四边形 小结与复习 教学设计
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小结与复习教学设计
教学设计思路
以小组讨论的形式在教师的指导下使学生总结出本章的知识结构及主要知识点,再通过练习巩固所学的知识点。
教学目标
知识与技能
通过对本章知识的回顾,进一步认识四边形、特殊四边形的基本性质和基本识别方法,以及三角形的中位线,多边形的内角和、外角和,平面图形的镶嵌,建立符合个体认知特点的知识结构。
过程与方法
通过思考与操作相结合的回顾与反思,在已有的说理和简单推理的基础上,进一步熟悉简单推理,通过练习加以巩固。
情感态度价值观
通过回顾与反思增进思考与交流深化自主探索与合作学习。
教学重点和难点
重点是本章的所有重点内容。
;
难点是能总结出这些知识点并能灵活应用这些知识点解题。
教学方法
小组讨论法
以小组为单位,在总结讨论的基础上,使学生掌握本章的内容。
课时安排
1课时
教具学具准备
多媒体
教学过程设计
以提问的形式引导学生总结出本章所学的知识点,写出本章的知识框图。
(一)知识结构
1.四边形之间的关系:
2.矩形、菱形和正方形都是特殊的平行四边形,它们的性质都是在平行四边形的基础上扩充来的。
矩形是由平行四边形增加“一个角为90°的条件而得到的,它在角和对角线方面具有比平行四边形更多的特性;菱形是由平行四边形增加“一组邻边相等”的条件而得到的,它在边和对角线方面具有比平行四边形更多的特性,正方形是由平行四边形增加“一组邻边相等”和“一个角为90°两个条件而得到的,从而它在边、角和对角线方面都具有比平行四边形更多的特性。
3.对特殊四边形,还要注意从对称性的角度把握其特征,并领悟它们之间的内在联系与区别。
平行四边形都是中心对称图形,其中,矩形、菱形和正方形还是轴对称图形。
矩形和菱形各有两条对称轴,正方形有四条对称轴。
等腰梯形是轴对称图形,有一条对称轴。
4.矩形和菱形的识别条件可以根据出发点不同而分成两类:一类是以四边形为出发点进行识别,另一类是以平行四边形为出发点进行识别。
正方形的识别条件可以分为四类,除上面提到的两类之外,还可分别以矩形和菱形为出发点进行识别。
5.解决四边形问题常用的方法:
(1)有些四边形问题可以转化为三角形问题来解决。
(2)有些梯形问题可以转化为三角形、平行四边形问题来解决。
(3)有时也可以运用平移、旋转、轴对称来构造图形,解决四边形问题。
(三)注意事项
在运用特殊四边形的性质和识别条件时,要注意它们的区别与联系。
(四)例题
题型1 根据性质进行计算
例1菱形的一边与两条对角线夹角的差为15°,求菱形各内角度数。
分析:如图22—1,由题意知∠BAO与∠ABO的差为15°,而因为菱形的对角线互相垂直,因此∠BAO与∠ABO的和为90°。
根据这两个条件可求出这两个角,从而求出菱形各个内角。
解:设∠ABO的度数为x°,则∠BAO度数为(x°+15°)。
∵四边形ABCD为菱形,∴AC⊥BD。
即∠AOB=90°。
∴x+x十15=90。
x=37.5。
∴∠ABO=37.5°,∠BAO=52.5°。
因此菱形各个内角的度数分别为75°,105°,75°,105°。
特别提醒:此题类似于平行四边形中,已知两邻角之间一个等量关系,再借助于邻角互补这一性质可确定平行四边形各内角度数,而在菱形中,同学们应该注意对角线互相垂直平分在此题中的应用。
题型2 利用识别来说理
例2 如图22—2,梯形ABCD中,AD∥BC,E是BC的中点,EF⊥AB于F,EG⊥CD于G,且EF=EG,则梯形ABCD是等腰梯形吗?说明你的理由。
解:梯形ABCD是等腰梯形。
∵E是中点,∴BE=EC。
∵EF⊥AB于F,EG⊥CD于G,
∴∠BFE—∠CGE=90°。
又∵EF=EG,
∴Rt△BFE≌Rt△CGE(HL)。
∴∠B=∠C(全等三角形对应角相等)。
∴梯形ABCD是等腰梯形(同一底上的两个内角相等的梯形是等腰梯形)。
特别提醒:判别等腰梯形除定义外只有这一种方法,因此要从判别方法的条件上去考虑。
题型3 实践与应用
例3如图22—3,任意剪一个梯形纸片,利用对折的方法找到两腰的中点E、F,按图中所示的方法过两腰的中点分别将含∠A、∠B的部分向里折,得到两个折痕(如图22—3所示),沿折痕剪下①②,并按图中箭头所指的方向旋转180°,你能得到一个怎样的四边形?由此,你能发现关于线段EF的哪些特性?
分析:要注意从图中找信息,①②两个三角形旋转180°之后与余下部分组成一个矩形,这时EF即和矩形的长相等,且AB+CD即为矩形两条对边长的和。
解:得到一个矩形,EF与上、下底CD,AB平行,且等于AB、CD和的一半。
特别提醒:本题首先要读懂题意,然后从图形中找关键信息。
(五)练习
选作92页复习题中的题
(六)小结
引导学生总结出本节的知识点
(七)板书设计。