(完整版)勾股定理知识点、经典例题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
知识点及例题
知识点一:勾股定理
如果直角三角形的两直角边长分别为:a,b,斜边长为c,那么a2+b2=c2.即直角三角形中两直角边的平方和等于斜边的平方.
要点诠释:(1)勾股定理揭示的是直角三角形平方关系的定理。
(2)勾股定理只适用于直角三角形,而不适用于锐角三角形和钝角三角。
(3)理解勾股定理的一些变式:
c2=a2+b2, a2=c2-b2,b2=c2-a2,c2=(a+b)2-2ab
知识点二:用面积证明勾股定理
方法一:将四个全等的直角三角形拼成如图(1)所示的正方形。
图(1)中,所以。
方法二:将四个全等的直角三角形拼成如图(2)所示的正方形。
图(2)中,所以。
方法三:将四个全等的直角三角形分别拼成如图(3)—1和(3)—2所示的两个形状相同的正方形。
在(3)—1中,甲的面积=(大正方形面积)—(4个直角三角形面积),
在(3)—2中,乙和丙的面积和=(大正方形面积)—(4个直角三角形面积),
所以,甲的面积=乙和丙的面积和,即:.
方法四:如图(4)所示,将两个直角三角形拼成直角梯形。
,所以。
知识点三:勾股定理的作用
1.已知直角三角形的两条边长求第三边;2.已知直角三角形的一条边,求另两边的关系;
3.用于证明平方关系的问题;4.利用勾股定理,作出长为的线段。
2. 在理解的基础上熟悉下列勾股数
满足不定方程x2+y2=z2的三个正整数,称为勾股数(又称为高数或毕达哥拉斯数),显然,以x,y,z为三边长的三角形一定是直角三角形。
熟悉下列勾股数,对解题是会有帮助的:
①3、4、5②5、12、13;③8、15、17;④7、24、25;⑤10、24、26;⑥9、40、41.
如果(a,b,c)是勾股数,当t>0时,以at,bt,ct为三角形的三边长,此三角形必为直角三角形。
经典例题透析类型一:勾股定理的直接用法
1、在Rt△ABC中,∠C=90°
(1)已知a=6,c=10,求b,(2)已知a=40,b=9,求c;(3)已知c=25,b=15,求a.
思路点拨:写解的过程中,一定要先写上在哪个直角三角形中,注意勾股定理的变形使用。
解析:(1) 在△ABC中,∠C=90°,a=6,c=10,b=
(2) 在△ABC中,∠C=90°,a=40,b=9,c=
(3) 在△ABC中,∠C=90°,c=25,b=15,a=
总结升华:有一些题目的图形较复杂,但中心思想还是化为直角三角形来解决。如:不规则图形的面积,可转化为特殊图形求解,本题通过将图形转化为直角三角形的方法,把四边形面积转化为三角形面积之差或和。
举一反三
【变式】:如图∠B=∠ACD=90°, AD=13,CD=12, BC=3,则AB的长是多少?
【答案】∵∠ACD=90°
AD=13, CD=12
∴AC2 =AD2-CD2
=132-122
=25
∴AC=5
又∵∠ABC=90°且BC=3
∴由勾股定理可得
AB2=AC2-BC2
=52-32
=16
∴AB= 4
∴AB的长是4.
类型二:勾股定理的构造应用
2、如图,已知:在中,,,. 求:BC的长.
思路点拨:由条件,想到构造含角的直角三角形,为此作于D,则有
,,再由勾股定理计算出AD、DC的长,进而求出BC的
长.
解析:作于D,则因,
∴(的两个锐角互余)
∴(在中,如果一个锐角等于,
那么它所对的直角边等于斜边的一半).
根据勾股定理,在中,
.
根据勾股定理,在中,
.
∴.
总结升华:利用勾股定理计算线段的长,是勾股定理的一个重要应用. 当题目中没有垂直条件时,也经常作垂线构造直角三角形以便应用勾股定理.
举一反三【变式1】如图,已知:,,于P. 求证:.
思路点拨: 图中已有两个直角三角形,但是还没有以BP为边的直角三角形. 因此,我们考虑构造一个以BP为一边的直角三角形. 所以连结BM. 这样,实际上就得到了4个直角三角形. 那么根据勾股定理,可证明这几条线段的平方之间的关系.
解析:连结BM,根据勾股定理,在中,
.
而在中,则根据勾股定理有
.
∴
又∵(已知),
∴.
在中,根据勾股定理有
,
∴.
【变式2】已知:如图,∠B=∠D=90°,∠A=60°,AB=4,CD=2。求:四边形ABCD的面积。
分析:如何构造直角三角形是解本题的关键,可以连结AC,或延长AB、DC交于F,或延长AD、BC交于点E,根据本题给定的角应选后两种,进一步根据本题给定的边选第三种较为简单。
解析:延长AD、BC交于E。
∵∠A=∠60°,∠B=90°,∴∠E=30°。
∴AE=2AB=8,CE=2CD=4,
∴BE2=AE2-AB2=82-42=48,BE==。
∵DE2= CE2-CD2=42-22=12,∴DE==。
∴S四边形ABCD=S△ABE-S△CDE=AB·BE-CD·DE=
类型三:勾股定理的实际应用
(一)用勾股定理求两点之间的距离问题
3、如图所示,在一次夏令营活动中,小明从营地A点出发,沿北偏东60°方向走了到达B点,然后再沿北偏西30°方向走了500m到达目的地C点。
(1)求A、C两点之间的距离。
(2)确定目的地C在营地A的什么方向。
思路点拨:把实际问题中的角度转化为图形中的角度,利用勾股定理求解。
解析:(1)过B点作BE//AD
∴∠DAB=∠ABE=60°
∵30°+∠CBA+∠ABE=180°
∴∠CBA=90°
即△ABC为直角三角形
由已知可得:BC=500m,AB=
由勾股定理可得:
所以
(2)在Rt△ABC中,
∵BC=500m,AC=1000m
∴∠CAB=30°
∵∠DAB=60°
∴∠DAC=30°
即点C在点A的北偏东30°的方向
总结升华:本题是一道实际问题,从已知条件出发判断出△ABC是直角三角形是解决问题的关键。本题涉及平行线的性质和勾股定理等知识。
举一反三
【变式】一辆装满货物的卡车,其外形高2.5米,宽1.6米,要开进厂门形状如图的某工厂,问这辆卡车能否通过该工厂的厂门?
【答案】由于厂门宽度是否足够卡车通过,只要看当卡车位于厂门正中间时其高度是否小于CH.如图所示,点D 在离厂门中线0.8米处,且CD⊥AB,与地面交于H.
解:OC=1米(大门宽度一半),
OD=0.8米(卡车宽度一半)
在Rt△OCD中,由勾股定理得:
CD===0.6米,
CH=0.6+2.3=2.9(米)>2.5(米).