旋转法——全等三角形常见辅助线作法.pdf

合集下载

全等三角形经典辅助线做法汇总

全等三角形经典辅助线做法汇总

全等三角形问题中常见的辅助线的作法(有答案)总论:全等三角形问题最主要的是构造全等三角形,构造二条边之间的相等,构造二个角之间的相等【三角形辅助线做法】图中有角平分线,可向两边作垂线。

也可将图对折看,对称以后关系现。

角平分线平行线,等腰三角形来添。

角平分线加垂线,三线合一试试看。

线段垂直平分线,常向两端把线连。

要证线段倍与半,延长缩短可试验。

三角形中两中点,连接则成中位线。

三角形中有中线,延长中线等中线。

1.等腰三角形“三线合一”法:遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题2.倍长中线:倍长中线,使延长线段与原中线长相等,构造全等三角形3.角平分线在三种添辅助线4.垂直平分线联结线段两端5.用“截长法”或“补短法”:遇到有二条线段长之和等于第三条线段的长,6.图形补全法:有一个角为60度或120度的把该角添线后构成等边三角形7.角度数为30、60度的作垂线法:遇到三角形中的一个角为30度或60度,可以从角一边上一点向角的另一边作垂线,目的是构成30-60-90的特殊直角三角形,然后计算边的长度与角的度数,这样可以得到在数值上相等的二条边或二个角。

从而为证明全等三角形创造边、角之间的相等条件。

8.计算数值法:遇到等腰直角三角形,正方形时,或30-60-90的特殊直角三角形,或40-60-80的特殊直角三角形,常计算边的长度与角的度数,这样可以得到在数值上相等的二条边或二个角,从而为证明全等三角形创造边、角之间的相等条件。

常见辅助线的作法有以下几种:最主要的是构造全等三角形,构造二条边之间的相等,二个角之间的相等。

1)遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变D C BAED F CB A换中的“对折”法构造全等三角形.2)遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全等变换中的“旋转”法构造全等三角形.3)遇到角平分线在三种添辅助线的方法4)(1)可以自角平分线上的某一点向角的两边作垂线,利用的思维模式是三角形全等变换中的“对折”,所考知识点常常是角平分线的性质定理或逆定理.(2)可以在角平分线上的一点作该角平分线的垂线与角的两边相交,形成一对全等三角形。

(完整word版)8种辅助线做法

(完整word版)8种辅助线做法

(完满word版)8种辅助线做法全等三角形问题中常有的辅助线的作法(有答案)总论:全等三角形问题最主要的是构造全等三角形,构造二条边之间的相等,构造二个角之间的相等1.等腰三角形“三线合一〞法:遇到等腰三角形,可作底边上的高,利用“三线合一〞的性质解题2.倍长中线:倍长中线,使延长线段与原中线长相等,构造全等三角形3.角均分线在三种添辅助线4.垂直均分线联系线段两端5.用“截长法〞或“补短法〞:遇到有二条线段长之和等于第三条线段的长,6.图形补全法:有一个角为60度或120度的把该角添线后构成等边三角形7. 角度数为 30、60 度的作垂线法:遇到三角形中的一个角为30 度或 60 度,可以从角一边上一点向角的另一边作垂线,目的是构成30-60-90 的特别直角三角形,尔后计算边的长度与角的度数,这样可以获取在数值上相等的二条边或二个角。

从而为证明全等三角形创立边、角之间的相等条件。

常有辅助线的作法有以下几种:最主要的是构造全等三角形,构造二条边之间的相等,二个角之间的相等。

1)遇到等腰三角形,可作底边上的高,利用“三线合一〞解题,思想模式是全等变换中的“对折〞法构造全等三角形.2)遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思想模式是全等变换中的“旋转〞法构造全等三角形.3)遇到角均分线在三种添辅助线的方法,〔1〕可以自角均分线上的某一点向角的两边作垂线,利用的思想模式是三角形全等变换中的“对折〞〔 2〕可以在角均分线上的一点作该角均分线的垂线与角的两边订交,形成一对全等三角形。

〔 3〕可以在该角的两边上,距离角的极点相等长度的地址上截取二点,尔后从这两点再向角均分线上的某点作边线,构造一对全等三角形。

4)过图形上某一点作特定的均分线,构造全等三角形,思想模式是全等变换中的“平移〞或“翻转折叠〞5)截长法与补短法,详尽做法是在某条线段上截取一条线段与特定线段相等,或是将某条线段延长,是之与特定线段相等,再利用三角形全等的有关性质加以说明.这种作法,适合于证明线段的和、差、倍、分等类的题目.6)某线段的垂直均分线,那么可以在垂直均分线上的某点向该线段的两个端点作连线,出一对全等三角形。

(完整版)全等三角形问题中常见的8种辅助线的作法(有答案解析).docx

(完整版)全等三角形问题中常见的8种辅助线的作法(有答案解析).docx

全等三角形问题中常见的辅助线的作法(有答案)总论:全等三角形问题最主要的是构造全等三角形,构造二条边之间的相等,构造二个角之间的相等【三角形辅助线做法】图中有角平分线,可向两边作垂线。

角平分线平行线,等腰三角形来添。

线段垂直平分线,常向两端把线连。

三角形中两中点,连接则成中位线。

也可将图对折看,对称以后关系现。

角平分线加垂线,三线合一试试看。

要证线段倍与半,延长缩短可试验。

三角形中有中线,延长中线等中线。

1. 等腰三角形“三线合一”法:遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题2. 倍长中线:倍长中线,使延长线段与原中线长相等,构造全等三角形3.角平分线在三种添辅助线4.垂直平分线联结线段两端5. 用“截长法”或“补短法” :遇到有二条线段长之和等于第三条线段的长,6. 图形补全法:有一个角为60 度或120 度的把该角添线后构成等边三角形7.角度数为30、60 度的作垂线法:遇到三角形中的一个角为30 度或60 度,可以从角一边上一点向角的另一边作垂线,目的是构成30-60-90 的特殊直角三角形,然后计算边的长度与角的度数,这样可以得到在数值上相等的二条边或二个角。

从而为证明全等三角形创造边、角之间的相等条件。

8. 计算数值法:遇到等腰直角三角形,正方形时,或30-60-90 的特殊直角三角形,或40-60-80 的特殊直角三角形,常计算边的长度与角的度数,这样可以得到在数值上相等的二条边或二个角,从而为证明全等三角形创造边、角之间的相等条件。

常见辅助线的作法有以下几种:最主要的是构造全等三角形,构造二条边之间的相等,二个角之间的相等。

1) 遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折”法构造全等三角形.2) 遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全等变换中的“旋转” 法构造全等三角形.3) 遇到角平分线在三种添辅助线的方法, (1 )可以自角平分线上的某一点向角的两边作垂线,利用的思维模式是三角形全等变换中的“对折” ,所考知识点常常是角平分线的性质定理或逆定理. ( 2)可以在角平分线上的一点作该角平分线的垂线与角的两边相交,形成一对全等三角形。

全等三角形问题中常见的8种辅助线的作法(有答案)资料

全等三角形问题中常见的8种辅助线的作法(有答案)资料

全等三角形问题中常见的辅助线的作法(有答案)常见辅助线的作法有以下几种:最主要的是构造全等三角形,构造二条边之间的相等,二个角之间的相等。

1)遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折”法构造全等三角形.2)遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全等变换中的“旋转”法构造全等三角形.3)遇到角平分线在三种添辅助线的方法,(1)可以自角平分线上的某一点向角的两边作垂线,利用的思维模式是三角形全等变换中的“对折”,所考知识点常常是角平分线的性质定理或逆定理.(2)可以在角平分线上的一点作该角平分线的垂线与角的两边相交,形成一对全等三角形。

(3)可以在该角的两边上,距离角的顶点相等长度的位置上截取二点,然后从这两点再向角平分线上的某点作边线,构造一对全等三角形。

4)过图形上某一点作特定的平分线,构造全等三角形,利用的思维模式是全等变换中的“平移”或“翻转折叠”5)截长法与补短法,具体做法是在某条线段上截取一条线段与特定线段相等,或是将某条线段延长,是之与特定线段相等,再利用三角形全等的有关性质加以说明.这种作法,适合于证明线段的和、差、倍、分等类的题目.6)已知某线段的垂直平分线,那么可以在垂直平分线上的某点向该线段的两个端点作连线,出一对全等三角形。

特殊方法:在求有关三角形的定值一类的问题时,常把某点到原三角形各顶点的线段连接起来,利用三角形面积的知识解答.- 1 -一、倍长中线(线段)造全等_________. AC=3,则中线AD的取值范围是例1、已知,如图△ABC中,AB=5,ACDB. D是中点,试比较BE+CF与EF的大小、中,EF分别在AB、AC上,DE⊥DF,例2、如图,△ABC AE F BAE.平分∠的中点,求证:例3、如图,△ABC中,BD=DC=AC,E是DCAD BCD ACEDB应用:ACE??ABC ABD?、,腰边两AB向AC为腰分别外作等腰RtRt和二(1、09崇文模)以等的,?BAD??CAE90??、,、的中点.探究:AM的位置关系及数量关系.连接DE与MN 分别是BCDEDE ABC?,当(1)如图①AM为直角三角形时,与DE的位置关系是;DE与的数量关系是AM线段???ABD?)问中得到的两个后,如图②所示,(Rt2()将图①中的等腰A绕点沿逆时针方向旋转(0<<90)1 结论是否发生改变?并说明理由.- 2 -二、截长补短BAC??ABC AC⊥AD=BDAD平分,求证:CD1、如图,,且中,AB=2AC,ACB;AB,求证点E过∥BC,EA,EB分别平分∠DAB,∠CBA,CD2、如图,AD D AD+BC。

中考数学-全等三角形问题中常见的8种辅助线的作法

中考数学-全等三角形问题中常见的8种辅助线的作法

全等三角形问题中常见的辅助线的作法(有答案)总论:全等三角形问题最主要的是构造全等三角形,构造二条边之间的相等,构造二个角之间的相等【三角形辅助线做法】图中有角平分线,可向两边作垂线。

也可将图对折看,对称以后关系现。

角平分线平行线,等腰三角形来添。

角平分线加垂线,三线合一试试看。

线段垂直平分线,常向两端把线连。

要证线段倍与半,延长缩短可试验。

三角形中两中点,连接则成中位线。

三角形中有中线,延长中线等中线。

1.等腰三角形“三线合一”法:遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题2.倍长中线:倍长中线,使延长线段与原中线长相等,构造全等三角形3.角平分线在三种添辅助线4.垂直平分线联结线段两端5.用“截长法”或“补短法”:遇到有二条线段长之和等于第三条线段的长,6.图形补全法:有一个角为60度或120度的把该角添线后构成等边三角形7.角度数为30、60度的作垂线法:遇到三角形中的一个角为30度或60度,可以从角一边上一点向角的另一边作垂线,目的是构成30-60-90的特殊直角三角形,然后计算边的长度与角的度数,这样可以得到在数值上相等的二条边或二个角。

从而为证明全等三角形创造边、角之间的相等条件。

8.计算数值法:遇到等腰直角三角形,正方形时,或30-60-90的特殊直角三角形,或40-60-80的特殊直角三角形,常计算边的长度与角的度数,这样可以得到在数值上相等的二条边或二个角,从而为证明全等三角形创造边、角之间的相等条件。

常见辅助线的作法有以下几种:最主要的是构造全等三角形,构造二条边之间的相等,二个角之间的相等。

1)遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变D C BAED F CB A换中的“对折”法构造全等三角形.2)遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全等变换中的“旋转”法构造全等三角形.3)遇到角平分线在三种添辅助线的方法,(1)可以自角平分线上的某一点向角的两边作垂线,利用的思维模式是三角形全等变换中的“对折”,所考知识点常常是角平分线的性质定理或逆定理.(2)可以在角平分线上的一点作该角平分线的垂线与角的两边相交,形成一对全等三角形。

全等三角形常用辅助线做法

全等三角形常用辅助线做法

五种辅助线助你证全等姚全刚在证明三角形全等时有时需添加辅助线,对学习几何证明不久的学生而言往往是难点.下面介绍证明全等时常见的五种辅助线,供同学们学习时参考.一、截长补短一般地,当所证结论为线段的和、差关系,且这两条线段不在同一直线上时,通常可以考虑用截长补短的办法:或在长线段上截取一部分使之与短线段相等;或将短线段延长使其与长线段相等.例1.如图1,在△ABC中,∠ABC=60°,AD、CE分别平分∠BAC、∠ACB.求证:AC=AE+CD.分析:要证AC=AE+CD,AE、CD不在同一直线上.故在AC上截取AF=AE,则只要证明CF=CD.证明:在AC上截取AF=AE,连接OF.∵AD、CE分别平分∠BAC、∠ACB,∠ABC=60°∴∠1+∠2=60°,∴∠4=∠6=∠1+∠2=60°.显然,△AEO≌△AFO,∴∠5=∠4=60°,∴∠7=180°-(∠4+∠5)=60°在△DOC与△FOC中,∠6=∠7=60°,∠2=∠3,OC=OC∴△DOC≌△FOC,CF=CD∴AC=AF+CF=AE+CD.截长法与补短法,具体作法是在某条线段上截取一条线段与特定线段相等,或是将某条线段延长,使之与特定线段相等,再利用三角形全等的有关性质加以说明。

这种作法,适合于证明线段的和、差、倍、分等类的题目。

例2:如图甲,AD∥BC,点E在线段AB上,∠ADE=∠CDE,∠DCE=∠ECB。

求证:CD=AD+BC。

思路分析:1)题意分析:本题考查全等三角形常见辅助线的知识:截长法或补短法。

2)解题思路:结论是CD=AD+BC,可考虑用“截长补短法”中的“截长”,即在CD上截取CF=CB,只要再证DF=DA即可,这就转化为证明两线段相等的问题,从而达到简化问题的目的。

解答过程:证明:在CD上截取CF=BC,如图乙∴△FCE≌△BCE(SAS),∴∠2=∠1。

(完整版)全等三角形常用辅助线做法

(完整版)全等三角形常用辅助线做法

五种辅助线助你证全等姚全刚在证明三角形全等时有时需增加辅助线,对学习几何证明不久的学生而言常常是难点.下面介绍证明全等常常有的五种辅助线,供同学们学习时参照.一、截长补短一般地,当所证结论为线段的和、差关系,且这两条线段不在同素来线上时,平时能够考虑用截长补短的方法:或在长线段上截取一部分使之与短线段相等;或将短线段延长使其与长线段相等.例 1.如图 1,在△ ABC 中,∠ ABC=60 °, AD 、CE 分别均分∠ BAC 、∠ ACB .求证:AC=AE+CD .解析:要证AC=AE+CD ,AE 、CD 不在同素来线上.故在AC 上截取 AF=AE ,则只要证明 CF=CD .证明:在 AC 上截取 AF=AE ,连接 OF.∵ AD 、 CE 分别均分∠ BAC 、∠ ACB ,∠ ABC=60 °∴∠ 1+∠ 2=60 °,∴∠ 4=∠ 6=∠ 1+∠ 2=60 °.显然,△ AEO ≌△ AFO ,∴∠ 5=∠4=60°,∴∠ 7=180°-(∠ 4+ ∠ 5) =60 °在△ DOC 与△ FOC 中,∠ 6=∠ 7=60°,∠ 2=∠ 3, OC=OC∴△ DOC ≌△ FOC, CF=CD∴ AC=AF+CF=AE+CD.截长法与补短法,详尽作法是在某条线段上截取一条线段与特定线段相等,或是将某条线段延长,使之与特定线段相等,再利用三角形全等的有关性质加以说明。

这种作法,适合于证明线段的和、差、倍、分等类的题目。

例2:如图甲, AD∥BC,点 E 在线段 AB上,∠ ADE=∠CDE,∠ DCE=∠ECB。

求证: CD=AD+BC。

思路解析:1)题意解析:此题观察全等三角形常有辅助线的知识:截长法或补短法。

2)解题思路:结论是CD=AD+BC,可考虑用“截长补短法”中的“截长”,即在 CD上截取 CF=CB,只要再证 DF=DA即可,这就转变成证明两线段相等的问题,进而达到简化问题的目的。

完整版)全等三角形常用辅助线做法

完整版)全等三角形常用辅助线做法

完整版)全等三角形常用辅助线做法证明三角形全等时,有时需要添加辅助线,对于初学几何证明的学生来说,这往往是一个难点。

下面介绍证明全等时常见的五种辅助线,供同学们研究时参考。

一、截长补短当所证结论为线段的和、差关系,且这两条线段不在同一直线上时,通常可以考虑用截长补短的办法。

具体作法是在某条线段上截取一条线段与特定线段相等,或是将某条线段延长,使之与特定线段相等,再利用三角形全等的有关性质加以说明。

这种作法适用于证明线段的和、差、倍、分等类的题目。

例如,在△ABC中,∠ABC=60°,AD、CE分别平分∠BAC、∠ACB。

要证明AC=AE+CD,因为AE、CD不在同一直线上,所以在AC上截取AF=AE,只要证明CF=CD即可。

具体证明过程为:在AC上截取AF=AE,连接OF。

由于AD、CE分别平分∠BAC、∠ACB,∠ABC=60°,因此∠1+∠2=60°,∠4=∠6=∠1+∠2=60°。

显然,△AEO≌△AFO,因此∠5=∠4=60°,∠7=180°-(∠4+∠5)=60°。

在△DOC与△FOC中,∠6=∠7=60°,∠2=∠3,OC=OC,因此△DOC≌△FOC,CF=CD,所以XXX。

另一个例子是在图甲中,AD∥BC,点E在线段AB上,∠ADE=∠CDE,∠DCE=∠ECB。

要证明CD=AD+BC。

因为结论是CD=AD+BC,可以考虑用“截长补短法”中的“截长”,即在CD上截取CF=CB,只要再证明DF=DA即可,这就转化为证明两线段相等的问题,从而达到简化问题的目的。

具体证明过程为:在CD上截取CF=BC,如图乙,因此△XXX≌△BCE(SAS),∴∠2=∠1.又因为AD∥BC,∴∠ADC+∠BCD=180°,∴∠DCE+∠XXX°,∴∠2+∠3=90°,∠1+∠4=90°,∴∠3=∠4.在△FDE与△ADE中,∴△XXX≌△ADE(ASA),∴DF=DA,因此CD=DF+CF,∴XXX。

(完整版)全等三角形问题中常见的8种辅助线的作法(有答案解析)

(完整版)全等三角形问题中常见的8种辅助线的作法(有答案解析)

全等三角形问题中常见的辅助线的作法(有答案)总论:全等三角形问题最主要的是构造全等三角形,构造二条边之间的相等,构造二个角之间的相等【三角形辅助线做法】图中有角平分线,可向两边作垂线。

也可将图对折看,对称以后关系现。

角平分线平行线,等腰三角形来添。

角平分线加垂线,三线合一试试看。

线段垂直平分线,常向两端把线连。

要证线段倍与半,延长缩短可试验。

三角形中两中点,连接则成中位线。

三角形中有中线,延长中线等中线。

1.等腰三角形“三线合一”法:遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题2.倍长中线:倍长中线,使延长线段与原中线长相等,构造全等三角形3.角平分线在三种添辅助线4.垂直平分线联结线段两端5.用“截长法”或“补短法”:遇到有二条线段长之和等于第三条线段的长,6.图形补全法:有一个角为60度或120度的把该角添线后构成等边三角形7.角度数为30、60度的作垂线法:遇到三角形中的一个角为30度或60度,可以从角一边上一点向角的另一边作垂线,目的是构成30-60-90的特殊直角三角形,然后计算边的长度与角的度数,这样可以得到在数值上相等的二条边或二个角。

从而为证明全等三角形创造边、角之间的相等条件。

8.计算数值法:遇到等腰直角三角形,正方形时,或30-60-90的特殊直角三角形,或40-60-80的特殊直角三角形,常计算边的长度与角的度数,这样可以得到在数值上相等的二条边或二个角,从而为证明全等三角形创造边、角之间的相等条件。

常见辅助线的作法有以下几种:最主要的是构造全等三角形,构造二条边之间的相等,二个角之间的相等。

1)遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折”法构造全等三角形.2)遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全等变换中的“旋转”法构造全等三角形.3)遇到角平分线在三种添辅助线的方法,(1)可以自角平分线上的某一点向角的两边作垂线,利用的思维模式是三角形全等变换中的“对折”,所考知识点常常是角平分线的性质定理或逆定理.(2)可以在角平分线上的一点作该角平分线的垂线与角的两边相交,形成一对全等三角形。

全等三角形的常用辅助线作法---完美版(备用版)

 全等三角形的常用辅助线作法---完美版(备用版)

第十二讲全等三角形的常用辅助线作法【知识梳理】:1、找全等三角形的方法:(1)可以从结论出发,寻找要证明的相等的两条线段(或两个角)分别在哪两个可能全等的三角形中;(2)可以从已知条件出发,看已知条件可以确定哪两个三角形全等;(3)可从条件和结论综合考虑,看它们能确定哪两个三角形全等;(4)若上述方法均不可行,可考虑添加辅助线,构造全等三角形。

2、三角形中常见辅助线的作法:①延长中线构造全等三角形;②利用翻折,构造全等三角形;③引平行线构造全等三角形;④作连线构造等腰三角形。

3、常见辅助线的作法有以下几种:(1)遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折”。

【专题精讲】:例1:如图,ΔABC是等腰直角三角形,∠BAC=90°,BD平分∠ABC交AC于点D,CE垂直于BD,交BD的延长线于点E。

求证:BD=2CE。

思路分析:1)题意分析:本题考查等腰三角形的三线合一定理的应用2)解题思路:要求证BD=2CE,可用加倍法,延长短边,又因为有BD平分∠ABC的条件,可以和等腰三角形的三线合一定理结合起来。

解答过程:?(2)若遇到三角形的中线,可倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全等变换中的“旋转”。

例2:如图,已知ΔABC中,AD是∠BAC的平分线,AD又是BC边上的中线。

求证:ΔABC是等腰三角形。

?思路分析:1)题意分析:本题考查全等三角形常见辅助线的知识。

2)解题思路:在证明三角形的问题中特别要注意题目中出现的中点、中线、中位线等条件,一般这些条件都是解题的突破口,本题给出了AD又是BC边上的中线这一条件,而且要求证AB=AC,可倍长AD得全等三角形,从而问题得证。

解答过程:???(3)遇到角平分线,可以自角平分线上的某一点向角的两边作垂线,利用的思维模式是三角形全等变换中的“对折”,所考知识点常常是角平分线的性质定理或逆定理。

全等三角形问题中常见的8种辅助线的作法(有答案)

全等三角形问题中常见的8种辅助线的作法(有答案)

全等三角形问题中常见的辅助线的作法(有答案)常见辅助线的作法有以下几种:最主要的是构造全等三角形,构造二条边之间的相等,二个角之间的相等。

1)遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折”法构造全等三角形.2)遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全等变换中的“旋转”法构造全等三角形.3)遇到角平分线在三种添辅助线的方法,(1)可以自角平分线上的某一点向角的两边作垂线,利用的思维模式是三角形全等变换中的“对折”,所考知识点常常是角平分线的性质定理或逆定理.(2)可以在角平分线上的一点作该角平分线的垂线与角的两边相交,形成一对全等三角形。

(3)可以在该角的两边上,距离角的顶点相等长度的位置上截取二点,然后从这两点再向角平分线上的某点作边线,构造一对全等三角形。

4)过图形上某一点作特定的平分线,构造全等三角形,利用的思维模式是全等变换中的“平移”或“翻转折叠”5)截长法与补短法,具体做法是在某条线段上截取一条线段与特定线段相等,或是将某条线段延长,是之与特定线段相等,再利用三角形全等的有关性质加以说明.这种作法,适合于证明线段的和、差、倍、分等类的题目.6)已知某线段的垂直平分线,那么可以在垂直平分线上的某点向该线段的两个端点作连线,出一对全等三角形。

特殊方法:在求有关三角形的定值一类的问题时,常把某点到原三角形各顶点的线段连接起来,利用三角形面积的知识解答.DCBAEDFCB A一、倍长中线(线段)造全等例1、已知,如图△ABC 中,AB=5,AC=3,则中线AD 的取值范围是_________.例2、如图,△ABC 中,E 、F 分别在AB 、AC 上,DE ⊥DF ,D 是中点,试比较BE+CF 与EF 的大小.例3、如图,△ABC 中,BD=DC=AC ,E 是DC 的中点,求证:AD 平分∠BAE.E D CBA应用:1、(09崇文二模)以ABC ∆的两边AB 、AC 为腰分别向外作等腰RtABD ∆和等腰Rt ACE ∆,90,BAD CAE ∠=∠=︒连接DE ,M 、N 分别是BC 、DE 的中点.探究:AM 与DE 的位置关系及数量关系.(1)如图① 当ABC ∆为直角三角形时,AM 与DE 的位置关系是 , 线段AM 与DE 的数量关系是 ;(2)将图①中的等腰Rt ABD ∆绕点A 沿逆时针方向旋转︒θ(0<θ<90)后,如图②所示,(1)问中得到的两个结论是否发生改变?并说明理由.CACBA二、截长补短1、如图,ABC ∆中,AB=2AC ,AD 平分BAC ∠,且AD=BD ,求证:CD ⊥AC2、如图,AD ∥BC ,EA,EB 分别平分∠DAB,∠CBA ,CD 过点E ,求证;AB=AD+BC 。

全等三角形经典题型——辅助线问题

全等三角形经典题型——辅助线问题

全等三角形问题中常见的辅助线的作法(含答案)总论:全等三角形问题最主要的是构造全等三角形,构造二条边之间的相等,构造二个角之间的相等【三角形辅助线做法】图中有角平分线,可向两边作垂线。

也可将图对折看,对称以后关系现。

角平分线平行线,等腰三角形来添。

角平分线加垂线,三线合一试试看。

线段垂直平分线,常向两端把线连。

要证线段倍与半,延长缩短可试验。

三角形中两中点,连接则成中位线。

三角形中有中线,延长中线等中线。

1.等腰三角形“三线合一”法:遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题2.倍长中线:倍长中线,使延长线段与原中线长相等,构造全等三角形3.角平分线在三种添辅助线4.垂直平分线联结线段两端5.用“截长法”或“补短法”:遇到有二条线段长之和等于第三条线段的长,6.图形补全法:有一个角为60度或120度的把该角添线后构成等边三角形7.角度数为30、60度的作垂线法:遇到三角形中的一个角为30度或60度,可以从角一边上一点向角的另一边作垂线,目的是构成30-60-90的特殊直角三角形,然后计算边的长度与角的度数,这样可以得到在数值上相等的二条边或二个角。

从而为证明全等三角形创造边、角之间的相等条件。

8.计算数值法:遇到等腰直角三角形,正方形时,或30-60-90的特殊直角三角形,或40-60-80的特殊直角三角形,常计算边的长度与角的度数,这样可以得到在数值上相等的二条边或二个角,从而为证明全等三角形创造边、角之间的相等条件。

常见辅助线的作法有以下几种:最主要的是构造全等三角形,构造二条边之间的相等,二个角之间的相等。

1)遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折”法构造全等三角形.2)遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全等变换中的“旋转”法构造全等三角形.3)遇到角平分线在三种添辅助线的方法,(1)可以自角平分线上的某一点向角的两边作垂线,利用的思维模式是三角形全等变换中的“对折”,所考知识点常常是角平分线的性质定理或逆定理.(2)可以在角平分线上的一点作该角平分线的垂线与角的两边相交,形成一对全等三角形。

第十二讲 全等三角形的常用辅助线作法---完美版(备用版)

第十二讲  全等三角形的常用辅助线作法---完美版(备用版)

第十二讲全等三角形的常用辅助线作法【知识梳理】:1、找全等三角形的方法:(1)可以从结论出发,寻找要证明的相等的两条线段(或两个角)分别在哪两个可能全等的三角形中;(2)可以从已知条件出发,看已知条件可以确定哪两个三角形全等;(3)可从条件和结论综合考虑,看它们能确定哪两个三角形全等;(4)若上述方法均不可行,可考虑添加辅助线,构造全等三角形。

2、三角形中常见辅助线的作法:①延长中线构造全等三角形;②利用翻折,构造全等三角形;③引平行线构造全等三角形;④作连线构造等腰三角形。

3、常见辅助线的作法有以下几种:(1)遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折”。

【专题精讲】:例1:如图,ΔABC是等腰直角三角形,∠BAC=90°,BD平分∠ABC交AC于点D,CE垂直于BD,交BD的延长线于点E。

求证:BD=2CE。

思路分析:1)题意分析:本题考查等腰三角形的三线合一定理的应用2)解题思路:要求证BD=2CE,可用加倍法,延长短边,又因为有BD平分∠ABC的条件,可以和等腰三角形的三线合一定理结合起来。

解答过程:(2)若遇到三角形的中线,可倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全等变换中的“旋转”。

例2:如图,已知ΔABC中,AD是∠BAC的平分线,AD又是BC边上的中线。

求证:ΔABC是等腰三角形。

思路分析:1)题意分析:本题考查全等三角形常见辅助线的知识。

2)解题思路:在证明三角形的问题中特别要注意题目中出现的中点、中线、中位线等条件,一般这些条件都是解题的突破口,本题给出了AD又是BC边上的中线这一条件,而且要求证AB=AC,可倍长AD得全等三角形,从而问题得证。

解答过程:(3)遇到角平分线,可以自角平分线上的某一点向角的两边作垂线,利用的思维模式是三角形全等变换中的“对折”,所考知识点常常是角平分线的性质定理或逆定理。

三角形全等之手拉手模型、倍长中线、截长补短法、旋转、寻找三角形全等方法归纳总结-精品.pdf

三角形全等之手拉手模型、倍长中线、截长补短法、旋转、寻找三角形全等方法归纳总结-精品.pdf

一、手拉手模型要点一:手拉手模型特点:由两个等顶角的等腰三角形所组成,并且顶角的顶点为公共顶点结论:(1)△ABD ≌△AEC (2)∠α+∠BOC=180°(3)OA平分∠BOC变形:例 1.如图在直线ABC的同一侧作两个等边三角形ABD与BCE,连结AE与CD,证明ABE(1)DBCAE(2)DC(3)AE与DC之间的夹角为60AGB(4)DFBEGB(5)CFB(6)BH平分AHCGF//(7)AC变式精练1:如图两个等边三角形ABD与BCE,连结AE与CD,ABE证明(1)DBCAE(2)DC(3)AE与DC之间的夹角为60(4)AE与DC的交点设为H,BH平分AHC变式精练2:如图两个等边三角形ABD与BCE,连结AE与CD,ABE证明(1)DBCAE(2)DC(3)AE与DC之间的夹角为60(4)AE与DC的交点设为H,BH平分AHC例2:如图,两个正方形ABCD与DEFG,连结AG,,二者相交于点HCEADG是否成立?问:(1)CDE(2)AG是否与CE相等?(3)AG与CE之间的夹角为多少度?(4)HD是否平分AHE?例3:如图两个等腰直角三角形ADC与EDG,连AG,,二者相交于点H结CEADG是否成立?问:(1)CDE(2)AG是否与CE相等?(3)AG与CE之间的夹角为多少度?(4)HD是否平分AHE?例4:两个等腰三角形ABD 与BCE ,其中BD AB ,,EB CBCBEABD ,连结AE 与CD ,问:(1)DBC ABE 是否成立?(2)AE 是否与CD 相等?(3)AE 与CD 之间的夹角为多少度?(4)HB 是否平分AHC ?二、倍长与中点有关的线段倍长中线类?考点说明:凡是出现中线或类似中线的线段,都可以考虑倍长中线,倍长中线的目的是可以旋转等长度的线段,从而达到将条件进行转化的目的。

【例1】已知:ABC 中,AM 是中线.求证:1()2AMABAC .MCBA【练1】在△ABC 中,59ABAC ,,则BC 边上的中线AD 的长的取值范围是什么?【练2】如图所示,在ABC 的AB 边上取两点E 、F ,使AEBF ,连接CE 、CF ,求证:ACBCEC FC .FE CBA【例2】如图,已知在ABC 中,AD 是BC 边上的中线,E 是AD 上一点,延长BE 交AC于F ,AF EF ,求证:AC BE .FED CBA 【练1】如图,已知在ABC 中,AD 是BC 边上的中线,E 是AD 上一点,且BEAC ,延长BE 交AC 于F ,求证:AF EFFEDCBA【练2】如图,在ABC 中,AD 交BC 于点D ,点E 是BC 中点,EF AD ∥交CA 的延长线于点F ,交AB 于点G ,若BG CF ,求证:AD 为ABC 的角平分线.GFEDCBA【练3】如图所示,已知ABC 中,AD 平分BAC ,E 、F 分别在BD 、AD 上.DE CD ,EFAC .求证:EF ∥ABFACD E B 【例3】已知AM 为ABC 的中线,AMB ,AMC 的平分线分别交AB 于E 、交AC 于F .求证:BE CF EF .FEMCBA【练1】在Rt ABC 中,F 是斜边AB 的中点,D 、E 分别在边CA 、CB 上,满足90DFE.若3AD,4BE ,则线段DE 的长度为_________.FEDCBA 【练2】在ABC 中,点D 为BC 的中点,点M 、N 分别为AB 、AC 上的点,且MD ND .(1)若90A ,以线段BM 、MN 、CN 为边能否构成一个三角形?若能,该三角形是锐角三角形、直角三角形或钝角三角形?(2)如果2222BMCNDMDN ,求证22214ADABAC.MNDABC【例4】如图所示,在ABC 中,AB AC ,延长AB 到D ,使B DAB ,E 为AB 的中点,连接CE 、CD ,求证2CD EC .EDCBA【练1】已知ABC 中,ABAC ,BD 为AB 的延长线,且BDAB ,CE 为ABC 的AB边上的中线.求证:2CDCEEDCB A★全等之截长补短:人教八年级上册课本中,在全等三角形部分介绍了角的平分线的性质,这一性质在许多问题里都有着广泛的应用.而“截长补短法”又是解决这一类问题的一种特殊方1.如图所示,ABC 中,045,90B C ,AD 平分BAC 交BC 于D 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档