第二节 工程中的随机振动问题 振动力学课件
合集下载
6-随机振动分析ppt课件
-基于这个特点,我们就比较容易的描述随机振动激励的主要特征
了。
最新课件
Advanced Contact & Fasteners
1、随机振动分析简介
Training Manual
(1)采用功率谱密封的方法可以描述随机振动激励的统计特征
因此进行随机振动计算时可以输入PSD幅值与频率的关系曲线, 来表征随机振动的这个统计性特征;
最新课件
Advanced Contact & Fasteners
3、随机振动理论简介
Training Manual
(2)随机振动
We don’t know exactly what the response will look like, but we do know that it will respond to the given input with the RMS response, on average.
-this is also called the transmission or transfer function
最新课件
-输入与输出可以是任意量,而不仅仅是加速度。
Advanced Contact & Fasteners
3、随机振动理论简介
Training Manual
(2)随机振动 扫描整个频率范围,来确定幅值和相位角随频率的变化规律。
基于这个特点,在实际计算中一般取3 sigma为计算的上限;
高斯正态分布具有以下重要属性:如果高级正态分布激励作用在线性系统 上,则输出的激励是不同的随机过程,但是仍然服从另外一个高斯正态分
最新课件
布。
Advanced Contact & Fasteners
随机振动课件
在机械工程领域,随机振动分析还用 于研究机械设备的动态特性和稳定性 、振动噪声和疲劳寿命等。这些研究 有助于工程师更好地了解机械设备的 性能和安全性,并采取相应的措施来 提高机械设备的稳定性和可靠性。
06
随机振动的发展趋势与 展望
新材料的应用
高强度材料
随着新材料技术的不断发展,高强度、轻质材料在随机振动 领域的应用越来越广泛。这些材料能够提高结构的刚度和稳 定性,降低振动响应,从而提高结构的可靠性和安全性。
研究时变系统在随机激励下的响应特性, 包括时变系统的随机响应计算、自适应控 制和鲁棒稳定性等问题的分析。
02
随机振动分析方法
概率密度函数法
概率密度函数法是一种基于概率论的方法,用于描述随机振动信号的概率分布特性。
通过概率密度函数,可以计算随机振动信号的统计特性,如均值、方差、偏度、峰 度等。
该方法适用于分析具有复杂分布特性的随机振动信号,如非高斯、非线性、非平稳 等。
随机振动的应用领域
01
02
03
04
航空航天
飞机和航天器的起落架、机身 等部件在着陆和发射过程中的
振动。
交通运输
铁路、公路和地铁等交通工具 的减震和隔震设计,以及车辆 零部件的振动疲劳寿命分析。
土木工程
高层建筑、桥梁和隧道的抗震 设计,以及建筑结构的振动控
制。
机械工程
机械设备和精密仪器的振动隔 离和减振设计,以及振动测试
随机振动课件
目录
• 随机振动概述 • 随机振动分析方法 • 随机振动的影响因素 • 随机振动控制技术 • 随机振动在工程中的应用 • 随机振动的发展趋势与展望
01
随机振动概述
定义与特点
定义
振动力学第二章课件
I 0 kn
其中 I 0 —— 圆盘对中心轴的转动惯量
k n —— 圆轴的抗扭弹簧常数
固有频率 则
pn kn I0
2 n
kn
I0
0 sin pnt
图2-4 扭振系统
p 0
0 cos pnt
pn
扭振系统的振动微分方程与单自由度弹簧质量振动系统的微 分方程的形式完全相同,它们的振动特性也完全相同。因此 归为单自由度弹簧质量振动系统进行讨论。
k k1 k2
5
太原科技大学应用科学学院
第二章 单自由度系统的振动
2、 串联弹簧
( st )1 ( st ) 2 st
F1 F2 mg
k1
F1 k1 ( st )1 F2 k2 ( st ) 2
( st )1 mg mg ( st ) 2
k1 k2
x0 x x0 cos pnt sin pnt 或x A sin( p t ) n pn
An p x arctg( n 0 ) x0 2 x0 x 2 pn
2 0
3
太原科技大学应用科学学院
第二章 单自由度系统的振动
二、 周期、频率和圆频率(只与系统本身有关)
太原科技大学应用科学学院
第二章 单自由度系统的振动
1 T I B 2 2 1 2 2 V kb 2
d (V T ) 0 dt
1 1 2 I B 2k b2 0 2 2
k b2 0 IB
pn
kb 2 IB
习题2-1 2-3 2-5 2-6
§2-4 有阻尼系统的衰减振动 干摩擦:与压力成正比 (库仑阻尼) 外阻尼
《振动力学基础》课件
非耦合振动
各自由度之间相互独立,可分别进行分析。
固有频率和主振型
多自由度系统具有多个固有频率和相应的主振型 。
连续系统的振动
分布参数系统
描述长弦、长杆等连续介质的振动,需要考虑空间位 置的变化。
集中参数系统
将连续介质离散化,用弹簧、质量等元件模拟,适用 于简单模型。
波的传播
连续系统中振动能量的传播形式,如声波、地震波等 。
线性振动和非线性振动
线性振动
满足叠加原理,各激励之间互不影响,系统响应与激励成正比。
非线性振动
不满足叠加原理,激励之间存在相互作用,系统响应与激励不成正 比。
周期性振动和非周期性振动
根据振动是否具有周期性进行分类。
CHAPTER 03
振动分析方法
频域分析法
01
频域分析法是一种通过将时间域的振动问题转换为频率域的振动问题 ,从而利用频率特性来分析振动的方法。
CHAPTER 02
振动的基本原理
单自由度系统的振动
自由振动
无外力作用下的振动,系统具有固有频率和固有振型。
强迫振动
在外力作用下产生的振动,其频率与外力频率相同或相近。
阻尼振动
由于系统内部摩擦或外部阻尼作用导致的振动,能量逐渐耗散。
多自由度系统的振动
耦合振动
多个自由度之间相互影响,振动频率和振型较为 复杂。
汽车悬挂系统和路面激励会导致车内振动,影响乘客舒适性。
船舶与海洋工程
船舶和海洋结构的振动会影响其性能和安全性,需要进行有效的振 动控制。
建筑领域
结构健康监测
对建筑物和桥梁等大型结构进行振动监测,可以评估其健康状况和 安全性。
地震工程
地震引起的振动对建筑结构的影响非常大,需要进行抗震设计和分 析。
各自由度之间相互独立,可分别进行分析。
固有频率和主振型
多自由度系统具有多个固有频率和相应的主振型 。
连续系统的振动
分布参数系统
描述长弦、长杆等连续介质的振动,需要考虑空间位 置的变化。
集中参数系统
将连续介质离散化,用弹簧、质量等元件模拟,适用 于简单模型。
波的传播
连续系统中振动能量的传播形式,如声波、地震波等 。
线性振动和非线性振动
线性振动
满足叠加原理,各激励之间互不影响,系统响应与激励成正比。
非线性振动
不满足叠加原理,激励之间存在相互作用,系统响应与激励不成正 比。
周期性振动和非周期性振动
根据振动是否具有周期性进行分类。
CHAPTER 03
振动分析方法
频域分析法
01
频域分析法是一种通过将时间域的振动问题转换为频率域的振动问题 ,从而利用频率特性来分析振动的方法。
CHAPTER 02
振动的基本原理
单自由度系统的振动
自由振动
无外力作用下的振动,系统具有固有频率和固有振型。
强迫振动
在外力作用下产生的振动,其频率与外力频率相同或相近。
阻尼振动
由于系统内部摩擦或外部阻尼作用导致的振动,能量逐渐耗散。
多自由度系统的振动
耦合振动
多个自由度之间相互影响,振动频率和振型较为 复杂。
汽车悬挂系统和路面激励会导致车内振动,影响乘客舒适性。
船舶与海洋工程
船舶和海洋结构的振动会影响其性能和安全性,需要进行有效的振 动控制。
建筑领域
结构健康监测
对建筑物和桥梁等大型结构进行振动监测,可以评估其健康状况和 安全性。
地震工程
地震引起的振动对建筑结构的影响非常大,需要进行抗震设计和分 析。
随机振动基础知识培训PPT课件
.
16
4.1 随机振动试验概况
随机振动试验:在实验室利用振动台等振动设备模 拟结构在实际中的随机振动环境,对结构的强度、 可靠性、寿命等进行检验和确认。
随机振动试验基本框图:
Y
响应信号
X Z
振动台
试件 台面
激励信号
功率放大器
信号采集与发送 系统
显示器
4.2 振动台
电液式:低频、 大推力
---建筑、机械
0.5
p(x) 1 e(x22)2
2
0.4
0.3
0, 3
0.2
0, 1
1, 1
0.1
均方根值(Root
0
-10
-8
-6
-4
-2
0
2
4
6
8
10
Mean Square—
RMS),又称有效值: R M S E(X2) x2p(x)dx
标准差(Standard Deviation)
变 化 的 分 贝 数 n来 描 述 :
nlog( f2)
10logW Wu& u& & &((ff12))nx
1. 按随机性的来源分:一个是激励过程的随机性, 这是随机振动理论主要解决的问题; 一个是振动 系统的参数的随机性,这是参数随机振动理论.
2. 正问题和反问题:已知输入和系统求输出这是正 问题,称为响应确定问题; 已知输入和输出求系统 的参数这是反问题,称为系统识别问题,我们这门 课程不涉及,有专门课程.
4.3 随机振动试验参考谱(续)
倍频程octave f f1 2 2 x ,f2 与 f1 之 间 有 x 个 倍 频 程 , x 1 时 为 1 倍 频 程
振动力学教程PPT课件
动的叠加-----------谐波分析
•
2、非周期:利用傅立叶积分作谐波分析
• δ函数又称为单位脉冲函数-----它的性质、应用
示成一系列简谐振
第22页/共35页
第一节:简谐振动及其表示方法
•一、简谐振动的表示方法
• (一)正弦函数表示
2、A、ω、Φ ------简谐振动三要素
第23页/共35页
第24页/共35页
船舶的模态分析和强度分析,飞行器的结构振动和声疲劳分析等。
3) 在土木建筑、地质工程中:建筑、桥梁等结构物的模态分析,地震
引起结构物的动态响应,爆破技术的研究等。
4) 在医学、生物工程中:脑电波、心电波、脉搏波动等的信号处理等。
第12页/共35页
2途径:
1)从具体的工程对象提炼出力学模型 2)建立数学模型------应用力学知识建立所研究问题的数学模型 3)对数学模型进行分析和计算,求出请确、近似或数值解。 4) 比较------将计算结果与工程问题的实际现象或实验研究的测试结果进行 比较,考察理论结果是否解决该工程问题,如不能解决而数学模型及求解均无错 误,则需要修改力学模型重复上述过程。
第9页/共35页
5 随机振动
20世纪50年代,航空和航天工程的发展对振动力学提出了更高 的要求,确定性的力学模型无法处理包含随机因素的工程问题----如大气湍流引起的飞机颤振、喷气噪音导致飞行器表面结构 的声疲劳、火箭运载工具有效负荷的可靠性等。工程的需要迫使 人们用概率统计的方法研究承受非确定性载荷的机械系统和结构 的响应、稳定性和可靠性等, 从而 形成了随机振动这一振动力 学的重要组成部分。 在工程问题中振动信号的采集和处理是随机振动理论应用的前提, 由于计算机的迅速发展和快速第1傅0页/立共35叶页 变换算法的出现,随机振动
《随机振动课件全》课件
01
02
பைடு நூலகம்
03
概率密度函数
描述随机变量取值的概率 分布情况。
自相关函数
描述随机过程某一时刻的 取值与另一时刻取值之间 的相关性。
互相关函数
描述两个随机过程之间的 相关性。
随机振动的频域分析
傅里叶变换
将时域信号转换为频域信号,便于分析信号的频率成分。
频谱分析
通过对频域信号的分析,得到信号中各频率成分的幅值和相位信息。
03 随机振动的测试与实验
测试设备与传感器
测试设备
为了进行随机振动测试,需要选择合适的测试设备,包括振动台、激振器等。这些设备应具备足够的功率和频率 范围,以模拟各种实际环境中的振动情况。
传感器
传感器是用于测量振动的关键设备,包括加速度计、速度传感器和位移传感器等。选择合适的传感器需要考虑其 灵敏度、线性范围和频率响应等参数,以确保准确测量振动数据。
稳定性问题,为实际工程提供理论支持。
随机振动控制与减振
02
研究如何通过控制策略和减振技术降低随机振动对工程结构的
影响,提高结构的抗振性能。
随机振动测试与实验
03
发展先进的测试技术和实验方法,对随机振动进行准确测量和
实验验证,为理论研究提供数据支撑。
未来发展方向与趋势
跨学科交叉研究
将随机振动研究与材料科学、控 制理论、人工智能等领域进行交 叉融合,开拓新的研究领域和应
数据处理与分析
数据处理
在获得原始振动数据后,需要进行一系 列数据处理,包括滤波、去噪、归一化 和平滑处理等。这些处理有助于提取有 用的信息,并消除干扰和异常值对数据 的影响。
VS
结果分析
分析处理后的数据可以帮助理解结构的动 力学特性和行为。分析方法包括频域分析 和时域分析等,可以揭示结构的共振频率 、阻尼比和模态形状等信息。根据分析结 果,可以对结构进行优化或改进设计,以 提高其抗振性能和稳定性。
随机振动课件(全88页)
随机振动的分类及特点
Байду номын сангаас分类
我们将介绍随机振动的分类方法,包括自由振动、强迫振动和自激振动。您将了解每种类型 的特点和典型应用。
特点
探索随机振动的特点,如随机性、不相关性和峰值分布规律。我们还将研究振动幅值、频率 和相位的统计分布。
案例分析
通过实际案例,了解不同分类和特点的随机振动在工程领域中的具体应用,以及可能的挑战 和解决方案。
随机振动的产生方式
自然源
探索自然界中产生随机振动的原 因和机制,如气象因素、地质活 动和生物影响。了解它们对人类 和工程的影响。
人工源
研究人工设备和机械在产生随机 振动中的作用。从发动机震动到 交通流,我们将展示各种源头和 控制方法。
结构振动
探索建筑和结构中自身产生的随 机振动,如风荷载、地震和人体 活动。了解预防和减轻结构振动 的方法和技术。
随机振动课件(全88页)
欢迎参加我们的随机振动课程!本课程涵盖了随机振动的基本概念、数学模 型,以及在工程实践和结构响应中的应用。准备好迎接精彩的学习之旅吧!
介绍随机振动的基本概念
通过引人入胜的案例和图表,我们将深入探讨随机振动的定义、原理和基本特征。您将了解随机振动与确定性 振动的区别,并掌握常见的随机振动表征方法。
随机振动的数学模型
1
随机过程
研究随机振动的数学模型,如随机过程和随机变量。了解概率论和统计学在振动 分析中的应用。
2
随机扰动
学习用于描述随机振动的随机扰动模型,如布朗运动模型和谱分解方法。了解如 何将振动问题转化为数学公式。
3
数值模拟
介绍用于模拟和计算随机振动响应的数值方法,如有限元法和蒙特卡洛模拟。掌 握计算机工具的使用技巧。
《随机振动分析》PPT课件
其中:
1)Sout-谱密度响应(惯用术语); 2)Sin-谱密度输入(来自于输入的PSD曲线); 3)aout-计算的单自由输出; 4)ain-单自由度输入;
注意:在ANSYS中的谱密度响应就成为PSD响应(RPSD),谱 密度输入就称为输入的PSD。
3.随机振动分析步骤
(1)建立PSD分析系统
Training Manual
有频率响应函数的定义可知 1)频率响应函数的幅值等于系统输出幅值与输入幅值的比值; 2)频率响应函数的虚部与实部的比值等于相位角的正切值。
Advanced Contact & Fasteners
2.随机振动分析理论
Training Manual
(2)随机振动 根据随机振动理论可知,对于单一输入的PSD值,则系统输出为
Training Manual
Advanced Contact & Fasteners
4.工程实例:电路板的随机振动计算
1.随机振动分析简介
Training Manual
Advanced Contact & Fasteners
什么是随机振动分析
– 基于概率的谱分析.
– 典型应用如火箭发射时结构承受的载荷谱,每次发射的谱不同,但统 计规律相同.
1.随机振动分析简介
Training Manual
Advanced Contact & Fasteners
• 和确定性谱分析不同,随机振动不能用瞬态动力学分析代 替.
• 应用基于概率的功率谱密度分析,分析载荷作用过程中的 统计规律
什么是PSD?
• PSD是激励和响应的方差随频率的变化。 – PSD曲线围成的面积是响应的方差. – PSD的单位是 方差/Hz (如加速度功率谱的单位是 G2/Hz). – PSD可以是位移、速度、加速度、力或压力.
《随机振动分析基础》课件
提高解决实际问题的能力
本课程注重理论与实践相结合,通过案例分析和 实验操作,培养学生解决实际随机振动问题的能 力。
培养跨学科的思维方式
通过本课程的学习,培养学生具备跨学科的思维 方式,能够综合运用多学科知识进行复杂工程问 题的分析和解决。
02
随机振动概述
随机振动定义
随机振动定义
随机振动是指一种具有随机特性的振动,其参数(如振幅、频率、相位等)在 一定的统计规律下变化。
03
随机振动理论基础
概率论基础
概率
描述随机事件发生的可能性,通常用0到1之间的实数 表示。
随机变量
表示随机事件的数值结果,可以是离散的也可以是连 续的。
概率分布
描述随机变量取值的可能性,常见的概率分布有正态 分布、泊松分布等。
随机过程基础
01
02
03
随机过程
由随机变量构成的序列或 函数,每个随机变量表示 某一时刻的状态。
传统振动分析方法的局限性
传统的确定性振动分析方法难以处理随机振动问题,需要 引入概率统计方法进行深入研究。
学科交叉的重要性
随机振动分析涉及到多个学科领域,如概率论、统计学、 结构动力学等,需要跨学科的知识和思维方式。
课程目的
1 2 3
掌握随机振动的基本概念和原理
通过本课程的学习,使学生了解随机振动的基本 概念、原理和分析方法,为后续的工程应用和研 究打下基础。
功率谱密度法
功率谱密度法是一种基于频域分 析的方法,用于研究随机振动信
号的频率特性。
它通过对随机振动信号进行频谱 分析,提取出信号的功率谱密度 函数,从而描述随机振动信号在
不同频率范围内的能量分布。
功率谱密度法在随机振动分析中 具有广泛的应用,可以用于研究 结构的振动模态、地震工程等领
本课程注重理论与实践相结合,通过案例分析和 实验操作,培养学生解决实际随机振动问题的能 力。
培养跨学科的思维方式
通过本课程的学习,培养学生具备跨学科的思维 方式,能够综合运用多学科知识进行复杂工程问 题的分析和解决。
02
随机振动概述
随机振动定义
随机振动定义
随机振动是指一种具有随机特性的振动,其参数(如振幅、频率、相位等)在 一定的统计规律下变化。
03
随机振动理论基础
概率论基础
概率
描述随机事件发生的可能性,通常用0到1之间的实数 表示。
随机变量
表示随机事件的数值结果,可以是离散的也可以是连 续的。
概率分布
描述随机变量取值的可能性,常见的概率分布有正态 分布、泊松分布等。
随机过程基础
01
02
03
随机过程
由随机变量构成的序列或 函数,每个随机变量表示 某一时刻的状态。
传统振动分析方法的局限性
传统的确定性振动分析方法难以处理随机振动问题,需要 引入概率统计方法进行深入研究。
学科交叉的重要性
随机振动分析涉及到多个学科领域,如概率论、统计学、 结构动力学等,需要跨学科的知识和思维方式。
课程目的
1 2 3
掌握随机振动的基本概念和原理
通过本课程的学习,使学生了解随机振动的基本 概念、原理和分析方法,为后续的工程应用和研 究打下基础。
功率谱密度法
功率谱密度法是一种基于频域分 析的方法,用于研究随机振动信
号的频率特性。
它通过对随机振动信号进行频谱 分析,提取出信号的功率谱密度 函数,从而描述随机振动信号在
不同频率范围内的能量分布。
功率谱密度法在随机振动分析中 具有广泛的应用,可以用于研究 结构的振动模态、地震工程等领
《随机振动课件全》课件
态分析和抗震设计。
3
土动力学中的应用
展示随机振动在土动力学领域中的应 用,如地震工程和基础设计。
航空航天领域中的应用
介绍随机振动在航空航天领域中的重 要性和应用场景。
随机振动的实验方法
随机振动的模拟实验
讨论如何通过模拟实验来 研究和分析随机振动的特 性。
随机振动的实际测量
解释如何进行实际测量, 获取随机振动信号的实验 数据。
探讨随机振动的概率密度函数, 为理解其分布特性提供基础。
介绍随机振动的功率谱密度, 了解振动频谱的特征。
相关函数
讨论随机振动的相关函数,分 析振动信号之间的关联性。
随机振动的分析方法
自相关函数法
介绍利用自相关函数进行 随机振动分析的方法和步 骤。
傅里叶变换法
探讨使用傅里叶变换来分 析随机振动信号的频谱特 性。
《随机振动课件全》PPT 课件
随机振动课件全 PPT 大纲
概述
振动的定义和分类
介绍振动的概念和常见分类,为理解随机振动打下基础。
随机振动的特点和应用
探索随机振动的特点及其在不同领域中的应用,揭示其重要性。
随机振动的基本概念
解释随机振动的基本概念,如随机过程和随机力。
随机振动的特性
概率密度函数
功率谱密度
数据分析和处理方法
介绍处理应用,展望随机振动在未来研究中的潜力和发展方向。
自回归模型法
介绍通过自回归模型对随 机振动进行建模和预测的 方法。
随机振动的统计特性
均值和方差的计算
详细说明如何计算随机振动信 号的均值和方差。
概率分布的计算
解释如何计算随机振动信号的 概率分布。
累积分布函数的计算
《随机振动分析基础》课件
用于产生激励信号,可 以是力、速度或加速度
。
控制系统
用于控制试验过程,包 括信号生成、放大和滤
波等。
试验原理
基于概率论和统计学原 理,通过测量和分析随 机振动信号来评估结构
的性能。
试验程序与数据处理
试验准备
确定试验参数、选择合适的设备和试件。
数据处理
对采集的数据进行滤波、放大、统计分析和 绘制图表等处理。
数据采集
通过传感器记录振动信号,包括位移、速度 和加速度等。
结果分析
根据处理后的数据评估结构的性能,如固有 频率、阻尼比和传递函数等。
试验结果分析与验证
结果分析
01
对比试验结果与理论预测,分析误差来源和改进方向。
验证方法
02
通过对比不同试验条件下的结果,验证试验方法的可靠性和重
复性。
应用实例
03
介绍随机振动试验在工程实践中的应用,如结构健康监测、产
定义
随机过程是时间函数的集合,每个函 数表示在某一时刻的随机变量。
分类
按照不同的特性,如平稳性、各态历 经性、遍历性等,可以将随机过程分 为不同的类型。
随机振动的统计特性
概率分布
描述随机振动幅值的可能取值及其概率。
均值和方差
描述随机振动幅值的平均值和离散程度。
自相关函数和功率谱密度
描述随机振动时间序列在不同时刻的相关性和频域特性。
这些振动可能会对车辆和船舶 的结构造成影响,甚至影响乘 客的舒适度。
随机振动分析用于优化车辆和 船舶的结构设计,提高其稳定 性和安全性。
土木建筑工程
建筑物和桥梁等土木工程结构在风、地震或其他自然灾害的作用下会受到随机振动 的影响。
这些振动可能会导致结构的疲劳、损伤或破坏,影响结构的长期安全性和稳定性。
。
控制系统
用于控制试验过程,包 括信号生成、放大和滤
波等。
试验原理
基于概率论和统计学原 理,通过测量和分析随 机振动信号来评估结构
的性能。
试验程序与数据处理
试验准备
确定试验参数、选择合适的设备和试件。
数据处理
对采集的数据进行滤波、放大、统计分析和 绘制图表等处理。
数据采集
通过传感器记录振动信号,包括位移、速度 和加速度等。
结果分析
根据处理后的数据评估结构的性能,如固有 频率、阻尼比和传递函数等。
试验结果分析与验证
结果分析
01
对比试验结果与理论预测,分析误差来源和改进方向。
验证方法
02
通过对比不同试验条件下的结果,验证试验方法的可靠性和重
复性。
应用实例
03
介绍随机振动试验在工程实践中的应用,如结构健康监测、产
定义
随机过程是时间函数的集合,每个函 数表示在某一时刻的随机变量。
分类
按照不同的特性,如平稳性、各态历 经性、遍历性等,可以将随机过程分 为不同的类型。
随机振动的统计特性
概率分布
描述随机振动幅值的可能取值及其概率。
均值和方差
描述随机振动幅值的平均值和离散程度。
自相关函数和功率谱密度
描述随机振动时间序列在不同时刻的相关性和频域特性。
这些振动可能会对车辆和船舶 的结构造成影响,甚至影响乘 客的舒适度。
随机振动分析用于优化车辆和 船舶的结构设计,提高其稳定 性和安全性。
土木建筑工程
建筑物和桥梁等土木工程结构在风、地震或其他自然灾害的作用下会受到随机振动 的影响。
这些振动可能会导致结构的疲劳、损伤或破坏,影响结构的长期安全性和稳定性。
《随机振动基础》课件
确定试验目的和要求
明确试验目的,如评估产品的疲 劳寿命、可靠性和稳定性等,并 确定试验参数,如振动频率、幅 值和试验时间等。
分析结果
对采集的数据进行分析,评估试 样的性能和可靠性,并得出结论 。
04
随机振动在工程中的应用
航空航天工程
飞机起落架设计
在飞机起飞和降落过程中,起落架会受到地面传来的随机振 动,设计时需要考虑这种振动对起落架的影响,确保其安计过程中,需要考虑其 动态特性,包括对随机振动的响应和 稳定性等。通过合理的动态特性分析 ,可以优化机械系统的设计,提高其 性能和稳定性。
05
随机振动研究的展望
随机振动研究的挑战
01
复杂环境下的随机振动分析
随着工程结构的复杂性和多样化,如何在复杂环境下进行准确的随机振
航天器结构分析
在航天器发射和运行过程中,会受到多种随机振动的影响, 如火箭振动、大气湍流等。这些振动对航天器的结构安全和 稳定性有重要影响,需要进行详细的分析和评估。
交通运输工程
车辆减振设计
在车辆设计中,需要考虑路面不平整等因素引起的随机振动对乘客舒适性和车 辆使用寿命的影响。通过合理的减振设计,可以降低这些影响。
轨道结构分析
在铁路和城市轨道交通系统中,轨道结构的随机振动会影响列车运行的平稳性 和安全性。需要对轨道结构进行详细的分析和评估,以确保其安全性和稳定性 。
土木建筑工程
建筑物抗震设计
在地震等自然灾害发生时,建筑物会 受到强烈的随机振动。为了确保建筑 物的安全性和稳定性,需要进行合理 的抗震设计。
桥梁健康监测
随机振动是由许多不同大小和方 向的振动相互叠加而成的,每个 振动都有其独立的概率分布函数 。
随机振动的特性
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
g , g 为取决震源至地面的介质性质。
例如:对硬土层可取 g0.6,g为5 常数,S。0
考虑地震过程的非平稳特性ቤተ መጻሕፍቲ ባይዱ
常用 Sxg与(确) 定时间函数 相乘A(t,)
即
Sxg(,t)A(t)Sxg()
称为渐近谱密度。
4.风载荷作用下的结构振动
风载荷是塔架、烟囱等高层建筑和大跨度桥梁等结 构的重要设计载荷。
如图所示两层楼房的简化模型
只考虑地震加速度 x g列出楼房相对地面
动力学方程
m 1 x 1 m 1 x g k 1 (x 1 x 2 ) c 1 (x 1 x 2 ) 0 m 2 x 2 m 2 x g k 1 (x 1 x 2 ) c 1 (x 1 x 2 ) k 2 x 2 c 2 x 2 0
第二节 工程中的随机振动问题
1. 不平路面上行驶的车辆
将车辆简化为一单自由度 M , K,C系统, 由于路面不平引起触点位移 x 1 ( t )
动力学方程:
m x k x x 1 c x x 1
m x c x k x k 1 x c x 1
实测结果表明:路面 S的不平度 h(s)沿是局部均匀,且均值 为值为零的遍历性高斯随机场。
结构上作用的风载荷
定常部分
脉动部分
刚度较大的建筑只需将定常部分作为静载荷;
柔度越来越大的高层建筑,必须考虑
定常部分 脉动部分—随机载荷
对于飞机、高空大气湍流产生的突风载荷是重要的设计.
载荷——随机载荷,飞机在严重的湍流中可能造成超载 而破坏。
从图中可看出海浪能量分布在 0.1~0.6之ra间ds。 对零速船舶在横浪作用下响应以横摆为主。
解耦的横摇动力学方程为
J C K M ( t)
J 船舶连用水的附加质量在内之转动惯量;
C 粘阻系数;
K 恢复力矩系数;
M (t) 随机激励力矩。
的M谱(t)密度 与S波M (高)功率谱密度 尺寸、形状及水动力学等因素有关。
X1(t)h(v)t有不变相关函数,即 Rx1()Rh()
2. 船舶在风浪中的横摆
对于大洋面上充分展示了的风浪,其波高 在同一地点
和不太长时间内可认为是,零均值的平稳高斯过程,计算 波高功率谱密度, 目前国际上采用的公式为
S
()
5
e 4
0
8.1103g2 g为重力加速度。
3.11
h
2 1
3
h 1 为名义波高 3
动力学方程
m 1 x 1 c 1 (x 1 x 2 ) k 1 (x 1 x 2 ) m 1 x g m 2 x 2 c 1 x 1 (c 1 c 2 )x 2 k 1 x 1 (k 1 k 2 )x 2 m 2 x g
地震波分初震、强震、衰减三阶段明的非平稳过程,对 此工程中有两种处理方法:
t v 将此随机场与时间 ,车速 相联系就能得到输入随机激励。
设 为路程差,则路面不平度 h(s的) 自相关,自功率谱:
R h () E h (s )h (s)
Sh(k) Rh()ejkd
式中 k 称2 为波数 ( 时间系数
) 2
T
当车辆以匀速 v行驶,空间与时间有如下转换关系:
S vt v xvT k/v
(1)确定性方法:
采用一次强地震加速度的记录作为输入,计算结构响应。 优点:简单, 缺点:代表性差设计结果或不经济或不安全;
(2)随机论方法: 探讨地震随机过程(依据多次记录),将强震阶段
信号视为零均值平稳高斯过程。
常用的卡耐-塔基米(Kabai-Tajimi)模型
Sxg()[1(1g)42]g22( 40g2)(2g)2S0
,船S舶 (吃)水深度、
船舶在随机波浪作用下的横摇归结为单自由度系统的 随机振动。
当横摇幅度较大时,须考虑恢复力矩和阻尼力矩的非 线性因素,横摇运动与船舶其他运动耦合时就成为多自由 度系统的随机振动。
3.地震载荷作用下的结构振动
地震波传至地表面时产生垂直方向和水平方向的运动,水 平运动对结构的破坏作用尤为巨大。
例如:对硬土层可取 g0.6,g为5 常数,S。0
考虑地震过程的非平稳特性ቤተ መጻሕፍቲ ባይዱ
常用 Sxg与(确) 定时间函数 相乘A(t,)
即
Sxg(,t)A(t)Sxg()
称为渐近谱密度。
4.风载荷作用下的结构振动
风载荷是塔架、烟囱等高层建筑和大跨度桥梁等结 构的重要设计载荷。
如图所示两层楼房的简化模型
只考虑地震加速度 x g列出楼房相对地面
动力学方程
m 1 x 1 m 1 x g k 1 (x 1 x 2 ) c 1 (x 1 x 2 ) 0 m 2 x 2 m 2 x g k 1 (x 1 x 2 ) c 1 (x 1 x 2 ) k 2 x 2 c 2 x 2 0
第二节 工程中的随机振动问题
1. 不平路面上行驶的车辆
将车辆简化为一单自由度 M , K,C系统, 由于路面不平引起触点位移 x 1 ( t )
动力学方程:
m x k x x 1 c x x 1
m x c x k x k 1 x c x 1
实测结果表明:路面 S的不平度 h(s)沿是局部均匀,且均值 为值为零的遍历性高斯随机场。
结构上作用的风载荷
定常部分
脉动部分
刚度较大的建筑只需将定常部分作为静载荷;
柔度越来越大的高层建筑,必须考虑
定常部分 脉动部分—随机载荷
对于飞机、高空大气湍流产生的突风载荷是重要的设计.
载荷——随机载荷,飞机在严重的湍流中可能造成超载 而破坏。
从图中可看出海浪能量分布在 0.1~0.6之ra间ds。 对零速船舶在横浪作用下响应以横摆为主。
解耦的横摇动力学方程为
J C K M ( t)
J 船舶连用水的附加质量在内之转动惯量;
C 粘阻系数;
K 恢复力矩系数;
M (t) 随机激励力矩。
的M谱(t)密度 与S波M (高)功率谱密度 尺寸、形状及水动力学等因素有关。
X1(t)h(v)t有不变相关函数,即 Rx1()Rh()
2. 船舶在风浪中的横摆
对于大洋面上充分展示了的风浪,其波高 在同一地点
和不太长时间内可认为是,零均值的平稳高斯过程,计算 波高功率谱密度, 目前国际上采用的公式为
S
()
5
e 4
0
8.1103g2 g为重力加速度。
3.11
h
2 1
3
h 1 为名义波高 3
动力学方程
m 1 x 1 c 1 (x 1 x 2 ) k 1 (x 1 x 2 ) m 1 x g m 2 x 2 c 1 x 1 (c 1 c 2 )x 2 k 1 x 1 (k 1 k 2 )x 2 m 2 x g
地震波分初震、强震、衰减三阶段明的非平稳过程,对 此工程中有两种处理方法:
t v 将此随机场与时间 ,车速 相联系就能得到输入随机激励。
设 为路程差,则路面不平度 h(s的) 自相关,自功率谱:
R h () E h (s )h (s)
Sh(k) Rh()ejkd
式中 k 称2 为波数 ( 时间系数
) 2
T
当车辆以匀速 v行驶,空间与时间有如下转换关系:
S vt v xvT k/v
(1)确定性方法:
采用一次强地震加速度的记录作为输入,计算结构响应。 优点:简单, 缺点:代表性差设计结果或不经济或不安全;
(2)随机论方法: 探讨地震随机过程(依据多次记录),将强震阶段
信号视为零均值平稳高斯过程。
常用的卡耐-塔基米(Kabai-Tajimi)模型
Sxg()[1(1g)42]g22( 40g2)(2g)2S0
,船S舶 (吃)水深度、
船舶在随机波浪作用下的横摇归结为单自由度系统的 随机振动。
当横摇幅度较大时,须考虑恢复力矩和阻尼力矩的非 线性因素,横摇运动与船舶其他运动耦合时就成为多自由 度系统的随机振动。
3.地震载荷作用下的结构振动
地震波传至地表面时产生垂直方向和水平方向的运动,水 平运动对结构的破坏作用尤为巨大。