优质纳米晶硅薄膜的低温制备技术及其在太阳能电池中的应用进展陈城钊

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

收稿日期:2008-09-11

*基金项目:韩山师范学院青年科研基金资助项目(0503)作者简介:陈城钊(1975)),男,广东潮州人,讲师,硕士.

第2卷 第4期材 料 研 究 与 应 用

V o1.2,N o.42008年12月

M A T ERIA L S RESEA RCH A ND AP PL ICAT ION

Dec .2008

文章编号:1673-9981(2008)04-0450-05

优质纳米晶硅薄膜的低温制备技术及其

在太阳能电池中的应用进展

*

陈城钊1

,邱胜桦1

,刘翠青1

,吴燕丹1

,李 平1

,余楚迎2

,林璇英

1,2

(1.韩山师范学院物理与电子工程系,广东潮州 521041; 2.汕头大学物理系,广东汕头 515063)摘 要:纳米晶硅薄膜是集晶体硅材料和氢化非晶硅薄膜优点于一体,可望广泛应用于薄膜太阳能电池、光存储器、发光二极管和薄膜晶体管等光电器件的一种新型功能材料.本文综述低温制备优质纳米晶硅薄膜技术的研究进展及其在薄膜硅太阳能电池上的应用.关键词:纳米晶硅薄膜;太阳能电池;低温制备;进展中图分类号:T M 914.4 文献标识码:A

纳米晶硅(nc -Si z H )薄膜就是硅的纳米晶粒镶嵌在a -Si z H 网络里的一种硅纳米结构.由于它具

有较高的电导率(10-3~10-18-1#cm -1)、宽带隙、高光敏性、高光吸收系数等优良的光电特性而引起学术界的重视.纳米晶硅薄膜同时具备宽带隙和高电导这两种太阳能电池窗口材料所需的优良性质,现已成为研究探索的热门纳米薄膜材料[1].除用于制备薄膜太阳能电池外,在发光二极管、光存储器、隧穿二极管、薄膜晶体管以及单电子晶体管等光电器件方面也有潜在应用

[2]

.

1 低温制备纳米晶硅薄膜的技术

为了制备适用于以玻璃为衬底的太阳能电池的纳米晶硅薄膜,近年来发展了低温(<450e )制膜技术.按成膜过程可分为两大类:一类是先制备非晶态材料,再固相晶化为纳米晶硅;另一类是直接在玻璃衬底上沉积纳米晶硅薄膜[2].1.1 固相晶化法

固相晶化(SPC)法的特点是非晶固体发生晶化的温度低于其熔融后结晶的温度.低造价太阳能电

池的纳米晶薄膜,一般以廉价的玻璃作衬底,以硅烷气为原材料,用PECVD 法沉积a -Si B H 薄膜,然后再用热处理的方法使其转化为纳米晶硅薄膜.这种方法的优点是能制备大面积的薄膜,可进行原位掺杂,成本低,工艺简单,易于批量生产.常规的高温炉退火、金属诱导晶化、快速热退火、区域熔化再结晶等都属于固相晶化法.1.1.1 常规高温炉退火

该方法是在氮气保护下把非晶硅薄膜放入炉腔内退火,使其由非晶态转变为纳米晶态

[3]

.非晶硅晶

化的驱动力是晶相相对于非晶相较低的Gibbs 自由

能.固相晶化过程主要由晶核的形成及晶核长大两步完成.形核率和生长速率都受温度的影响,所以纳米晶硅薄膜的晶粒尺寸受温度的影响很大.晶硅薄膜的晶粒尺寸除受温度的影响外,与初始非晶硅膜的结构状况也有密切的关系.有研究者采用/部分掺杂法0来增大晶粒尺寸,即在基底上沉积两层膜,下层进行磷掺杂,作为成核层,上层不掺杂,作为晶体生长层,退火后可获得较大的晶粒[4].1.1.2 金属诱导晶化

金属诱导晶化就是在非晶硅薄膜上镀一层金属

膜或在镀有金属膜的基片上再镀一层非晶硅膜,使非晶硅与金属接触,这样可大大降低非晶硅的晶化温度(300e左右就能发生晶化),缩短晶化时间.可作诱导的金属有Al,Au,Ni,Pt,T i,Cr,Pd等,不同的金属诱导晶化效果略有不同.由于Al的含量丰富、价格便宜,因此铝诱导晶化备受青睐[5].

对于产生低温晶化的原因,比较一致的解释是:在a-Si B H与Al的界面处,由于Al扩散到非晶硅中,形成了间隙原子,使Si)Si共价键转变为Si) Al金属键,极大地降低了激发能.界面处的这些硅化物加速了Al和Si原子的相互扩散,导致了Al) Si混合层的形成.由A-l Si相图可知,低温下(<300 e),硅在铝中的固溶度几乎可以忽略,因此铝中的超饱和硅以核的形式在a-Si B H和Al的界面析出.这些固体沉淀物逐渐长大,最后形成了晶体硅和铝的混合物.与传统的固相晶化技术相比,该技术能大大降低退火温度,缩短退火时间,制备出较大晶粒的纳米晶硅薄膜[6].然而,有研究发现利用该技术制备的纳米晶硅薄膜会引入大量的金属原子,在很大程度上破坏了硅薄膜的电特性.这是一个不太容易解决的问题.

1.1.3快速热退火

快速热处理技术(RTP)是近年来发展很快的半导体工艺新技术.快速热退火属于快速热处理的范畴,是一种新的退火方式,它的热源是卤钨灯.与传统的退火炉相比,该方法有很多优点,除了用时短、耗热少、产量大、过程易控外,晶化后的纳米晶硅膜缺陷较少、内应力小.一些研究发现对非晶膜进行快速热退火时,温度的改变、时间的延长对晶粒尺寸的影响不大;但升温速率对晶粒尺寸的影响很大,升温速率较大时,硅晶粒较小,升温速率较小时,硅晶粒较大[7].

1.1.4区域熔化再结晶

区域熔化再结晶是将一束很窄的能量源在硅薄膜的表面移动使硅薄膜材料的不同区域依次熔化而结晶.比较成熟和用得较普遍的是激光加热,即激光晶化法.该晶化技术的特点是可以采用不同类型的激光在很短的时间内将非晶硅材料加热到很高的温度使其熔化然后结晶,由于熔化结晶的时间很短,因此衬底的温度不太高,从而能够使用廉价的玻璃作为衬底.准分子激光由于其脉冲时间极短(10~30 ns),且波长处于超紫外范围,因而是在玻璃衬底上制备硅薄膜材料理想的能量束.在硅薄膜上所照射的激光束频率、受光次数以及激光能量密度等都会影响非晶硅薄膜的结晶状况.另外,激光束的形状和扫描方向也会影响晶化过程中晶粒的生长方向[8-9].该技术的缺点是设备昂贵、工艺的重复性较差、难以实现大面积制备等.

1.2直接沉积纳米晶硅薄膜

采用固相晶化法制备纳米晶硅薄膜,由于需先沉积非晶硅薄膜,再转化为纳米晶硅薄膜,所需时间较长.如果沉积非晶硅薄膜和热处理不在同一系统中,则在转移非晶硅薄膜的过程中,容易造成薄膜的氧化,生成SiO2,或引入其它杂质,对薄膜的性能产生不良的影响.近几年来,许多科研工作者都在探索不经退火,直接在同一系统中制备纳米晶硅薄膜的新技术,这些技术包括:热丝化学气相沉积

(H WCVD),高压rf-PECVD和采用新气源等.

1.2.1热丝化学气相沉积法

当硅烷或其它源气体通过装在衬底附近、温度高达2000e的钨丝时,源气体的分子键发生断裂,形成各种中性基团,在衬底上沉积成纳米晶硅薄膜.沉积时衬底的温度约175~400e,可用廉价的玻璃作衬底[10].用H WCV D法制备的纳米晶硅薄膜的晶粒尺寸约0.3~ 1.0L m,具有柱状结构,择优取向于(110)晶面,可应用于光伏打器件.由于钨丝的温度很高,对部分设备的耐热要求较高.而且晶粒尺寸较小,不适宜大面积均匀薄膜的制备,所以应用范围受到较大限制.

1.2.2高压高氢稀释硅烷PECVD法

最近,我们用常规的13.56M H z的rf-PECVD 系统,采用较高的反应气压,匹配比较高的激励功率.以0.7nm/s制备出优质的氢化纳米晶硅薄膜[11].薄膜的晶化率约60%,平均晶粒尺寸约6.0 nm,暗电导率为10-3~10-48-1#cm-1,薄膜的SEM图如图1所示.在本实验室的条件下,制备纳米晶硅薄膜时有以下结论:(1)射频功率太小薄膜中没有晶态成分.在其他条件不变的情况下,功率太大晶化率反而下降.在一定的射频功率范围内,薄膜中的晶态成分随功率增大而增加.(2)在一定的温度范围内,薄膜中的晶态成分随温度的升高而增加,晶粒随温度的升高而增大.(3)随着H2稀释度R H= H2/(SiH4+H2)的增加,薄膜晶化率变大,生长速率变小.结合Raman和FT IR谱,认为在高氢条件下,氢的作用在于通过刻蚀反应表面弱的Si-Si

#

451

#

第2卷第4期陈城钊,等:优质纳米晶硅薄膜的低温制备技术及其在太阳能电池中的应用进展

相关文档
最新文档