人教最新版初中数学知识点总结及每章重难点

合集下载

人教版初中数学各章节知识点总结

人教版初中数学各章节知识点总结

- 1 -七年级数学(上)知识点 第一章、有理数知识概念 1.有理数: (1)凡能写成)0p q ,p (pq≠为整数且形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;π不是有理数;(2)有理数的分类: ① ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数 ② ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数 2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0; (2)相反数的和为0 ⇔ a+b=0 ⇔ a 、b 互为相反数. 4.绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a 或⎩⎨⎧<-≥=)0a (a )0a (aa ;绝对值的问题经常分类讨论;5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数 > 0,小数-大数 < 0.6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若 a ≠0,那么a 的倒数是a1;若ab=1⇔ a 、b 互为倒数;若ab=-1⇔ a 、b 互为负倒数. 7.有理数加法法则: (1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值; (3)一个数与0相加,仍得这个数. 8.有理数加法的运算律:(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b )+c=a+(b+c ). 9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b ). 10 有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘; (2)任何数同零相乘都得零;(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定.11 有理数乘法的运算律: (1)乘法的交换律:ab=ba ;(2)乘法的结合律:(ab )c=a (bc ); (3)乘法的分配律:a (b+c )=ab+ac .12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,- 2 -无意义即0a. 13.有理数乘方的法则:(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n 为正奇数时: (-a)n =-a n 或(a -b)n =-(b-a)n , 当n 为正偶数时: (-a)n =a n 或 (a-b)n =(b-a)n . 14.乘方的定义:(1)求相同因式积的运算,叫做乘方;(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂; 15.科学记数法:把一个大于10的数记成a ³10n 的形式,其中a 是整数数位只有一位的数,这种记数法叫科学记数法.16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.17.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字.18.混合运算法则:先乘方,后乘除,最后加减.第二章、整式的加减 知识概念1.单项式:在代数式中,若只含有乘法(包括乘方)运算。

人教版【初中数学】知识点总结-全面整理(最新最全)

人教版【初中数学】知识点总结-全面整理(最新最全)

人教版初中数学知识点总结目录七年级数学(上)知识点 (1)第一章有理数 (1)第二章整式的加减 (3)第三章一元一次方程 (4)第四章图形的认识初步 (5)七年级数学(下)知识点 (6)第五章相交线与平行线 (6)第六章平面直角坐标系 (7)第七章三角形 (8)第八章二元一次方程组 (11)第九章不等式与不等式组 (12)第十章数据的收集、整理与描述 (12)八年级数学(上)知识点 (13)第十一章全等三角形 (13)第十二章轴对称 (14)第十三章实数 (15)第十四章一次函数 (16)第十五章整式的乘除与分解因式 (16)八年级数学(下)知识点 (18)第十六章分式 (18)第十七章反比例函数 (19)第十八章勾股定理 (20)第十九章四边形 (20)第二十章数据的分析 (22)九年级数学(上)知识点 (22)第二十一章二次根式 (22)第二十二章一元二次根式 (23)第二十三章旋转 (24)第二十四章圆 (25)第二十五章概率 (26)九年级数学(下)知识点 (28)第二十六章二次函数 (29)第二十七章相似 (30)第二十八章锐角三角函数 (31)第二十九章投影与视图 (32)七年级数学(上)知识点人教版七年级数学上册主要包含了有理数、整式的加减、一元一次方程、图形的认识初步四个章节的内容.第一章有理数一.知识框架二.知识概念1.有理数:(1)凡能写成)0pq,p(pq≠为整数且形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a 不一定是负数,+a也不一定是正数;π不是有理数;(2)有理数的分类: ①⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数②⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;(2)相反数的和为0 ⇔ a+b=0 ⇔ a、b互为相反数.4.绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a(a)0a()0a(aa或⎩⎨⎧<-≥=)0a(a)0a(aa;绝对值的问题经常分类讨论;5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数 > 0,小数-大数 < 0.6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若 a ≠0,那么a 的倒数是a 1;若ab=1⇔ a 、b 互为倒数;若ab=-1⇔ a 、b 互为负倒数.7. 有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;(3)一个数与0相加,仍得这个数.8.有理数加法的运算律:(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b )+c=a+(b+c ).9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b ). 10 有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘;(2)任何数同零相乘都得零;(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定.11 有理数乘法的运算律:(1)乘法的交换律:ab=ba ;(2)乘法的结合律:(ab )c=a (bc );(3)乘法的分配律:a (b+c )=ab+ac .12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,无意义即0a . 13.有理数乘方的法则:(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n 为正奇数时: (-a)n =-a n 或(a -b)n =-(b-a)n , 当n 为正偶数时: (-a)n =a n 或 (a-b)n =(b-a)n .14.乘方的定义:(1)求相同因式积的运算,叫做乘方;(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;15.科学记数法:把一个大于10的数记成a ×10n 的形式,其中a 是整数数位只有一位的数,这种记数法叫科学记数法.16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.17.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字.请判断下列题的对错,并解释.1.近似数25.0的精确度与近似数25一样.2.近似数4千万与近似数4000万的精确度一样.3.近似数660万,它精确到万位.有三个有效数字.4.用四舍五入法得近似数6.40和6.4是相等的.5.近似数3.7x10的二次与近似数370的精确度一样.1、错。

人教版初中数学知识点重难点归纳整理

人教版初中数学知识点重难点归纳整理

分章節知識點歸納七年級上冊第一章 有理數1 正數和負數2 有理數3 有理數的加減法4 有理數的乘除法5 有理數的乘方詳細內容1.有理數:(1)凡能寫成)0p q ,p (p q≠为整数且形式的數,都是有理數.正整數、0、負整數統稱整數;正分數、負分數統稱分數;整數和分數統稱有理數.注意:0即不是正數,也不是負數;-a 不一定是負數,+a 也不一定是正數;π不是有理數;(2)有理數的分類: ① ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数 ② ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数2.數軸:數軸是規定了原點、正方向、單位長度的一條直線.3.相反數:(1)只有符號不同的兩個數,我們說其中一個是另一個的相反數;0的相反數還是0;(2)相反數的和為0 ⇔ a+b=0 ⇔ a 、b 互為相反數.4.絕對值:(1)正數的絕對值是其本身,0的絕對值是0,負數的絕對值是它的相反數;注意:絕對值的意義是數軸上表示某數的點離開原點的距離;(2) 絕對值可表示為:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a 或⎩⎨⎧<-≥=)0a (a )0a (a a ;絕對值的問題經常分類討論;5.有理數比大小:(1)正數的絕對值越大,這個數越大;(2)正數永遠比0大,負數永遠比0小;(3)正數大於一切負數;(4)兩個負數比大小,絕對值大的反而小;(5)數軸上的兩個數,右邊的數總比左邊的數大;(6)大數-小數 > 0,小數-大數 < 0.6.互為倒數:乘積為1的兩個數互為倒數;注意:0沒有倒數;若 a ≠0,那麼a 的倒數是a 1;若ab=1⇔ a 、b 互為倒數;若ab=-1⇔ a 、b 互為負倒數.7. 有理數加法法則:(1)同號兩數相加,取相同的符號,並把絕對值相加;(2)異號兩數相加,取絕對值較大的符號,並用較大的絕對值減去較小的絕對值;(3)一個數與0相加,仍得這個數.8.有理數加法的運算律:(1)加法的交換律:a+b=b+a ;(2)加法的結合律:(a+b )+c=a+(b+c ).9.有理數減法法則:減去一個數,等於加上這個數的相反數;即a-b=a+(-b ).10 有理數乘法法則:(1)兩數相乘,同號為正,異號為負,並把絕對值相乘;(2)任何數同零相乘都得零;(3)幾個數相乘,有一個因式為零,積為零;各個因式都不為零,積的符號由負因式的個數決定.11 有理數乘法的運算律:(1)乘法的交換律:ab=ba;(2)乘法的結合律:(ab)c=a(bc);(3)乘法的分配律:a(b+c)=ab+ac .12.有理數除法法則:除以一個數等於乘以這個數的倒數;注意:零不a.能做除數,无意义即13.有理數乘方的法則:(1)正數的任何次冪都是正數;(2)負數的奇次冪是負數;負數的偶次冪是正數;注意:當n為正奇數時: (-a)n=-a n或(a -b)n=-(b-a)n , 當n為正偶數時: (-a)n =a n 或(a-b)n=(b-a)n .14.乘方的定義:(1)求相同因式積的運算,叫做乘方;(2)乘方中,相同的因式叫做底數,相同因式的個數叫做指數,乘方的結果叫做冪;15.科學記數法:把一個大於10的數記成a×10n的形式,其中a是整數數位只有一位元的數,這種記數法叫科學記數法.16.近似數的精確位:一個近似數,四捨五入到那一位,就說這個近似數的精確到那一位.17.有效數字:從左邊第一個不為零的數字起,到精確的位元數止,所有數字,都叫這個近似數的有效數字.18.混合運算法則:先乘方,後乘除,最後加減.第二章整式的加減1整式2整式的加減詳細內容1.單項式:在代數式中,若只含有乘法(包括乘方)運算。

人教版初中数学知识点总结【完整版】

人教版初中数学知识点总结【完整版】

人教版初中数学知识点全总结第一章有理数1、有理数:无限不循环小数和开根开不尽的数叫无理数;整数和分数统称有理数.注意:0 即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;有理数: 零、负整数、负分数、正分数、正整数2、数轴是规定了原点、正方向、单位长度的一条直线.3、相反数: (1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0 的相反数还是 0;(2)相反数的和为 0 a+b=0 a、b 互为相反数.4、绝对值:绝对值和我们学过的加、减、乘、除一样,是一种运算,运算符号通常用||表示。

这种运算的意义是:一个正数和0的绝对值是它本身,一个负数的绝对值是它的相反数。

总之,一个数的绝对值是非负数。

用代数式表示为:|a|=a(a>0) |a|=-a(a<0) |a|=0(a=0)在数轴上,一个数的绝对值表示为代表这个数的点到原点的距离。

如:|-5|表示在数轴上代表-5 的点与原点的距离,即|-5|=5。

5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比 0 大,负数永远比 0 小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数> 0,小数-大数< 0.6.互为倒数:乘积为 1 的两个数互为倒数;注意:0 没有倒数;若 a≠0,那么 a 的倒数是1 ;若 ab=1 a、 ab 互为倒数;若ab=-1 a、b 互为负倒数.7. 有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;(3)一个数与 0 相加,仍得这个数.8.有理数加法的运算律:(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b)+c=a+(b+c).9.有理数减法法则:减去一个数,等于加上这个数的相反数;即 a-b=a+(-b).10 有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘;(2)任何数同零相乘都得零;(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定.11 有理数乘法的运算律:(1)乘法的交换律:ab=ba;(2)乘法的结合律:(ab)c=a(bc);(3)乘法的分配律:a(b+c)=ab+ac .12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,即无意义 .13.有理数乘方的法则:(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当 n 为正奇数时: (-a)n=-an 或(a -b)n=-(b-a)n , 当 n 为正偶数时: (-a)n =an 或 (a-b)n=(b-a)n .14.乘方的定义:(1)求相同因式积的运算,叫做乘方;(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;15.科学记数法:这是一种记数的方法。

(完整版)新人教版初中数学知识点重难点归纳整理

(完整版)新人教版初中数学知识点重难点归纳整理

新人教版初中数学知识点重难点归纳整理分章节知识点归纳七年级上册第一章 有理数 1 正数和负数 2 有理数 3 有理数的加减法 4 有理数的乘除法 5 有理数的乘方详细内容1.有理数:(1)凡能写成)0p q ,p (pq≠为整数且形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;π不是有理数;(2)有理数的分类: ① ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数 ② ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数 2.数轴:数轴是规定了原点、正方向、单位长度的一条直线. 3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0; (2)相反数的和为0 ⇔ a+b=0 ⇔ a 、b 互为相反数. 4.绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a 或⎩⎨⎧<-≥=)0a (a )0a (aa ;绝对值的问题经常分类讨论;5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数 > 0,小数-大数 < 0.6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若 a ≠0,那么a 的倒数是a1;若ab=1⇔ a 、b 互为倒数;若ab=-1⇔ a 、b 互为负倒数. 7. 有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值; (3)一个数与0相加,仍得这个数. 8.有理数加法的运算律:(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b )+c=a+(b+c ). 9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b ). 10 有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘; (2)任何数同零相乘都得零;(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定.11 有理数乘法的运算律: (1)乘法的交换律:ab=ba ;(2)乘法的结合律:(ab )c=a (bc ); (3)乘法的分配律:a (b+c )=ab+ac .12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,无意义即0a . 13.有理数乘方的法则:(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n 为正奇数时: (-a)n =-a n 或(a -b)n =-(b-a)n , 当n 为正偶数时: (-a)n =a n 或 (a-b)n =(b-a)n . 14.乘方的定义:(1)求相同因式积的运算,叫做乘方;(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;15.科学记数法:把一个大于10的数记成a ×10n 的形式,其中a 是整数数位只有一位的数,这种记数法叫科学记数法.16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.17.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字.18.混合运算法则:先乘方,后乘除,最后加减.第二章 整式的加减 1 整式 2 整式的加减详细内容1.单项式:在代数式中,若只含有乘法(包括乘方)运算。

2024初中数学知识点全总结

2024初中数学知识点全总结

2024初中数学知识点全总结2024年,在初中数学学科中,学生将学习一系列基本的数学知识点,包括以下内容:一、数与式1.自然数、整数、有理数、实数的概念和性质;2.计数法、科学计数法、百分数的表示及应用;3.整数的概念、四则运算、约数与倍数;4.有理数的概念、四则运算、乘方、开方、比大小;5.实数的概念、不等式的性质及解法。

二、代数式与方程式1.代数式的概念、同类项的合并及多项式运算;2.一元一次方程的概念、解法及应用;3.一元一次不等式的概念、解法及应用;4.分式的概念、四则运算、约分与基本问题的解答;5.二元一次方程组及其应用。

三、图形1.平面图形的基本概念和性质(点、线、角、多边形等);2.三角形的性质(角的度量、三角形分类、勾股定理等);3.四边形的性质(矩形、菱形、平行四边形、梯形等);4.平面镜像、轴对称、中心对称的概念及应用;5.相似与全等的概念及判定;6.平移、旋转、翻转的概念及操作方法。

四、数与量1.长度、面积、体积、质量、时间、速度等量的概念及计量方法;2.对一些简单的量进行加、减、乘、除、比较等运算;3.解决实际问题时,运用合适的量的单位进行计量。

五、函数1.函数的概念、函数的运算、函数的性质及其图像;2.一次函数、二次函数、反比例函数等函数的概念及性质;3.函数与线性关系、函数与几何关系及函数与实际问题的应用。

六、统计与概率1.统计数据的收集、整理、分析;2.频数表示、频数分布表、频数分布图;3.地图、图表和轴线图的解读,统计图的制作;4.概率的概念、基本事件的计算、互斥事件与独立事件的判断。

七、几何运动1.点的平移;2.线段的平移;3.角度的平移;4.平面图形的变换(平移、旋转、对称、放缩)。

(完整版)人教版初中数学各章节知识点总结

(完整版)人教版初中数学各章节知识点总结

七年级数学(上)知识点人教版七年级数学上册主要包含了有理数、整式的加减、一元一次方程、图形的认识初步四个章节的内容. 第一章、有理数知识概念1.有理数:(1)凡能写成)0pq,p(pq≠为整数且形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;π不是有理数;(2)有理数的分类: ①⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数②⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;(2)相反数的和为0 ⇔ a+b=0 ⇔ a、b互为相反数.4.绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a(a)0a()0a(aa或⎩⎨⎧<-≥=)0a(a)0a(aa;绝对值的问题经常分类讨论;5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数>0,小数-大数<0.6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若a≠0,那么a的倒数是a1;若ab=1⇔ a、b互为倒数;若ab=-1⇔ a、b互为负倒数.7. 有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;(3)一个数与0相加,仍得这个数. 8.有理数加法的运算律:(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b )+c=a+(b+c ). 9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b ). 10 有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘; (2)任何数同零相乘都得零;(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定. 11 有理数乘法的运算律: (1)乘法的交换律:ab=ba ;(2)乘法的结合律:(ab )c=a (bc ); (3)乘法的分配律:a (b+c )=ab+ac .12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,无意义即0a .13.有理数乘方的法则:(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n 为正奇数时: (-a)n =-a n 或(a -b)n =-(b-a)n , 当n 为正偶数时: (-a)n =a n 或 (a-b)n =(b-a)n . 14.乘方的定义:(1)求相同因式积的运算,叫做乘方;(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;15.科学记数法:把一个大于10的数记成a ×10n 的形式,其中a 是整数数位只有一位的数,这种记数法叫科学记数法.16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.17.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字. 18.混合运算法则:先乘方,后乘除,最后加减.本章内容要求学生正确认识有理数的概念,在实际生活和学习数轴的基础上,理解正负数、相反数、绝对值的意义所在。

新人教版初中数学知识点总结(完整版)

新人教版初中数学知识点总结(完整版)

新人教版初中数学知识点总结(完整版)新人教版学校数学学问点总结(完好版)1一元一次方程定义通过化简,只含有一个未知数,且含有未知数的最高次项的次数是一的等式,叫一元一次方程。

通常形式是ax+b=0(a,b为常数,且a≠0)。

一元一次方程属于整式方程,即方程两边都是整式。

一元指方程仅含有一个未知数,一次指未知数的次数为1,且未知数的系数不为0。

我们将ax+b=0(其中x是未知数,a、b是已知数,并且a≠0)叫一元一次方程的标准形式。

这里a是未知数的系数,b是常数,x的次数必需是1。

即一元一次方程必需同时满意4个条件:⑴它是等式;⑵分母中不含有未知数;⑶未知数最高次项为1;⑷含未知数的项的系数不为0。

一元一次方程的五个核心问题一、什么是等式?1+1=1是等式吗?表示相等关系的式子叫做等式,等式可分三类:第一类是恒等式,就是用任何允许的数值代替等式中的字母,等式的两边总是相等,由数字组成的等式也是恒等式,如2+4=6,a+b=b+a等都是恒等式;其次类是条件等式,也就是方程,这类等式只能取某些数值代替等式中的字母时,等式才成立,如x+y=-5,x+4=7等都是条件等式;第三类是冲突等式,就是无论用任何值代替等式中的字母,等式总不成立,如x2=-2,|a|+5=0等。

一个等式中,假设等号多于一个,叫做连等式,连等式可以化为一组只含有一个等号的等式。

等式与代数式不同,等式中含有等号,代数式中不含等号。

等式有两个重要性质1)等式的两边都加上或减去同一个数或同一个整式,所得结果仍旧是一个等式;(2)等式的两边都乘以或除以同一个数除数不为零,所得结果仍旧是一个等式。

二、什么是方程,什么是一元一次方程?含有未知数的等式叫做方程,如2x-3=8,x+y=7等。

推断一个式子是否是方程,只需看两点:一是不是等式;二是否含有未知数,两者缺一不行。

只含有一个未知数,并且含未知数的式子都是整式,未知数的次数是1,系数不是0的方程叫做一元一次方程。

(人教版)初中数学各章节详细知识点

(人教版)初中数学各章节详细知识点

各章节详细知识点七年级上册第一章《有理数》1.正数与负数的概念2.正数与负数的实际意义3.有理数的概念4.数轴的概念5.相反数的概念6.绝对值的概念7.有理数的大小比较8.有理数的加法法则9.有理数的减法法则10.有理数的乘法法则11.有理数的运算律12.有理数的除法法则13.有理数的混合运算法则14.有理数的乘方相关概念(乘方、幂、底数、指数)15.有理数的乘方法则16.科学记数法17.近似数(有效数字)第二章《整式的加减》1.单项式及其相关概念(单项式、系数、次数)2.多项式及其相关概念(多项式、项、常数项、次数)3.整式4.同类项的概念5.合并同类项的法则6.去括号法则7.整式加减的运算法则第三章《一元一次方程》1.方程的概念2.一元一次方程的概念3.方程的解4.等式的性质5.一元一次方程的解法(步骤)6.一元一次方程的应用问题(和差倍分问题、数字问题、行程问题、工程问题、劳动力调配问题、增长率问题、商品利润问题)第四章《图形的初步认识》1.几何图形的概念2.立体图形的概念3.平面图形的概念4.立体图形的三视图5.立体图形的展开图6.点、线、面、体的概念7.直线的相关概念(直线、相交线、交点)8.两点确定一条直线9.点与直线的位置关系10.线段的中点11.两点之间线段最短12.两点之间的距离13.角及其相关概念14.角平分线15.余角的概念16.补角的概念17.余角(补角)的性质七年级下册第五章《相交线与平行线》1.相交线的相关概念(邻补角、对顶角)2.对顶角的性质3.垂线的相关概念(垂直、垂线、垂足)4.过一点画垂线5.垂线段最短6.点到直线的距离7.“三线八角”的相关概念8.平行的概念9.平行公理10.平行线的判定11.平行线的性质12.命题及其相关概念(命题、真命题、假命题)13.定理的概念14.平移的概念15.平移的性质第六章《平面直角坐标系》1.有序实数对的概念2.平面直角坐标系及其相关概念(平面直角坐标系、横轴、纵轴、原点、坐标、象限)3.特殊点坐标(象限符号、坐标轴上点的特征、坐标轴角平分线上点的特征、对称点坐标特征、平行于坐标轴的点的特征)4.直角坐标系的实际应用5.平移的坐标特征第七章《三角形》1.三角形的概念2.三角形的分类3.三角形的三边关系4.三角形的“三线”(高线、中线、角平分线)5.三角形的稳定性6.三角形的内角和定理7.三角形的外角8.三角形的外角性质定理9.多边形及其相关概念(多边形、对角线、正多边形)10.多边形的内角和定理11.多边形的外角和定理第八章《二元一次方程组》1.二元一次方程的概念2.二元一次方程(组)的解3.解二元一次方程(代入消元法、加减消元法)4.二元一次方程的应用5.三元一次方程组的概念6.三元一次方程组的解法第九章《不等式与不等式组》1.不等式的概念2.不等式的解3.解集4.一元一次不等式的概念5.不等式的性质6.一元一次不等式的解法7.一元一次不等式的应用8.一元一次不等式组的概念9.一元一次不等式组的解法第十章《数据的收集、整理与描述》1.收集数据(问卷)2.整理数据(表格)3.描述数据(条形统计图、扇形统计图)4.抽样调查的概念5.总体、个体、样本、样本容量6.简单随机抽样的概念7.直方图及其相关概念(直方图、组距、频数)8.画直方图的步骤八年级上册第十一章《全等三角形》1.全等形的概念2.全等三角形的相关概念(全等三角形、对应顶点、对应边、对应角)3.全等三角形的性质4.全等三角形的判定5.角平分线的性质6.角平分线的判定第十二章《轴对称》1.轴对称图形的概念2.关于直线对称的相关概念3.轴对称的性质4.线段垂直平分线的性质5.线段垂直平分线的判定6.作轴对称图形7.关于坐标轴对称点的特征8.等腰三角形的概念9.等腰三角形的性质10.等腰三角形的判定11.等边三角形的概念12.等边三角形的判定13.等边三角形的性质第十三章《实数》1.算术平方根的概念2.平方根的概念3.平方根的性质4.立方根的概念5.立方根的性质6.实数的概念7.实数的分类8.实数的相反数、绝对值9.实数与数轴的关系第十四章《一次函数》1.变量与常量2.函数与自变量3.函数的图像4.正比例函数的解析式5.正比例函数的图象及其性质6.一次函数的解析式7.一次函数的图象及其性质8.一次函数与一元一次方程的关系9.一次函数与一元一次不等式关系10.一次函数与二元一次方程组的关系第十五章《整式的乘除与因式分解》1.同底数的幂的乘法公式2.幂的乘方公式3.积的乘方公式整式的乘法法则4.单项式与多项式相乘的乘法法则5.多项式相乘的乘法法则6.平方差公式7.完全平方公式8.添括号法则9.同底数幂的除法法则10.单项式除单项式的法则11.多项式除以单项式法则12.因式分解的概念13.因式分解的方法(提取公因式法、公式法)八年级下册第十六章《分式》1.分式的概念2.分式的基本性质3.约分与通分4.最简分式5.分式乘除的法则6.分式加减的法则7.整数指数幂的运算性质8.分式方程的概念9.分式方程的解法10.分式方程的应用第十七章《反比例函数》1.反比例函数的概念2.反比例函数的图象及其性质3.反比例函数的应用第十八章《勾股定理》1.勾股定理2.勾股定理的逆定理第十九章《四边形》1.平行四边形的概念2.平行四边形的性质3.平行四边形的判定4.两条平行直线之间的距离5.矩形的概念6.矩形的判定7.矩形的性质8.菱形的概念9.菱形的性质10.菱形的判定11.正方形的概念12.正方形的性质与判定13.梯形概念14.梯形的分类15.等腰梯形的性质16.等腰绞刑的判定第二十章《数据的分析》1.平均数与加权平均数2.中位数3.众数4.方差九年级上册第二十一章《二次根式》1.二次根式的概念2.二次根式的两个重要公式3.代数式的概念4.二次根式的乘法法则5.二次根式的除法法则6.最简二次根式7.二次根式的加减法法则第二十二章《一元二次方程》1.一元二次方程的概念2.一元二次方程的根3.一元二次方程的解法(直接开方法、配方法、求根公式法、因式分解法)4.根的判别式5.一元二次方程根与系数的关系6.一元二次方程的应用(面积问题、连续增长问题)第二十三章《旋转》1.旋转的相关概念(旋转、旋转中心、旋转角)2.旋转的性质3.中心对称的相关概念(中心对称、对称中心、对称点)4.中心对称的性质5.中心对称图形的概念6.关于原点对称的点的坐标的特征第二十四章《圆》1.圆的相关概念(圆的两种定义、圆心、半径、弦、直径、圆弧、优弧、劣弧、半圆、等圆、等弧)2.垂径定理及其推论3.弧、弦、圆心角、弦心距之间的关系定理4.圆周角的概念5.圆周角定理及其推论6.圆内接多边形的概念7.圆内接四边形的性质8.点与圆的位置关系9.三点确定一个圆10.三角形的外接圆及外心11.直线与圆的位置关系及其相关概念12.切线的性质及判定定理13.切线长定理14.圆与圆的位置关系及其相关概念15.正多边形与圆的相关概念(正三角形与圆、正方形与圆、正六边形与圆)16.弧长公式及扇形面积公式17.圆锥及圆柱的侧面积及表面积第二十五章《概率》1.随机事件、不可能事件、必然事件的概念2.随机事件的性质3.概率的概念4.概率的计算公式5.用列表法、树形图计算概率6.频率与概率的关系。

(完整版)人教版初中数学各章节知识点总结

(完整版)人教版初中数学各章节知识点总结

七年级数学(上)知识点人教版七年级数学上册主要包含了有理数、整式的加减、一元一次方程、图形的认识初步四个章节的内容. 第一章、有理数知识概念1.有理数:(1)凡能写成)0pq,p(pq≠为整数且形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;π不是有理数;(2)有理数的分类: ①⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数②⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;(2)相反数的和为0 ⇔ a+b=0 ⇔ a、b互为相反数.4.绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a(a)0a()0a(aa或⎩⎨⎧<-≥=)0a(a)0a(aa;绝对值的问题经常分类讨论;5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数>0,小数-大数<0.6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若a≠0,那么a的倒数是a1;若ab=1⇔ a、b互为倒数;若ab=-1⇔ a、b互为负倒数.7. 有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;(3)一个数与0相加,仍得这个数. 8.有理数加法的运算律:(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b )+c=a+(b+c ). 9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b ). 10 有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘; (2)任何数同零相乘都得零;(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定. 11 有理数乘法的运算律: (1)乘法的交换律:ab=ba ;(2)乘法的结合律:(ab )c=a (bc ); (3)乘法的分配律:a (b+c )=ab+ac .12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,无意义即0a .13.有理数乘方的法则:(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n 为正奇数时: (-a)n =-a n 或(a -b)n =-(b-a)n , 当n 为正偶数时: (-a)n =a n 或 (a-b)n =(b-a)n . 14.乘方的定义:(1)求相同因式积的运算,叫做乘方;(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;15.科学记数法:把一个大于10的数记成a ×10n 的形式,其中a 是整数数位只有一位的数,这种记数法叫科学记数法.16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.17.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字. 18.混合运算法则:先乘方,后乘除,最后加减.本章内容要求学生正确认识有理数的概念,在实际生活和学习数轴的基础上,理解正负数、相反数、绝对值的意义所在。

初中数学知识点总结大全(重难点总结)

初中数学知识点总结大全(重难点总结)

⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数人教版七年级上第一章有理数1.1正数和负数(一)正数:大于0的数叫正数,为了明确表达意义,正数前面加上符号“+”,这里的“+”通常省略;负数:小于0的数叫负数,在正数的前面加上符号“-”。

(二)0既不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数。

1.2.1有理数(一)有理数:整数和分数统称有理数。

(二)有理数的分类:①②1.2.2数轴(了解)(一)数轴:数轴是规定了原点、正方向、单位长度的一条直线。

(二)画数轴的步骤:(1)画直线;(2)在直线上取一点作为原点;(3)确定正方向,并用箭头表示(4)根据需要选取适当单位长度。

(三)一般的,设a 是一个正数,则数轴上表示数a 的点在原点的右边,与原点的距离是a 个单位长度;表示数-a 的点在原点的左边,与原点的距离是a 个单位长度。

1.2.3相反数(一)相反数:只有符号不同的两个数。

一般地a 和-a 互为相反数,0的相反数还是0。

(二)相反数的和为0⇔a+b=0⇔a、b 互为相反数。

1.2.4绝对值(了解)(一)绝对值:一般地,数轴上表示数a 的点与远点的距离叫做数a 的绝对值,记做。

(二)⎧⎧⎪⎪⎨⎪⎪⎪⎨⎩⎪⎧⎪⎨⎪⎩⎩正整数整数零负整数有理数正分数分数负分数一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.即,那么;那么;那么4.有理数大小比较(1)正数大于0,0大于负数,正数大于负数;(2)两个负数,绝对值大的反而小。

(3)异号两数比较大小,要考虑它们的正负;同号两数比较大小,要考虑它们的绝对值1.3有理数的加减法(一)有理数的加法法则:1.同号两数相加,取相同的符号,并把绝对值相加;2.绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。

互为相反数的两个数相加和为0;3.一个数同0相加,仍得这个数。

新人教版初中数学知识点重难点归纳整理

新人教版初中数学知识点重难点归纳整理

新人教版初中数学知识点重难点归纳整理一、初中数学知识点总体概述初中数学是数学学科的一个重要组成部分,也是初中学生必修的一门课程。

初中数学的主要任务是培养学生综合运用数学知识,发展数学思维,提高解决数学问题的能力。

初中数学知识点主要包括代数、几何、函数、概率、统计等方面的内容。

其中,数与代数是初中数学的基础;几何涉及图形与空间的运用;函数是初步探讨数与几何之间的联系;概率与统计是初中数学的应用部分。

二、重难点归纳整理1. 代数代数是初中数学的重难点之一。

代数的基础是方程式的解法和一些代数法则的运用。

学生在这个阶段应该掌握以下重点内容:•一元一次方程的解法;•二元一次方程组的解法;•一元二次方程的解法;•代数表达式的化简;•因式分解和分式的运算;•式子的等价变形。

2. 几何几何也是初中数学的重点之一。

初中阶段的几何主要涉及图形的形状、大小、位置、方向和运动等方面的问题。

几何需要学生具备切实地操作能力和抽象迁移能力,尤其是能够通过图形模型解决实际问题。

学生在这个阶段应该掌握以下重点内容:•各种平面图形的构造与性质;•三角形的构造、性质及判定;•直线、角、周长与面积的计算;•勾股定理的运用;•空间几何中的图形与计算;•数轴及其应用。

3. 函数初中数学中的函数是初步掌握数与几何之间联系的一个关键环节。

学生应该学会根据函数的图像或表格来推断函数的性质以及绘制函数的图像,理解函数与自然界和社会现象之间的相互关系。

学生在这个阶段应该掌握以下重点内容:•线性函数的概念、图像及其性质;•平方函数、立方函数、绝对值函数的概念、图像及其性质;•一次函数和二次函数的关系;•函数的复合、反函数及其运算;•不等式中的代数式和函数式;•应用题中的函数建模。

4. 概率与统计概率与统计是初中数学的应用部分。

它对于学生提高对现实问题的理解和解决问题的能力有着非常重要的作用。

学生在这个阶段应该掌握以下重点内容:•概率的概念、计算方法及应用;•随机事件和样本空间的概念;•统计数据的收集、整理、分析及表示方法;•中心趋势度量和离散程度度量的计算及应用;•正态分布的概念、计算和应用。

(精编)人教版初中数学各章节知识点总结

(精编)人教版初中数学各章节知识点总结

人教版初中数学各章节知识点总结七年级数学(上)知识点人教版七年级数学上册主要包含了有理数、整式的加减、一元一次方程、图形的认识初步四个章节的内容第一章、有理数.知识概念1.有理数:q(1)凡能写成(p,q为整数且 p 0)形式的数,都是有理数 .正整数、 0、负整数统称整数;正分数、负分数统p称分数;整数和分数统称有理数 .注意: 0即不是正数,也不是负数; -a不一定是负数, +a也不一定是正数;不是有理数;正整数正分数正整数正有理数整数零(2)有理数的分类 : ①有理数零②有理数负整数负整数负分数正分数分数负分数负有理数2.数轴:数轴是规定了原点、正方向、单位长度的一条直线3.相反数:.(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0 的相反数还是 0;(2)相反数的和为 04.绝对值:a+b=0 a、b互为相反数 .(1)正数的绝对值是其本身, 0 的绝对值是 0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;a 0(a 0)(a 0)或 aa (a 0)a (a 0)(2)绝对值可表示为: a ;绝对值的问题经常分类讨论;a (a 0)5.有理数比大小:(1)正数的绝对值越大,这个数越大;( 2)正数永远比 0大,负数永远比 0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;数大;(6)大数 -小数> 0,小数 -大数< 0.(5)数轴上的两个数,右边的数总比左边的1;若 ab=1 a a、6.互为倒数:乘积为 1 的两个数互为倒数;注意: 0没有倒数;若 a≠0,那么a的倒数是b互为倒数;若 ab=-1 a、 b互为负倒数 .7.有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;(3)一个数与 0相加,仍得这个数 . 8.有理数加法 的运算律:(1)加法 的交换律: a+b=b+a ;( 2)加法 的结合律:(a+b )+c=a+(b+c ). 9.有理数减法法则:减去一个数,等于加上这个数 的相反数;即 a-b=a+(-b ).10有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘; (2)任何数同零相乘都得零;(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积 的符号由负因式 的个数决定 .11有理数乘法 的运算律:(1)乘法 的交换律: ab=ba ;(2)乘法 的结合律:(ab )c=a (bc ); (3)乘法 的分配律: a (b+c )=ab+ac .a12.有理数除法法则:除以一个数等于乘以这个数 的倒数;注意:零不能做除数, 即无意义 . 013.有理数乘方 的法则: (1)正数 的任何次幂都是正数;(2)负数 的奇次幂是负数;负数 的偶次幂是正数;注意:当n 为正奇数时 : (-a) n n 或(a -b) n n=-(b-a) ,当 n=-a为正偶数时 : (-a) =a n 或 (a-b) =(b-a) n .n n 14.乘方 的定义:(1)求相同因式积 的运算,叫做乘方;(2)乘方中,相同 的因式叫做底数,相同因式 的个数叫做指数,乘方 的结果叫做幂;15.科学记数法:把一个大于 10 的数记成 a ×10n 的形式,其中 a 是整数数位只有一位 的数,这种记数法叫 科学记数法 .16.近似数 的精确位:一个近似数,四舍五入到那一位,就说这个近似数 的精确到那一位 17.有效数字:从左边第一个不为零 的数字起,到精确 的位数止,所有数字,都叫这个近似数 的有效数字18.混合运算法则:先乘方,后乘除,最后加减...本章内容要求学生正确认识有理数 的概念,在实际生活和学习数轴 的基础上,理解正负数、相反数、绝对值 的意义所在。

(完整版)人教版初中数学各章节知识点总结

(完整版)人教版初中数学各章节知识点总结

七年级数学(上)知识点人教版七年级数学上册主要包含了有理数、整式的加减、一元一次方程、图形的认识初步四个章节的内容. 第一章、有理数知识概念1.有理数:(1)凡能写成)0pq,p(pq≠为整数且形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;π不是有理数;(2)有理数的分类: ①⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数②⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;(2)相反数的和为0 ⇔ a+b=0 ⇔ a、b互为相反数.4.绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a(a)0a()0a(aa或⎩⎨⎧<-≥=)0a(a)0a(aa;绝对值的问题经常分类讨论;5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数>0,小数-大数<0.6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若a≠0,那么a的倒数是a1;若ab=1⇔ a、b互为倒数;若ab=-1⇔ a、b互为负倒数.7. 有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;(3)一个数与0相加,仍得这个数. 8.有理数加法的运算律:(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b )+c=a+(b+c ). 9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b ). 10 有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘; (2)任何数同零相乘都得零;(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定. 11 有理数乘法的运算律: (1)乘法的交换律:ab=ba ;(2)乘法的结合律:(ab )c=a (bc ); (3)乘法的分配律:a (b+c )=ab+ac .12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,无意义即0a .13.有理数乘方的法则:(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n 为正奇数时: (-a)n =-a n 或(a -b)n =-(b-a)n , 当n 为正偶数时: (-a)n =a n 或 (a-b)n =(b-a)n . 14.乘方的定义:(1)求相同因式积的运算,叫做乘方;(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;15.科学记数法:把一个大于10的数记成a ×10n 的形式,其中a 是整数数位只有一位的数,这种记数法叫科学记数法.16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.17.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字. 18.混合运算法则:先乘方,后乘除,最后加减.本章内容要求学生正确认识有理数的概念,在实际生活和学习数轴的基础上,理解正负数、相反数、绝对值的意义所在。

人教版初中数学知识点总结(精华)(最新最全)

人教版初中数学知识点总结(精华)(最新最全)

初中数学知识点总结(精华)第一章 有理数1、有理数的分类: ① ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数 ② ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;(2)相反数的和为0 ⇔ a+b=0 .4、.绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的几何意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a 或⎩⎨⎧<-≥=)0a (a )0a (a a ;绝对值的问题经常分类讨论;5、互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若 a ≠0,那么a 的倒数是a1;若ab=1⇔ a 、b 互为倒数 6、有理数的四则运算:(1)有理数的加法法则:同号两数相加,取相同的符号,并把绝对值相加;绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;互为相反数的两个数相加为0;0与任何数相加都等于任何数(2)有理数减法法则::减去一个数等于加上这个数的相反数(3)有理数的乘法法则:①两个数相乘,同号得正,异号得负,并把绝对值相乘; 0乘以任何一个数都等于0;②多个不为0的数相乘,积的符号由负因数的个数决定:负因数有偶数个时,积为正数,负因数有奇数个时,积为负数,再把各个因数的绝对值相乘(4)有理数的除法法则①两数相除,同号得正,异号得负,再把绝对值相除;0除以任何一个不为0的数都得0;②除以一个不为0的数,等于乘以这个数的倒数7、有理数乘法的运算律:(1)乘法的交换律:ab=ba ;(2)乘法的结合律:(ab )c=a (bc );(3)乘法的分配律:a (b+c )=ab+ac .8、比较两个数的大小:(1)负数< 0 < 正数,任何一个正数都大于一切负数(2)数轴上的点表示的有理数,左边的数总比右边的数小(3)两个正数比较大小,绝对值大的数就大;两个负数比较大小,绝对值大的数反而小(4)两数相乘(或相除),同号得正 > 0,异号得负 < 09、有理数乘方的法则:(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n 为正奇数时: (-a)n =-an 或(a -b)n =-(b-a)n , 当n 为正偶数时: (-a)n =a n 或 (a-b)n =(b-a)n .10、科学记数法:把一个大于10的数记成a ×10n 的形式,其中a 是整数数位只有一位的数,这种记数法叫科学记数法.11、非负数的性质:若02=++c b a ,则000===c b a 且且第二章 整式的加减1.单项式:在代数式中,若只含有乘法(包括乘方)运算。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5.有理数比大小:
两个负数比大小,绝对值大的反而小;
数轴上的两个数,右边的数总比左边的数大;
大数-小数 > 0,小数-大数 < 0.
6.倒数:乘积为1的两个数互为倒数;
注意:0没有倒数;
若 a≠0,那么 的倒数是 ;
若ab=1a、b互为倒数;
若ab=-1a、b互为负倒数.
7. 有理数加法法则:
(1)同号两数相加,取相同的符号,并把绝对值相加;
(2)乘法的结合律:(ab)c=a(bc);
(3)乘法的分配律:a(b+c)=ab+ac .
12.有理数除法法则:除以一个数等于乘以这个数的倒数;
注意:零不能做除数, .
13.乘方的定义:
(1)求相同因式积的运算,叫做乘方;
(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;
重点:**熟练进行整式的加减运算.
难点:1*同类项概念的理解.
2.*去括号时符号的确定.
第三章 一元一次方程
5.同类项:所含字母相同,并且相同字母的指数也相同的单项式叫做同类项。
6.合并同类项:将同类项的系数相加减,字母和字母的指数不变。
通过本章学习,应使学生达到以下学习目标:
1. 理解并掌握单项式、多项式、整式等概念,弄清它们之间的区别与联系。
2. 理解同类项概念,掌握合并同类项的方法,掌握去括号时符号的变化规律,能正确地进行同类项的合并和去括号。在准确判断、正确合并同类项的基础上,进行整式的加减运算。
29、投影与视图
七年级数学(上)知识点
第一章有理数
一.知识框架
二.知识概念
1.有理数:
(1)凡能写成 形式的数,都是有理数.
(2)有理数的分类: ① ②
注意:0即不是正数,也不是负数;
-a不一定是负数,+a也不一定是正数;
不是有理数;
2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.
3.相反数:
3.理解整式中的字母表示数,整式的加减运算建立在数的运算基础上;理解合并同类项、去括号的依据是分配律;理解数的运算律和运算性质在整式的加减运算中仍然成立。
4.能够分析实际问题中的数量关系,并用还有字母的式子表示出来。
在本章学习中,教师可以通过让学生小组讨论、合作学习等方式,经历概念的形成过程,初步培养学生观察、分析、抽象、概括等思维能力和应用意识。
13、轴对称
14、整式的乘除与分解因式
15、分式
4、八年级数学(下)知识点
16、二次根式
17、勾股定理
18、平行四边形
19、一次函数
20、数据的分析
5、九年级数学(上)知识点
21、一元二次方程
22、二次函数23、ຫໍສະໝຸດ 转24、圆25、概率
6、九年级数学(下)知识点
26、反比例函数
27、相似
28、锐角三角函数
14.有理数乘方的法则:
(1)正数的任何次幂都是正数;
(2)负数的奇次幂是负数;负数的偶次幂是正数;
注意:当n为正奇数时: (-a)n=-an或(a -b)n=-(b-a)n, 当n为正偶数时: (-a)n=an或 (a-b)n=(b-a)n.
15.科学记数法:把一个大于10的数记成a×10n的形式,(其中1 a 10)这种记数法叫科学记数法.
(1)只有符号不同的两个数,互为相反数,即a和- a互为相反数;
0的相反数还是0;
(2) a+b=0a、b互为相反数.
4.绝对值:
(1)绝对值的意义是数轴上表示某数的点离开原点的距离;
(2) 或 或 ;
正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;
绝对值的问题经常分类讨论,零既可以和正数一组也可以和负数一组;
(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;
(3)一个数与0相加,仍得这个数.
8.有理数加法的运算律:
(1)加法的交换律:a+b=b+a ;
(2)加法的结合律:(a+b)+c=a+(b+c).
9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b).
16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.
17.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字.
18.混合运算法则:先乘方,后乘除,最后加减.
本章内容要求学生正确认识有理数的概念,在实际生活和学习数轴的基础上,理解正负数、相反数、绝对值的意义所在。重点利用有理数的运算法则解决实际问题.体验数学发展的一个重要原因是生活实际的需要.激发学生学习数学的兴趣,教师培养学生的观察、归纳与概括的能力,使学生建立正确的数感和解决实际问题的能力。教师在讲授本章内容时,应该多创设情境,充分体现学生学习的主体性地位。
重点:**有理数的运算
难点: 1.*相反数的性质及利用相反数的意义进行多重符号的化简.
2.*绝对值概念的理解及其性质.利用数轴对含有的字母的绝对值进行化简.
3.**有理数加减时符号及其绝对值的确定.
4.*有理数的乘方时值的确定.例如2³=8,很多同学就计算为6.
5.**有理数的混合运算时的运算顺序及符号的计算.
人教新版初中数学知识点总结(全面最新)
一、七年级数学(上)知识点
1、有理数
2、整式的加减
3、一元一次方程
4、图形的认识初步
2、七年级数学(下)知识点
5、相交线与平行线
6、实数
7、平面直角坐标系
8、二元一次方程组
9、不等式与不等式组
10、数据的收集、整理与描述
3、八年级数学(上)知识点
11、三角形
12、全等三角形
第二章 整式的加减
一.知识框架 二.知识概念
1.单项式:数字或字母的乘积叫单项式.或虽含有除法运算,但除式中不含字母的一类代数式叫单项式.
2.单项式的系数与次数:单项式中不为零的数字因数,叫单项式的系数;单项式中所有字母指数的和,叫单项式的次数.
3.多项式:几个单项式的和叫多项式.
4.多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;多项式里,次数最高项的次数叫多项式的次数。
10 有理数乘法法则:
(1)两数相乘,同号为正,异号为负,并把绝对值相乘;
(2)任何数同零相乘都得零;
(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定,负因数为奇数个时乘积为负,负因数为偶数个时乘积为正.
11 有理数乘法的运算律:
(1)乘法的交换律:ab=ba;
相关文档
最新文档