三相四线有功电度表常见非正规接线分析

合集下载

低压三相四线电能计量装置错误连接线分析和判断

低压三相四线电能计量装置错误连接线分析和判断

低压三相四线电能计量装置错误连接线分析和判断低压三相四线电能计量装置是用于测量低压三相四线电能的设备,它的精度、可靠性和安全性对于电力系统的正常运行至关重要。

如果该设备错误连接线,将导致电能计量错误,甚至造成安全隐患。

因此,及时发现和排除错误连接线是电力系统维护和管理的重要任务。

本文将从错误连接线的原因、表现和应对措施等方面展开分析和判断。

一、错误连接线的原因错误连接线的原因非常多样化,主要包括以下几个方面:1.电缆接头或插头接触不良。

2.线路过载或短路,导致连接线烧损。

3.操作人员误判电源柜端子,将三相电线连接到错误的电源柜端子上。

4.操作人员误接三相电线的相序。

5.操作人员误将中性线与地线连接而导致相位错乱等。

以上原因都是由于操作人员的疏忽或者电力设备自身问题导致的。

出现这些问题后,将会引起明显的错误测量和计量数据。

1.电能计量表示值异常:低压三相四线电能计量装置的计量精度高,因此在正确连接线的情况下,其显示值应该非常接近实际值,即误差非常小。

但在错误连接线的情况下,显示值将会出现异常,误差明显。

2.三相电压或电流不平衡:在正常情况下,三相电压或电流应该平衡,而在错误连接线的情况下,往往会导致三相电压或电流不平衡。

这是由于三相电压或电流相位错乱,导致测量出的电能值错误。

3.电器设备损坏:错误连接线可能会导致电器设备受损或故障。

如果在错误连接线的情况下,某些电线过载或短路,将会导致电器设备受损或故障。

以上表现都是错误连接线的明显表现,应当引起操作人员的重视。

当发现错误连接线的情况时,应立即采取措施进行排除。

经验表明,以下措施可以有效解决错误连接线问题:1.检查接线是否正确:如果检查到接线错误,应当立即进行更正。

2.检查电器设备是否受损:如果检查到电器设备受损,应当采取相应措施进行维修或更换。

3.用万用表进行检测:使用万用表可以快速检测出连接线错误,以便确定是否需要进行更正。

4.翻看电力设备的相关手册:电力设备的相关手册中通常会有正确连接线的示意图,可以作为排除错误连接线问题的参考。

三相四线电能表常见错误接线分析

三相四线电能表常见错误接线分析

三相四线电能表常见错误接线分析摘要:三相四线电能表的功能主要在于精确计量电能,进而实现用电安全与保证计量的科学性,电能表常装置在客户终端。

要实现电能计量功能的准确、高效,就一定要确保电能表接线的正确。

本文分析了三相四线电能表常见的错误接线,并提出检测方法,以供同行业参考。

关键词:三相四线;电能表;接线0.引言通常来说,国内多采取相量法来检查三相四线电能表的错位接线,但因相量法操作较为复杂,对从业时间不长的用电稽查人员而言,实践难度大且易产生误判,缺乏时效性。

对比之下,压降测试技术通过高效的工作效率与精确的电能计量,已广泛应用于装表接电的实际工作中,对用户与供电单位的经济效益起到了有利保障。

1.常见错误接线一是电压断线,电能表二次回路基本是使用铜芯导线为材料,而入户电线主要以多股铝芯线为主。

两种材料对连接工艺有严格标准,即如果线路于连接时处理不慎,则会致使导线长时间运行在过压的状态,易发生氧化,从而导致电能表缺相运行,最终计量发生误差。

二是电压电流相位不同。

这种错误接线会使得电流互感器和电能表装置位于不同操作界面,在功率参数的作用下,电能表的运行不稳定,快慢不一。

对此可行抽压法,对三相四线正转情况施以相关核查、考量。

三是零线未接入,由于零线接触不适导致内部线路发生断开,在电量负荷不均时,电能表计量受到极大制约。

2.检测三相四线电能表电流互感器二次回路方法2.1检测原理对电流二次同路极性端各相电压幅值展开检测,得知测量值中电流同相电压最小。

如果Ua1、Ub1、Uc1分别对应流过电能表一元件、二元件、三元件的电流线圈电压降,可得出电能表每一电压线圈所加电压相位关系图。

可知Uaa1、Uab1、Uac1作为A相电压对应a1、b1、c1电压值,其中Ua同相的极性端电压幅值最低,同理可证,把极性端对各相位电压幅值测出,最小电压便是该相电流。

3.测试三相四线电能表常见错误接线方法3.1仪表准备通过压降测试技术测试时,测试仪表中应包括高精度的数字万用表、相序表、钳形电流表[1]。

三相四线电能表常见错误接线分析

三相四线电能表常见错误接线分析

三相四线电能表常见错误接线分析摘要:三相四线电能表的功能主要在于精确计量电能,进而实现用电安全与保证计量的科学性,电能表常装置在客户终端。

要实现电能计量功能的准确、高效,就一定要确保电能表接线的正确。

本文分析了三相四线电能表常见的错误接线,并提出检测方法,以供同行业参考。

关键词:三相四线;电能表;接线0.引言通常来说,国内多采取相量法来检查三相四线电能表的错位接线,但因相量法操作较为复杂,对从业时间不长的用电稽查人员而言,实践难度大且易产生误判,缺乏时效性。

对比之下,压降测试技术通过高效的工作效率与精确的电能计量,已广泛应用于装表接电的实际工作中,对用户与供电单位的经济效益起到了有利保障。

1.常见错误接线一是电压断线,电能表二次回路基本是使用铜芯导线为材料,而入户电线主要以多股铝芯线为主。

两种材料对连接工艺有严格标准,即如果线路于连接时处理不慎,则会致使导线长时间运行在过压的状态,易发生氧化,从而导致电能表缺相运行,最终计量发生误差。

二是电压电流相位不同。

这种错误接线会使得电流互感器和电能表装置位于不同操作界面,在功率参数的作用下,电能表的运行不稳定,快慢不一。

对此可行抽压法,对三相四线正转情况施以相关核查、考量。

三是零线未接入,由于零线接触不适导致内部线路发生断开,在电量负荷不均时,电能表计量受到极大制约。

2.检测三相四线电能表电流互感器二次回路方法2.1检测原理对电流二次同路极性端各相电压幅值展开检测,得知测量值中电流同相电压最小。

如果Ua1、Ub1、Uc1分别对应流过电能表一元件、二元件、三元件的电流线圈电压降,可得出电能表每一电压线圈所加电压相位关系图。

可知Uaa1、Uab1、Uac1作为A相电压对应a1、b1、c1电压值,其中Ua同相的极性端电压幅值最低,同理可证,把极性端对各相位电压幅值测出,最小电压便是该相电流。

3.测试三相四线电能表常见错误接线方法3.1仪表准备通过压降测试技术测试时,测试仪表中应包括高精度的数字万用表、相序表、钳形电流表[1]。

低压三相四线电能计量装置错误连接线分析和判断

低压三相四线电能计量装置错误连接线分析和判断

低压三相四线电能计量装置错误连接线分析和判断一、引言低压三相四线电能计量装置是电力系统中用于对电能进行计量和监测的重要设备。

正确的连接线对于电能计量的准确性和可靠性至关重要。

由于各种原因,有时会出现错误的连接线,导致电能计量出现异常甚至错误。

对于低压三相四线电能计量装置错误连接线的分析和判断显得十分重要。

二、错误连接线的原因分析1. 人为失误人为失误是导致错误连接线的主要原因之一。

在安装和维护过程中,操作人员可能由于疏忽大意或者不熟悉设备操作流程,错误地连接了计量装置的线路。

将A相接到了B相的端子上,将B相接到了C相的端子上,导致了线路的错误连接。

2. 设备故障设备故障也是导致错误连接线的原因之一。

如果计量装置的插头、端子等零部件出现了损坏或者老化问题,可能会导致连接线接触不良或者断路现象,从而导致错误连接线的出现。

3. 环境影响环境因素也会对连接线造成影响。

设备安装位置不当、工作环境湿度大、温度变化较大等都可能导致连接线的腐蚀、断裂等问题,进而产生错误的连接线。

4. 维修错误在设备维修过程中,如果维修人员操作不当,可能会导致连接线错误。

在更换设备零部件时,未按照正确的顺序连接线,或者没有正确地连接线固定,都可能导致错误连接线的产生。

5. 设计缺陷在一些情况下,设备本身存在设计缺陷,可能会导致连接线错误。

计量装置的插头设计不合理,易于误接线;端子标识不清晰,容易造成误操作等。

三、错误连接线的判断方法1. 监测报警现代的低压三相四线电能计量装置通常会设置监测报警功能,一旦发现连接线错误,会立即产生报警信号。

这是最直接、最有效的判断错误连接线的方法之一。

通过监测报警,操作人员可以及时发现问题并进行处理。

2. 电能计量数据异常错误连接线可能会导致电能计量数据出现异常。

通过对计量数据的定期分析和比对,可以发现异常数据并进行错误连接线的判断。

3. 线路自检设备通常也会提供线路自检功能,操作人员可以通过对设备进行线路自检,判断连接线是否正确。

三相四线电能计量装置常见错误接线及判断

三相四线电能计量装置常见错误接线及判断

三相四线电能计量装置常见错误接线及判断摘要:电能计量装置是电力企业实现电量结算及线损考核的重要工具,电能计量准确与否直接关系到发、供电企业的经济效益和社会效益,各发、供电企业在提高计量准确性方面都越来越重视。

而计量装置的接线是否正确,将直接影响到计量的准确性。

因此,掌握电能计量装置错误接线的分析方法极为重要。

关键词:计量装置三相四线电能表接线类型一、引言为确保供电企业和广大电力用户的利益不受损失,对于准确计量电能,使电能计量装置准确、稳定运行在计量管理工作中显得十分重要。

掌握电能计量装置接线检查是每个计量工作者必须具备的。

因此,计量人员、用电检查人员必须学会错误接线的判断方法。

造成电能计量装置的故障原因:1.构成电能计量装置的各组成部分出现故障。

2.电能计量装置接线错误。

3.人为抄读电能计量装置或进行电量计算出现的错误。

4.窃电行为引起的计量失准。

5.外界不可抗力因素造成的电能计量装置故障。

二、计量装置的原理电能计量是通过二次电路、互感器以及电能表按一定的结构组合从而实现在线电能计量功能。

在竞争愈发激烈的今天,在现代电力市场条件下为了能够保证公平、公正、公开的电能生产者和使用提供优越的服务,建立现代化的电能计量、交易以及电力系统是非常必要的。

作为提供电能计量的源头,对于电能的管理和计量是非常至关重要的作用。

电能计量装置是为计量电能所必须的计量器具和辅助设备的总体,包括电能表、负荷管理终端、配变监测终端、集中抄表集中器、计量柜(计量表箱)、电压互感器、电流互感器、实验接线盒以及二次回路等。

电能表按接线方式不同可分为:单相表、三相三线电能表、三相四线电能表。

三、常见的错误接线类型三相四线电能表四根电压线钳分别夹电能表2、5、8、10号接线端子,三根电流线钳夹1、4、7号端子,校验仪上则按颜色和顺序依次接好即可。

三相四线电能表在正确接线的情况下,计量功率为:P=P1+P2+P3=3IpUpcosφ电能表计量正常,若接线出现错误,则会出现漏计或错计电量,从而造成相应的损失。

三相四线电度表错误接线分析 (2)

三相四线电度表错误接线分析 (2)

三相四线电度表错误接线分析1 前言三相四线有功电度表在低压系统电能计量中应用较为普遍,其接线方式主要有直接接入和经过电流互感器间接接入两种方式,直接接入法主要用于负荷电流较小的用户,负荷较大的用户一般采用经电流互感器接入法。

采用电流互感器间接接入时,在实际接线中经常会出现电流互感器接反、电流电压不同相、电压回路断线等造成电度表不能准确计量等现象,本文针对以上几种现象进行了分析,并给出了判断依据。

2 三相四线有功电度表经电流互感器间接接入正确接线正确接线图及向量图如图1所示,此时三相有功功率的计算式为:P=U a I a COS(180°-Φa)+ U b I b COSΦb+ U c I c COSΦc假设三相负载对称,则此时有功功率为:P=UICOSΦ,是正确接线计量值的1/3,此时电度表明显走慢。

B、C 相CT接反与A相接反结果相同。

3.1.2 2CT接反3个CT中2个CT接反,假设为A、B相CT接反,其接线图及向量图如图3所示:此时三相有功功率的计算式为:P=U a I a COS(180°-Φa)+ U b I b COS(180°-Φb)+ U c I c COS(180°-Φc)假设三相负载对称,则此时有功功率为:P=-3UICOSΦ,是正确接线计量值的-1倍,此时电度表反转。

3.2电压、电流回路不同相3.2.1两元件电压、电流不同相假设A相电压、电流同相,其它两相电压、电流不同相,其接线图、向量图如图5所示。

图6所示接法中有功功率的计算式为P=U a I b COS(120°+Φb)+ U b I c COS(120°+Φc)+ U c I a COS(120°+Φa)假设三相负载对称,则此时有功功率为:P=3UICOS(120°+Φ),此时电度表反转,计量值为正确接法的-1/(1/2+ tanΦ* /2)图7所示接法中有功功率的计算式为P=U a I c COS(120°-Φc)+ U b I a COS(120°-Φa)+ U c I b COS(120°-Φb)假设三相负载对称,则此时有功功率为:P=3UICOS(120°-Φ)当0°<Φ<30°时,电度表反转,当Φ=30°时,电度表不转,当Φ>30°时,电度表正转,但比正确接线时慢,此时计量值为正确接法的1/(-1/2+ tanΦ* /2)3.4电压回路断线3.4.1一相电压断线假设为A相断线,其接线图如图8所示此时第一元件不计量,有功功率计算式为:P= U b I b COSΦb+ U c I c COSΦc假设三相负载对称,则此时有功功率为:P=2UICOSΦ,此时计量值为正确接法的2/3,电度表走慢。

三相四线有功电度表常见非正规接线分析

三相四线有功电度表常见非正规接线分析

三相四线有功电度表常见非正规接线分析245300 安徽省绩溪县供电局汪承平一、反相序接线三相四线有功电度表的反相序接线是非常普遍的一种非正规接法(见图1、图2)。

有一定的误差。

这是因为:第一,目前我国生产的三相四线有功电度表其内部结构即每个元件的组装是按电源正相序要求设计的,各元件产生的力矩是按三相正相序排列的,各元件间的力矩误差也考虑在最小范围。

如果按反相序接线,改变元件力矩误差,产生电度表的转速误差。

第二、一般电度表在室内校表台上校验时,都是按正相序接线调整校验误差。

试验表明,反相序的接线,其误差改变在土2.5~0.5%左右,如果是经电流互感器接入加上倍率,将产生更大的误差。

二、电压电流线共用接线通过电流互感器接线的三相四线有功电度表,电压线与电流线共用接线方与式,在农电计量中为数不少。

这种方法省去三根电压引线,将电流互感器K1相连,通过电流二次线,将电度表电压桩头与电流桩头连片连接接入(见电源L1图3)。

这种接法旨在减少二次接线根数。

但是,这种按法非常危险:第一,电流互感器二次回路不得接地,否则,引起短路,烧坏电度表。

然而规程规定,互感器二次回路必须有一点接地。

第二,因电度表的电压、电流接线端子和互感器二次回路均带 380/220V电压,在带电工作中、要时刻注意不能误碰。

第三,接到电度表的零线不能与其它任何一根搞错或调换,否则电度表电流线卷因短路而烧坏,同时电流互感器因二次回路接入电度表电压线卷,使回路阻抗无限增大而趋于开路状态,这些都是很危险的。

三、不接导线或导线接触不好一般人们认为,三相电源都是对称的,因此,每相电压都相等,中性线不接或随便接到配电盘的角铁或外壳上,而不是将变压器中性线直接并且是牢靠地接入(见图4,图5)。

实际上负载是不可能绝对平衡的,因此即产生电压偏差。

当电度表的零线断开或未接时,电度表的每个元件上的电压将出现不平衡。

产生误差。

下面试以两种情况来分析。

(一)在负载对称时,假设三相中某一根(如B相)电压线在电表前断开(见,第五元件B相的电压是出,第三图5)此时电度表第一元件A相的电压是1/2UAC元件c相的电压是。

电能计量装置三相四线错误接线分析

电能计量装置三相四线错误接线分析

电能计量装置三相四线错误接线分析【摘要】为确保电能计量的公平、公正,电能计量装置必须正确接线、准确计量,因此避免电能计量装置的错误接线显得尤为重要,而供电企业的大多数电能均是被三相四线制的用户消耗掉的,对这些用户的电能计量装置进行错误接线分析会对供电企业产生举足轻重的作用,并对错误接线的电能计量装置按正确接线方式进行电量追退,能更好地维护发、供、用电三方的合法权益。

【关键词】计量装置错误接线分析1 电能计量装置的基础知识1.1 电能计量装置的概念电能计量装置包含各种类型电能表,计量用电压、电流互感器及其二次回路、电能计量柜(箱)等。

1.2 电能表的分类电能表的分类一般有以下五种:按使用电源性质:分为交流电能表和直流电能表。

按结构及原理:分为感应式、电子式和机电式。

按准确度等级:分为普通级和精密级。

普通级电能表一般用于测量电能,常见等级有0.5、1.0、2.0 、3.0 级;精密级电能表则主要作为标准表,用于校验普通电能表,常见等级有0.01、0.05、0.2 级等按用途:分为工业与民用电能表、电子标准电能表及特殊用途电能表等。

按接线:分为单相两线有功电能表、三相四线有功电能表、三相三线有功电能表、三相三线60°无功电能表、三相四线90°无功电能表。

1.3 电能表用电压、电流互感器分类及介绍(1)电能表用互感器按用途分为:电压互感器和电流互感器。

(2)电能表用互感器按接线分①电能表用电压互感器按接线分为单相电压互感器和三相电压互感器。

②电能表用电流互感器按接线分为:单一变比的电流互感器、有两个变比的电流互感器、还有多抽头式的电流互感器。

2 三相四线电能计量装置的正确接线2.1 三相四线有功电能表的接线方式常见的三相四线有功电能表的共同特点是有三个规格相同的驱动元件,其接线方式是:其电流Ia、Ib 、Ic 分别通过第一元件、第二元件和第三元件的电流线圈,电压Ua、Ub、Uc 分别并接于第一元件、第二元件和第三元件的电压线圈上,因此三相四线电路可看成由三个单相电路组成,所以总的电能为各相电能(以功率表示)之和。

低压三相四线电能计量装置错误连接线分析和判断

低压三相四线电能计量装置错误连接线分析和判断

低压三相四线电能计量装置错误连接线分析和判断电能计量装置是电力系统中必不可少的设备之一。

然而,在现实生产中,由于人员操作不当、设备故障、配电系统改造等原因,电能计量装置的连线错误情况时有发生。

其中,低压三相四线电能计量装置错误连接线是一种比较常见的问题。

下面将从错误连接线的原因、影响和解决方法三个方面进行分析和判断。

一、错误连接线的原因1、现场施工疏忽在电气设备安装、改造和维修过程中,有时候为了简单快捷,施工人员可能会选择不按照规定的接线方式进行连线,导致出现错误连接线的情况。

2、设备故障引起在设备本身存在故障的情况下,电能计量装置也会出现误差,而且可能会引起错误连接线。

例如,接线端子松动、连接线路短路、计量装置内部部件损坏等。

3、电气工程改造在电气工程改造过程中,可能会涉及到现有设备的移位、重新接线或更换,如果在改造过程中没有按照原有接线方式进行连线,则也会引起错误连接线。

1、计量误差增大错误连接线会导致电能计量装置的工作出现误差,进而产生计量误差。

这种误差可能是累积误差,也可能是单次测量误差。

误差的增大会导致电能计量不准确,进而影响到用户的用电量计量和电费计算。

2、计量装置故障错误连接线在一定程度上会影响计量装置的正常工作,还可能引起设备故障,如果不及时处理,就会给设备带来更严重的影响,甚至影响电力系统的安全运行。

1、查明原因,重新接线发现错误连接线后,首先要查明具体原因,了解接线方式和接线要求,然后重新按照规定的接线方式进行接线,保证接地可靠、保护完好。

2、加强施工管理,质量控制加强施工管理是避免出现错误连接线的关键,严格执行电气设备施工规定,对施工过程进行质量控制,保证按照标准规定接线。

3、定期检查维护定期检查和维护电能计量装置的连线状态,及时发现和处理错误连接线,确保计量装置的正常工作。

总之,低压三相四线电能计量装置错误连接线是一种常见的设备故障,对电力系统的安全稳定运行有重要影响。

因此,应加强施工管理,保证设备按照规定标准进行接地,同时定期检查维护设备,确保电气设备的正常运行。

三相四线有功电度表错误接线分析与判断

三相四线有功电度表错误接线分析与判断

三相四线有功电度表错误接线分析与判断刘艳红重庆建峰化肥公司重庆涪陵 408601摘要:本文针对三相四线有功电度表经过电流互感器间接接入低压系统计量时容易出现的几种错误接法进行了分析,并提出了判断依据。

关键词:三相四线有功电度表接法电流互感器1 前言三相四线有功电度表在低压系统电能计量中应用较为普遍,其接线方式主要有直接接入和经过电流互感器间接接入两种方式,直接接入法主要用于负荷电流较小的用户,负荷较大的用户一般采用经电流互感器接入法。

采用电流互感器间接接入时,在实际接线中经常会出现电流互感器接反、电流电压不同相、电压回路断线等造成电度表不能准确计量等现象,本文针对以上几种现象进行了分析,并给出了判断依据。

2 三相四线有功电度表经电流互感器间接接入正确接线正确接线图及向量图如图1所示,此时三相有功功率的计算式为:P=U a I a COS(180°-Φa)+ U b I b COSΦb+ U c I c COSΦc假设三相负载对称,则此时有功功率为:P=UICOSΦ,是正确接线计量值的1/3,此时电度表明显走慢。

B、C相CT接反与A相接反结果相同。

3.1.2 2CT接反3个CT中2个CT接反,假设为A、B相CT接反,其接线图及向量图如图3所示:此时三相有功功率的计算式为:P=U a I a COS(180°-Φa)+ U b I b COS(180°-Φb)+ U c I c COS(180°-Φc)假设三相负载对称,则此时有功功率为:P=-3UICOSΦ,是正确接线计量值的-1倍,此时电度表反转。

3.2电压、电流回路不同相3.2.1两元件电压、电流不同相假设A相电压、电流同相,其它两相电压、电流不同相,其接线图、向量图如图5所示。

图6所示接法中有功功率的计算式为P=U a I b COS(120°+Φb)+ U b I c COS(120°+Φc)+ U c I a COS(120°+Φa)假设三相负载对称,则此时有功功率为:P=3UICOS(120°+Φ),此时电度表反转,计量值为正确接法的-1/(1/2+ tanΦ* /2)图7所示接法中有功功率的计算式为P=U a I c COS(120°-Φc)+ U b I a COS(120°-Φa)+ U c I b COS(120°-Φb)假设三相负载对称,则此时有功功率为:P=3UICOS(120°-Φ)当0°<Φ<30°时,电度表反转,当Φ=30°时,电度表不转,当Φ>30°时,电度表正转,但比正确接线时慢,此时计量值为正确接法的1/(-1/2+ tanΦ* /2)3.4电压回路断线3.4.1一相电压断线假设为A相断线,其接线图如图8所示此时第一元件不计量,有功功率计算式为:P= U b I b COSΦb+ U c I c COSΦc假设三相负载对称,则此时有功功率为:P=2UICOSΦ,此时计量值为正确接法的2/3,电度表走慢。

三相四线电能表错误接线分析及其判断

三相四线电能表错误接线分析及其判断

三相四线电能表错误接线分析及判断三相四线电度表接线方式的分析与判断1、三相四线电度表标准接线方式P=P1+P2+P3=U A I A cos ψA + U B I B cos ψB + U C I C cos ψC =3 UI cos ψ负载120o120o120oU AU BU CI AI BI C ΨAΨBΨC(a)(b)2、三相四线电度表电压正相序A 、B 、C 而电流正相序是B 、C 、A 的接线方式P=P1+P2+P3=U A I B cos (120°+ψB )+ U B I C cos (120°+ψC )+ U C I A cos (120°+ψA ) =3 UI cos (120°+ψ)=-3 UI cos (60°-ψ)故当Ψ在0°~60°内,呈反转状态。

负载120o120o120oU AU BU CI AI BI C ΨAΨBΨC(a)(b)P=P1+P2+P3=U A I C cos (120°-ψC )+ U B I A cos (120°-ψA )+ U C I B cos (120°-ψB ) =3 UI cos (120°-ψ)=-3 UI cos (60°+ψ)故当Ψ在0°~30°内,呈反转状态。

负载120o120o120oU AU BU CI AI BI C ΨAΨBΨC(a)(b)4、三相四线电度表电压正相序B 、C 、A 而电流正相序是A 、B 、C 的接线方式P=P1+P2+P3=U B I A cos (120°-ψA )+ U C I B cos (120°-ψB )+ U A I C cos (120°-ψC ) =3 UI cos (120°-ψ)=-3 UI cos (60°+ψ)故当Ψ在0°~30°内,呈反转状态。

三相四线电度表错误接线分析报告

三相四线电度表错误接线分析报告

三相四线电度表错误接线的分析与判断动力工程部电气车间二O一一年九月三相四线电度表接线方式的分析与判断1、三相四线电度表标准接线方式P=P1+P2+P3=U A I A cos ψA + U B I B cos ψB + U C I C cos ψC=3 UI cos ψ负载120o120o 120o U AU B U C I AI B I CΨAΨB ΨC (a)(b)2、三相四线电度表电压正相序A 、B 、C 而电流正相序是B 、C 、A 的接线方式P=P1+P2+P3=U A I B cos (120°+ψB )+ U B I C cos (120°+ψC )+ U C I A cos (120°+ψA )=3 UI cos (120°+ψ)=-3 UI cos (60°-ψ)故当Ψ在0°~60°,呈反转状态。

负载120o120o 120o U AU B U C I AI B I CΨAΨB ΨC (a)(b)3、三相四线电度表电压正相序A 、B 、C 而电流正相序是C 、A 、B 的接线方式P=P1+P2+P3=U A I C cos (120°-ψC )+ U B I A cos (120°-ψA )+ U C I B cos (120°-ψB )=3 UI cos (120°-ψ)=-3 UI cos (60°+ψ)故当Ψ在0°~30°,呈反转状态。

负载120o120o 120o U AU B U C I AI B I CΨAΨB ΨC (a)(b)4、三相四线电度表电压正相序B 、C 、A 而电流正相序是A 、B 、C 的接线方式P=P1+P2+P3=U B I A cos (120°-ψA )+ U C I B cos (120°-ψB )+ U A I C cos (120°-ψC )=3 UI cos (120°-ψ)=-3 UI cos (60°+ψ)故当Ψ在0°~30°,呈反转状态。

三相四线表易发生哪些接线错误

三相四线表易发生哪些接线错误

三相四线表易发生哪些接线错误
(1)电压线圈任意两相接线对调,会造成电能表不走或运转不正常。

(2)电压线圈的中性点与中性线未接或断开,在中性线无电流时,不会引起计量误差;若中性线有电流就会产生计量误差。

(3)电压线圈任一相断线,此时若三相负载平衡时,电能表少计电量1/3;若此时电压线圈的中性点与中性线未接或断开,则电能表少计电量2/3。

电工之家
(4)电流线圈任一相极性接反,若在三相平衡时,则少计电量2/3。

(5)电流线圈任一相未接或断线,此时少计电量1/3。

三相四线有功电度表错误接线分析与判断

三相四线有功电度表错误接线分析与判断

三相四线有功电度表错误接线分析与判断1、三相四线有功电度表经电流互感器间接接入正确接线正确接线图及向量图如图1所示,此时三相有功功率的计算式为:P=U a I a COS(180°-Φa)+ U b I b COSΦb+ U c I c COSΦc假设三相负载对称,则此时有功功率为:P=UICOSΦ,是正确接线计量值的1/3,此时电度表明显走慢。

B、C相CT接反与A相接反结果相同。

3.1.2 2CT接反3个CT中2个CT接反,假设为A、B相CT接反,其接线图及向量图如图3所示:此时三相有功功率的计算式为:P=U a I a COS(180°-Φa)+ U b I b COS(180°-Φb)+ U c I c COS(180°-Φc)假设三相负载对称,则此时有功功率为:P=-3UICOSΦ,是正确接线计量值的-1倍,此时电度表反转。

3.2电压、电流回路不同相3.2.1两元件电压、电流不同相假设A相电压、电流同相,其它两相电压、电流不同相,其接线图、向量图如图5所示。

图6所示接法中有功功率的计算式为P=U a I b COS(120°+Φb)+ U b I c COS(120°+Φc)+ U c I a COS(120°+Φa)假设三相负载对称,则此时有功功率为:P=3UICOS(120°+Φ),此时电度表反转,计量值为正确接法的-1/(1/2+ tanΦ* /2)图7所示接法中有功功率的计算式为P=U a I c COS(120°-Φc)+ U b I a COS(120°-Φa)+ U c I b COS(120°-Φb)假设三相负载对称,则此时有功功率为:P=3UICOS(120°-Φ)当0°<Φ<30°时,电度表反转,当Φ=30°时,电度表不转,当Φ>30°时,电度表正转,但比正确接线时慢,此时计量值为正确接法的1/(-1/2+ tanΦ* /2) 3.4电压回路断线3.4.1一相电压断线假设为A相断线,其接线图如图8所示此时第一元件不计量,有功功率计算式为:P= U b I b COSΦb+ U c I c COSΦc假设三相负载对称,则此时有功功率为:P=2UICOSΦ,此时计量值为正确接法的2/3,电度表走慢。

三相四线有功电能表的几种误接线计量分析

三相四线有功电能表的几种误接线计量分析

三相四线有功电能表的几种误接线计量分析三相四线有功电能表是市场上常见的计量仪表,其主要用于实现有功电能计量。

但是,误接线时会导致计量不准确,甚至无法正常计量。

因此,本文将探讨三相四线有功电能表的几种误接线及其计量分析。

一、电流接反误接线电流接反误接线是指在三相四线有功电能表的接线过程中,将电流接线反向接入到了电能表上。

这种接线错误可能会导致电能表不能正常计量,或者计量误差较大。

其计量分析可从电路结构和电流技术两个方面进行探讨。

1.电路结构分析三相四线有功电能表主要由电流电路和电压电路两部分组成。

其中,电流电路通过互感器感应三相电流,将其变换为与电压等效的电压信号。

而电压电路则通过电压分压器将接入的三相电压分压为低电平信号。

这两个电路均结合了控制电路和电子计量单元,构成了完整的计量系统。

如果将电流接反,则互感器感应的电流与实际电流方向相反,导致电路中电压信号的相位错误。

进而,改变整个计量系统中的电量积分方向,导致能量计量的出错。

2.电流技术分析在三相电路中,每个电源的电流方向都是不同的。

若将电流接反,则会导致三相电流的相位相反,包括电流的大小及其相位角。

因此,在计量分析中还需要考虑三相电流的相位和相对大小。

三相电流在不同的相位位置上具有不同的时间加权系数和相位角,因此不同时段的计算结果会有所不同。

二、电压接反误接线与电流接反误接线相似,电压接反误接线也会对三相四线有功电能表的计量结果产生较大影响,进而产生类似的计量误差。

计量分析可从电路结构和电压技术两个方面进行探讨。

1.电路结构分析电压接线与电流接线相似,均分为电压电路和电流电路两部分。

当电压接反时,电压电路的输入信号与正常接线情况下输入的信号相反,使得计量系统中的电量积分方向变化,从而影响电能表的计量准确性。

2.电压技术分析电压技术分析包括各相电压的相位、电压比例系数和有效值。

当其中一相电压接反时,其他电压的相对相位就发生了变化,进而导致与电流相关联的电功率计算错误。

三相四线有功电能表的几种误接线计量分析

三相四线有功电能表的几种误接线计量分析

三相四线有功电能表的几种误接线计量分析发布时间:2021-09-06T11:30:24.373Z 来源:《中国电力企业管理》2021年5月作者:李娟[导读] 在供电系统当中,三相四线有功电能表是一种重要的计量装置。

但是,在安装这一装置时,却存在几种常见误接线问题。

一旦发生此类问题,势必会造成电能表计量错误,非常不利于供电服务质量的提升。

本文首先介绍了三相四线有功电能表正确接线时的计量分析,之后分别针对几种误接线计量问题进行了相关探究,最后介绍了一种较为简便的接线方式,希望能够为大家带来有价值的参考。

大唐山西发电有限公司太原第二热电厂李娟山西省太原市 030041摘要:在供电系统当中,三相四线有功电能表是一种重要的计量装置。

但是,在安装这一装置时,却存在几种常见误接线问题。

一旦发生此类问题,势必会造成电能表计量错误,非常不利于供电服务质量的提升。

本文首先介绍了三相四线有功电能表正确接线时的计量分析,之后分别针对几种误接线计量问题进行了相关探究,最后介绍了一种较为简便的接线方式,希望能够为大家带来有价值的参考。

关键词:三相四线有功电能表;几种误接线计量;解决措施引言:在供电计量工作中,三相四线有功电能表的计量精准性直接关系到供电质量及其整体效益。

但是,这对于接线人员的专业水平、操作技能和实践经验都是一种极大的考验。

一旦出现误接线,电度表就会出现慢走、倒走等现象,从而造成计量误差,还极有可能引发短路事故。

因此,有必要针对几种三相四线有功电能表误接线及其计量问题进行系统性研究,力争提出科学有效的解决措施。

一、正确接线状态下的计量分析在低压三相四线有功电能表计量的过程中,无需使用电压互感器,但通常需要为其配备电流互感器。

当低压经电流互感器与三相四线有功电能表相连接时,其正确接线方法如图1所示:图1 正确接线方法示意图先将电流IA、IB、IC分别与电能表当中第一元件、第二元件、第三元件的电流线圈相连在一起,再将电压UAN、UBN、UCN分别与第一元件、第二元件、第三元件的电压线圈连接在一起[1]。

论述三相四线有功电能表错误接线分析与判断

论述三相四线有功电能表错误接线分析与判断
两只电流互感器极性接反,如果在三只电流互感器中有两 只出现极性接反的为A相和B相,如果三相负载对称,则有功功
率为正确接线计量的-1/3,电能表反转明显。如果极性接反的 为B相与C相,则其实际反应情况与A相、B项接反情况相反。
三只电流互感器全部接反,此情况下如果三相负载对称, 则有功功率为正确接线计量-1倍,电能表出现反转。
1 三相四线有功电能表正确接线方式分析 1.1 三相四线有功电能表零线接法 使用直接接入法,零线经过10#或11#接线端子直接接到开
关。这种接线方式下,三相电压与电流对称与否,在中性点直 接接地三相四线电路中都可对电路有功电能实现准确计量。而 采取一进一出方式对单相电能表零线接线,剪断电源零线,然 后接入电能表,由于电源零线被剪断后,容易导致接入电能表 零线端子的过程中出现接触不良、断线等问题。此情况下,如 果负荷不对称,则无法保证电能表计量准确性,且电路中性点 发生位移,会降低某些相的电压,而一些相电压则会升高,从 而将电器设备烧坏,甚至酿成严重的火灾事故,其安全隐患较 大。因此,在三相四线有功电能表零线接线中,不可将其剪断 接入,而要采用交接法进行[1]。
2.2 电流、电压回路不同相 两元件电流、电压不同相,A相电流、电压是同一相,B 相和C相电压、电流不同相,此时如果为三相负载对称,则有 功功率为零,电能表无法运转。B相和C相同相,其他两相不同 相时,分析方法与结论相同。 三元件电流、电压不同相,此时三相负载对称,如果Φ在 0~60°范围内,则电能表反转,计量值失准。三元件电流、电 压不同相,另一种情况在三相负载对称的情况下,Φ在0~30° 之间,则电能表反转;Φ为30°,则电能表不转;Φ>30°, 电能表正转,相比正确接线时转速比较慢[2]。 2.3 电压、电流回路断线 首先是一相电压或电流断线,此时A相电压断线,其元件 不计量,如果为三相负载对称,计量值为正确接线计量的2/3, 电能表走慢。其次是两相电压、电流断线,如果断线为A、B相 电压、电流断线,则两相元件都不计量,计量值为正确接线计 量的1/3,同样电能表走慢。最后,三相电压、电流都断线,此时 三相元件都不计量,电能表不走。在三相四线电能表中,一个 元件电流、电压或者各相元件同时失流失压,元件不计量,且 少计量值为正确接线计量1/3。 2.4 零线断线 负载不平衡、三相四线有功电能表没有接入零线的情况 下,正常情况下电能表不会出现计量误差。而在三相不对称的 情况下,则会产生计量误差,且不同于接零线时误差。而实际 情况中多为三相不对称,因此会产生误差。 因此,在装表接电前,需准备好标准接线图,认真核对电 能表型号、电压等级和极性等,装表过程中二次回路接线需穿 对应标号,按相色接入电能表,避免接线错误。现场需使用相 关仪器仪表检查计量装置,实现正确接线。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三相四线有功电度表常见非正规接线分析
————————————————————————————————作者:————————————————————————————————日期:
三相四线有功电度表常见非正规接线分析
245300 安徽省绩溪县供电局汪承平
一、反相序接线
三相四线有功电度表的反相序接线是非常普遍的一种非正规接法(见图1、图2)。

有一定的误差。

这是因为:第一,目前我国生产的三相四线有功电度表其内部结构即每个元件的组装是按电源正相序要求设计的,各元件产生的力矩是按三相正相序排列的,各元件间的力矩误差也考虑在最小范围。

如果按反相序接线,改变元件力矩误差,产生电度表的转速误差。

第二、一般电度表在室内校表台上校验时,都是按正相序接线调整校验误差。

试验表明,反相序的接线,其误差改变在土2.5~0.5%左右,如果是经电流互感器接入加上倍率,将产生更大的误差。

二、电压电流线共用接线
通过电流互感器接线的三相四线有功电度表,电压线与电流线共用接线方式,在农电计量中为数不少。

这种方法省去三根电压引线,将电流互感器K

1相连,通过电流二次线,将电度表电压桩头与电流桩头连片连接接入(见电源L
1
图3)。

这种接法旨在减少二次接线根数。

但是,这种按法非常危险:第一,电流互感器二次回路不得接地,否则,引起短路,烧坏电度表。

然而规程规定,互感器二次回路必须有一点接地。

第二,因电度表的电压、电流接线端子和互感器二次回路均带 380/220V电压,在带电工作中、要时刻注意不能误碰。

第三,接到电度表的零线不能与其它任何一根搞错或调换,否则电度表电流线卷因短路而烧坏,同时电流互感器因二次回路接入电度表电压线卷,使回路阻抗无限增大而趋于开路状态,这些都是很危险的。

三、不接导线或导线接触不好
一般人们认为,三相电源都是对称的,因此,每相电压都相等,中性线不接或随便接到配电盘的角铁或外壳上,而不是将变压器中性线直接并且是牢靠地接入(见图4,图5)。

实际上负载是不可能绝对平衡的,因此即产生电压偏差。

当电度表的零线断开或未接时,电度表的每个元件上的电压将出现不平衡。

产生误差。

下面试以两种情况来分析。

(一)在负载对称时,假设三相中某一根(如B 相)电压线在电表前断开(见图5)此时电度表第一元件A 相的电压是1/2U AC ,第五元件B 相的电压是出,第三
元件c 相的电压是。

负载的实际功率是:
P=P A +P B +P C =3Uicosø
此时电度表所测到的功率是:
P ′A =
·I A cos (30°-ø)
P ′B =0
P ′C =
· I A cos (30°+ø)
P ′= P ′A + P ′B + P ′C =
很明显,P ′<P ,如果不考虑其它因素,误差△P 是-50%,如按常规接法即零线接入电度表时其△P 应是-33%,即少计一半电量。

(二)当三相负载不平衡时,中性线即有不平衡电流通过,同时有电压在零
,电度表将有接线误差△P。

线上产生偏差位移即V
ON
这个△P误差在-2.5~5.0%加上倍率则更大。

四、用二个电流互感器计量三相四线有功电能
见图6,利用A、C两相的合成电流代替B相电流,而省去一台电流互感器。

这种接法,当三相负载不平衡,中性线出现不平衡电流,出现较大误差。

其误差计算式:
试验表明,此类接线将引起10%~15%左右的附加误差。

五、小负载用大容量电度表或电流互感器
用三相四线电度表,供电部门规定,其负载平均不能低于额定容量的25%。

六、用三相四线有功电度表代替三相四线有功电度表
三相三线有功电度表是靠二个元件计量三相电能的(图7),其表达式为:
P 1=U
AB
·I
A
cos(30°+ø)
P 2=U
CB
·I
C
cos(30°-ø)
P
总=P
1
+P
2
=3U·Icosø当三相负载不平衡时,I
N
≠0时用三相三线有功电度表
就不能完全计量。

因为此时将要产生计量误差△P。

七、电压线采用熔断器保护按法
如图8所示,在下列情况时,则是就会造成麻烦。

1.某相熔断或无意拉开后,则电量就少计。

2.某些用户用电不自觉,随着拉开保险窃电,将会给供电部门造成损失。

3.即使用封闭方式将熔断器保护封锁。

一旦熔断某相以发现更会造成长时间量电损失.
八、电流互感器回路线共接方式
电流互感器回路线共接方式是目前广泛采用的一种接线方法(见图9)。

这种接法使电流回路线简化,在三相基本平衡时,能正确计量电能。

但是这种结线,须注意如下情况:
其一,电流互感器的共用回路线必须连接良好。

因为这根回路线就是三只电流互感器公共也是唯一的一根回路线,如若接触不良或断开将出现较大误差或使流变开路。

其二,三相负载要尽可能平衡,否则在二次回路中线中产生不平衡电流,使计算产生误差。

其三,这根共用回路线不能与其它任一根电流或电压二次线混淆,否则不是烧坏电表就是造成计量不准。

九、正确的接线方法
下面介绍两种正确接线。

一种。

是直接法(图10);另一种是经电流互感器接入法(图11)。

图10的接法主要考虑要按正相序接入。

图11的接法,其间采用一个万用接线盒(市场有售),目的是便于现场接表、直线和周期调换表,既安全可靠又不需停电,不影响用户动用电,是值得广泛推广采用的一种接线方法。

相关文档
最新文档