333335335625p p ⎛⎫⎛⎫⎛⎫⎛⎫+--=+⨯--⨯= ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭所以C 正确,对于D ,记为周一到周五这五天在乙路口遇到红灯的个数,则,, ξ()5,B p ξ~Y X ξ=+所以, ()()()()1553E Y E X E X E p ξξ=+=+=⨯+当时,,所以D 错误, 25p =()121155353E Y =⨯+⨯=故选:BC三、填空题(共20分)13. 圆心在直线上,且与直线相切于点的圆的方程为______. 2x =-20x +-=(-【答案】 ()2224x y ++=【解析】【分析】设圆心为,记点为,由已知直线与直线垂直,由此可()2,C t -(-A AC 20x -=求,再求可得圆的半径,由此可得圆的方程. t AC【详解】记圆心为点,点为点,C (-A 因为圆心在直线上,故可设圆心的坐标为, C 2x =-C ()2,t -因为圆与直线相切于点, C 20x -=(A -所以直线与直线垂直, CA 20x +-=直线的斜率为 CA 20x +-=, 1⎛=- ⎝所以,0=t 所以圆心为, ()2,0C -圆的半径为,2CA r ===所以圆的方程为. ()2224x y ++=故答案为:.()2224x y ++=14. 已知随机变量,且,若,则的最小()21N ξσ ,()()0P P a ξξ≤=≥()00x y a x y +=>>,12x y+值为_________.【答案】 32+【解析】【分析】先根据正态曲线的对称性可求,结合基本不等式可求答案. 2a =【详解】,可得正态分布曲线的对称轴为,()21,N ξσ1x =又,,即. ()()0P P a ξξ≤=≥12a∴=2a =则()(121121213332222y x x y x y x y x y ⎛⎫⎛⎫+=++=++≥+=+⎪ ⎪⎝⎭⎝⎭当且仅当,即时,等号成立.y=2,4x y ==-故答案为:. 32+15. 已知数列是等差数列,并且,,若将,,,去掉一项后,剩{}n a 1476a a a ++=60a =2a 3a 4a 5a 下三项依次为等比数列的前三项,则为__________. {}n b 4b 【答案】## 120.5【解析】【分析】先求得,进而求得,,,,根据等比数列的知识求得. n a 2a 3a 4a 5a 4b 【详解】设等差数列的公差为,{}n a d 依题意,则,147660a a a a ++=⎧⎨=⎩1139650a d a d +=⎧⎨+=⎩解得,所以,151a d =⎧⎨=-⎩6n a n =-+所以, 23454,3,2,1a a a a ====通过观察可知,去掉后,3a 成等比数列,2454,2,1a a a ===所以等比数列的首项为,公比为,{}n b 412所以.3411422b ⎛⎫=⨯= ⎪⎝⎭故答案为:1216. 设奇函数在上为单调递减函数,且,则不等式的解集()f x (0,)+∞()20f =3()2()05f x f x x--≤为___________【答案】 [)(]2,00,2-U 【解析】【分析】分析函数的奇偶性、单调性和取值范围,即可得到不等式的解集. 【详解】由题意,,x ∈R 在中,为奇函数且在上单调递减,()y f x =()f x ()0,∞+()20f =∴,,函数在和上单调递减,()()f x f x =--()()220f f -==(),0∞-()0,∞+∴当和时,;当和时,. (),2-∞-()0,2()0f x >()2,0-()2,+∞()0f x >∵,3()2()05f x f x x--≤∴,即,3()2()3()2()()055f x f x f x f x f x x x x ----==-≤()0f x x≥当时,解得:;当时,解得:, 0x <20x -≤<0x >02x <≤∴不等式解集为:,3()2()05f x fx x--≤[)(]2,00,2-U 故答案为:.[)(]2,00,2-U 四、解答题(共70分)17. 已知向量,,且函数.()cos ,1m x =)2,cos n x x =()f x m n =⋅(1)求函数的单调增区间;()f x (2)若中,分别为角对的边,,求的取值范围. ABC ,,a b c ,,A B C ()2cos cos -=a c B b C π26A f ⎛⎫+ ⎪⎝⎭【答案】(1)πππ,π,Z 36k k k ⎡⎤-++∈⎢⎥⎣⎦(2) 30,2⎛⎫ ⎪⎝⎭【解析】【分析】(1)由题知,再根据三角函数性质求解即可; ()1sin 262πf x x ⎛⎫=++ ⎪⎝⎭(2)由正弦定理边角互化,结合恒等变换得,进而得,,再根据三角函数1cos 2B =π3B =2π0,3A ⎛⎫∈ ⎪⎝⎭的性质求解即可. 【小问1详解】因为向量,,且函数()cos ,1m x =)2,cos n x x =()f x m n =⋅所以 ()211π1cos cos cos2sin 22262f x m n x x x x x x ⎛⎫=⋅=+=++=++ ⎪⎝⎭ 令,解得, πππ2π22π262k x k -+≤+≤+ππππ,Z 36k x k k -+≤≤+∈所以,函数的单调增区间为.()f x πππ,π,Z 36k k k ⎡⎤-++∈⎢⎥⎣⎦【小问2详解】因为,()2cos cos -=a c B b C由正弦定理可得:, 2sin cos sin cos sin cos A B C B B C -=即,2sin cos sin cos sin cos A B C B B C =+因为, ()sin cos sin cos sin sin C B B C B C A +=+=所以,2sin cos sin A B A =因为,所以, ()0,π,sin 0A A ∈≠1cos 2B =因为,所以,所以, ()0,πB ∈π3B =2π0,3A ⎛⎫∈ ⎪⎝⎭所以, πππ11sin cos 263622A f A A ⎛⎫⎛⎫+=+++=+ ⎪ ⎪⎝⎭⎝⎭所以;π13cos 0,2622A f A ⎛⎫⎛⎫+=+∈⎪ ⎪⎝⎭⎝⎭所以,的取值范围为.π26A f ⎛⎫+⎪⎝⎭30,2⎛⎫⎪⎝⎭18. 已知正项数列中,.{}n a 2113,223(2)n n n a S S a n -=+=-≥(1)求的通项公式; {}n a (2)若,求的前n 项和. 2nn na b ={}n b n T 【答案】(1) 21n a n =+(2) 2552n nn T +=-【解析】【分析】(1)根据计算即可得解;11,1,2n n n S n a S S n -=⎧=⎨-≥⎩(2)利用错位相减法求解即可.【小问1详解】当时,,2n =2212212222324212,0S S a a a a a +=-=+=+>解得,25a =由当时,, 2n ≥21223n n n S S a -+=-得当时,,3n ≥2121223n n n S S a ---+=-两式相减得,即,()22112n n n n a a a a --+=-()()()1112n n n n n n a a a a a a ---++-=又,所以,0n a >()123n n a a n --=≥又适合上式,212a a -=所以数列是以为首项,为公差的等差数列, {}n a 32所以; 21n a n =+【小问2详解】, 2122n n n n a n b +==则, 1223521222n n n n T b b b +=+++=+++ , 231135212122222n n n n n T +-+=++++ 两式相减得 2311322221222222n n n n T ++=++++- 211111121122222n n n -++⎛⎫=+++++- ⎪⎝⎭111121212212n n n +-+=+--, 152522n n ++=-所以. 2552n nn T +=-19. 如图,在四棱锥中,侧面底面,,底面是平行四边形,S ABCD -SCD ⊥ABCD SC SD =ABCD ,,,分别为线段的中点. π3BAD ∠=2AB =1AD =,MN ,CD AB(1)证明:平面;BD ⊥SMN (2)若直线与平面所成角的大小为,求二面角的余弦值. SA ABCD π6C SBD --【答案】(1)证明见解析(2)【解析】【分析】(1)利用勾股定理、面面垂直和线面垂直的性质可证得,,由线面垂直BD MN ⊥SM BD ⊥的判定可证得结论;(2)根据线面角的定义可知,设,取中点,根据垂直关系可以为π6SAM ∠=MN BD O = SN F O 坐标原点建立空间直角坐标系,利用二面角的向量求法可求得结果. 【小问1详解】,,,, 2AB = 1AD =π3BAD ∠=2222cos 3BD AB AD AB AD BAD ∴=+-⋅∠=即,,,BD =222AD BD AB ∴+=AD BD ∴⊥分别为中点,四边形为平行四边形,,;,M N ,CD AB ABCD //MN AD ∴BD MN ∴⊥,为中点,,SC SD = M CD SM CD ∴⊥平面平面,平面平面,平面,SCD ⊥ABCD SCD ABCD CD =SM ⊂SCD 平面,又平面,;SM ∴⊥ABCD BD ⊂ABCD SM BD ∴⊥,平面,平面.SM MN M = ,SM MN ⊂SMN BD ∴⊥SMN 【小问2详解】 连接,AM 由(1)知:平面,则与平面所成角为,即, SM ⊥ABCD SA ABCD SAM ∠π6SAM ∠=在中,,, ADM △1AD DM ==2ππ3ADC BAD ∠=-∠=,解得:2222cos 3AM AD DM AD DM ADC ∴=+-⋅∠=AM =,; 2πcos 6AMSA ∴==πtan 16SM AM ==设,取中点,连接,MN BD O = SN F OF 分别为中点,,又平面,,O F ,MN SN //OF SM ∴SM ⊥ABCD 平面,又,OF ∴⊥ABCD MN BD ⊥则以为坐标原点,正方向为轴,可建立如图所示空间直角坐标系,O ,,OM OB OF,,x y z则,,,,C ⎛⎫- ⎪⎝⎭1,0,12S ⎛⎫- ⎪⎝⎭B ⎛⎫ ⎪ ⎪⎝⎭0,D ⎛⎫ ⎪ ⎪⎝⎭,,,112SB ⎛⎫∴=- ⎪ ⎪⎝⎭()1,0,0CB =()DB = 设平面的法向量,SBC (),,n x y z =则,令,解得:,,;1020SB n x y z CB n x ⎧⋅=+-=⎪⎨⎪⋅==⎩2y =0x=z=(0,n ∴= 设平面的法向量,SBD (),,m a b c =则,令,解得:,,;1020SB m a c DB m ⎧⋅=+-=⎪⎨⎪⋅==⎩2a =0b =1c =()2,0,1m ∴= ,cos m n m n m n⋅∴<⋅>===⋅ 二面角为钝二面角,二面角的余弦值为C SBD --∴C SB D --20. 2023年1月26日,世界乒乓球职业大联盟(WTT )支线赛多哈站结束,中国队包揽了五个单项冠军,乒乓球单打规则是首先由发球员发球2次,再由接发球员发球2次,两者交替,胜者得1分.在一局比赛中,先得11分的一方为胜方(胜方至少比对方多2分),10平后,先多得2分的一方为胜方,甲、乙两位同学进行乒乓球单打比赛,甲在一次发球中,得1分的概率为,乙在一次发球中,得1分35的概率为,如果在一局比赛中,由乙队员先发球.12(1)甲、乙的比分暂时为8:8,求最终甲以11:9赢得比赛的概率; (2)求发球3次后,甲的累计得分的分布列及数学期望. 【答案】(1)625(2)分布列见详解, 85【解析】【分析】(1)根据题意可得甲以11:9赢得比赛,则甲再得到3分,乙得到1分,且甲得到最后一分,再根据独立事件的乘法公式求概率即可;(2)根据题意可得X 的可能取值为0,1,2,3,求出相应的概率列出分布列,再求其数学期望即可. 【小问1详解】甲以11:9赢得比赛,共计20次发球,在后4次发球中,需甲在最后一次获胜,最终甲以11:9赢得比赛的概率为:. 22212131236C 2525525P ⎛⎫⎛⎫⎛⎫=⨯⨯+⨯⨯=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭【小问2详解】设甲累计得分为随机变量X ,X 的可能取值为0,1,2,3.,()212102510P X ⎛⎫==⨯= ⎪⎝⎭, ()2212121371C 252520P X ⎛⎫⎛⎫==⨯⨯+⨯=⎪ ⎪⎝⎭⎝⎭,()2212131222C 25255P X ⎛⎫⎛⎫==⨯⨯+⨯= ⎪ ⎪⎝⎭⎝⎭,()213332520P X ⎛⎫==⨯=⎪⎝⎭∴随机变量X 的分布列为: X 0123P110 720 25 320∴. ()17238012310205205E X =⨯+⨯+⨯+⨯=21. 已知某种商品的价格(单位:元)和需求量(单位:件)之间存在线性关系,下表是试营业期间记录的数据(对应的需求量因污损缺失): 24x =价格x16 17 18 192024需求量y 5549424036经计算得,,,由前组数据计算出的关于的线性回归5211630i ix==∑52110086ii y ==∑513949i i i x y ==∑5y x 方程为. 4710y x a=-+(1)估计对应的需求量y (结果保留整数);24x =(2)若对应的需求量恰为(1)中的估计值,求组数据的相关系数(结果保留三位小数).24x =6r 附:相关系数. r ==328.8769≈【答案】(1)16(2) 0.575-【解析】【分析】(1)计算前五组数据价格、需求量,,代入回归直线方程求出值,再代入18x =2225y =a 即可;24x =(2)求出六组数据价格、需求量的平均值,,以及与相关系数有关的数值,代入计算即可. x 'y '【小问1详解】记前五组数据价格、需求量的平均值分别为,,x y 由题设知,. 511185i i x x ===∑51122255i i y y ===∑因为回归直线经过样本中心,所以,解得. (),x y 2224718510a =-⨯+129a =即, 4712910x y -+=所以时对应的需求量(件). 24x =47241291610y =-⨯+≈【小问2详解】设六组数据价格、需求量的平均值分别为,,则,,x 'y '611196i i x x ===∑61111963i i y y ===∑,,.6212206ii x==∑62110342i i y ==∑514333i i i xy ==∑所以相关系数. 0.575r ==≈-22. 已知点,经过轴右侧一动点作轴的垂线,垂足为,且.记动点的(1,0)F y A y M ||||1AF AM -=A 轨迹为曲线.C (1)求曲线的方程;C (2)设经过点的直线与曲线相交于,两点,经过点,且为常数)的直(1,0)B -C P Q (1,)((0,2)D t t ∈t 线与曲线的另一个交点为,求证:直线恒过定点. PD C N QN 【答案】(1)()240y x x =>(2)证明见解析 【解析】【分析】(1)设,根据距离公式得到方程,整理即可;()(),0A x y x >(2)设、、,表示出直线的方程,由点在直线上,代()11,P x y ()22,Q x y ()33,N x y PQ ()1,0B -PQ 入可得,同理可得,再表示出直线,代入可得124y y =()13231y y ty y y ++=QN ,即可得到直线过定点坐标.()()()131441y y ty y x +-=-QN 【小问1详解】解:设,则, ()(),0A x y x >()0,M y 因为,||||1AF AM -=又,整理得.0x >1x =+()240y x x =>【小问2详解】证明:设、、,()11,P x y ()22,Q x y ()33,N x y 所以, 121222121212444PQ y y y y k y y x x y y --===-+-所以直线的方程为,PQ ()11124y y x x y y -=-+因为点在直线上,()1,0B -PQ 所以,即,解得①, ()111241y x y y -=--+21112414y y y y ⎛⎫-=-- ⎪+⎝⎭124y y =同理可得直线的方程为,PN ()11134y y x x y y -=-+又在直线上,所以,易得, ()1,D t PN ()111341t y x y y -=-+1y t ≠解得②,()13231y y ty y y ++=所以直线的方程为,即③,QN ()22234y y x x y y -=-+()23234y y y x y y +=+将②式代入③式化简得,又, ()1311234y y ty y x y y y +=+124y y =即, ()131344y y ty y x y +=+即, ()()()131441y y ty y x +-=-所以直线恒过定点.QN 41,t ⎛⎫ ⎪⎝⎭。

第二次月考达标测评卷(5-6单元)(试卷)(含答案) 2024-2025学年冀教版数学六年级上册

第二次月考达标测评卷(5-6单元)(试卷)(含答案) 2024-2025学年冀教版数学六年级上册

六年级数学上第二次月考达标测评卷第5-6单元时间: 60分钟分数: 100分题号一二三四五六总分得分一、填空。

(每空1 分,共20分)1.()÷8=15( )=0.75=()%=( )(填成数)2.某商场这个月的营业额为250000元,如果按营业额的5%缴纳营业税,则这个月应缴纳营业税款( )元。

3.按七五折出售就是按原价的( )%出售,二五折就是( )%。

4.(1)图①各边放大到原来的( )倍后是图④?(2)图⑥是图( )各边放大后的图形。

(3)图③各边缩小到原来的12后是图( )5.为了计算简便,通常把比例尺写成前项或后项为( )的比。

6.在比例尺中,图上1厘米相当于实际距离( )千米,化成数值比例尺是( )。

7.一种服装原来卖m元,现价比原价提高40%,现价是( )元。

8.去年我国国内生产总值是前年的111.8%,去年我国的国内生产总值比前年增长( )%。

9.一种矿泉水,零售每瓶2元,商场为感谢广大顾客对该新产品的厚爱,特开展“买四赠一”大酬宾活动,活动期间矿泉水的价格优惠了( )%。

10.小丽去年身高105厘米,今年长高了5厘米,今年比去年高了( )%。

11.家电下乡活动期间,赵叔叔买了一台冰箱,冰箱的售价是2800元,政府补贴13%,赵叔叔实际付了( )元。

12.某小学书法组有48人,比音乐组多20%,音乐组有( )人。

13.把50000米的距离画在比例尺是1:200000的地图上,应画( )厘米。

二、判断。

(正确的打“✔”,错误的打“×”)(10分)1.一种商品,第一次降价10%,第二次按现价的九五折出售,这时该商品的价格是原价的85.5%。

( )2. 一吨煤.运走 40%,还剩60%吨。

( )3.甲数比乙数小40%,则甲、乙两数的比是3:5。

( )4.图上距离一定比实际距离小。

( )5.将一个长2毫米的零件画在图纸上长10厘米,这幅图的比例尺是1:50。

( )三、选择。

天津市南开中学2023-2024学年高三上学期第二次月考数学试卷

天津市南开中学2023-2024学年高三上学期第二次月考数学试卷
可求出结果.
答案第31 页,共22 页
【详解】设{an
-
n}
的公比为
q
,则
q
=
a2 a1
-2 -1
=
11- 2 4 -1
=
3

所以 an - n = (a1 -1) × qn-1 = (4 -1) ×3n-1 = 3n ,则 an = n + 3n ,
所以 a4 = 4 + 34 = 85 ,
所以落在区间[4,85] 内的偶数共有 41 个,故t (a4 ) = 41 .
11.在
æ çè
3x2
-
2 x
ö5 ÷ø
的展开式中,
x
的系数是

三、双空题
12.已知直线 l : y = kx - 2(k > 0) 与圆 x2 + y2 = 1 相切,且被圆 x2 + ( y + a)2 = 4(a > 0) 截
得的弦长为 2 3 ,则 k = ; a = .
四、填空题
13.锐角a
(2)求数列{anbn} 的前 n 项和 Sn ;
å (3)若数列{dn} 满足 d1 = 1 , dn + dn+1 = bn ,记Tn =
n
dk
m .是否存在整数 ,使得对
b k =1 2k
任意的 n Î N * 都有1 £
mTn
-
dn b2n
<
m 2 成立?若存在,求出
的值;若不存在,说明理由.
故选:C. 9.B
【分析】根据三角函数的变换规则求出 g ( x) 的解析式,再根据正弦函数的性质判断
A、C、D,利用诱导公式判断 B.

湖南省百所重点高中2024学年高三3月线上第二次月考数学试题试卷

湖南省百所重点高中2024学年高三3月线上第二次月考数学试题试卷

湖南省百所重点高中2024学年高三3月线上第二次月考数学试题试卷注意事项1.考生要认真填写考场号和座位序号。

2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。

第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。

3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.在三棱锥P ABC -中,AB BP ⊥,AC PC ⊥,AB AC ⊥,PB PC ==,点P 到底面ABC 的距离为2,则三棱锥P ABC -外接球的表面积为( ) A .3πB.2C .12πD .24π2.已知定点1(4,0)F -,2(4,0)F ,N 是圆22:4O x y +=上的任意一点,点1F 关于点N 的对称点为M ,线段1F M 的垂直平分线与直线2F M 相交于点P ,则点P 的轨迹是( ) A .椭圆B .双曲线C .抛物线D .圆3.若不等式22ln x x x ax -+对[1,)x ∈+∞恒成立,则实数a 的取值范围是( ) A .(,0)-∞B .(,1]-∞C .(0,)+∞D .[1,)+∞4.设m ,n 是两条不同的直线,α,β是两个不同的平面,下列命题中正确的是( ) A .若αβ⊥,m α⊂,n β⊂,则m n ⊥ B .若//αβ,m α⊂,n β⊂,则//m n C .若m n ⊥,m α⊂,n β⊂,则αβ⊥ D .若m α⊥,//m n ,//n β,则αβ⊥5.若()()()32z i a i a R =-+∈为纯虚数,则z =( ) A .163i B .6i C .203i D .206.已知x ,y 满足不等式00224x y x y t x y ≥⎧⎪≥⎪⎨+≤⎪⎪+≤⎩,且目标函数z =9x +6y 最大值的变化范围[20,22],则t 的取值范围( )A .[2,4]B .[4,6]C .[5,8]D .[6,7]7.点,,A B C 是单位圆O 上不同的三点,线段OC 与线段AB 交于圆内一点M ,若,(0,0),2OC mOA nOB m n m n =+>>+=,则AOB ∠的最小值为( )A .6π B .3π C .2π D .23π 8.已知实数x 、y 满足不等式组2102100x y x y y -+≥⎧⎪--≤⎨⎪≥⎩,则3z x y =-+的最大值为( )A .3B .2C .32-D .2-9.已知集合{}3|20,|0x P x x Q x x -⎧⎫=-≤=≤⎨⎬⎩⎭,则()R P Q 为( ) A .[0,2)B .(2,3]C .[2,3]D .(0,2]10.已知31(2)(1)mx x--的展开式中的常数项为8,则实数m =( )A .2B .-2C .-3D .311.函数的定义域为( )A .[,3)∪(3,+∞)B .(-∞,3)∪(3,+∞)C .[,+∞)D .(3,+∞)12.已知奇函数()f x 是R 上的减函数,若,m n 满足不等式组()(2)0(1)0()0f m f n f m n f m +-≥⎧⎪--≥⎨⎪≤⎩,则2m n -的最小值为( )A .-4B .-2C .0D .4二、填空题:本题共4小题,每小题5分,共20分。

2023-2024学年第一学期联盟校第二次月考初一数学试卷

2023-2024学年第一学期联盟校第二次月考初一数学试卷

2023-2024学年第一学期联盟校第二次月考初一数学试卷(满分:100分时间:90分钟)一.选择题(共10题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合要求的。

)1.﹣2023的绝对值是()A.﹣2023B.C.D.20232.2023年9月23日亚运会在杭州正式开幕。

据杭州文旅大数据统计,亚运会期间,外地游客量超过20000000人次,请将20000000用科学记数法表示为()A.2×106B.0.2×108C.2×107D.2×1083.如果x=y,那么根据等式的性质下列变形正确的是()A.x+y=0B.=C.x﹣2=y﹣2D.x+7=y﹣74.下列各图中,表示“射线CD”的是()A.B.C.D.5.下列计算正确的是()A.3ab+2ab=5ab B.5y2﹣2y2=3C.7a+a=7a2D.m2n﹣2mn2=﹣mn2 6.某网店进行促销,将原价a元的商品以(0.9a﹣20)元出售,该网店对该商品促销的方法是()A.原价降价20元后再打9折B.原价打9折后再降价20元C.原价降价20元后再打1折D.原价打1折后再降价20元7.若∠A=32°18′,∠B=32°15′30″,∠C=32.25°,则()A.∠C>∠A>∠B B.∠B>∠A>∠C C.∠A>∠C>∠B D.∠A>∠B>∠C 8.某校教师举行茶话会。

若每桌坐10人,则空出一张桌子;若每桌坐8人,还有4人不能就座。

设该校准备的桌子数为x,则可列方程为()A.10(x﹣1)=8x﹣4B.10(x+1)=8x﹣4C.10(x﹣1)=8x+4D.10(x+1)=8x+49.一个小立方体的六个面上分别标有A、B、C、D、E、F,从三个不同方向看到的情形如图所示,则字母B的对面是字母()A.点D B.点E C.点F D.点A10.如图,在一个长方形(长为5cm ,宽未知)木框中,一些大小不一的长方形纸片不重叠地放在里面,在长方形木框里面左侧是2个相同的大长方形纸片,右侧是4个相同的小长方形纸片,右侧的小长方形纸片长为n cm ,宽为m cm ,则此长方形木框的周长是()A .(6m ﹣2n +10)cmB .(6m +2n +10)cmC .2(3m +n )cmD .2(3m ﹣n )cm二.填空题(本题共6小题,每小题3分,共18分)11.单项式﹣5mn 3的系数为.12.从一个九边形的一个顶点出发有条对角线。

2024-2025学年广东省深圳市盐田高级中学高二(上)第二次月考数学试卷(含答案)

2024-2025学年广东省深圳市盐田高级中学高二(上)第二次月考数学试卷(含答案)

2024-2025学年广东省深圳市盐田高级中学高二(上)第二次月考数学试卷一、单选题:本题共8小题,每小题5分,共40分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.在空间直角坐标系中,点(−2,1,4)关于y 轴对称的点坐标是( )A. (2,1,−4)B. (−2,1,−4)C. (−2,−1,−4)D. (2,−1,4)2.已知正方体ABCD−A′B′C′D′的棱长为1,且AB =a ,AD =b ,AA′=c ,则(4a +b−2c )⋅(2a−3b +c )=( )A. 1B. 2C. 3D. −13.平行六面体ABCD−A 1B 1C 1D 1中,O 为A 1C 1与B 1D 1的交点,设AB =a ,AD =b ,AA 1=c ,用a ,b ,c 表示BO ,则( )A. BO =a−b +12c B. BO =a +12b−c C. BO =−12a +b +c D. BO =−12a +12b +c4.若平面α,β的法向量分别为a =(2,−1,0),b =(−1,−2,0),则α与β的位置关系是( )A. 平行B. 垂直C. 相交但不垂直D. 无法确定5.已知n 1=(−1,9,1),n 2=(m,−3,2),n 3=(0,2,1),若{n 1,n 2,n 3}不能构成空间的一个基底,则m =( )A. 3B. 1C. 5D. 76.已知a =(1−t,1,0),b =(2,t,t),则|b−a |的最小值是( )A. 1B. 2C. 3D. 57.四棱锥P−ABCD ,底面是平行四边形,AB =(2,−1,3),AD =(−2,1,0),AP =(3,−1,4),则这个四棱锥的底面积为( )A. 3 52B. 3 5C. 52D. 58.已知直线l 1,l 2的斜率分别为k 1,k 2,倾斜角分别为α1,α2,则“cos(α1−α2)>0”是“k 1k 2>0”的( )A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件二、多选题:本题共3小题,共18分。

2022-2023学年云南省曲靖市第一中学高三上学期第二次月考数学试卷带讲解

2022-2023学年云南省曲靖市第一中学高三上学期第二次月考数学试卷带讲解
由正弦定理知 ,则 .
小问2详解】
因为 由余弦定理,得 ,
即 ,解得 ,而 ,
所以 的面积 .
18. 年 月 日,我国开始施行《个人所得税专项附加扣除操作办法》,附加扣除的专项包括子女教育、继续教育、大病医疗、住房贷款利息、住房租金、赡养老人.某单位有老年员工 人,中年员工 人,青年员工 人,现采用分层抽样的方法,从该单位员工中抽取 人,调查享受个人所得税专项附加扣除的情况,并按照员工类别进行各专项人数汇总,数据统计如表:
B选项:利用基本不等式和对数运算求最值即可;
C选项:根据 得到 ,再结合 得 ,然后根据余弦值求角即可;D选项:根据线性运算得到 ,再结合中位线的性质得到 ,最后根据面积公式求面积比即可.
【详解】A选项:当 , 时, ,所以 ,故A错;
B选项:因为 , ,所以 ,当且仅当 时,等号成立,又 ,所以 ,故B正确;
故选:ABD
【点睛】抽象函数对称性与周期性的判断如下:
若 ,则函数 关于 对称;
若 ,则函数 关于 中心对称;
若 ,则 是 的一个周期.
三、填空题
13.已知点 为角 的终边上一点,则 的值为___________.
【答案】
【解析】
【分析】利用诱导公式化简 ,然后利用终边上点的坐标求三角函数值即可.
【详解】 .
(Ⅱ) 的可取值为 、 、 ,
, , .
所以 的分布列为:
数学期望 .
【点睛】本题考查利用分层抽样求抽取的人数,同时也考查了超几何分布列以及随机变量数学期望的计算,考查计算能力,属于中等题.
19.已知函数
(1)求函数 的单调区间;
(2)若函数 的图像在点 处的切线斜率为 ,设 ,若函数 在区间 内单调递增,求实数 的取值范围.

福建省厦门双十中学2023-2024学年高二下学期第二次月考数学试卷【含答案】

福建省厦门双十中学2023-2024学年高二下学期第二次月考数学试卷【含答案】

厦门双十中学2025届高二(下)第二次月考数学试题一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知圆22:10C x y mx +++=的面积为π,则m =()A .2±B .±C .±D .8±2.若随机变量()2~3,2X N ,随机变量1(3)2Y X =-,则()1()1E Y D Y +=+()A .0B .12C .45D .23.甲、乙两人要在一排6个空座上就坐,若要求甲、乙两人每人的两旁都有空座,则不同的坐法有()A .6种B .3种C .20种D .12种4.已知,m n 是空间中两条不同的直线,α,β是两个不同的平面,则下列说法错误的是()A .若m α⊥、//n α,则m n ⊥B .若m α⊥,//m n ,则n α⊥C .若//m n ,n β⊥,m α⊥,则//αβD .若m α⊥,m n ⊥,则//n α5.设A ,B 是一个随机试验中的两个事件,且()()()111,,432P A P B P A B ==⋃=,则()|P B A =()A .14B .13C .16D .1126.已知n S 等差数列{}n a 的前n 项和,则“n n S na ≥”是“{}n a 是递减数列”的()A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件7.若0.91ln1.1,,e a b c ===)A .a b c<<B .c b a<<C .a c b<<D .c a b<<8.如图,在ABC 中,120BAC ∠= ,其内切圆与AC 边相切于点D ,且1AD =.延长BA 至点E .使得BC BE =,连接CE .设以,C E 两点为焦点且经过点A 的椭圆的离心率为1e ,以,C E两点为焦点且经过点A 的双曲线的离心率为2e ,则12e e 的取值范围是()A.∞⎫+⎪⎪⎣⎭B.∞⎫+⎪⎪⎝⎭C .[)1,+∞D .()1,∞+二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.椭圆()2222:101x y C m m m +=>+的焦点为1F ,2F ,上顶点为A ,直线1AF 与C 的另一个交点为B ,若12π3F AF ∠=,则()A .C 的焦距为2B .C的短轴长为C .C 的离心率为32D .2ABF △的周长为810.已知321()2313f x x x x =-++,则下列结论正确的是()A .()f x 有三个零点B .()f x 有两个极值点C .若方程()f x a =有三个实数根,则71,3a ⎛⎫∈ ⎪⎝⎭D .曲线()y f x =关于点71,3⎛⎫⎪⎝⎭对称11.已知数列{}n a 的通项公式为143n na =-,其前n 项和为n S ,数列1n a ⎧⎫⎨⎬⎩⎭与数列{}14nn n a a +的前n 项和分别为n R ,n T ,则()A .114n n a a +<B .存在n ,使得13n T >C .4339n S <D .265n R n n≥-三、填空题:本题共3小题,每小题5分,共15分.12.251(21)x x x ⎛⎫-+ ⎪⎝⎭的展开式中,含3x 的项的系数为.13.记n S 为等比数列{}n a 的前n 项的和,若341a a +=,6247S S =,则12S =.14.如今中国在基建方面世界领先,可谓是逢山开路,遇水架桥.公路里程、高铁里程双双都是世界第一.建设过程中研制出用于基建的大型龙门吊、平衡盾构机等国之重器更是世界领先.如图是某重器上一零件结构模型,中间最大球为正四面体ABCD 的内切球,中等球与最大球和正四面体三个面均相切,最小球与中等球和正四面体三个面均相切,已知正四面体ABCD 体积为,则模型中最大球的体积为,模型中九个球的表面积之和为.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.正四棱锥P ABCD -的底面ABCD 是边长为6的正方形,高为4,点M ,N 分别在线段PC ,AB 上,且2AN NB =,4PC PM =,E 为PC 的中点.(1)求证:BE ∥平面DMN ;(2)求直线AC 与平面DMN 所成角的正弦值.16.全球新能源汽车产量呈上升趋势.以下为20202318-年全球新能源汽车的销售量情况统计.年份201820192020202120222023年份编号x 123456销售量y /百万辆2.022.213.136.7010.8014.14若y 与x 的相关关系拟用线性回归模型表示,回答如下问题:(1)求变量y 与x 的样本相关系数r (结果精确到0.01);(2)求y 关于x 的线性回归方程,并据此预测2024年全球新能源汽车的销售量.附:线性回归方程ˆˆˆybx a =+,其中()()()112211ˆˆˆ,n niii ii i nniii i x x y y x y nx yb ay bx x x xnx ====--- ===---∑∑∑∑,样本相关系数()()nnii ii xx y y x ynx yr--- =∑∑参考数据:66211181.30,11.2i i i i i x y y ====≈≈∑∑.17.设函数()()24ln 42f x x ax a x =-+-,a ∈R(1)讨论()f x 的单调性.(2)若函数()f x 存在极值,对任意的120x x <<,存在正实数0x ,使得()()()()21021f x f x f x x x '-=-(ⅰ)证明不等式212121ln ln 2x x x x x x ->-+.(ⅱ)判断并证明122x x +与0x 的大小.18.已知抛物线2:2E y x =的焦点为F ,A ,B ,C 为E 上不重合的三点.(1)若0FA FB FC ++=,求FA FB FC ++ 的值;(2)过A ,B 两点分别作E 的切线1l ,2l ,1l 与2l 相交于点D ,过A ,B 两点分别作1l ,2l 的垂线3l ,4l ,3l 与4l 相交于点M .(i )若AB 4=,求ABD △面积的最大值;(ii )若直线AB 过点()1,0,求点M 的轨迹方程.19.设点集(){}{}23*1,,,,|0,1,1,n niM a a a a a i n i =∈≤≤∈N L ,从集合nM中任取两个不同的点()123,,,,n A a a a a ,()123,,,,n B b b b b ,定义A ,B 两点间的距离()1,ni i i d A B a b ==-∑.(1)求3M 中(),2d A B =的点对的个数;(2)从集合n M 中任取两个不同的点A ,B ,用随机变量X 表示他们之间的距离(),d A B ,①求X 的分布列与期望;②证明:当n 足够大时,()24D X n <.(注:当n 足够大时,20n -≈)1.B【分析】由题意确定圆的半径,结合圆的面积公式建立方程,解之即可求解.【详解】因为圆22:10C x y mx +++=,即222124m m x y ⎛⎫++=- ⎪⎝⎭,所以22π(1)ππ4m S r ==-=,解得m =±故选:B.2.B【分析】利用正态分布的两个参数就是随机变量的期望和方差,再利用两个线性随机变量之间的期望和方差公式,即()()(),E Y E kX b kE X b =+=+()2()()D Y D kX b k D X =+=,就可以求出结果.【详解】由()2~3,2X N 可知:()3,()4E X D X ==,又因为1(3)2Y X =-,所以()131333()()0222222E Y E X E X =-=-=-=,()131()(1224D Y D X D X =-==,则()1011()1112E Y D Y ++==++,故选:B.3.A【分析】采用插空法,在4个空座中间的3个空中插入甲、乙两人的座位即可得答案.【详解】一排共有6个座位,现有两人就坐,故有4个空座.要求每人左右均有空座,即在4个空座的中间3个空中插入2个座位让两人就坐,即有23A 326=⨯=种坐法.故选:A.4.D【分析】对于A ,可过n 作平面β,使l βα⋂=,则//n l ,即可判断;对于B ,由线面垂直的性质即可判断;对于C ,由条件,可得m β⊥,又m α⊥,则//αβ,即可判断;对于D ,要考虑n 可能在平面α内,即可判断.【详解】对于A ,当//n α时,过n 作平面β,使l βα⋂=,则//n l ,因为m α⊥,l ⊂α,所以m l ⊥,所以m n ⊥,故A 正确;对于B ,当m α⊥,//m n ,由线面垂直的性质可得n α⊥,故B 正确;对于C ,因为//m n ,n β⊥,所以m β⊥,又m α⊥,所以//αβ,故C 正确;对于D ,当m α⊥,m n ⊥时,n 可能在平面α内,故D 错误.故选:D .5.B【分析】根据概率的性质解得()112P AB =,结合()()()P B P AB P AB =+可得()14P AB =,代入条件概率公式分析求解.【详解】因为()()()()P A B P A P B P AB ⋃=+-,即()111243P AB =+-,解得()112P AB =,又因为()()()P B P AB P AB =+,即()11312P AB =+,解得()14P AB =,且()14P A =,可得()()314P A P A =-=,所以()()()114|334P AB P B A P A ===.故选:B.6.B【分析】正向举常数列反驳,反向利用等差数列求和公式和递减数列性质判断即可.【详解】当等差数列{}n a 为常数列时,此时n n S na =,满足前者,但是此时“{}n a 不是递减数列”,故充分性不成立;当{}n a 是递减数列,则对n *∀∈N ,1n n a a +<,()()1122n n n n n n a a n a a S na na +--=-=,当1n =时,0n n S na -=,当2n ≥时,1n a a >,0n n S na ->,所以对n *∀∈N ,n n S na ≥,则反推成立,故必要性成立,则“n n S na ≥”是“{}n a 是递减数列”的必要而不充分条件.故选:B.7.C【分析】初步判断三个数值都在0到1之间,常规方法不好处理,可考虑结合导数放缩来比较,a b 大小,设()()ln 1f x x x =--,()()e 1xg x x =-+,求出()f x '在()1,2的单调性,()g x '在()1,0-的单调性,可判断,a b 与0.1的大小;0.91,b c e ==断0.9e 大小,判断,b c ,进而得解.【详解】设()()ln 1f x x x =--,()11f x x'=-,当()1,2x ∈时,()0f x '<,()f x 单减,故()()()1.1ln1.1 1.1110f f =--<=,即ln1.10.1<;设()()e 1x g x x =-+,()e 1xg x '=-,当()1,0x ∈-时,()0g x '<,所以()()0.90g g ->,即()()0.900e0.9101e ---+>-+=,即0.90.1e ->;1120.10.10.1c =>=,故a最小,0.91,b c e ==()100.99319683e <=,10510100000==,因为19683100000<,所以()10100.993e <<,所以0.9e<,0.91e >,所以b c a >>故选:C【点睛】本题考查由指对幂比大小,常规比大小步骤为:①结合指对幂函数单调性初步判断每个数值所在区间;②当两数值所在区间相同时,一般考虑引入中间量进一步比大小;③若常规方法不好处理时,常考虑构造函数法,结合导数放缩来进一步求解,此法难度较大,对学生基础能力要求较高,平常可积累一部分常见放缩公式,如1e 1ln x x x x x ≥+≥≥-≥等.8.D【分析】设内切圆与边,BC BE 分别相切于点,F G ,设CF CD EG x ===,可得223CE x =+,结合椭圆和双曲线的定义可得12134e e x x ⎛⎫=+ ⎪⎝⎭,利用余弦定理求得3x >,结合对勾函数的单调性分析求解.【详解】如图,设内切圆与边,BC BE 分别相切于点,F G ,由切线长定理和BCE 的对称性,可设CF CD EG x ===.由1AD =,可得1,1AC x AE EG AG x =+=-=-.在ACE △中,由余弦定理,()()2222(1)(1)211cos603CE x x x x x =++--+-=+ .于是根据椭圆和双曲线的定义,221222313224CE CE CE x e e x AC AE AC AE AC AE x x +⎛⎫=⋅===+ ⎪+--⋅⎝⎭.接下来确定x 的取值范围.设BF BG y ==,在ABC 中, 1.1,AC x AB y BC x y --=+=+,于是由余弦定理,()()222()(1)(1)211cos120x y x y x y +=+++-++,整理得()330xy x y -+-=,于是()3103x y x +=>-,故3x >,又因为3y x x =+在()3,∞+内单调递增,可知33341y x x =+>+=,可得121314e e x x ⎛⎫=+> ⎪⎝⎭,所以12e e 的取值范围是()1,∞+.故选:D.【点睛】方法点睛:1.椭圆、双曲线离心率(离心率范围)的求法:求椭圆、双曲线的离心率或离心率的范围,关键是根据已知条件确定a ,b ,c 的等量关系或不等关系,然后把b 用a,c代换,求e的值;2.焦点三角形的作用:在焦点三角形中,可以将圆锥曲线的定义,三角形中边角关系,如正余弦定理、勾股定理结合起来.9.ABD【分析】根据12π3F AF ∠=以及椭圆的对称性可得222221b ma m==+⎝⎭,进而可求解2,1a b c===,即可根据选项逐一求解.【详解】由于12π3F AF∠=,所以12π6F AO OAF∠=∠=,故11πcos cos62AO bF AOAF a∠=====,因此222221b ma m==+⎝⎭,故23m=,所以椭圆22:143x yC+=,2,1a b c===对于A,焦距为22c=,故A正确,对于B,短轴长为2b=B正确,对于C,离心率为12cea==,C错误,对于D,2ABF△的周长为48a=,D正确,故选:ABD10.BC【分析】利用导函数讨论单调性和极值即可判断AB,再根函数的最值、单调性判断C,再根据特例,利用点的对称性判断D.【详解】2()43f x x x'=-+,令()0f x'<解得13x<<,令()0f x'>解得1x<或3x>,所以()f x 在(),1∞-单调递增,()1,3单调递减,()3,∞+单调递增,因为13(1)03f -=-<,极大值7(1)03f =>,且极小值1(3)0f =>,所以()f x 在(1,1)-有一个零点,共1个零点,A 错误;由A 知,函数有1,3两个极值点,故B 正确;由A 知,函数()f x 在(),1∞-单调递增,()1,3单调递减,()3,∞+单调递增,且x →-∞时,()f x →-∞,x →+∞时,()f x →+∞,所以方程()f x a =有三个实数根,需(3)(1)f a f <<,即71,3a ⎛⎫∈ ⎪⎝⎭,故C 正确;因为(3)1f =,所以点(3,1)在函数图象上,又点(3,1)关于点71,3⎛⎫⎪⎝⎭的对称点为111,3⎛⎫- ⎪⎝⎭,而13(1)3f -=-,即111,3⎛⎫- ⎪⎝⎭不是函数()f x 图象上的点,故函数()f x 不关于点71,3⎛⎫⎪⎝⎭对称,故D 错误.故选:BC.11.ACD【分析】根据1191144434n n n a a ++-<-=即可求解A ,根据裂项求和即可求解B ,根据放缩法即可求解C ,根据作差求解数列单调性即可求解D.【详解】对A ,由143n n a =-可得11143n n a ++=-,所以()11111111994343114344414343443443n nn n n n n nn a a ++++++----====-<----,故A 正确,对B ,()()414441143,33143n n nn n R n n a --=-∴=-=--,()()11141114343434343n nn n n n n n a a +++⎛⎫==- ⎪----⎝⎭,所以12231111111111111113434334343343433433n n n n T ++⎛⎫⎛⎫⎛⎫⎛⎫=-+-++-=-< ⎪ ⎪ ⎪-------⎝⎭⎝⎭⎝⎭⎝⎭ ,故B 错误,对C ,由于3n ≥时,1111449433n n n -->>⇒-,故111131114311443n n n n a --=<=-,所以221221111314111414214344111131113444134439393914n n n n S a a a --⎛⎫-⎪⎛⎫⎝⎭=+++<++⨯=+-<+<+= ⎪⎝⎭-()()()222441441653656233n n n R n n n nn nn ----=--+=-+,对D ,记()()()()()1222144144144162,61216233n n n n n n P nn P P n n n n ++----=-+-=-++++-,故114124n n n P P n ++-=--,根据指数幂的性质可知14124n n +≥+,当且仅当1n =取等号,故11141240n n n n n P P n P P +++-=--≥⇒≥,只有1n =取等号,故143210n n P P P P P P ->>>>≥=,故D 正确,故选:ACD 12.118-【分析】由()2552211(21)212x x x x x x ⎛⎫⎛⎫-+=+-+ ⎪ ⎪⎝⎭⎝⎭,写出()512x +展开式的通项,利用通项计算可得.【详解】因为()2552211(21)212x x x x x x ⎛⎫⎛⎫-+=+-+ ⎪ ⎪⎝⎭⎝⎭()()()5525221121212x x x x x +⋅-++=+,其中()512x +展开式的通项为()155C 22C rrr r r r T x x +==⋅({}0,1,2,3,4,5r Î),所以251(21)x x x ⎛⎫-+ ⎪⎝⎭展开式中,含3x 的项为()215533355521C 2C (2)2C (2)118x x x x x x ⋅⋅+⋅⋅-⋅=-,所以含3x 的项的系数为118-.故答案为:118-13.6316【分析】由等比数列的求和公式和等比数列的性质进行计算即可求解.【详解】设等比数列{}n a 的公比为q ,由题意可得1q ≠,由6247S S =,可得()()6211417111a q a q qq--=--,解得212q =,又341a a +=,即22121a q a q +=,所以122a a +=,同理5612a a +=,7814a a +=,91018a a +=,1112116a a +=,因为12123456789101112S a a a a a a a a a a a a =+++++++++++,所以12111163212481616S =+++++=.故答案为:631614.43π##43π9π【分析】根据三棱锥的体积公式计算可得正四面体的棱长为出正四面体的内切球半径,再利用三个球的半径之间的关系得到另外两个球的半径,得到答案.【详解】设正四面体的棱长为x ,高为h ,底面圆半径为r ,则2sin 60xr ︒=,得r =,又h x ,所以正四面体的体积为2111···sin 60332A BCD BCD V S h x ︒-=== ,解得x =如图,取BC 的中点E ,连接DE ,AE ,则CE BE =,AE DE ===过点A 作AF ⊥底面BCD ,垂足在DE 上,且2DF EF =,所以DF EF ==4AF ===,点O 为最大球的球心,连接DO 并延长,交AE 于点M ,则DM ⊥AE ,设最大球的半径为R ,则OF OM R ==,因为Rt AOM △∽Rt AEF ,所以AO OMAE EF ==,解得1R =,所以最大球的体积为344ππ33R =,且1OM OF ==,则413AO =-=,1sin 3OM EAF AO ∠==,设最小球的球心为J ,中间球的球心为K ,则两球均与直线AE 相切,设切点分别为,H G ,连接,HJ KG ,则,HJ KG 分别为最小球和中间球的半径,长度分别设为,a b ,则33,33AJ HJ a AK GK b ====,则33JK AK AJ b a =-=-,又JK a b =+,所以33b a a b -=+,解得2b a =,又33OK R b AO AK b =+=-=-,故432b R =-=,解得12b =,所以14a =,模型中九个球的表面积和为2224π4π44π44π4ππ9πR b a +⨯+⨯=++=.故答案为:4π3;9π【点睛】思路点睛:解决与球有关的内切或外接的问题时,解题的思路是确定球心的位置.对于外切的问题要注意球心到各个面的距离相等且都为球半径;对于球的内接几何体的问题,注意球心到各个顶点的距离相等,解题时要构造出由球心到截面圆的垂线段、小圆的半径和球半径组成的直角三角形,利用勾股定理求得球的半径.15.(1)证明见解析【分析】(1)构造面面平行,再证线面平行.(2)建立空间直角坐标系,利用空间向量的方法求线面角的正弦.【详解】(1)在线段CD 上取点F ,使得2CF DF =,连接EF 、BF ,如图:因为4PC PM =,E 为PC 的中点,所以2CE ME =,所以//EF DM ,又EF ⊄平面DMN ,DM ⊂平面DMN ,所以//EF 平面DMN ,在平行四边形ABCD 中,因为2AN NB =,2CF DF =,所以DF NB =,且//DF NB ,所以四边形DFBN 是平行四边形,所以//DN FB ,又BF ⊄平面DMN ,DN ⊂平面DMN ,所以//BF 平面DMN ,又BF ,EF ⊂平面EFB ,且BF EF F ⋂=,所以平面//EFB 平面DMN ,又BF ⊂平面EFB ,所以//BE 平面DMN .(2)连接BD 交AC 于点O ,连接PO ,因为正四棱锥P ABCD -的底面ABCD 是正方形,所以PO ⊥平面ABCD ,且OA OB ⊥,故以O 为坐标原点,OA ,OB ,OP 所在直线依次为x ,y ,z 轴,建立空间直角坐标系如图所示:由已知可得:()A,()B,()C -,()0,D -,324M ⎛⎫- ⎪ ⎪⎝⎭,)N所以()AC =-,)DN =,324DM ⎛⎫=- ⎪ ⎪⎝⎭.设平面DMN 的一个法向量为(),,n x y z = ,则·0·0DN n DM n ⎧=⎪⎨=⎪⎩⇒323040x z ⎧-++=⎪+=,取5,1,4n ⎛=- ⎝⎭设直线AC 与平面DMN 的夹角为θ,则:·102cos ,17·AC n sin AC n AC nθ===16.(1)0.95.r ≈(2)ˆ 2.56 2.46yx =-,15.46百万辆【分析】(1)利用相关系数r 公式即可求解;(2)根据已知数据,利用公式先求出ˆb,进而求出ˆa ,得到线性回归方程,再利用线性回归方程进行预测即可.【详解】(1)因为1234563.56x +++++==,2.02 2.213.13 6.710.814.146.56y +++++==,所以6221496149162536617.54i i x x =-=+++++-⨯=∑,622216380.2316 6.5126.731ii yy =-=-⨯=∑,所以6644.80.95.4.211.2iix yxyr -==≈≈⨯∑(2)由题意得61621644.8ˆ 2.5617.56iii ii x yxybxx ==-===-∑∑,所以ˆˆ 6.5 3.5 2.56 2.46ay bx =-=-⨯=-,得y 关于x 的线性回归方程为ˆ 2.56 2.46yx =-,所以可以预测2024年全球新能源汽车的销售量为2.567 2.4615.46⨯-=百万辆.17.(1)()f x 在20,a ⎛⎫ ⎪⎝⎭单调递增,在2,a ⎛⎫+∞ ⎪⎝⎭单调递减(2)(ⅰ)证明见解析;(ⅱ)1202x xx +>,证明见解析【分析】(1)求导得()()()1241f x ax x x'-=-+,分a 是否大于0进行讨论即可得解;(2)(ⅰ)要证明212121ln ln 2x x x x x x ->-+即只需证明()()21ln 11t t t t ->>+,从而构造函数即可得证;(ⅱ)同构作差法并结合(ⅰ)中结论即可得解.【详解】(1)()()()41242241f x ax a ax x x x'-=-+-=-+,0x >,若0a ≤,则()0f x ¢>,()f x 在()0,∞+上单调递增,若0a >,由()0f x '=得2x a=,当20,x a ⎛⎫∈ ⎪⎝⎭时()0f x ¢>;当2,x a ⎛⎫∈+∞ ⎪⎝⎭时,()0f x '<,∴()f x 在20,a ⎛⎫ ⎪⎝⎭单调递增,在2,a ⎛⎫+∞ ⎪⎝⎭单调递减.(2)∵()f x 存在极值,由(1)知0a >,()()()()()()22212121214ln ln 42f x f x x x a x x a x x -=---+--()()()()()212121214ln ln 42x x a x x x x a x x =--+-+--,由题设得()()()()()212102121214ln ln 42f x f x x x f x a x x a x x x x --==-+'+---,∵120x x <<,设21(1)x t t x =>,(ⅰ)要证明212121ln ln 2x x x x x x ->-+即证明()()21ln 11t t t t ->>+,设()()21ln 1t g t t t -=-+,(1t >),则()()()22221211(1)0(1)(1)t t t g t t t t t +---=-=+'>+,∴()g t 在()1,+∞上单调递增,()()10g t g >=,∴()21ln 1t t t ->+,即212121ln ln 2x x x x x x ->-+得证,(ⅱ)()1221128422x x f a x x a x x '+⎛⎫=-++- ⎪+⎝⎭,()()2112210211221124ln ln ln ln 82402x x x x x x f x f x x x x x x x x '-⎛⎫+-⎛⎫-=-=-> ⎪ ⎪-+⎝'+-⎝⎭⎭,∴()1202x x f x f +⎛⎫> ⎪⎝'⎭',∵()()424f x ax a x=-+-'在()0,∞+上是减函数,∴1202x x x +>.【点睛】难点点睛:本题综合考查了导数的应用问题,涉及到函数的单调性以及不等式证明问题,难点在于不等式的证明,解答时要注意根据所要证明的不等式的结构特征,构造恰当的函数,利用导数的单调性进行证明.18.(1)3(2)(i )8;(ii )224y x =-【分析】(1)设()11,A x y ,()22,B x y ,()33,C x y ,根据向量的坐标运算即可得12332x x x ++=,再根据抛物线的定义即可得结论;(2)(i )设直线AB 的方程为x my n =+,()11,A x y ,()22,B x y ,联立直线与抛物线得交点坐标关系,再求导,根据导数的几何意义求解切线斜率,即可得切线方程,从而可得切线的交点坐标,根据三角形面积公式列关系求解即可;(ii )利用直线相交、直线过定点即可得点M 的轨迹方程.【详解】(1)依题意,1,02F ⎛⎫ ⎪⎝⎭,设()11,A x y ,()22,B x y ,()33,C x y ,由0FA FB FC ++= 得,1231110222x x x ⎛⎫⎛⎫⎛⎫-+-+-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,即12332x x x ++=,由抛物线定义得,1231113222FA FB FC x x x ⎛⎫⎛⎫⎛⎫++=+++++= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ .(2)(i )显然,直线AB 的斜率不为0,可设直线AB 的方程为x my n =+,()11,A x y ,()22,B x y,由22,y x x my n⎧=⎨=+⎩得:2220y my n --=,2480m n ∆=+>,122y y m ∴+=,122y y n =-.22y x =Q,则y =1y y=='∴,∴切线1l 的方程为()11111112y y x x y x y y =-+=+,同理,切线2l 的方程为2212y y x y =+,联立两直线方程11221212y y x y y y x y ⎧=+⎪⎪⎨⎪=+⎪⎩,解得121222y y x n y y y m ⎧==-⎪⎪⎨+⎪==⎪⎩,即(),D n m -,则点D 到直线AB的距离为d =由4AB ===,化简得:22421m n m +=+,114822ABDS AB d ∴==⨯=≤ ,当且仅当0m =时取等号,ABD ∴ 面积的最大值为8.(ii )若直线AB 过点()1,0,由(i ),可以设直线AB 的方程为1x my =+,122y y m ∴+=,122y y =-.∴直线3l 的方程为311111112y y y x x y y y x y =-++=-++,同理,直线4l 的方程为32222y y y x y =-++.联立两直线方程3111322222y y y x y y y y x y ⎧=-++⎪⎪⎨⎪=-++⎪⎩,解得()2212121212122y y y y x y y y y y ⎧++=+⎪⎪⎨+⎪=-⎪⎩,整理后可得222,2,x m y m ⎧=+⎨=⎩消去m 得:224y x =-,∴点M 的轨迹方程为224y x =-.【点睛】关键点点睛:本题考查了抛物线的定义、直线与抛物线的位置关系、三角形面积问题最值问题.解决问题的关键是确定直线与抛物线交点坐标关系,并将题中几何性质转化为交点坐标关系,另外在求抛物线的切线可以考虑利用导数来求解切线斜率.19.(1)12对(2)①分布列见解析,()()212n nE X -=-;②证明见解析【分析】(1)根据题意分析可知:A ,B 有两个位置的坐标不相等,另一个相等,进而可得结果;(2)①分析可知X k =的随机变量,在坐标()123,,,,n a a a a 与()123,,,,n b b b b 中有k 个坐标值不同,即i i a b ≠,剩下n k -个坐标值满足i i a b =,进而可求分布列,结合组合数性质可求期望;②根据方差公式()()21nk k k D X P X E X =⎡⎤=⋅-⎣⎦∑整理可得()()2121C C C 214n n n n n n D X ⎡⎤<+++⎢⎥-⎣⎦L ,结合组合数性质分析证明.【详解】(1)当3n =时,若(),2d A B =,可知A ,B 有两个位置的坐标不相等,另一个位置的坐标相等,所以共有122322C A A 12=对.(2)①由题意可知,n M 中元素的个数为2n 个,对于X k =的随机变量,在坐标()123,,,,n a a a a 与()123,,,,n b b b b 中有k 个坐标值不同,即i i a b ≠,剩下n k -个坐标值满足i i a b =,此时所对应情况数为12C 2C 22k k n k k n nn --⋅=⋅种.所以()122C 2C C 21n k n k n n n P X k -⋅===-,故X 的分布列为:X12⋅⋅⋅nP1C 21n n-2C 21n n-⋅⋅⋅C 21n nn-数学期望()1212C C C C C C 12120212121212121n n n n n n nn n n n n n n E X n n =⨯+⨯++⨯=⨯+⨯++⨯+------L L ,当2k n ≤≤时,则()()()()()2!!C 2C 2!!2!2!k n k n nn n k n k k n k k n k n k k -++-+=⨯+-+⨯--+-()()()()()()()!!!111!!1!2!1!1!n n n n k k k n k n k k n k k =+=-++----+--+-()()1!C 1!1!k n n n n n k k -⋅==-+-,且10C 0C C nn n n n n n +==⋅=⋅,则()()11C C C 011212121n n n nn n n n E X n n -=+⨯+-⨯++⨯---L ,两式相加得()()01222C C C C 2121n nn n n n n n n n E X ⋅=++++=--L ,所以()()212n nE X -=-;②当n 足够大时,()2n E X ≈,由方差定义()()21nk k k D X P X E X =⎡⎤=⋅-⎣⎦∑22212C C C 12212212212n n n n n n n n n n n ⎛⎫⎛⎫⎛⎫=-+-++- ⎪ ⎪ ⎪---⎝⎭⎝⎭⎝⎭L 222121C 1C 2C 21222n n n n n n n n n ⎡⎤⎛⎫⎛⎫⎛⎫=⋅-+⋅-++⋅-⎢⎥ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦L 222121C 1C 2C 21222n n n n n n n n n ⎡⎤⎛⎫⎛⎫⎛⎫=⋅-+⋅-++-⎢⎥ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦L ()()()21212221C C C C 1C 22214n n n n n n n n n n ⎧=+++-+-+⎨-⎩ ()()()()}23212C 33C 11C n n n nn n n n n n n n -⎡⎤-++---⋅+-⋅⎣⎦因为k n ≤,则()()()20n k n k n k k n ---⋅=-≤,当且仅当0k =或k n =时,等号成立,则()()()2221211C C C 212142144n n n n n n n n n n D X ⎡⎤⎡⎤<+++=-=⎢⎥⎢⎥--⎣⎦⎣⎦L ,所以()24D X n <.【点睛】关键点点睛:(2)①利用倒序相加法结合()21C 2C C kn k k n nn k n k n -+-+-+=分析求解;②根据方差公式结合()()20n k n k n ---⋅≤分析证明.。

2022-2023学年福建省福州格致中学高三上学期第二次月考(10月)数学试卷带讲解

2022-2023学年福建省福州格致中学高三上学期第二次月考(10月)数学试卷带讲解
故选:ACD.
11.已知 是平面向量, 是单位向量,非零向量 与 的夹角为 ,向量 满足 ,则 可能取到的值为()
A. B. C. D.
【答案】ABD
【解析】
【分析】建立平面直角坐标系,由给定条件,确定 , 的终点的轨迹即可求解作答.
【详解】将向量 平移到共起点O,以点O为原点,单位向量 的方向为x轴的正方向建立平面直角坐标系,如图,
又因为C选项 ,
所以 ,故 ,D正确.
故选:ACD.
【点睛】注意将问题化为 在 上有两个变号零点求参数范围问题,由此得到的 的单调性和零点情况判断 的单调性和零点,根据零点得到 ,利用对数均值不等式求证不等式.
三、填空题
13.若 为纯虚数( 为虚数单位),则实数 ___________;
【答案】-1
12.已知函数 有两个极值点 , ,则下列选项正确的有()
A. B.函数 有两个零点
C. D.
【答案】ACD
【解析】
【分析】问题化为 在 上有两个变号零点,讨论参数a研究 的单调性,结合零点存在性定理判断区间零点情况,进而求出a的范围,再研究 的单调性,结合零点存在性定理判断 零点个数,且可得 ,最后应用对数均值不等式 判断C、D.
夜晚天气
日落云里走
下雨
未下雨
出现
25
5
未出现
25
45
附: ,其中 .
0.1
0.05
0.01
0.005
0.001
2.706
3.841
6.635
7.879
10.828
A.夜晚下雨的概率约为
B.未出现“日落云里走”,夜晚下雨的概率约为
C.依据 的独立性检验,认为“日落云里走”是否出现与夜晚天气有关

天津市南开大学附属中学2021届高三上学期第二次月考数学试卷(理科) Word版含解析

天津市南开大学附属中学2021届高三上学期第二次月考数学试卷(理科) Word版含解析

天津市南开高校附属中学2021届高三上学期其次次月考数学试卷(理科)一、选择题(每题5分,共40分)1.(3分)已知复数z满足(3+4i)z=25,则z=()A.3﹣4i B.3+4i C.﹣3﹣4i D.﹣3+4i2.(3分)“a3>b3”是“log3a>log3b”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件3.(3分)设变量x,y 满足约束条件,则目标函数z=x+2y的最小值为()A.2B.3C.4D.54.(3分)若﹣9、a、﹣l成等差数列,﹣9、m、b、n、﹣1成等比数列,则ab=()A.15 B.﹣l5 C.±l5 D.105.(3分)已知函数y=2sinx的定义域为[a,b],值域为[﹣2,1],则b﹣a的值不行能是()A.B.πC.2πD .6.(3分)已知m,n是两条不同直线,α,β,γ是三个不同平面,下列命题中正确的是()A.若m⊥α,n⊥m则n∥αB.若α⊥β,β⊥γ则α∥βC.若m⊥β,n⊥β则m∥n D.若m∥α,m∥β,则α∥β7.(3分)已知f(x)=bx+1为x的一次函数,b为不等于1的常数,且g(n)=,设a n=g(n)﹣g(n﹣1)(n∈N*),则数列{a n}是()A.等差数列B.等比数列C.递增数列D.递减数列8.(3分)在平面四边形ABCD中,AB=3,BC=4,∠ABC=90°,△ACD 是正三角形,则•的值为()A.﹣2 B.2C.D .二、填空题(本大题共6小题,每小题5分,共30分)9.(5分)为了解某校高中同学的近视眼发病率,在该校同学中进行分层抽样调查,已知该校2022-2021学年高一、2022-2021学年高二、2021届高三分别有同学800名、600名、500名.若2021届高三同学共抽取25名,则2022-2021学年高一同学共抽取名.10.(5分)如图是一个空间几何体的三视图,则该几何体的体积大小为.11.(5分)已知=(3,﹣2).=(1,0),向量λ与﹣2垂直,则实数λ的值为.12.(5分)对于任意x∈R,满足(a﹣2)x2+2(a﹣2)x﹣4<0恒成立的全部实数a构成集合A,使不等式|x ﹣4|+|x﹣3|<a的解集为空集的全部实数a构成集合B,则A∩∁R B=.13.(5分)如图,圆O的直径AB=8,C为圆周上一点,BC=4,过C作圆的切线l,过A作直线l的垂线AD,D为垂足,AD与圆O交于点E,则线段AE的长为.14.(5分)若a是1+2b与1﹣2b 的等比中项,则的最大值为.三、解答题:本大题共6小题,共80分,解题应写出文字说明、证明过程或演算步骤.15.(16分)已知函数.(Ⅰ)求函数f(x)的最小正周期和图象的对称轴方程;(Ⅱ)求函数f(x )在区间上的值域.16.(16分)在△ABC中,内角A、B、C的对边分别为a,b,c,且a>c ,已知•=2,cosB=,b=3,求:(Ⅰ)a和c的值;(Ⅱ)cos(B﹣C)的值.17.(16分)如图所示,四棱锥P﹣ABCD的底面是边长为1的正方形,PA⊥CD,PA=1,PD=,E为PD 上一点,PE=2ED.(Ⅰ)求证:PA⊥平面ABCD;(Ⅱ)求二面角D﹣AC﹣E的余弦值;(Ⅲ)在侧棱PC上是否存在一点F,使得BF∥平面AEC?若存在,指出F点的位置,并证明;若不存在,说明理由.18.(16分)已知单调递增的等比数列{a n}满足:a2+a3+a4=28,且a3+2是a2,a4的等差中项.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设的前n项和S n.19.(16分)已知数列{a n},a1=1,前n项和S n满足nS n+1﹣(n+3)S n=0,(Ⅰ)求{a n}的通项公式;(Ⅱ)若b n=4()2,求数列{(﹣1)n b n}的前n项和T n;(Ⅲ)设C n=2n (﹣λ),若数列{C n}是单调递减数列,求实数λ的取值范围.20.(16分)已知函数f(x)=(x2﹣3x+3)•e x定义域为[﹣2,t](t>﹣2),设f(﹣2)=m,f(t)=n.(Ⅰ)试确定t的取值范围,使得函数f(x)在[﹣2,t]上为单调函数;(Ⅱ)求证:n>m;(Ⅲ)求证:对于任意的t>﹣2,总存x0∈(﹣2,t),满足,并确定这样的x0的个数.天津市南开高校附属中学2021届高三上学期其次次月考数学试卷(理科)参考答案与试题解析一、选择题(每题5分,共40分)1.(3分)已知复数z满足(3+4i)z=25,则z=()A.3﹣4i B.3+4i C.﹣3﹣4i D.﹣3+4i考点:复数相等的充要条件.专题:数系的扩充和复数.分析:依据题意利用两个复数代数形式的乘除法,虚数单位i的幂运算性质,计算求得z的值.解答:解:∵复数z满足(3+4i)z=25,则z====3﹣4i,故选:A.点评:本题主要考查两个复数代数形式的乘除法,虚数单位i的幂运算性质,属于基础题.2.(3分)“a3>b3”是“log3a>log3b”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件考点:必要条件、充分条件与充要条件的推断.专题:函数的性质及应用;简易规律.分析:依据指数函数和对数函数的图象和性质,求出两个命题的等价命题,进而依据充要条件的定义可得答案.解答:解:“a3>b3”⇔“a>b”,“log3a>log3b”⇔“a>b>0”,故“a3>b3”是“log3a>log3b”的必要不充分条件,故选:B点评:推断充要条件的方法是:①若p⇒q为真命题且q⇒p为假命题,则命题p是命题q的充分不必要条件;②若p⇒q为假命题且q⇒p为真命题,则命题p是命题q的必要不充分条件;③若p⇒q为真命题且q⇒p为真命题,则命题p是命题q的充要条件;④若p⇒q为假命题且q⇒p为假命题,则命题p是命题q的即不充分也不必要条件.⑤推断命题p与命题q所表示的范围,再依据“谁大谁必要,谁小谁充分”的原则,推断命题p与命题q的关系.3.(3分)设变量x,y 满足约束条件,则目标函数z=x+2y的最小值为()A.2B.3C.4D.5考点:简洁线性规划.专题:不等式的解法及应用.分析:作出不等式对应的平面区域,利用线性规划的学问,通过平移即可求z的最大值.解答:解:作出不等式对应的平面区域,由z=x+2y,得y=﹣,平移直线y=﹣,由图象可知当直线y=﹣经过点B(1,1)时,直线y=﹣的截距最小,此时z最小.此时z的最小值为z=1+2×1=3,故选:B.点评:本题主要考查线性规划的应用,利用数形结合是解决线性规划题目的常用方法.4.(3分)若﹣9、a、﹣l成等差数列,﹣9、m、b、n、﹣1成等比数列,则ab=()A.15 B.﹣l5 C.±l5 D.10考点:等比数列的性质;等差数列的性质.专题:等差数列与等比数列.分析:利用等差数列与等比数列的性质可求得a=﹣5,b=﹣3,从而可得答案.解答:解:∵﹣9、a、﹣l成等差数列,﹣9、m、b、n、﹣1成等比数列,∴2a=﹣1﹣9=﹣10,b2=9,∴a=﹣5,b=﹣3(b为第三项,b<0),∴ab=15.故选:A.点评:本题考查等差数列与等比数列的性质,b=﹣3的确定是易错点,属于中档题.5.(3分)已知函数y=2sinx的定义域为[a,b],值域为[﹣2,1],则b﹣a的值不行能是()A.B.πC.2πD .考点:三角函数的最值.专题:计算题.分析:结合三角函数R上的值域[﹣2,2],当定义域为[a,b],值域为[﹣2,1],可知[a,b]小于一个周期,从而可得.解答:解:函数y=2sinx在R上有﹣2≤y≤2函数的周期T=2π值域[﹣2,1]含最小值不含最大值,故定义域[a,b]小于一个周期b﹣a<2π故选C点评:本题考查了正弦函数的图象及利用图象求函数的值域,解题的关键是生疏三角函数y=2sinx的值域[﹣2,2],而在区间[a,b]上的值域[﹣2,1],可得函数的定义域与周期的关系,从而可求结果.6.(3分)已知m,n是两条不同直线,α,β,γ是三个不同平面,下列命题中正确的是()A.若m⊥α,n⊥m则n∥αB.若α⊥β,β⊥γ则α∥βC.若m⊥β,n⊥β则m∥n D.若m∥α,m∥β,则α∥β考点:空间中直线与平面之间的位置关系;平面与平面之间的位置关系.专题:空间位置关系与距离.分析:对选项逐一分析,依据空间线面关系,找出正确选项.解答:解:对于A,直线n有可能在平面α内;故A 错误;对于B,α,γ还有可能相交,故B 错误;对于C,依据线面垂直的性质以及线线平行的判定,可得直线m,n平行;对于D,α,β有可能相交.故选C.点评:本题主要考查了平面与平面之间的位置关系,考查空间想象力量、运算力量和推理论证力量,属于基础题.7.(3分)已知f(x)=bx+1为x的一次函数,b为不等于1的常数,且g(n)=,设a n=g(n)﹣g(n﹣1)(n∈N*),则数列{a n}是()A.等差数列B.等比数列C.递增数列D.递减数列考点:等比关系的确定.专题:计算题.分析:依据g(n)的通项公式可求得g(1),g(2),g(3)直至g(n),进而可求a1,a2,a3,┉,a n进而发觉数列{a n}是等比数列解答:解:已知f(x)=bx+1为x的一次函数,b为不等于1的常数,且g(n)=,则g(1)=b+1,g(2)=b2+b+1,g(3)=b3+b2+b+1,┉,g(n)=b n+┉+b2+b+1.a1=b,a2=b2,a3=b3,┉,a n=b n故数列{a n}是等比数列点评:本题主要考查等比关系的确定.属基础题.8.(3分)在平面四边形ABCD中,AB=3,BC=4,∠ABC=90°,△ACD 是正三角形,则•的值为()A.﹣2 B.2C.D .考点:平面对量数量积的运算.专题:平面对量及应用.分析:如图所示,建立直角坐标系.取AC的中点E,连接DE,BE.由A(0,3),C(4,0),可得.由于,可得=0.利用•==即可得出.解答:解:如图所示,建立直角坐标系.取AC的中点E,连接DE,BE.∵A(0,3),C(4,0),∴.∵,∴=0.∴•====8﹣=.故选:C.点评:本题考查了向量垂直与数量积的关系、数量积运算性质、向量的三角形法则,考查了推理力量与计算力量,属于中档题.二、填空题(本大题共6小题,每小题5分,共30分)9.(5分)为了解某校高中同学的近视眼发病率,在该校同学中进行分层抽样调查,已知该校2022-2021学年高一、2022-2021学年高二、2021届高三分别有同学800名、600名、500名.若2021届高三同学共抽取25名,则2022-2021学年高一同学共抽取40名.考点:分层抽样方法.专题:概率与统计.分析:依据分层抽样在各部分抽取的比例相等求解.解答:解:依据分层抽样在各部分抽取的比例相等,分层抽样抽取的比例为=,∴2022-2021学年高一应抽取的同学数为800×=40.故答案为:40.点评:本题考查了分层抽样的定义,娴熟把握分层抽样的特征是关键.10.(5分)如图是一个空间几何体的三视图,则该几何体的体积大小为.考点:由三视图求面积、体积.专题:计算题.分析:由三视图可知,该几何体时一个边长为2,2,1的长方体挖去一个半径为1的半球.代入长方体的体积公式和球的体积公式,即可得到答案.解答:由三视图可知,该几何体时一个边长为2,2,1的长方体挖去一个半径为1的半球.所以长方体的体积为2×2×1=4,半球的体积为,所以该几何体的体积为.故答案为:.点评:本题考查的学问点是由三视图求体积,其中依据已知中的三视图推断出几何体的外形是解题的关键.11.(5分)已知=(3,﹣2).=(1,0),向量λ与﹣2垂直,则实数λ的值为.考点:数量积推断两个平面对量的垂直关系.专题:计算题.分析:由题意得(λ)•(﹣2)=λ+(1﹣2λ)﹣2=13λ+3(1﹣2λ)﹣2=0,解得λ值,即为所求.解答:解:由题意得(λ)•(﹣2)=λ+(1﹣2λ)﹣2=13λ+3(1﹣2λ)﹣2=0,解得λ=﹣,故答案为﹣.点评:本题考查两个向量的数量积公式的应用,两个向量垂直的性质,求得13λ+3(1﹣2λ)﹣2=0,是解题的关键.12.(5分)对于任意x∈R,满足(a﹣2)x2+2(a﹣2)x﹣4<0恒成立的全部实数a构成集合A,使不等式|x ﹣4|+|x﹣3|<a的解集为空集的全部实数a构成集合B,则A∩∁R B=(1,2].考点:交、并、补集的混合运算.专题:集合.分析:分a﹣2为0与不为0两种状况求出(a﹣2)x2+2(a﹣2)x﹣4<0恒成立a的范围,确定出A ,求出访不等式|x﹣4|+|x﹣3|<a的解集为空集的全部实数a的集合确定出B,求出B补集与A的交集即可.解答:解:(a﹣2)x2+2(a﹣2)x﹣4<0,当a﹣2=0,即a=2时,﹣4<0,满足题意;当a﹣2≠0,即a≠2时,依据题意得到二次函数开口向下,且与x轴没有交点,即a﹣2<0,△=4(a﹣2)2+16(a﹣2)<0,解得:a<2,﹣2<a<2,综上,a的范围为﹣2<a≤2,即A=(﹣2,2],使不等式|x﹣4|+|x﹣3|<a的解集为空集的全部实数a构成的B=(﹣∞,1),∴∁R B=[1,+∞),则A∩∁R B=(1,2].故答案为:(1,2]点评:此题考查了交、并、补集的混合运算,娴熟把握各自的定义是解本题的关键.13.(5分)如图,圆O的直径AB=8,C为圆周上一点,BC=4,过C作圆的切线l,过A作直线l的垂线AD,D为垂足,AD与圆O交于点E,则线段AE的长为4.考点:与圆有关的比例线段.专题:计算题.分析:连接OC,BE,由圆角定定理,我们可得BE⊥AE,直线l是过C的切线,故OC⊥直线l,△OBC 为等边三角形,结合等边三角形的性质及30°所对的直角边等于斜边的一半,我们易求出线段AE的长.解答:解:连接OC,BE,如下图所示:则∵圆O的直径AB=8,BC=4,∴△OBC为等边三角形,∠COB=60°又∵直线l是过C的切线,故OC⊥直线l又∵AD⊥直线l∴AD∥OC故在Rt△ABE中∠A=∠COB=60°∴AE=AB=4故答案为:4点评:本题考查的学问点是切线的性质,圆周角定理,其中依据切线的性质,圆周角定理,推断出△ABE 是一个∠B=30°的直角三角形是解答本题的关键.14.(5分)若a是1+2b与1﹣2b的等比中项,则的最大值为.考点:等比数列的性质.专题:综合题;等差数列与等比数列.分析:由a是1+2b与1﹣2b的等比中项得到4|ab|≤1,再由基本不等式法求得的最大值.解答:解:a是1+2b与1﹣2b的等比中项,则a2=1﹣4b2⇒a2+4b2=1≥4|ab|.∴.∵a2+4b2=(|a|+2|b|)2﹣4|ab|=1.∴≤=∵∴≥4,∴的最大值为=.故答案为:.点评:本题考查等比中项以及不等式法求最值问题,考查同学分析解决问题的力量,属于中档题.三、解答题:本大题共6小题,共80分,解题应写出文字说明、证明过程或演算步骤.15.(16分)已知函数.(Ⅰ)求函数f(x)的最小正周期和图象的对称轴方程;(Ⅱ)求函数f(x )在区间上的值域.考点:三角函数的周期性及其求法;正弦函数的定义域和值域;正弦函数的对称性.专题:三角函数的图像与性质.分析:(1)先依据两角和与差的正弦和余弦公式将函数f(x)开放再整理,可将函数化简为y=Asin(wx+ρ)的形式,依据T=可求出最小正周期,令,求出x的值即可得到对称轴方程.(2)先依据x的范围求出2x ﹣的范围,再由正弦函数的单调性可求出最小值和最大值,进而得到函数f(x)在区间上的值域.解答:解:(1)∵=sin2x+(sinx﹣cosx)(sinx+cosx)===∴周期T=由∴函数图象的对称轴方程为(2)∵,∴,由于在区间上单调递增,在区间上单调递减,所以当时,f(x)取最大值1,又∵,当时,f(x )取最小值,所以函数f(x )在区间上的值域为.点评:本题主要考查两角和与差的正弦公式和余弦公式,以及正弦函数的基本性质﹣﹣最小正周期、对称性、和单调性.考查对基础学问的把握状况.16.(16分)在△ABC中,内角A、B、C的对边分别为a,b,c,且a>c ,已知•=2,cosB=,b=3,求:(Ⅰ)a和c的值;(Ⅱ)cos(B﹣C)的值.考点:余弦定理;平面对量数量积的运算;两角和与差的余弦函数.专题:三角函数的求值.分析:(Ⅰ)利用平面对量的数量积运算法则化简•=2,将cosB的值代入求出ac=6,再利用余弦定理列出关系式,将b,cosB以及ac的值代入得到a2+c2=13,联马上可求出ac的值;(Ⅱ)由cosB的值,利用同角三角函数间基本关系求出sinB的值,由c,b,sinB,利用正弦定理求出sinC的值,进而求出cosC的值,原式利用两角和与差的余弦函数公式化简后,将各自的值代入计算即可求出值.解答:解:(Ⅰ)∵•=2,cosB=,∴c•acosB=2,即ac=6①,∵b=3,∴由余弦定理得:b2=a2+c2﹣2accosB,即9=a2+c2﹣4,∴a2+c2=13②,联立①②得:a=3,c=2;(Ⅱ)在△ABC中,sinB===,由正弦定理=得:sinC=sinB=×=,∵a=b>c,∴C为锐角,∴cosC===,则cos(B﹣C)=cosBcosC+sinBsinC=×+×=.点评:此题考查了正弦、余弦定理,平面对量的数量积运算,以及同角三角函数间的基本关系,娴熟把握定理是解本题的关键.17.(16分)如图所示,四棱锥P﹣ABCD的底面是边长为1的正方形,PA⊥CD,PA=1,PD=,E为PD 上一点,PE=2ED.(Ⅰ)求证:PA⊥平面ABCD;(Ⅱ)求二面角D﹣AC﹣E的余弦值;(Ⅲ)在侧棱PC上是否存在一点F,使得BF∥平面AEC?若存在,指出F点的位置,并证明;若不存在,说明理由.考点:用空间向量求平面间的夹角;直线与平面平行的判定;直线与平面垂直的判定.专题:计算题;证明题;综合题.分析:(I)依据勾股定理的逆定理,得到△PAD是以PD为斜边的直角三角形,从而有PA⊥AD,再结合PA⊥CD,AD、CD 相交于点D,可得PA⊥平面ABCD;(II)过E作EG∥PA 交AD于G,连接BD交AC于O,过G作GH∥OD,交AC于H,连接EH.利用三垂线定理结合正方形ABCD的对角线相互垂直,可证出∠EHG为二面角D﹣AC﹣E的平面角.分别在△PAB中和△AOD中,求出EH=,GH=,在Rt△EHG中利用三角函数的定义,得到tan∠EHG==.最终由同角三角函数的关系,计算得cos∠EHG=.(III)以AB,AD,PA为x轴、y轴、z轴建立空间直角坐标系.分别给出点A、B、C、P、E的坐标,从而得出=(1,1,0),=(0,,),利用向量数量积为零的方法,列方程组可算出平面AEC的一个法向量为=(﹣1,1,﹣2 ).假设侧棱PC上存在一点F,使得BF∥平面AEC ,则=+=(﹣λ,1﹣λ,λ),且有⋅=0.所以⋅=λ+1﹣λ﹣2λ=0,解之得λ=,所以存在PC的中点F,使得BF∥平面AEC.解答:解:(Ⅰ)∵PA=AD=1,PD=,∴PA2+AD2=PD2,可得△PAD是以PD为斜边的直角三角形∴PA⊥AD﹣﹣﹣(2分)又∵PA⊥CD,AD、CD 相交于点D,∴PA⊥平面ABCD﹣﹣﹣﹣﹣﹣﹣(4分)(Ⅱ)过E作EG∥PA 交AD于G,∵EG∥PA,PA⊥平面ABCD,∴EG⊥平面ABCD,∵△PAB中,PE=2ED∴AG=2GD,EG=PA=,﹣﹣﹣﹣﹣﹣(5分)连接BD交AC于O,过G作GH∥OD,交AC于H,连接EH.∵OD⊥AC,GH∥OD∴GH⊥AC∵EG⊥平面ABCD,HG是斜线EH在平面ABCD内的射影,∴EH⊥AC,可得∠EHG为二面角D﹣AC﹣E的平面角.﹣﹣﹣﹣﹣(6分)∴Rt△EGH中,HG=OD=BD=,可得tan∠EHG==.由同角三角函数的关系,得cos∠EHG==.∴二面角D﹣AC﹣E 的平面角的余弦值为﹣﹣﹣﹣﹣﹣﹣(8分)(Ⅲ)以AB,AD,PA为x轴、y轴、z轴建立空间直角坐标系.则A(0,0,0),B(1,0,0),C(1,1,0),P(0,0,1),E(0,,),=(1,1,0),=(0,,)﹣﹣﹣(9分)设平面AEC 的法向量=(x,y,z),依据数量积为零,可得,即:,令y=1,得=(﹣1,1,﹣2 )﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(10分)假设侧棱PC上存在一点F ,且=λ,(0≤λ≤1),使得:BF∥平面AEC ,则⋅=0.又∵=+=(0,1,0)+(﹣λ,﹣λ,λ)=(﹣λ,1﹣λ,λ),∴⋅=λ+1﹣λ﹣2λ=0,∴λ=,所以存在PC的中点F,使得BF∥平面AEC.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(13分)点评:本题给出一个特殊的棱锥,通过证明线面垂直和求二面角的大小,着重考查了用空间向量求平面间的夹角、直线与平面平行的判定与性质和直线与平面垂直的判定与性质等学问点,属于中档题.18.(16分)已知单调递增的等比数列{a n}满足:a2+a3+a4=28,且a3+2是a2,a4的等差中项.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设的前n项和S n.考点:等差数列与等比数列的综合;数列的求和.专题:计算题.分析:(I)依据a3+2是a2,a4的等差中项和a2+a3+a4=28,求出a3、a2+a4的值,进而得出首项和a1,即可求得通项公式;(II)先求出数列{b n}的通项公式,然后求出﹣S n﹣(﹣2S n),即可求得的前n项和S n.解答:解:(I)设等比数列{a n}的首项为a1,公比为q∵a3+2是a2,a4的等差中项∴2(a3+2)=a2+a4代入a2+a3+a4=28,得a3=8∴a2+a4=20∴∴或∵数列{a n}单调递增∴a n=2n(II)∵a n=2n∴b n ==﹣n•2n∴﹣s n=1×2+2×22+…+n×2n①∴﹣2s n=1×22+2×23+…+(n﹣1)×2n+n2n+1②∴①﹣②得,s n=2+22+23+…+2n﹣n•2n+1=2n+1﹣n•2n+1﹣2点评:本题考查了等比数列的通项公式以及数列的前n项和,对于等差数列与等比数列乘积形式的数列,求前n项和一般实行错位相减的方法.19.(16分)已知数列{a n},a1=1,前n项和S n满足nS n+1﹣(n+3)S n=0,(Ⅰ)求{a n}的通项公式;(Ⅱ)若b n=4()2,求数列{(﹣1)n b n}的前n项和T n;(Ⅲ)设C n=2n (﹣λ),若数列{C n}是单调递减数列,求实数λ的取值范围.考点:数列的求和;数列的函数特性;数列递推式.专题:等差数列与等比数列.分析:(Ⅰ)对已知等式整理成数列递推式,然后用叠乘法,求得S n,最终利用a n=S n﹣S n﹣1求得答案.(Ⅱ)依据(Ⅰ)中a n,求得b n,设出C n,分n为偶数和奇数时的T n.(Ⅲ)依据数列为递减数列,只需满足C n+1﹣C n<0,求得﹣的最大值,即可求得λ的范围.解答:解:(Ⅰ)由已知=,且S1=a1=1,当n≥2时,S n=S1••…•=1•••…•=,S1也适合,当n≥2时,a n=S n﹣S n﹣1=,且a1也适合,∴a n =.(Ⅱ)b n=4()2=(n+1)2,设C n=(﹣1)n(n+1)2,当n为偶数时,∵C n﹣1+C n=(﹣1)n﹣1•n2+(﹣1)n•(n+1)2=2n+1,T n=(C1+C2)+(C3+C4)+…(C n﹣1+C n)=5+9+…+(2n﹣1)==,当n为奇数时,T n=T n﹣1+C n =﹣(n+1)2=﹣,且T1=C1=﹣4也适合.综上得T n =(Ⅲ)∵C n=2n (﹣λ),使数列{C n}是单调递减数列,则C n+1﹣C n=2n (﹣﹣λ)<0,对n∈N*都成立,则(﹣)max<λ,∵﹣==,当n=1或2时,(﹣)max =,∴λ>.点评:本题主要考查了数列的求和问题,求数列通项公式问题.对于利用a n=S n﹣S n﹣1肯定要a1对进行验证.20.(16分)已知函数f(x)=(x2﹣3x+3)•e x定义域为[﹣2,t](t>﹣2),设f(﹣2)=m,f(t)=n.(Ⅰ)试确定t的取值范围,使得函数f(x)在[﹣2,t]上为单调函数;(Ⅱ)求证:n>m;(Ⅲ)求证:对于任意的t>﹣2,总存x0∈(﹣2,t),满足,并确定这样的x0的个数.考点:利用导数争辩函数的单调性;利用导数求闭区间上函数的最值.专题:压轴题.分析:(Ⅰ)首先求出函数的导数,然后依据导数与函数单调区间的关系确定t的取值范围,(Ⅱ)运用函数的微小值进行证明,(Ⅲ)首先对关系式进行化简,然后利用根与系数的关系进行判定.解答:(Ⅰ)解:由于f′(x)=(2x﹣3)e x+(x2﹣3x+3)e x,由f′(x)>0⇒x>1或x<0,由f′(x)<0⇒0<x<1,∴函数f(x)在(﹣∞,0),(1,+∞)上单调递增,在(0,1)上单调递减,∵函数f(x)在[﹣2,t]上为单调函数,∴﹣2<t≤0,(Ⅱ)证:由于函数f(x)在(﹣∞,0)∪(1,+∞)上单调递增,在(0,1)上单调递减,所以f(x)在x=1处取得微小值e,又f(﹣2)=13e﹣2<e,所以f(x)在[﹣2,+∞)上的最小值为f(﹣2),从而当t>﹣2时,f(﹣2)<f(t),即m<n,(Ⅲ)证:由于,∴,即为x02﹣x0=,令g(x)=x2﹣x ﹣,从而问题转化为证明方程g(x)==0在(﹣2,t)上有解并争辩解的个数,由于g(﹣2)=6﹣(t﹣1)2=﹣,g(t)=t(t﹣1)﹣=,所以当t>4或﹣2<t<1时,g(﹣2)•g(t)<0,所以g(x)=0在(﹣2,t)上有解,且只有一解,当1<t<4时,g(﹣2)>0且g(t)>0,但由于g(0)=﹣<0,所以g(x)=0在(﹣2,t)上有解,且有两解,当t=1时,g(x)=x2﹣x=0,解得x=0或1,所以g(x)=0在(﹣2,t)上有且只有一解,当t=4时,g(x)=x2﹣x﹣6=0,所以g(x)=0在(﹣2,t)上也有且只有一解,综上所述,对于任意的t>﹣2,总存在x0∈(﹣2,t),满足,且当t≥4或﹣2<t≤1时,有唯一的x0适合题意,当1<t<4时,有两个x0适合题意.点评:本小题主要考查导数的概念和计算,应用导数争辩函数单调性的方法及推理和运算力量.。

陕西省西安市重点中学2023-2024学年七年级上学期第二次月考数学试卷(含解析)

陕西省西安市重点中学2023-2024学年七年级上学期第二次月考数学试卷(含解析)

2023-2024学年陕西省西安市重点中学七年级(上)第二次月考数学试卷一.选择题(共10小题)1.(3分)下列方程为一元一次方程的是( )A.x+2y=3B.y+3=0C.x2﹣2x=0D.+y=02.(3分)我国的北斗卫星导航系统中有一颗中高轨道卫星高度大约是21500000米.将数字21500000用科学记数法表示为( )A.2.15×107B.0.215×108C.2.15×106D.21.5×1063.(3分)下列变形中,不正确的是( )A.若a﹣c=b﹣c,则a=bB.若,则a=bC.若a=b,则D.若ac=bc,则a=b4.(3分)如图,点C在线段AB上,点D是AC的中点,如果CD=3cm,AB=10cm,那么BC的长度是( )A.3cm B.3.5cm C.4cm D.4.5cm5.(3分)有理数a、b在数轴上的位置如图所示,那么下列式子中成立的是( )A.a﹣b>0B.a+b>0C.ab>0D.b﹣a=|a|+|b|6.(3分)下列叙述正确的是( )A.a的系数是0,次数为1B.单项式5xy3z4的系数为5,次数是7C.当m=3时,代数式10﹣3m2等于1D.多项式2ab﹣3a﹣5次数为2,常数项为﹣57.(3分)钟表10点30分时,时针与分针所成的角是( )A.120°B.135°C.150°D.225°8.(3分)如图,OC平分∠AOD,OD平分∠BOC,下列等式中不成立的是( )A.∠COA=∠BOC B.∠COD=∠BODC.∠AOC=∠AOD D.∠AOC=∠AOB9.(3分)某车间22名工人生产螺钉和螺母,每人每天平均生产螺钉1200个或螺母2000个,一个螺钉要配两个螺母,为了使每天的产品刚好配套,设分配x名工人生产螺母,由题意可知下面所列的方程正确的是( )A.2×1200x=2000(22﹣x)B.2×1200(22﹣x)=2000xC.2×2000x=1200(22﹣x)D.2×2000(22﹣x)=1200x10.(3分)观察下列图形:已知图n中有2023有颗星,则n为( )A.644B.654C.664D.674二.填空题(共6小题)11.(3分)若3x4y m与﹣2x4y2是同类项,则m= .12.(3分)90°﹣78°28′56″= .13.(3分)若从n边形的一个顶点出发,最多可以引5条对角线,则n= .14.(3分)已知a、b互为相反数,c、d互为倒数,|m|=1,则的值为 .15.(3分)如果x=3是方程﹣ax﹣b=5﹣2x的解,那么3﹣6a﹣2b= .16.(3分)如图,已知直线l上的三条线段分别为:AB=4,BC=24,CD=8,将线段CD固定不动,线段AB 以每秒4个单位的速度向右运动,M、N分别为AB、CD中点,设线段AB的运动时间为t,当7.5≤t≤9时,MN+AD= .三.解答题(共8小题)17.计算:(1)(﹣2)2+|﹣4|;(2)2(3a2b﹣2ab2)﹣4(﹣ab2+a2b).18.解方程:(1)2x﹣1=5x+2;(2).19.先化简,再求值:已知代数式,其中x=3,y=﹣3.20.如图,已知线段a,b,用尺规作一条线段AB,使AB=2a﹣b(不写作法,保留作图痕迹).21.已知,如图B、C两点把线段AD分成2:5:3三部分,M是AD的中点,CM=6cm,则线段AD的长为多少厘米?22.某校准备组织学生参观博物馆,每张门票30元.已知购买团体票有两种优惠方案,方案一:全体人员打7折;方案二:若打8折,有5人可免票.(1)一班有45名学生,选择哪种方案更优惠?(2)二班无论选择哪种方案,需支付购买门票的费用相同,求二班的学生人数.(用一元一次方程求解)23.如图,已知∠AOB=120°,∠COD是∠AOB内的一个角,且∠COD=50°,OE是∠AOC的平分线,OF 是∠BOD的平分线,求∠EOF的度数.24.如图,平面内一定点A在直线MN的上方,点O为直线MN上一动点,作射线OA、OP、OA′,当点O 在直线MN上运动时,始终保持∠MOP=90°、∠AOP=∠A′OP,将射线OA绕点O顺时针旋转60°得到射线OB(1)如图1,当点O运动到使点A在射线OP的左侧,若OB平分∠A′OP,求∠AOP的度数.(2)当点O运动到使点A在射线OP的左侧,∠AOM=3∠A′OB时,求的值.(3)当点O运动到某一时刻时,∠A′OB=150°,直接写出∠BOP= 度.2023-2024学年陕西省西安市重点中学七年级(上)第二次月考数学试卷参考答案与试题解析一.选择题(共10小题)1.(3分)下列方程为一元一次方程的是( )A.x+2y=3B.y+3=0C.x2﹣2x=0D.+y=0【分析】根据一元一次方程的定义即可求出答案.【解答】解:只含有一个未知数,且未知数的高次数是1,等号两面都是整式,这样的方程叫做一元一次方程,故选:B.【点评】本题考查一元一次方程,解题的关键是正确理解一元一次方程的定义,本题属于基础题型.2.(3分)我国的北斗卫星导航系统中有一颗中高轨道卫星高度大约是21500000米.将数字21500000用科学记数法表示为( )A.2.15×107B.0.215×108C.2.15×106D.21.5×106【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将21500000用科学记数法表示为:2.15×107.故选:A.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3分)下列变形中,不正确的是( )A.若a﹣c=b﹣c,则a=bB.若,则a=bC.若a=b,则D.若ac=bc,则a=b【分析】根据等式的性质逐个判断即可.【解答】解:A.∵a﹣c=b﹣c,∴a﹣c+c=b﹣c+c,即a=b,故本选项不符合题意;B.=,乘c,得a=b,故本选项不符合题意;C.a=b,除以c2+2,得=,故本选项不符合题意;D.当c=0时,由ac=bc不能推出a=b,故本选项符合题意.故选:D.【点评】本题考查了等式的性质,能熟记等式的性质是解此题的关键,①等式的性质1:等式的两边都加(或减)同一个数或式子,等式仍成立,②等式的性质2:等式的两边都乘同一个数,等式仍成立,等式的两边都除以同一个负数,等式仍成立.4.(3分)如图,点C在线段AB上,点D是AC的中点,如果CD=3cm,AB=10cm,那么BC的长度是( )A.3cm B.3.5cm C.4cm D.4.5cm【分析】根据线段中点的定义求出AC,再根据BC=AB﹣AC计算即可得解.【解答】解:∵点D是AC的中点,∴AC=2CD=2×3=6cm,∴BC=AB﹣AC=10﹣6=4cm.故选:C.【点评】本题考查了两点间的距离,主要利用了线段中点的定义,熟记概念并准确识图是解题的关键.5.(3分)有理数a、b在数轴上的位置如图所示,那么下列式子中成立的是( )A.a﹣b>0B.a+b>0C.ab>0D.b﹣a=|a|+|b|【分析】分别判断即可.【解答】解:(A)∵a<0<b,∴a﹣b<0,∴A不符合题意;(B)∵a<0<b,当|a|=|b|,时a+b=0,当|a|>|b|,时a+b<0,当|a|<|b|,时a+b>0,∴B不符合题意;(C)∵a<0<b,∴ab<0,∴C不符合题意;(D)∵a<0<b,∴﹣a>0,∴|b|=b,|a|=﹣a,∴b﹣a=b+(﹣a)=|a|+|b|,∴D符合题意.故选:D.【点评】本题考查数轴和绝对值,掌握数轴上数的特点是解题的关键.6.(3分)下列叙述正确的是( )A.a的系数是0,次数为1B.单项式5xy3z4的系数为5,次数是7C.当m=3时,代数式10﹣3m2等于1D.多项式2ab﹣3a﹣5次数为2,常数项为﹣5【分析】根据单项式的系数,次数,多项式的次数及常数项,代数式的值逐项判断即可.【解答】解:a的系数是1,次数为1,则A不符合题意;单项式5xy3z4的系数为5,次数是8,则B不符合题意;当m=3时,代数式10﹣3m2=10﹣3×9=﹣17,则C不符合题意;多项式2ab﹣3a﹣5次数为2,常数项为﹣5,则D符合题意;故选:D.【点评】本题考查单项式和多项式,熟练掌握相关定义是解题的关键.7.(3分)钟表10点30分时,时针与分针所成的角是( )A.120°B.135°C.150°D.225°【分析】根据时钟上一大格是30°进行计算即可解答.【解答】解:由题意得:4×30°+×30°=135°,∴钟表10点30分时,时针与分针所成的角是:135°,故选:B.【点评】本题考查了钟面角,熟练掌握时钟上一大格是30°是解题的关键.8.(3分)如图,OC平分∠AOD,OD平分∠BOC,下列等式中不成立的是( )A.∠COA=∠BOC B.∠COD=∠BODC.∠AOC=∠AOD D.∠AOC=∠AOB【分析】根据角平分线的定义进行作答.【解答】解:A、∵OC平分∠AOD,∴∠COA=∠COD,故本选项错误;B、∵OD平分∠BOC,∴∠COD=∠BOD,故本选项正确;C、∵OC平分∠AOD,∴∠COA=∠COD,∴∠AOC=∠AOD,故本选项正确;D、∵OC平分∠AOD,OD平分∠BOC,∴∠AOC=∠COD=∠BOD,∴∠AOC=∠AOB,故本选项正确;故选:A.【点评】本题考查了角平分线的定义.从一个角的顶点出发,把这个角分成相等的两个角的射线叫做这个角的平分线.9.(3分)某车间22名工人生产螺钉和螺母,每人每天平均生产螺钉1200个或螺母2000个,一个螺钉要配两个螺母,为了使每天的产品刚好配套,设分配x名工人生产螺母,由题意可知下面所列的方程正确的是( )A.2×1200x=2000(22﹣x)B.2×1200(22﹣x)=2000xC.2×2000x=1200(22﹣x)D.2×2000(22﹣x)=1200x【分析】题目已经设出分配x名工人生产螺母,则(22﹣x)人生产螺钉,由一个螺钉配两个螺母可知螺母的个数是螺钉个数的2倍从而得出等量关系,就可以列出方程.【解答】解:设分配x名工人生产螺母,则(22﹣x)人生产螺钉,由题意得2000x=2×1200(22﹣x),故B答案正确,故选:B.【点评】本题是一道列一元一次方程解的应用题,考查了列方程解应用题的步骤及掌握解应用题的关键是建立等量关系.10.(3分)观察下列图形:已知图n中有2023有颗星,则n为( )A.644B.654C.664D.674【分析】仔细观察图形,找到图形的变化规律,利用规律求解即可.【解答】解:观察图形知:图1中有3×1+1=4颗星,图2中有3×2+1=7颗星,图3中有3×3+1=10颗星,图4中有3×4+1=13颗星,•••,图n中有(3n+1)颗星,当3n+1=2023时,解得:n=674,故选:D.【点评】本题考查了图形的变化类问题,解题的关键是仔细观察图形并找到图形的变化规律,难度不大.二.填空题(共6小题)11.(3分)若3x4y m与﹣2x4y2是同类项,则m= 2 .【分析】所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项.据此可得答案.【解答】解:∵若3x4y m与﹣2x4y2是同类项,∴m=2.故答案为:2.【点评】本题主要考查的是同类项的定义,熟练掌握同类项的概念是解题的关键.12.(3分)90°﹣78°28′56″= 11°31′4″ .【分析】先把90°化成89°59′60″,然后计算即可.【解答】解:90°﹣78°28'56″=89°59′60″﹣78°28′56″=11°31′4″.故答案为:11°31′4″.【点评】本题考查了度分秒的换算,大单位化小单位乘以进率,小单位化大单位除以进率.13.(3分)若从n边形的一个顶点出发,最多可以引5条对角线,则n= 8 .【分析】可根据n边形从一个顶点引出的对角线与边的关系:n﹣3,列方程求解.【解答】解:设多边形有n条边,则n﹣3=5,解得n=8,故多边形的边数为8,即它是八边形,故答案为:8.【点评】本题考查了多边形的对角线,明确多边形有n条边,则经过多边形的一个顶点所有的对角线有(n ﹣3)条,经过多边形的一个顶点的所有对角线把多边形分成(n﹣2)个三角形是解题的关键.14.(3分)已知a、b互为相反数,c、d互为倒数,|m|=1,则的值为 0或﹣2 .【分析】根据a、b互为相反数,c、d互为倒数,|m|=1,可以得到a+b=0,cd=1,m=±1,然后代入所求式子计算即可.【解答】解:∵a、b互为相反数,c、d互为倒数,|m|=1,∴a+b=0,cd=1,m=±1,当m=1时,=1+﹣12=1+0﹣1=0;当m=﹣1时,=(﹣1)+﹣12=﹣1+0﹣1=﹣2;由上可得,的值为0或﹣2,故答案为:0或﹣2.【点评】本题考查有理数的混合运算,熟练掌握运算法则是解答本题的关键.15.(3分)如果x=3是方程﹣ax﹣b=5﹣2x的解,那么3﹣6a﹣2b= 1 .【分析】先把x=3代入方程得到﹣3a﹣b=﹣1,再把3﹣6a﹣2b变形为3+2(﹣3a﹣b),然后利用整体代入的方法计算.【解答】解:∵x=3是方程﹣ax﹣b=5﹣2x的解,∴﹣3a﹣b=﹣1,∴3+2(﹣3a﹣b)=3+2×(﹣1)=3﹣2=1.故答案为:1.【点评】本题考查了一元一次方程的解:使一元一次方程左右两边相等的未知数的值叫做一元一次方程的解.也考查了整体代入的方法.16.(3分)如图,已知直线l上的三条线段分别为:AB=4,BC=24,CD=8,将线段CD固定不动,线段AB 以每秒4个单位的速度向右运动,M、N分别为AB、CD中点,设线段AB的运动时间为t,当7.5≤t≤9时,MN+AD= 6 .【分析】运动t秒后,A点表示4t,B点表示4+4t,C点表示28,D点表示36,根据线段中点的定义得到M 点表示4t+2,N点表示32,然后利用线段的和的定义即可得到结论.【解答】解:设运动t秒后,A点表示4t,B点表示4+4t,C点表示28,D点表示36,∵M为AB中点,N为CD中点,∴M点表示4t+2,N点表示32,∴MN=|4t+2﹣32|=|4t﹣30|,AD=|36﹣4t|,∴MN+AD=|4t﹣30|+|36﹣4t|,当≤t≤9时,MN+AD=4t﹣30+36﹣4t=6.故答案为:6.【点评】本题主要考查了两点间的距离,同时也利用了非负数的性质等知识,解答本题的关键是掌握两点间的距离公式.三.解答题(共8小题)17.计算:(1)(﹣2)2+|﹣4|;(2)2(3a2b﹣2ab2)﹣4(﹣ab2+a2b).【分析】(1)先算乘方,绝对值,乘法,再算加减即可;(2)先去括号,再合并同类项即可.【解答】解:(1)(﹣2)2+|﹣4|=4+4+6=14;(2)2(3a2b﹣2ab2)﹣4(﹣ab2+a2b)=6a2b﹣4ab2+4ab2﹣4a2b=2a2b.【点评】本题主要考查整式的混合运算,解答的关键是对相应的运算法则的掌握.18.解方程:(1)2x﹣1=5x+2;(2).【分析】(1)先移项、合并同类项,再系数化为1进行求解;(2)通过去分母、去括号、移项、合并同类项和系数化为1等步骤进行求解.【解答】解:(1)移项,得2x﹣5x=2+1,合并同类项,得﹣3x=3,系数化为1,得x=﹣1;(2)去分母,得2(5x+1)﹣(2x﹣1)=4,去括号,得10x+2﹣2x+1=4,移项并合并,得8x=1,系数化为1,得x=.【点评】此题考查了解一元一次方程的能力,关键是能准确确定运算顺序,并能进行正确求解.19.先化简,再求值:已知代数式,其中x=3,y=﹣3.【分析】先去括号,然后合并同类项,最后代入求值即可.【解答】解:==﹣3x+y2,当x=3,y=﹣3时,原式=﹣3×3+(﹣3)2=﹣9+9=0.【点评】本题考查了整式的加减﹣化简求值,熟练掌握整式的加减运算法则是解题的关键.20.如图,已知线段a,b,用尺规作一条线段AB,使AB=2a﹣b(不写作法,保留作图痕迹).【分析】首先作射线,再截取AD=DC=a,进而截取BC=b,即可得出AB=2a﹣b.【解答】解:如图所示:线段AB即为所求.【点评】此题主要考查了复杂作图,正确作出射线进而截取得出是解题关键.21.已知,如图B、C两点把线段AD分成2:5:3三部分,M是AD的中点,CM=6cm,则线段AD的长为多少厘米?【分析】设AB=2x,BC=5x,CD=3x,则AD=10x,根据M为AD的中点,可得AM=DM=AD=5x,由CM=6cm,可得DM﹣CD=6cm,得到关于x的方程,解方程即可求解.【解答】解:∵B、C两点把线段AD分成2:5:3三部分,∴设AB=2 x,BC=5 x,CD=3 x,则AD=10 x,∵M为AD的中点,∴AM=DM=AD=5x,∵CM=6cm,即:DM﹣CD=6cm,∴5x﹣3x=6,解得x=3,∴AD=10x=30,线段AD的长为30cm.【点评】本题考查了两点间的距离,利用线段的和差,线段中点的性质是解题关键.22.某校准备组织学生参观博物馆,每张门票30元.已知购买团体票有两种优惠方案,方案一:全体人员打7折;方案二:若打8折,有5人可免票.(1)一班有45名学生,选择哪种方案更优惠?(2)二班无论选择哪种方案,需支付购买门票的费用相同,求二班的学生人数.(用一元一次方程求解)【分析】(1)分别计算两种方案的费用,再比较即可得答案;(2)设二班有x人,根据选择哪种方案,需支付购买门票的费用相同列方程30×70%•x=30×80%×(x﹣5),解方程即可解得答案.【解答】解:(1)方案一:30×70%×45=945(元),方案二:30×80%×(45﹣5)=960(元),∵945<960,∴一班选择方案一更优惠;(2)设二班有x人,根据题意得:30×70%•x=30×80%×(x﹣5),解得x=40,答:二班有40人.【点评】本题考查一次方程的应用,解题的关键是读懂题意,找出等量关系列方程.23.如图,已知∠AOB=120°,∠COD是∠AOB内的一个角,且∠COD=50°,OE是∠AOC的平分线,OF 是∠BOD的平分线,求∠EOF的度数.【分析】根据角平分线的定义得出,,再根据∠AOB=120°,∠COD=50°求出∠AOC+∠BOD的度数,从而求出∠EOF的度数.【解答】解:∵OE是∠AOC的平分线,OF是∠BOD的平分线,∴,,∴,∵∠AOB=120°,∠COD=50°,∴∠AOC+∠BOD=∠AOB﹣∠COD=120°﹣50°=70°,∴∠COE+∠DOF=,∴∠EOF=∠COE+∠DOF+∠COD=35°+50°=85°.【点评】本题考查了角平分线的定义和角的计算,主要考查学生的计算和推理能力.24.如图,平面内一定点A在直线MN的上方,点O为直线MN上一动点,作射线OA、OP、OA′,当点O 在直线MN上运动时,始终保持∠MOP=90°、∠AOP=∠A′OP,将射线OA绕点O顺时针旋转60°得到射线OB(1)如图1,当点O运动到使点A在射线OP的左侧,若OB平分∠A′OP,求∠AOP的度数.(2)当点O运动到使点A在射线OP的左侧,∠AOM=3∠A′OB时,求的值.(3)当点O运动到某一时刻时,∠A′OB=150°,直接写出∠BOP= 105或135或75或45 度.【分析】(1)设∠A′OB=∠POB=x,表示∠AOP=2x,∠BOP=x,由∠AOB=60°列方程为:x+2x=60,可得x的值,从而求出结论;(2)分两种情况讨论,①当点O运动到使点A在射线OP的左侧,②当点O运动到使A在射线OP的左侧,但是射线OB在∠POA′外部时,分别求的值即可;(3))①如图3,当∠A′OB=150°时,可得:∠A'OA=∠A'OB﹣∠AOB=150°﹣60°=90°,因为∠AOP =∠A'OP,所以∠AOP=45°,∠BOP=60°+45°=105°;②如图4,当∠A′OB=150°时,可得:∠A'OA=360°﹣150°﹣60°=150°,因为∠AOP=∠A'OP,所以∠AOP=75,∠BOP=60°+75°=135°;【解答】(本题10分)解:(1)∵OB平分∠A′OP,∴设∠A′OB=∠POB=x,∵∠AOP=∠A′OP,∴∠AOP=2x,∵∠AOB=60°,∴x+2x=60,∴x=20°,∴∠AOP=2x=40°;(2)①当点O运动到使点A在射线OP的左侧,∵∠AOM=3∠A′OB,∴设∠A′OB=x,∠AOM=3x.∵OP⊥MN,∴∠AON=180°﹣3x,∠AOP=90°﹣3x.∴.∵∠AOP=∠A′OP,∴∠AOP=∠A′OP=.∴OP⊥MN.∴.∴.∴.②当点O运动到使A在射线OP的左侧,但是射线OB在∠POA′外部时.∵∠AOM=3∠A′OB,设∠A′OB=x,∠AOM=3x,∴∠AOP=∠A′OP=.∴OP⊥MN.∴3x+=90.∴x=24°.∴.(3)①如图3,当∠A′OB=150°时,由图可得:∠A'OA=∠A'OB﹣∠AOB=150°﹣60°=90°.∵∠AOP=∠A'OP,∴∠AOP=45°.∴∠BOP=60°+45°=105°.②如图4,当∠A′OB=150°时,由图可得:∠A'OA=360°﹣150°﹣60°=150°.∵∠AOP=∠A'OP,∴∠AOP=75°.∴∠BOP=60°+75°=135°.当射线OP在MN下面时,∠BOP=75°或45°.综上所述:∠BOP的度数为105°或135°或75°或45°.故答案为:105或135或75或45.【点评】本题主要考查了角的运算,学会灵活处理问题,注意分类讨论不同的情况.。

湖南省长沙市雅礼中学2023届高三月考试卷(二)数学试题含答案

湖南省长沙市雅礼中学2023届高三月考试卷(二)数学试题含答案

雅礼中学2023届高三月考试卷(二)数学本试卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,时量120分钟,满分150分.第I 卷一、选择题:本题共8小题 ,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合{}220,{2}M x x x N =--=<∣, 则M N ⋂= A. (0,2) B. [0,2] C. [-1,4) D. [-1,2]2. 在平面直角坐标系xOy 中, 以点(0,1)为圆心且与直线10x y --=相切的圆的标准方程为A. 22(1)2x y +-=B. 22(1)1x y -+=C. 22(1)x y +-=D. 22(1)4x y -+=3.Logistic 模型是常用数学模型之一,可应用于流行病学领域,有学者根据公布数据建立了某地区新冠肺炎累计确诊病例数()I t (t 的单位:天)的Logistic 模型:-0.23(-53)()1t K I t e=+,其中K 为最大确诊病例数.当()*0.95I t K =时,标志着已初步遏制疫情,则*t 约为(ln193)≈ A .60B .63C .66D .694.在某种信息传输过程中,用6个数字的一个排列(数字允许重复)表示一个信息,不同排列表示不同信息,若所用数字只有0和1,例如001100就是一个信息.在所有信息中随机取一信息,则该信息恰有2个1的概率是 A .516B .1132 C .1532D .15165. 已知圆锥的母线长为 2 , 轴截面顶角的正弦值是12, 过圆锥的母线作截面,则截面面积的最大值是A. 1 C. 1 或 2 D. 2 6. 设函数2()(,,)f x ax bx c a b c =++∈R , 若1x =-为函数()()x g x e f x =的一个极值点, 则下列图象不可能为()y f x =的图象的是7. 已知12,F F 分别是双曲线22:221(0,0)x y C a b a b-=>>的左、右焦点, 过2F 的直线与双曲线C 的左支相交于P 、Q 两点, 且1PQ PF ⊥. 若1||PQ PF =, 则双曲线C 的离心率为 63522- 522+ D.122+8. 在棱长为 6 的正方体1111ABCD A B C D -中,M 是BC 的中点, 点P 是面11DCC D 内的动点, 且满足 APD MPC ∠=∠, 则三棱锥D PBC -体积的最大值是A. 3B. 24C. 3D. 36 二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求,全部选对的得5分,有选错的得0分,部分选对的得2分. 9.关于统计数据的分析,有以下几个结论,其中正确的是A.利用残差进行回归分析时,若残差点比较均匀地落在宽度较窄的水平带状区域内,则说明线性回归模型的拟合精度较高B.将一组数据中的每个数据都减去同一个数后, 期望与方差均没有变化C.调查剧院中观众观后感时,从50排(每排人数相同)中任意抽取一排的人进行调查是分层抽样法D.样本数据9,3,5,7,12,13,1,8,10,18的第80百分位数是12.510.1748年,瑞士数学家欧拉发现了复指数函数和三角函数的关系,并写下公式i e cos isin x x x =+(,i x ∈R 为虚数单位),这个公式在复变函数中有非常重要的地位,被誉为“数学中的天桥”,据此公式,则有 A .e 10i π+=B .20221312⎛⎫+= ⎪ ⎪⎝⎭C .i -i e e 2x x+≤D .i -i 2e e 2x x -≤-≤11. 已知函数()sin(cos )cos(sin )f x x x =+, 则下列结论正确的是A. ()f x 是偶函数B. ()f x 在区间0,2π⎛⎫⎪⎝⎭单调递㖪C. ()f x 的周期是πD. ()f x 的最大值为 212. 下列不等关系正确的是A. 33e 3e π<<B. 3e e e ππ<<C. 3e e πππ≤<D.333e ππ<<第Ⅱ卷三、填空题: 本题共 4 小题,每小题 5 分,共 20 分. 13. 已知||2||=b a 且()0⋅-=b a a , 则,b a 的夹角是_____.14. 已知函数()x x f x e ae -=+(a 为常数)为奇函数, 且()()g x f x mx =-为增函数, 则实数m 的取值范围是_____.15. 已知抛物线2:4E y x =, 直线:(1)l y k x =-与E 相交于,A B 两点, 若(1,1)M -使90AMB ︒∠=, 则 k =_____. 16. 已知三角形数表:现把数表按从上到下、从左到右的顺序展开为数列{}n a ,记此数列的前n 项和为n S .若()277tm S t m m =∈∈>Z N ,且,则m 的最小值是_____.四、解答题:本题共6小题,共70分.请在答题卡指定区域内作答.解答时应写出文字说明、证明过程或演算步骤. 17. (本小题满分10分)已知*n ∈N ,抛物线2y x n =-+与x 轴正半轴相交于点A .设n a 为该拋物线在点A 处的切线在y 轴上的截距. (1)求数列{}n a 的通项公式;(2) 设2n n na b =, 求证: 1211112n b b b n +++<-(*n ∈N 且2n ).18.(本小题满分 12 分)在ABC 中, 角,,A B C 的对边分别为,,a b c , 若2A C B +.(1) 求证: B 3π;(2) 对*n ∈N , 请你给出一个n 的值, 使不等式2n n n a c b +成立或不成立,并证明你的结论.19. (本小题满分 12 分)如图 1, 在ABC 中,2,90,30,AC ACB ABC P ︒︒=∠=∠=是AB 边的中点. 现把ACP 沿CP 折成如图 2所示的三棱锥A BCP -, 使得10AB =(1)求证: 平面ACP ⊥平面BCP ; (2)求二面角B AC P --的余弦值.20. (本小题满分 12 分)品酒师需定期接受酒味鉴别功能测试,一种通常采用的测试方法如下:拿出n 瓶外观相同但品质不同的酒让其品尝,要求其按品质优劣为它们排序;经过一段时间,等其记忆淡忘之后,再让其品尝这n 瓶酒,并重新按品质优劣为它们排序,这称为一轮测试.根据一轮测试中的两次排序的偏离程度的高低为其评级.现设4n =,分别以1234,,,a a a a 表示第一次排序时被排为1,2,3,4的四种酒在第二次排序时的序号,并令12341234X a a a a =-+-+-+-, 则X 是对两次排序的偏离程度的一种描述.(1)假设1234,,,a a a a 等可能地为1,2,3,4的各种排列,写出X 的可能值集合,并求X 的分布列;(2)某品酒师在相继进行的三轮测试中,都有2X ≤,①试按(1)中的结果,计算出现这种现象的概率(假定各轮测试相互独立); ②你认为该品酒师的酒味鉴别功能如何?说明理由. 21. (本小题满分 12 分)已知(1,0),A B -是圆22:2150F x x y -+-=上的任意一点, 线段AB 的垂直平分线交BF 于点P .(1) 求动点P 的轨迹C 的方程;(2) 设,PA PF 交轨迹C 于另两点,D E . 记PAF 和PDE 的面积分别为12,S S . 求12SS 的取值范围. 22. (本小题满分 12 分)已知函数11()t tttf x x x x +=+- (0, x t >为正有理数). (1) 求函数()f x 的单调区间;(2) 证明: 当2x 时,()0f x .雅礼中学2023届高三月考试卷(二)数学参考答案题号 1 2 3 4 5 6 7 8 9 101112 答案B ACD C D B A ADABC ABABD13.3π 14.(],2-∞ 15. 2 16. 95四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.【解析】(1) 抛物线在点,0)A n 处的切线方程为2()y n x n =--, 所以它在y 轴上的截距 2n a n =.(2)222121*********12121223(1)n b b b n n n n +++=++⋅<++++=-⨯⨯-. 18.【解析】(1) 由A B C π++=且2A C B +得23B B B ππ-⇒.(2) 当2n =时, 不等式成立, 即有2222a c b +. 证明如下: 由余弦定理有()()()2222222222cos b a c a c ac B a c -+=++--224cos 24cos 2(12cos )a c ac B ac ac B ac B =+--=-由 (1) 知1,cos cos 12cos 0332B B B πππ<∴=⇒-, 所以()22220b a c -+, 即2222a c b +.或当1n =时, 不等式成立, 即有2a c b +. 证明如下: 由正弦定理有2()2[2sin (sin sin )]24sin cos 2sin cos 2222B B A C A C b a c R B A C R +-⎛⎫-+=-+=- ⎪⎝⎭4cos 2sin cos 222B B A C R -⎛⎫=- ⎪⎝⎭ (其中R 是ABC 外接圆的半径)由 (1) 知1,sin sin 2sin 136222622B B BB πππππ<∴<⇒=⇒. 而cos 12AC -, 所以2sin cos 022B A C --, 又cos 02B>, 所以2()0b a c -+, 即2a c b +.或222()(2)a c b a c b +⇔+,而由余弦定理 ()()222222(2)()42cos 2b a c a c ac B a c ac-+=+--+-()2238cos 268cos 24(12cos )a c ac B ac ac ac B ac ac B =+----=- 由 (1) 知1,cos cos12cos 0332B B B πππ<∴=⇒-, 所以22(2)()0b a c -+, 即2a c b +.或当5n =时, 不等式不成立, 即5552a c b +不成立. 证明如下:取,23A B ππ==, 则有555sin 2sin 3a A b B ⎛⎫⎛⎫=> ⎪ ⎪⎭⎝⎭=⎝, 所以552a c b b ⎛⎫⎛⎫+> ⎪ ⎪⎝⎭⎝⎭, 即5552a c b +>.说明此时5552a c b +≤不成立19.【解析】(1)在图1中,取CP 的中点O ,连接AO 交CB 于E ,则AE CP ⊥.在图2中,取CP 的中点O,连接AO,OB, 因为2AC AP CP ===, 所以AO CP ⊥且 3AO =在OCB 中, 由余弦定理有2221(23)21237OB ︒=+-⨯⨯=, 所以22210AO OB AB +==, 所以AO OB ⊥, 又,AO CP CP OB O ⊥⋂=, 所以AO ⊥面PCB , 又AO ⊂面ACP , 所以平面ACP ⊥平面CPB .(2)因为AO ⊥面PCB 且OC OE ⊥,故可建立如图2空间直角坐标系, 则(0,0,0),(1,0,0),(0,0,3),(1,0,0),(3,0)O C A P B --(2,3,3),(1,0,3)AB AC =--=.设平面ABC 的法向量为(,,)x y z =m , 则由0,0,AB AC ⎧⋅=⎪⎨⋅=⎪⎩m m 得(3,3,1)=m又平面ACP 的法向量为(0,1,0)=n .所以313cos ||||13131θ⋅===⋅⨯m n m n . 因此, 二面角B AC P --的余弦值为1313.20.【解析】(1) X 的可能取值集合为{0,2,4,6,8},在1,2,3,4中奇数与偶数各有两个, 所以24,a a 中奇数个数等于13,a a 中偶数个数, 因此1313a a -+-与2424a a -+-的奇偶性相同, 从而X 必为偶数.X 的值非负, 且易知其值不大于 8 .容易举出使得X 的值等于0,2,4,6,8各值的排列的例子.可以用列表或者树状图列出1、2、3、4的一共24种排列,计算每种排列下的X 的值,在等可能的假定下, 得到X 的分布列为X 0 2 4 6 8P124 324 724924 424(2)①首先(2)(0)(2)246P X P X P X ≤==+=== 将三轮测试都有X ≤2的概率记做P ,有上述结果和独立性假设得311P 6216⎛⎫==⎪⎝⎭ ②由于15P 2161000=<是一个很小的概率, 这表明仅凭随机猜测得到三轮测试都有X ≤2的结果的可能性很小, 所以我们认为该品酒师确实有良好的鉴别功能,不是靠随机猜测.21.【解析】(1) 由题意可知||||||||||42||PA PF PB PF FB AF +=+==>=, 所以动点P 的轨迹是以A 、F 为焦点且长轴长为 4 的椭圆, 因此C 方程为22143x y += 设||(13),PA x x PAF θ=<<∠=, 则在PAF 中, 由余弦定理得32cos x θ=-,则有3cos 2xθ=-. 同理33||2cos()2cos AD πθθ==--+.所以22212124||||||4cos 43342x PD PA AD x x θ=+===--⎛⎫-- ⎪⎝⎭. 设||PF y =, 则4x y +=. 同理可得24||43y PE y =-所以12||(43)(43)391||||1616S PA PF x y S PD PE xy xy ⋅--===-⋅∣. 易知(4)(3,4]xy x x =-∈,所以12S S 的取值范围是325,1664⎛⎤ ⎥⎝⎦.22.【解析】(1) 函数的定义域为(0,)+∞.()111111111111()11t t t t t t t t f x txx t x tx x x x t t t-+--'--⎛⎫⎛⎫=+-+=-+- ⎪ ⎪⎝⎭⎝⎭. 当01x <<时, ()0f x '>; 当1x >时, ()0f x '<. 所以函数()f x 的单调区间为(0,1),(1,)+∞且()f x 在(0,1)上单调递增, 在(1,)+∞上单调递减. (2) 因为()f x 在[2,)+∞单调递减, 所以11()(2)222t tttf x f +=+-.记11(0)()222t tttg t t +=+>-,因此要证()0f x ≤,只要证()0g t ≤即可而1()g t g t ⎛⎫= ⎪⎝⎭且(1)0g =,因此只要证明: 当1t 时,()0g t .而1111()2222221t t tt tt ttg t +-⎛⎫=+--+ ⎪⎝⎭=.令122)1(1)(t t t h t t -+=-≥1121()2(ln 2)12t t t h t t -'⎛⎫=+- ⎪⎝⎭, 令1m t =, 则01m <. 令2()12(01)m F m m m =++<,2()22ln 2,()22ln 2(01),()22(ln 2)0m m m F m m G m m m G x ''=-=-<=->令, 所以()G m 在(0,1]上单调递增, 又(0)ln 20,(1)22ln 20G G =-<=->, 又()G m 在(0,1]上连续, 故存在0(0,1]x ∈, 使得()00,x x ∈时,(]0()0,,1G m x x <∈时, $G(m)>0$. 所以()F m 在()00,x 上单调递减, 在(]0,1x 单调递增. 又(0)(1)0F F ==, 所以()0F m .即()0h t ', 所以()h t 在[1,)+∞单调递减, 所以()(1)0h t h =, 即()0g t . 综上所述, 当2x 时,()0f x .。

吉林省长春市长春外国语学校2024-2025学年高一上学期第二次月考数学试题(含答案)

吉林省长春市长春外国语学校2024-2025学年高一上学期第二次月考数学试题(含答案)

长春外国语学校2024-2025学年高一上学期第二次月考数学试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区.2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚.3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效.4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑.5.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀.一、单项选择题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1. ( )A.B. C.D. 2. 用二分法求方程近似解时,所取的第一个区间可以是( )A. B. C. D. 3. 在平面直角坐标系中,已知角的顶点与坐标原点重合,始边与轴的非负半轴重合,终边经过点,下列结论错误的是( )A.B. C. D. 4. 荀子《劝学》中说:“不积跬步,无以至千里;不积小流,无以成江海.”所以说学习是日积月累的过程,每天进步一点点,前进不止一小点.我们可以把看作是每天的“进步”率都是,一年后是;而把看作是每天“退步”率都是,一年后是;这样,一年后的“进步值”是“退步值”的倍.那么当“进步值”是“退步值”的5倍时,大约经过多少5πsin6=1212-41log 02x x-=()0,1()1,2()2,3()3,4()π0αα<<x (P -2π3α=sin α=cos α=tan α=()36511%+1%3651.01 3.7.7834≈()36511%-1%3650.990.0255≈3653651.0114810.99≈天.(参考数据;,)( )A. 70B. 80C. 90D. 1005. 函数的图象是()A. B.C. D.6. 已知,,,则的最小值为( )A. 2B. C. D. 47. 已知,则()A. B.C.D.8. 设是定义在上的偶函数,且对任意的,有,,则的解集为( )A. B. C. D. 二、多项选择题(本题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求.全部选对得6分,部分选对得部分分,有选错的得0分.)9. 当两个集合有公共元素,且互不为对方的子集时,我们称这两个集合“相交”.对于集合,,若集合与“相交”,则等于( )A 4B. 2C. 1D. 010. 下列各式正确的是( ).lg101 2.0043≈lg 99 1.9956≈lg 20.3010≈()()24ln f x xx =--0x >0y >lg 2lg 4lg 2x y +=112x y+()222log 41log 40+<<a a a a 10a 4<<12<<a 1142a <<1a <<()f x ()(),00,-∞+∞ ()()2121,,0x x x x ∈-∞≠()()()12120x x f x f x ⎡⎤⌝->⎣⎦()20240f -=()()0f x f x x+-<()(),02024,-∞+∞ ()(),20240,2024-∞ ()()2024,00,2024- ()()2024,02024,-+∞ {}2|10M x ax =-=1,12N ⎧⎫=⎨⎬⎩⎭M N aA. 设B. 已知,则C 若,,则D11. 设,已知,是方程的两根,则下列等式正确的是( )A. B. C. D. 二、填空题(本题共3小题,每小题5分,共15分.)12. 已知满足,且,则__________.13. 若函数在区间上单调递减,则实数的取值范围是__________.14. 已知函数,,函数,,对于,,使得成立,则实数的取值范围是__________.四、解答题(本题共5小题,满分77分,要求写出必要的解题过程.)15. 已知.(1)化简;(2)若,且为第三象限角,求的值.16. 如图,点A ,B ,C 是圆上的点...0a >16a=31a b +=81333a ba⋅=log 2a m =log 5a n =220m n a +=4511lg 3log 9log 3+=()0,πα∈sin αcos α230x x m --=43m =-sin cos αα-=7tan 13α=22cos sin αα-=()f x ()()()2f x y f x f y +=++()21f =()3f =()()()22log 20f x x axa =->31,2⎛⎤⎥⎝⎦a ()221f x x x =-++[]0,2x ∈()1g x ax =-[]1,1x ∈-[]10,2x ∀∈[]21,1x ∃∈-()()21g x f x =a ()()()()πtan πsin πsin 23πcos 3πcos 2f αααααα⎛⎫--+ ⎪⎝⎭=⎛⎫+- ⎪⎝⎭()f α()4cos 2π5α-=-α()f αO(1)若,,求扇形AOB 的面积和弧AB 的长;(2)若扇形AOB 的面积为,求扇形AOB 周长的最小值,并求出此时的值.17. 已知函数(1)当时,求函数的定义域;(2)当时,存在使得不等式成立,求实数的取值范围.18. 已知函数第三象限角,且(1)求的值:(2)求的值.19 已知函数,.(1)若函数的图象与直线没有公共点,求的取值范围;(2)若函数,,是否存在,使的最小值为0.若存在,求出的值;若不存在,请说明理由.为.π6ACB ∠=4cm AB =210cm AOB ∠()()()log 10,1xa f x a a a =->≠13a =()f x 3a =[]1,3x ∈()()3log 130xf x m -+->m ()f x =α()23f α=-2sin 3cos 3sin 2cos αααα-+442cos 2cos sin sin 2cos 1ααααα+--()()41log 412xf x x =+-x ∈R ()f x 12y x a =+a ()()2421x f x x g x m +=+⋅-[]20,log 3x ∈m ()g x m长春外国语学校2024-2025学年高一上学期第二次月考数学试卷简要答案一、单项选择题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)【1题答案】【答案】A【2题答案】【答案】B【3题答案】【答案】C【4题答案】【答案】B【5题答案】【答案】B【6题答案】【答案】D【7题答案】【答案】C【8题答案】【答案】D二、多项选择题(本题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求.全部选对得6分,部分选对得部分分,有选错的得0分.)【9题答案】【答案】AC【10题答案】【答案】ABC【11题答案】【答案】BD二、填空题(本题共3小题,每小题5分,共15分.)【12题答案】【答案】【13题答案】【答案】【14题答案】【答案】四、解答题(本题共5小题,满分77分,要求写出必要的解题过程.)【15题答案】【答案】(1)(2)【16题答案】【答案】(1)面积为,弧AB 的长为 (2),【17题答案】【答案】(1) (2)【18题答案】【答案】(1) (2)【19题答案】【答案】(1) (2)存在,5241,3⎡⎫⎪⎢⎣⎭(,3][3,)-∞-+∞ ()tan f αα=-()34fα=-28πcm 34πcm 32AOB ∠=(),0-∞313,log 14⎛⎫-∞ ⎪⎝⎭79-74(],0-∞1m =-。

2024-2025学年河北省邯郸市部分学校高二(上)第二次月考数学试卷(12月份)(含答案)

2024-2025学年河北省邯郸市部分学校高二(上)第二次月考数学试卷(12月份)(含答案)

2024-2025学年河北省邯郸市部分学校高二(上)第二次月考数学试卷(12月份)一、单选题:本题共8小题,每小题5分,共40分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.直线2x−1=0的斜率为( )A. 不存在B. 0C. 12D. −122.如图,在空间四边形P−ABC中,PA+AB−CB=( )A. PCB. PAC. ABD. AC3.已知数列6,10,14,32,22,…,则52是这个数列的( )A. 第11项B. 第12项C. 第13项D. 第14项4.两平行直线l1:x−2y−10=0,l2:4y−2x−310=0之间的距离为( )A. 522B. 3C. 5D. 225.已知抛物线C:x2=16y的焦点为F,点M(x0,y0)为抛物线C上一点,若|MF|=3y0,则|x0|=( )A. 4B. 42C. 8D. 826.如图,长为a(a是正常数)的线段AB的两个端点A,B分别在互相垂直的两条直线上滑动,点M是线段AB上靠近A的三等分点,则下列说法正确的为( )A. 点M的轨迹是圆B. 点M的轨迹是椭圆且离心率为32C. 点M的轨迹是椭圆且离心率大小与a有关D. 点M的轨迹不能确定7.如图,⊙O 的半径等于2,弦BC 平行于x 轴,将劣弧BC 沿弦BC 对称,恰好经过原点O ,此时直线y =−x +m 与这两段弧有4个交点,则m 的取值可能是( )A. 57B. 3−1C. 45D. 2 2−28.在正四棱柱ABCD−A 1B 1C 1D 1中,AA 1=2AB =4,点E 在线段CC 1上,且CC 1=4CE ,点F 为BD 中点,则点D 1到直线EF 的距离( )A. 1143 B. 1142 C. 742 D. 743二、多选题:本题共3小题,共18分。

在每小题给出的选项中,有多项符合题目要求。

9.设等差数列{a n }的前n 项和为S n .若S 3=0,a 4=4,则( )A. a n =4n−8B. a n =2n−4C. S n =2n 2−6nD. S n =n 2−3n10.如图,抛物线C :y 2=2px(p >0)的焦点为F ,过抛物线C 上一点P(点P 在第一象限)作准线l 的垂线,垂足为H ,△PHF 为边长为8的等边三角形.则( )A. p =2B. p =4C. 点P 的坐标为(6,3 3)D. 点P 的坐标为(6,4 3)11.已知双曲线C :y 2−x 2=−1,则( )A. 双曲线C 也叫等轴双曲线B. 双曲线C 的一个焦点F 到一条渐近线的距离为 2C. 若过原点的直线l 与双曲线C 相交,则直线l 的倾斜角的取值范围为[0,π4)∪(3π4,π)D. 直线l 过双曲线C 的右焦点F ,且直线l 与双曲线的一条渐近线平行,直线l 与双曲线C 相交于点A ,与双曲线C 的另一条渐近线相交点于B ,则点A 是线段BF 的中点三、填空题:本题共3小题,每小题5分,共15分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

应届第二次数学月考试卷
一、选择题(5'×12=60')
1:设集合M={x|x2-x<0},N={x| |x|<2},则() A. M ∩N=Φ B.M ∩N=M C. M ∪N=M D.M ∪N=R
2:函数
()()13lg 132++-=
⎰x x
x x 的定义域是()
A. ⎪⎭⎫ ⎝⎛+∞-,31
B.⎪⎭

⎝⎛-1,31 C.⎪⎭⎫ ⎝⎛-31,31 D.⎪⎭⎫ ⎝⎛-∞-31,
3:设函数()()
⎪⎩⎪⎨⎧-=-1
log 22
31
x e
x f x ()()22≥<x x 则()[]()=2f f A. 0 B. 1 C. 2 D. 3 4:设p:22
--x x <0, q:02
3
<-+x x , 则p 是q 的() A .充分不必要条件
B. 必要不充分条件
C.充要条件
D.既不充分也不必要条件
5:函数y=ln 1+x
(x>0)的反函数是() A .y=e
1
+x (x R ∈)
B.y=e
1
-x (x )R ∈ C.y=e
1
+x (x>1) D.y=e
1
-x (x>1)
6:下列函数中既是奇函数,又在区间[-1,1]上单调递减的是() A .()x x f sin = B. ()1+-=x x f C.()()
x x x f -+=3321 D. x
x
x f +-=22ln
)( 7:函数2
11
)(x
x f +=
(x ∈R )的值域是() A .[0,1] B.[0,1 ] C.(0,1) D.(0,1)
8:函数)
1(log )(++=x a x a x f 在[0,1]上的最大值与最小值之和为a,则a=()
A.
4
1 B.
2
1 C.
2 D. 4
9:已知0<a<1,log 0log <<n
a m a ,则()
A .1<m<n B. 1<n<m C. m<n<1 D.n<m<1
10:函数()232
3
+-=x x x f 在区间[-1,1]上的最大值是()
A .-2
B .0
C .2
D .4
11:已知定义在R 上的奇函数()x f 满足())(2x f x f -=+,则=)6(f ( ) A .-1
B .0
C .1
D .2
12:函数y=x
e -的图象()
A .与y=x
e 的图象关于y 轴对称 B .与x
e y =的图象关于原点对称
C .与x
e y -=的图象关于y 轴对称 D .与x e
y -=的图象关于原点对称
二:填空题(4’4=16’)
13:方程x
x
3
)
10(3
log 1log 2
+=-的解是 14:若函数x
a x f log )(= (0<a<1)在区间[a,2a]上最大值是最小值的3倍,则a=
15:若函数)2(22log
)(a x x a
x f ++=是奇函数,则a=
16:函数x
a y =(a>0且a ≠1)在[1,2]上的最大值比最小值大2
a
,则a= 三:解答题(17—21题各12分,22题14分)
17:解关于x 的不等式x c cx x <+-2
(c ∈R )(文科)
设函数1
12)(--+=x x x f ,求使22)(≥x f 的x 的取值范围。

(理科做)
18:已知函数642)(2
2
+++=b x a ax x f 。

当()6,2-∈x 时,其值为正,当
()()6,22,-⋃-∞-∈x 时,其值为负。

(1) 求)(及与x f b a (2) )()16(2)1(4)(4
)(x H k k x k x f k
x H 取何值时,函数,当设-+++-= 的值恒为负值?
19:已知函数1012)(2
≤≤-++-=x a ax x x f 在时有最大值2,求a 的值。

20:已知函数b
x b
x x f 22lg
)(-+= )0(>b (1) 求定义域
(2) 判断奇偶性并证明
(3) 讨论),2(+∞∈b x 上的单调性并证明
21:已知定义域为R 的函数2
22)(1++-=+x x b
x f 是奇函数
(1) 求b
(2) 讨论单调性并证明
22:设函数13)(2
3
+-=x kx x f )0(>k
(1) 求)(x f 的单调区间
(2) 若函数)(x f 的极小值大于0,求k 的范围(只理科做)。

相关文档
最新文档