《传感器原理与传感器技术》课后答案

合集下载

传感器原理及应用课后习题答案(吴建平)

传感器原理及应用课后习题答案(吴建平)

传感器原理及应用课后习题答案吴建平第1章概述1.1 什么是传感器?按照国标定义,“传感器”应该如何说明含义?1.2 传感器由哪几部分组成?试述它们的作用及相互关系。

1.3 简述传感器主要发展趋势,并说明现代检测系统的特征。

1.4 传感器如何分类?按传感器检测的范畴可分为哪几种?1.5 传感器的图形符号如何表示?它们各部分代表什么含义?应注意哪些问题?1.6 用图形符号表示一电阻式温度传感器。

1.7 请例举出两个你用到或看到的传感器,并说明其作用。

如果没有传感器,应该出现哪种状况。

1.8 空调和电冰箱中采用了哪些传感器?它们分别起到什么作用?答案:1.1答:从广义的角度来说,感知信号检出器件和信号处理部分总称为传感器。

我们对传感器定义是:一种能把特定的信息(物理、化学、生物)按一定规律转换成某种可用信号输出的器件和装置。

从狭义角度对传感器定义是:能把外界非电信息转换成电信号输出的器件。

我国国家标准(GB7665—87)对传感器(Sensor/transducer)的定义是:“能够感受规定的被测量并按照一定规律转换成可用输出信号的器件和装置”。

定义表明传感器有这样三层含义:它是由敏感元件和转换元件构成的一种检测装置;能按一定规律将被测量转换成电信号输出;传感器的输出与输入之间存在确定的关系。

按使用的场合不同传感器又称为变换器、换能器、探测器。

1.2答:组成——由敏感元件、转换元件、基本电路组成;关系,作用——传感器处于研究对象与测试系统的接口位置,即检测与控制之首。

传感器是感知、获取与检测信息的窗口,一切科学研究与自动化生产过程要获取的信息都要通过传感器获取并通过它转换成容易传输与处理的电信号,其作用与地位特别重要。

1.3答:(略)答:按照我国制定的传感器分类体系表,传感器分为物理量传感器、化学量传感器以及生物量传感器三大类,含12个小类。

按传感器的检测对象可分为:力学量、热学量、流体量、光学量、电量、磁学量、声学量、化学量、生物量、机器人等等。

《传感器原理与传感器技术》课后答案

《传感器原理与传感器技术》课后答案

第1章传感器与检测技术基础思考题答案l.检测系统由哪几部分组成? 说明各部分的作用。

答:一个完整的检测系统或检测装置通常是由传感器、测量电路和显示记录装置等几部分组成,分别完成信息获取、转换、显示和处理等功能。

当然其中还包括电源和传输通道等不可缺少的部分。

下图给出了检测系统的组成框图。

检测系统的组成框图传感器是把被测量转换成电学量的装置,显然,传感器是检测系统与被测对象直接发生联系的部件,是检测系统最重要的环节,检测系统获取信息的质量往往是由传感器的性能确定的,因为检测系统的其它环节无法添加新的检测信息并且不易消除传感器所引入的误差。

测量电路的作用是将传感器的输出信号转换成易于测量的电压或电流信号。

通常传感器输出信号是微弱的,就需要由测量电路加以放大,以满足显示记录装置的要求。

根据需要测量电路还能进行阻抗匹配、微分、积分、线性化补偿等信号处理工作。

显示记录装置是检测人员和检测系统联系的主要环节,主要作用是使人们了解被测量的大小或变化的过程。

2.什么是传感器?它由哪几个部分组成?分别起到什么作用?解:传感器是一种以一定的精确度把被测量转换为与之有确定对应关系的、便于应用的某种物理量的测量装置,能完成检测任务;传感器由敏感元件,转换元件,转换电路组成。

敏感元件是直接感受被测量,并输出与被测量成确定关系的物理量;转换元件把敏感元件的输出作为它的输入,转换成电路参量;上述电路参数接入基本转换电路,便可转换成电量输出。

3.传感器技术的发展动向表现在哪几个方面?解:(1)开发新的敏感、传感材料:在发现力、热、光、磁、气体等物理量都会使半导体硅材料的性能改变,从而制成力敏、热敏、光敏、磁敏和气敏等敏感元件后,寻找发现具有新原理、新效应的敏感元件和传感元件。

(2)开发研制新型传感器及组成新型测试系统①MEMS技术要求研制微型传感器。

如用于微型侦察机的CCD传感器、用于管道爬壁机器人的力敏、视觉传感器。

②研制仿生传感器③研制海洋探测用传感器④研制成分分析用传感器⑤研制微弱信号检测传感器(3)研究新一代的智能化传感器及测试系统:如电子血压计,智能水、电、煤气、热量表。

传感器原理及应用课后习题答案(吴建平)

传感器原理及应用课后习题答案(吴建平)

传感器原理及应用课后习题答案吴建平第1章概述1.1 什么是传感器?按照国标定义,“传感器”应该如何说明含义?1.2 传感器由哪几部分组成?试述它们的作用及相互关系。

1.3 简述传感器主要发展趋势,并说明现代检测系统的特征。

1.4 传感器如何分类?按传感器检测的范畴可分为哪几种?1.5 传感器的图形符号如何表示?它们各部分代表什么含义?应注意哪些问题?1.6 用图形符号表示一电阻式温度传感器。

1.7 请例举出两个你用到或看到的传感器,并说明其作用。

如果没有传感器,应该出现哪种状况。

1.8 空调和电冰箱中采用了哪些传感器?它们分别起到什么作用?答案:1.1答:从广义的角度来说,感知信号检出器件和信号处理部分总称为传感器。

我们对传感器定义是:一种能把特定的信息(物理、化学、生物)按一定规律转换成某种可用信号输出的器件和装置。

从狭义角度对传感器定义是:能把外界非电信息转换成电信号输出的器件。

我国国家标准(GB7665—87)对传感器(Sensor/transducer)的定义是:“能够感受规定的被测量并按照一定规律转换成可用输出信号的器件和装置”。

定义表明传感器有这样三层含义:它是由敏感元件和转换元件构成的一种检测装置;能按一定规律将被测量转换成电信号输出;传感器的输出与输入之间存在确定的关系。

按使用的场合不同传感器又称为变换器、换能器、探测器。

1.2答:组成——由敏感元件、转换元件、基本电路组成;关系,作用——传感器处于研究对象与测试系统的接口位置,即检测与控制之首。

传感器是感知、获取与检测信息的窗口,一切科学研究与自动化生产过程要获取的信息都要通过传感器获取并通过它转换成容易传输与处理的电信号,其作用与地位特别重要。

1.3答:(略)答:按照我国制定的传感器分类体系表,传感器分为物理量传感器、化学量传感器以及生物量传感器三大类,含12个小类。

按传感器的检测对象可分为:力学量、热学量、流体量、光学量、电量、磁学量、声学量、化学量、生物量、机器人等等。

传感器原理及应用课后习题答案(吴建平)

传感器原理及应用课后习题答案(吴建平)

传感器原理及应用课后习题答案吴建平第1章概述1.1 什么是传感器?按照国标定义,“传感器”应该如何说明含义?1.2 传感器由哪几部分组成?试述它们的作用及相互关系。

1.3 简述传感器主要发展趋势,并说明现代检测系统的特征。

1.4 传感器如何分类?按传感器检测的范畴可分为哪几种?1.5 传感器的图形符号如何表示?它们各部分代表什么含义?应注意哪些问题?1.6 用图形符号表示一电阻式温度传感器。

1.7 请例举出两个你用到或看到的传感器,并说明其作用。

如果没有传感器,应该出现哪种状况。

1.8 空调和电冰箱中采用了哪些传感器?它们分别起到什么作用?答案:1.1答:从广义的角度来说,感知信号检出器件和信号处理部分总称为传感器。

我们对传感器定义是:一种能把特定的信息(物理、化学、生物)按一定规律转换成某种可用信号输出的器件和装置。

从狭义角度对传感器定义是:能把外界非电信息转换成电信号输出的器件。

我国国家标准(GB7665—87)对传感器(Sensor/transducer)的定义是:“能够感受规定的被测量并按照一定规律转换成可用输出信号的器件和装置”。

定义表明传感器有这样三层含义:它是由敏感元件和转换元件构成的一种检测装置;能按一定规律将被测量转换成电信号输出;传感器的输出与输入之间存在确定的关系。

按使用的场合不同传感器又称为变换器、换能器、探测器。

1.2答:组成——由敏感元件、转换元件、基本电路组成;关系,作用——传感器处于研究对象与测试系统的接口位置,即检测与控制之首。

传感器是感知、获取与检测信息的窗口,一切科学研究与自动化生产过程要获取的信息都要通过传感器获取并通过它转换成容易传输与处理的电信号,其作用与地位特别重要。

1.3答:(略)答:按照我国制定的传感器分类体系表,传感器分为物理量传感器、化学量传感器以及生物量传感器三大类,含12个小类。

按传感器的检测对象可分为:力学量、热学量、流体量、光学量、电量、磁学量、声学量、化学量、生物量、机器人等等。

传感器原理与检测技术何兆湘课后答案

传感器原理与检测技术何兆湘课后答案

传感器原理与检测技术何兆湘课后答案1. 什么是传感器原理?传感器原理是指传感器通过特定的物理效应将感知的物理量转化成可测量的电信号的一种工作原理。

传感器原理是传感器能够实现物理量的检测和测量的基础。

2. 传感器的分类有哪些?传感器可以按照测量的物理量进行分类,常见的分类包括:•光学传感器:通过感光元件将光的强度、颜色等转化为电信号,如光敏电阻、光电二极管等;•声学传感器:通过感应声波转化为电信号,如麦克风、压电传感器等;•温度传感器:通过感应温度变化转化为电信号,如热电偶、热敏电阻等;•压力传感器:通过感应压力变化转化为电信号,如压电传感器、电容传感器等;•加速度传感器:通过感应加速度变化转化为电信号,如加速度计、震动传感器等;•湿度传感器:通过感应湿度变化转化为电信号,如湿敏电阻、电容传感器等。

3. 传感器检测技术有哪些?传感器检测技术是指用于检测和测量物理量的方法和技术。

常见的传感器检测技术包括:•电阻检测技术:通过测量电阻的变化来检测物理量的变化,如电位器、电阻传感器等;•电压检测技术:通过测量电压的变化来检测物理量的变化,如电压分压器、电压传感器等;•电流检测技术:通过测量电流的变化来检测物理量的变化,如电流互感器、电流传感器等;•频率检测技术:通过测量信号的频率变化来检测物理量的变化,如频率计、震动传感器等;•位移检测技术:通过测量物体的位移变化来检测物理量的变化,如位移传感器、霍尔传感器等;•光学检测技术:通过测量光的强度、颜色、波长等变化来检测物理量的变化,如光敏电阻、光电二极管等。

4. 传感器原理和检测技术的应用领域有哪些?传感器原理和检测技术广泛应用于各个领域,包括:•工业领域:用于工业自动化控制、生产流程监测等,如温度传感器、压力传感器、流量传感器等;•建筑领域:用于楼宇自动化、能源管理等,如温湿度传感器、光照传感器等;•农业领域:用于农作物生长监测、土壤湿度检测等,如土壤湿度传感器、气象传感器等;•医疗领域:用于医疗设备监测、生命体征检测等,如心率传感器、血压传感器等;•环境领域:用于大气污染监测、水质检测等,如气体传感器、水质传感器等。

传感器与传感器技术(何道清)课后答案

传感器与传感器技术(何道清)课后答案

《传感器与传感器技术》计算题答案1—5 某传感器给定精度为2%F·S,满度值为50mV ,零位值为10mV ,求可能出现的最大误差δ(以mV 计)。

当传感器使用在满量程的1/2和1/8时,计算可能产生的测量百分误差。

由你的计算结果能得出什么结论?解:满量程(F ▪S )为50﹣10=40(mV) 可能出现的最大误差为:∆m =40⨯2%=(mV) 当使用在1/2和1/8满量程时,其测量相对误差分别为:%4%10021408.01=⨯⨯=γ %16%10081408.02=⨯⨯=γ1—6 有两个传感器测量系统,其动态特性可以分别用下面两个微分方程描述,试求这两个系统的时间常数τ和静态灵敏度K 。

(1)T y dt dy5105.1330-⨯=+ 式中, y ——输出电压,V ;T ——输入温度,℃。

(2)x y dt dy6.92.44.1=+式中,y ——输出电压,μV ;x ——输入压力,Pa 。

解:根据题给传感器微分方程,得 (1) τ=30/3=10(s),K=⨯10-5/3=⨯10-5(V/℃);(2) τ==1/3(s), K==(μV/Pa)。

1—7 已知一热电偶的时间常数τ=10s ,如果用它来测量一台炉子的温度,炉内温度在540℃至500℃之间接近正弦曲线波动,周期为80s ,静态灵敏度K=1。

试求该热电偶输出的最大值和最小值。

以及输入与输出之间的相位差和滞后时间。

解:依题意,炉内温度变化规律可表示为x (t) =520+20sin(ωt)℃由周期T=80s ,则温度变化频率f =1/T ,其相应的圆频率 ω=2πf =2π/80=π/40;温度传感器(热电偶)对炉内温度的响应y(t)为y(t)=520+Bsin(ωt+ϕ)℃热电偶为一阶传感器,其响应的幅频特性为()()786010********22.B A =⎪⎪⎭⎫ ⎝⎛⨯π+=ωτ+==ω因此,热电偶输出信号波动幅值为B=20⨯A(ω)=⨯=15.7℃由此可得输出温度的最大值和最小值分别为y(t)|m ax =520+B=520+=535.7℃y(t)|m in =520﹣B==504.3℃输出信号的相位差ϕ为ϕ(ω)= -arctan(ωτ)= -arctan(2π/80⨯10)= -︒相应的时间滞后为∆t =()s 4.82.3836080=⨯1—8 一压电式加速度传感器的动态特性可以用如下的微分方程来描述,即x y dt dy dt y d 1010322100.111025.2100.3⨯=⨯+⨯+式中,y ——输出电荷量,pC ;x ——输入加速度,m/s 2。

(完整版)传感器原理课后答案

(完整版)传感器原理课后答案

第一章传感与检测技术的理论基础1. 什么是测量值的绝对误差、相对误差、引用误差? 答:某量值的测得值和真值之差称为绝对误差。

相对误差有实际相对误差和标称相对误差两种表示方法。

实际相对误差是绝对误差与被测量的真值之 比;标称相对误差是绝对误差与测得值之比。

引用误差是仪表中通用的一种误差表示方法,也用相对误差表示,它是相对于仪表满量程的一种误差。

引用误差是绝对误差(在仪表中指的是某一刻度点的示值误差)与仪表的量程之比。

2. 什么是测量误差?测量误差有几种表示方法?它们通常应用在什么场合? 答:测量误差是测得值与被测量的真值之差。

测量误差可用绝对误差和相对误差表示,引用误差也是相对误差的一种表示方法。

在实际测量中,有时要用到修正值,而修正值是与绝对误差大小相等符号相反的值。

在计算相对误差 时也必须知道绝对误差的大小才能计算。

采用绝对误差难以评定测量精度的高低,而采用相对误差比较客观地反映测量精度。

引用误差是仪表中应用的一种相对误差,仪表的精度是用引用误差表示的。

3.用测量范围为-50〜+150kPa 的压力传感器测量140kPa 压力时,传感器测得示值为142kPa ,求该示值的绝对误差、实际相对误差、标称相对误差和引用误差。

解:绝对误差142 140 2 kPa什么是随机误差?随机误差产生的原因是什么?如何减小随机误差对测量结果的影响?答:在同一测量条件下,多次测量同一被测量时,其绝对值和符号以不可预定方式变化着的误差称为随机 误差。

随机误差是由很多不便掌握或暂时未能掌握的微小因素(测量装置方面的因素、环境方面的因素、人 员方面的因素),如电磁场的微变,零件的摩擦、间隙,热起伏,空气扰动,气压及湿度的变化,测量人员 感觉器官的生理变化等,对测量值的综合影响所造成的。

对于测量列中的某一个测得值来说, 随机误差的岀现具有随机性, 即误差的大小和符号是不能预知的, 但当测量次数增大,随机误差又具有统计的规律性,测量次数越多,这种规律性表现得越明显。

传感器原理及检测技术部分课后作业答案

传感器原理及检测技术部分课后作业答案

部分课后作业答案2-8. 标称电阻为100Ω的应变计贴在弹性试件上。

设试件的截面积 S=1×10-5m 2,弹性模量E=2×1011 N /m 2,若由1.0×104N 的拉力作用,使应变计的电阻相对变化为1%,试求此应变计的灵敏度系数。

解:∵灵敏度系数εRR K /∆=,又已知%1=∆RR,F=1.0×104 N ,S=1×10-5m 2,∴ )/(101101100.129254m N mN S F ⨯=⨯⨯==-σ 由εσ⋅=E ,可得321129105)/(102)/(101-⨯=⨯⨯==m N m N E σε 所以,灵敏度系数2105%1/3=⨯=∆=-εRR K2-9. 将4片相同的金属丝应变片贴在实心圆柱形测力弹性元件上,如题2.9图所示。

设应变片的灵敏度系数K=2,作用力F=1 000kg 。

圆柱形横截面半径r=1cm ,弹性元件的杨氏模量E=2×107N /cm 2,泊松比μ=0.285。

求:(1)画出应变片贴在圆柱上的位置图及相应测量电桥的原理图; (2)各应变片的应变ε;(3)若测量电路采用电桥电路,设供电桥电压E =6V ,桥路输出电压U o 为多少?(4)这种测量方法对环境温度的变化能否具有补偿作用?试说明原因。

解:⑴将R 1~R 4四片应变片按图2-9(a )所示粘贴,其中R 1、R 3沿轴向粘贴,测量轴向应变,R 2、R 4沿径向粘贴,测量径向应变。

测量电桥为全桥测量电路, R 1与R 3置于电桥的一对角线上,R 2与R 4置于电桥的另一对角线上,如右图2-9(b )所示。

题2.9 图⑵∵)(1500105.1)/(102)01.0(14.3/8.9100032722μεπσε=⨯=⨯⨯⨯====-cm N m N Er FE A FE∴εK R R R R =∆=∆3311, R 1与R 3的纵向应变(轴向应变)ε为1500με;μεεK K R R R R r -==∆=∆4422 ,式中μ为泊松比,μ=0.285。

刘伟《传感器原理及实用技术》 习题答案

刘伟《传感器原理及实用技术》 习题答案

习题1(1)对应于被测量、能给出易于处理的输出信号的变换器。

传感器一般由两个基本元件组成:敏感元件与转换元件。

在自动控制系统中,检测是实现自动控制的首要环节,没有对被控对象的精确检测,就不可能实现精确控制。

(2)1. 根据被测量分类2. 依据传感器的工作原理分类3. 按照能量的传递方式分类4. 根据输出信号的性质分类在实际应用中,传感器的命名通常用工作原理与被测量合成命名,如扩散硅压力传感器。

(3)静态特性要有量程、线性度、灵敏度、迟滞、不重复性、温漂及零漂等;(4)动态特性主要有幅频特性和相频特性以及响应时间。

(5)某传感器的输入、输出特性为532)(3++=x x x f ,试求出该传感器的灵敏度。

由于灵敏度dxdy S =,所以362+=x S (6)具有体积小、重量轻、可靠性高、响应速度快、稳定等特点,而且便于批量生产,成本较低。

采用集成传感器可简化电路设计,减小产品体积,便于安装调试,提高可靠性。

(7)智能传感器是将传感器与微机结合,具有自补偿、自诊断、自校正功能以及数据自动存储、分析、处理与传输。

习题2(1) 相同点:都是利用应变效应工作的。

不同点:箔式应变片的应变主要集中在几何尺寸的变化上,灵敏度较低但稳定;半导体应变片主要集中在电阻率变化上,灵敏度较高但不稳定。

(2)导体或半导体在受到外力作用变形时,其电阻值也将随之变化,这种现象称为“应变效应”。

应变片在受到外力变形时,其截面积变化引起的电阻变化,称为横向效应。

也就是说,导体在长度上发生变化时,截面积也会随之变化,所以应变效应包含纵向效应和横向效应。

(3)解:① 由于==AEF x ε39.0με(微应变),所以=-=x y μεε117.0με ② 又RR S y ∆=ε 所以0585.02117.0-=-==∆S R R y ε③ 02.71200585.0-=⨯-=∆R Ω 电阻减小④ 应变片是沿圆柱的圆周方向(径向)粘贴时受到的是拉应变,所以 195.0239.0===∆S R R x ε 4.23120195.0=⨯=∆R Ω 电阻增加习题3(1)电感式传感器按工作原理分为自感式、互感式(差动变压器)和电涡流式。

传感器技术课后习题答案

传感器技术课后习题答案

传感器技术课后习题答案传感器技术课后习题答案在传感器技术的学习中,习题是帮助我们巩固知识、检验理解程度的重要方式。

然而,有时候我们可能会遇到一些难题,无从下手。

在这篇文章中,我将为大家提供一些传感器技术课后习题的答案,希望能够帮助大家更好地理解和掌握这门课程。

1. 什么是传感器?传感器是一种能够将物理量或化学量转化为可感知的电信号的装置。

它可以通过测量、检测和感知来获取与环境相关的信息,并将其转化为可用于控制、监测和诊断等应用的电信号。

2. 传感器的分类有哪些?传感器可以根据其测量原理、传感器类型和应用领域进行分类。

按照测量原理,传感器可以分为电阻式、电容式、电感式、压力式、温度式等。

按照传感器类型,可以分为光学传感器、声学传感器、生物传感器等。

按照应用领域,可以分为汽车传感器、医疗传感器、环境传感器等。

3. 传感器的工作原理是什么?传感器的工作原理基于不同的物理效应,如电阻、电容、电感、压力、温度等。

当受测量物理量作用于传感器时,传感器内部的物理效应会发生变化,进而导致传感器输出信号的变化。

通过测量输出信号的变化,就可以得到受测量物理量的信息。

4. 传感器的应用领域有哪些?传感器广泛应用于各个领域,如工业自动化、环境监测、医疗诊断、航空航天等。

在工业自动化中,传感器可以用于测量温度、压力、流量等参数,实现对生产过程的监测和控制。

在环境监测中,传感器可以用于测量空气质量、水质、土壤湿度等,帮助我们了解和改善环境状况。

在医疗诊断中,传感器可以用于监测心率、血压、血氧等生理参数,辅助医生进行诊断和治疗。

5. 传感器的性能指标有哪些?传感器的性能指标包括灵敏度、精度、分辨率、响应时间、线性度等。

灵敏度是指传感器输出信号对输入物理量变化的敏感程度;精度是指传感器输出信号与实际值之间的偏差;分辨率是指传感器能够分辨的最小变化量;响应时间是指传感器从受到输入物理量变化到输出信号稳定所需的时间;线性度是指传感器输出信号与输入物理量之间的线性关系程度。

(完整版)传感器课后答案解析

(完整版)传感器课后答案解析

第1章概述1.什么是传感器?传感器定义为能够感受规定的被测量并按照一定规律转换成可用输出信号的器件和装置,通常由敏感元件和转换元件组成。

1.2传感器的共性是什么?传感器的共性就是利用物理规律或物质的物理、化学、生物特性,将非电量(如位移、速度、加速度、力等)输入转换成电量(电压、电流、电容、电阻等)输出。

1.3传感器由哪几部分组成的?由敏感元件和转换元件组成基本组成部分,另外还有信号调理电路和辅助电源电路。

1.4传感器如何进行分类?(1)按传感器的输入量分类,分为位移传感器、速度传感器、温度传感器、湿度传感器、压力传感器等。

(2)按传感器的输出量进行分类,分为模拟式和数字式传感器两类。

(3)按传感器工作原理分类,可以分为电阻式传感器、电容式传感器、电感式传感器、压电式传感器、磁敏式传感器、热电式传感器、光电式传感器等。

(4)按传感器的基本效应分类,可分为物理传感器、化学传感器、生物传感器。

(5)按传感器的能量关系进行分类,分为能量变换型和能量控制型传感器。

(6)按传感器所蕴含的技术特征进行分类,可分为普通型和新型传感器。

1.5传感器技术的发展趋势有哪些?(1)开展基础理论研究(2)传感器的集成化(3)传感器的智能化(4)传感器的网络化(5)传感器的微型化1.6改善传感器性能的技术途径有哪些?(1)差动技术(2)平均技术(3)补偿与修正技术(4)屏蔽、隔离与干扰抑制 (5)稳定性处理第2章传感器的基本特性2.1什么是传感器的静态特性?描述传感器静态特性的主要指标有哪些?答:传感器的静态特性是指在被测量的各个值处于稳定状态时,输出量和输入量之间的关系。

主要的性能指标主要有线性度、灵敏度、迟滞、重复性、精度、分辨率、零点漂移、温度漂移。

2.2传感器输入-输出特性的线性化有什么意义?如何实现其线性化?答:传感器的线性化有助于简化传感器的理论分析、数据处理、制作标定和测试。

常用的线性化方法是:切线或割线拟合,过零旋转拟合,端点平移来近似,多数情况下用最小二乘法来求出拟合直线。

传感器原理与应用课后习题答案)

传感器原理与应用课后习题答案)

习题集及答案第1章概述1.1什么是传感器?按照国标定义,“传感器〞应该如何说明含义?1.2传感器由哪几局部组成?试述它们的作用及相互关系。

1.3简述传感器主要开展趋势,并说明现代检测系统的特征。

1.4传感器如何分类?按传感器检测的范畴可分为哪几种?1.5传感器的图形符号如何表示?它们各局部代表什么含义?应注意哪些问题?1.6用图形符号表示一电阻式温度传感器。

1.7请例举出两个你用到或看到的传感器,并说明其作用。

如果没有传感器,应该出现哪种状况。

1.8空调和电冰箱中采用了哪些传感器?它们分别起到什么作用?答案:1.1 答:从广义的角度来说,感知信号检出器件和信号处理局部总称为传感器。

我们对传感器定义是:一种能把特定的信息〔物理、化学、生物〕按一定规律转换成某种可用信号输出的器件和装置。

从狭义角度对传感器定义是:能把外界非电信息转换成电信号输出的器件。

我国国家标准〔GB7665—87〕对传感器〔 Sensor/transducer〕的定义是:“能够感受规定的被测量并按照一定规律转换成可用输出信号的器件和装置〞。

定义说明传感器有这样三层含义:它是由敏感元件和转换元件构成的一种检测装置;能按一定规律将被测量转换成电信号输出;传感器的输出与输入之间存在确定的关系。

按使用的场合不同传感器又称为变换器、换能器、探测器。

1.2 答:组成——由敏感元件、转换元件、根本电路组成;关系,作用——传感器处于研究对象与测试系统的接口位置,即检测与控制之首。

传感器是感知、获取与检测信息的窗口,一切科学研究与自动化生产过程要获取的信息都要通过传感器获取并通过它转换成容易传输与处理的电信号,其作用与地位特别重要。

1.3 答:〔略〕答:按照我国制定的传感器分类体系表,传感器分为物理量传感器、化学量传感器以及生物量传感器三大类,含 12 个小类。

按传感器的检测对象可分为:力学量、热学量、流体量、光学量、电量、磁学量、声学量、化学量、生物量、机器人等等。

传感器原理及应用第三版课后答案

传感器原理及应用第三版课后答案
①寄生电容影响较大。寄生电容主要指连接电容极板的导线电容和传感器本身的泄漏电容。寄生电容的存在不但降低了测量灵敏度,而且引起非线性输出,甚至使传感器处于不稳定的工作状态。
②当电容式传感器用于变间隙原理进行测量时具有非线性输出特性。
3-2分布和寄生电容的存在对电容传感器有什么影响?一般采取哪些措施可以减小其影响。
1-7:解:YFS=200-0=200
由A=ΔA/YFS*100%有
A=4/200*100%=2%。
精度特级为2.5级。
1-8:解:根据精度定义表达式:A=ΔA/AyFS*100%,由题意可知:A=1.5%,YFS=100
所以ΔA=A YFS=1.5
因为1.4<1.5
所以合格。
1-9:解:Δhmax=103-98=5
2-3:答:金属应变片单位应变引起的应变片电阻的相对变化叫金属应变片的灵敏度系数;它与金属丝应变灵敏度函数不同,应变片由于由金属丝弯折而成,具有横向效应,使其灵敏度小于金属丝的灵敏度。
2-4:答:因为(1)金属的电阻本身具有热效应,从而使其产生附加的热应变;
(2)基底材料、应变片、粘接剂、盖板等都存在随温度增加而长度应变的线膨胀效应,若它们各自的线膨胀系数不同,就会引起附加的由线膨胀引起的应变;常用的温度补偿法有单丝自补偿,双丝组合式自补偿和电路补偿法。
εr=-με=-3*10-4
(2) :F=εES=0.001*2*1011*0.00196=3.92*105N
1-10:解:(1)贴片习题中图2-7所示,R3、R2靠近中心处,且沿切向方向,R1、R4靠近圆片边缘处且沿径向贴。位置在使-εr=εt即
(2)
R1R2
USC
R3R4
E
(3)
εr2、3=

传感器与传感器技术第四版课后题答案

传感器与传感器技术第四版课后题答案

传感器与传感器技术第四版课后题答案《传感器与传感器技术》是一本广泛应用于自动化、电子工程、机械工程等领域的教材。

第四版对该书进行了全面的修订和更新,以反映传感器技术的最新进展。

本文将针对《传感器与传感器技术》第四版课后题,给出一系列的答案,帮助读者更好地理解和应用传感器技术。

一、什么是传感器?传感器是一种能够感受外界环境变化并将其转换为电信号的装置。

它广泛应用于各种领域,如温度传感器、压力传感器、光敏传感器等。

二、传感器的分类有哪些?传感器的分类方法很多,常见的分类方式包括:1. 按照工作原理分类:如应变片式传感器、电容式传感器、电感式传感器等。

2. 按照应用领域分类:如温度传感器、压力传感器、流量传感器等。

3. 按照输出信号类型分类:如模拟传感器、数字传感器等。

三、传感器的主要性能指标有哪些?传感器的主要性能指标包括:1. 灵敏度:指传感器输出信号与输入信号之间的比率,用于衡量传感器的检测能力。

2. 响应时间:指传感器从感受到外界变化到产生响应的时间,用于衡量传感器的反应速度。

3. 稳定性和重复性:指传感器在长时间运行和多次测量中的稳定性和重复性,用于衡量传感器的可靠性和精度。

4. 防干扰能力:指传感器抵抗外界干扰的能力,用于衡量传感器的抗干扰性能。

四、传感器技术的应用领域有哪些?传感器技术的应用领域广泛,包括:1. 自动化领域:如工业自动化、机器人技术等。

2. 汽车领域:如汽车安全系统、发动机控制系统等。

3. 医疗领域:如医疗诊断、健康监测等。

4. 环境监测领域:如气象监测、水质监测等。

五、如何选择合适的传感器?选择合适的传感器需要考虑以下因素:1. 测量对象:根据测量对象的特点,选择适合的传感器类型。

2. 测量范围:根据测量范围,选择合适的传感器量程。

3. 精度要求:根据精度要求,选择高精度的传感器。

4. 环境条件:考虑传感器的安装环境,如温度、湿度、压力等。

六、传感器技术的发展趋势有哪些?传感器技术的发展趋势包括:1. 微型化和集成化:随着微电子技术的发展,传感器将越来越小型化,便于集成和携带。

传感器原理与应用第二版课后答案

传感器原理与应用第二版课后答案

传感器原理与应用第二版课后答案1. 传感器的基本原理。

传感器是一种能够感知并转换物理量或化学量等非电信号为电信号的装置。

传感器的基本原理是利用特定的物理效应,如电磁感应、压阻效应、光电效应等,将被测量的物理量转换为电信号输出,从而实现对被测量物理量的监测和测量。

2. 传感器的分类及应用。

根据测量的物理量不同,传感器可以分为温度传感器、压力传感器、光电传感器、湿度传感器等多种类型。

每种传感器都有其特定的应用领域,如温度传感器广泛应用于工业生产中的温度监测和控制,压力传感器则常用于汽车制造和航空航天领域的压力监测等。

3. 传感器的工作原理。

传感器的工作原理是将被测量的物理量转换为电信号输出。

以温度传感器为例,当温度发生变化时,传感器内部的电阻值也会发生变化,通过测量电阻值的变化即可得知温度的变化情况。

而光电传感器则是利用光电效应将光信号转换为电信号输出。

4. 传感器的应用案例分析。

在工业自动化领域,传感器被广泛应用于各种生产设备的监测与控制中。

例如,利用压力传感器可以实现对液体管道内部压力的实时监测,以确保生产过程的安全性和稳定性。

另外,在智能家居领域,温度传感器和湿度传感器可以实现对室内环境的实时监测,从而实现空调和加湿器的智能控制。

5. 传感器的发展趋势。

随着科技的不断进步,传感器技术也在不断发展。

未来,传感器将更加智能化、微型化和多功能化,能够实现更精准的监测和更便捷的数据传输。

同时,新型材料和制造工艺的应用也将为传感器的发展提供更广阔的空间。

总结,传感器作为现代化社会不可或缺的一部分,其在工业生产、智能家居、医疗健康等领域都发挥着重要作用。

通过对传感器的基本原理、分类及应用、工作原理、应用案例分析和发展趋势的了解,我们可以更好地认识传感器,并为其未来的发展提供更多的可能性。

传感器原理与应用习题课后答案_第2章到第8章

传感器原理与应用习题课后答案_第2章到第8章

《传感器原理与应用》及《传感器与测量技术》习题集与部分参考答案 教材:传感器技术(第3版)贾伯年主编,及其他参考书第2章 电阻式传感器2-1 金属应变计与半导体应变计在工作机理上有何异同?试比较应变计各种灵敏系数概念的不同物理意义。

答:(1)相同点:它们都是在外界力作用下产生机械变形,从而导致材料的电阻发生变化所;不同点:金属材料的应变效应以机械形变为主,材料的电阻率相对变化为辅;而半导体材料则正好相反,其应变效应以机械形变导致的电阻率的相对变化为主,而机械形变为辅。

(2)对于金属材料,灵敏系数K0=Km=(1+2μ)+C(1-2μ)。

前部分为受力后金属几何尺寸变化,一般μ≈0.3,因此(1+2μ)=1.6;后部分为电阻率随应变而变的部分。

金属丝材的应变电阻效应以结构尺寸变化为主。

对于半导体材料,灵敏系数K0=Ks=(1+2μ)+πE 。

前部分同样为尺寸变化,后部分为半导体材料的压阻效应所致,而πE>>(1+2μ),因此K0=Ks=πE 。

半导体材料的应变电阻效应主要基于压阻效应。

2-2 从丝绕式应变计的横向效应考虑,应该如何正确选择和使用应变计?在测量应力梯度较大或应力集中的静态应力和动态应力时,还需考虑什么因素?2-3 简述电阻应变计产生热输出(温度误差)的原因及其补偿办法。

答:电阻应变计的温度效应及其热输出由两部分组成:前部分为热阻效应所造成;后部分为敏感栅与试件热膨胀失配所引起。

在工作温度变化较大时,会产生温度误差。

补偿办法:1、温度自补偿法 (1)单丝自补偿应变计;(2) 双丝自补偿应变计2、桥路补偿法 (1)双丝半桥式;(2)补偿块法2-4 试述应变电桥产生非线性的原因及消减非线性误差的措施。

答:原因:)(211)(44433221144332211R R R R R R R R R R R R R R R R U U ∆+∆+∆+∆+∆-∆+∆-∆=∆ 上式分母中含ΔRi/Ri ,是造成输出量的非线性因素。

传感器技术课后习题答案

传感器技术课后习题答案

1-1衡量传感器静态特性的主要指标。

说明含义。

1、线性度——表征传感器输出-输入校准曲线与所选定的拟合直线之间的吻合(或偏离)程度的指标。

2、回差(滞后)—反应传感器在正(输入量增大)反(输入量减小)行程过程中输出-输入曲线的不重合程度。

3、重复性——衡量传感器在同一工作条件下,输入量按同一方向作全量程连续多次变动时,所得特性曲线间一致程度。

各条特性曲线越靠近,重复性越好。

4、灵敏度——传感器输出量增量与被测输入量增量之比。

5、分辨力——传感器在规定测量范围内所能检测出的被测输入量的最小变化量。

6、阀值——使传感器输出端产生可测变化量的最小被测输入量值,即零位附近的分辨力。

7、稳定性——即传感器在相当长时间内仍保持其性能的能力。

8、漂移——在一定时间间隔内,传感器输出量存在着与被测输入量无关的、不需要的变化。

9、静态误差(精度)——传感器在满量程内任一点输出值相对理论值的可能偏离(逼近)程度。

1-2计算传感器线性度的方法,差别。

1、理论直线法:以传感器的理论特性线作为拟合直线,与实际测试值无关。

2、端点直线法:以传感器校准曲线两端点间的连线作为拟合直线。

3、“最佳直线”法:以“最佳直线”作为拟合直线,该直线能保证传感器正反行程校准曲线对它的正负偏差相等并且最小。

这种方法的拟合精度最高。

4、最小二乘法:按最小二乘原理求取拟合直线,该直线能保证传感器校准数据的残差平方和最小。

1-3什么是传感器的静态特性和动态特性?为什么要分静和动?(1)静态特性:表示传感器在被测输入量各个值处于稳定状态时的输出-输入关系。

动态特性:反映传感器对于随时间变化的输入量的响应特性。

(2)由于传感器可能用来检测静态量(即输入量是不随时间变化的常量)、准静态量或动态量(即输入量是随时间变化的变量),于是对应于输入信号的性质,所以传感器的特性分为静态特性和动态特性。

1—4 传感器有哪些组成部分?在检测过程中各起什么作用?答:传感器通常由敏感元件、传感元件及测量转换电路三部分组成。

传感器原理与应用第二版课后答案

传感器原理与应用第二版课后答案

传感器原理与应用第二版课后答案1. 什么是传感器?传感器的作用是什么?传感器是一种能够感知、检测和接收外部信息并将其转化为可用信号的装置。

其作用在于将各种物理量、化学量、生物量等转换为电信号或其他所需形式的信号,以便进行测量、控制、记录、显示等。

2. 传感器的分类及其原理。

传感器根据测量的物理量不同可分为光学传感器、压力传感器、温度传感器、湿度传感器、位移传感器、力传感器等。

光学传感器是利用光的传播、反射、折射、吸收等现象进行探测的传感器。

压力传感器是利用介质受力变形的原理进行测量的传感器。

温度传感器是利用物体温度与某种物理特性(如电阻、电压、电流等)的关系进行测量的传感器。

湿度传感器是利用介质的吸湿性质进行测量的传感器。

位移传感器是利用物体位移与某种物理特性(如电容、电感、电阻等)的关系进行测量的传感器。

力传感器是利用受力物体的弹性变形与某种物理特性(如电阻、电容、电感等)的关系进行测量的传感器。

3. 传感器的应用领域。

传感器广泛应用于工业自动化、环境监测、医疗仪器、消费电子、智能家居、汽车电子、航空航天等领域。

在工业自动化领域,传感器用于测量和控制生产过程中的各种物理量,如温度、压力、流量、液位等,以实现自动化生产。

在环境监测领域,传感器用于监测大气、水质、土壤等环境参数,以实现环境保护和资源管理。

在医疗仪器领域,传感器用于监测患者的生理参数,如心率、血压、血氧饱和度等,以帮助医生进行诊断和治疗。

在消费电子领域,传感器用于手机、平板电脑、智能手表等设备中,实现智能化功能。

在智能家居领域,传感器用于监测室内环境,实现智能控制。

在汽车电子领域,传感器用于监测车辆的各种参数,保障行车安全。

在航空航天领域,传感器用于监测飞行器的各种参数,保障飞行安全。

4. 传感器的发展趋势。

随着科技的不断进步,传感器的发展呈现出以下几个趋势,小型化、智能化、多功能化、网络化、无线化。

传感器的小型化使其在各种设备中的应用更加方便灵活;智能化使传感器具有自主判断和处理能力,能够实现更复杂的功能;多功能化使传感器能够同时实现多种测量和控制功能;网络化使传感器能够实现远程监测和控制;无线化使传感器能够摆脱传统的有线连接,实现更灵活的布局和应用。

传感器与传感器技术(何道清)课后答案解析

传感器与传感器技术(何道清)课后答案解析

《传感器与传感器技术》计算题答案第1章传感器的一般特性1—9 某压力传感器的校准数据如下表所示,试分别用端点连线法和最小二乘法求非线性误差,并计算迟滞和重复性误差;写出端点连线法和最小二乘法拟合直线方程。

校准数据表解校验数据处理(求校验平均值):(1)端点连线法 设直线方程为y=a 0+kx ,取端点(x 1,y 1)=(0,-2.70)和(x 6,y 6)=(0.10,14.45)。

则a 0由x=0时的y 0值确定,即a 0=y 0-kx=y 1=-2.70 (mV)k 由直线的斜率确定,即(mV/MPa )拟合直线方程为y =-2.70+171.5x♦求非线性误差:所以,压力传感器的非线性误差为♦求重复性误差: 5.171010.0)70.2(45.141616=---=--=x x y y k %7.0%100)70.2(45.1412.0±=⨯--±=L δ最大不重复误差为0.08 mV ,则重复性误差为♦求迟滞误差: %47.0%100)70.2(45.1408.0±=⨯--±=R δ最大迟滞为0.10mV ,所以迟滞误差为(2)最小二乘法设直线方程为y =a 0+kx数据处理如下表所示。

%58.0%100)70.2(45.1410.0±=⨯--±=H δ根据以上处理数据,可得直线方程系数分别为:所以,最小二乘法线性回归方程为y =-2.77+171.5x求非线性误差:所以,压力传感器的非线性误差为可见,最小二乘法拟合直线比端点法拟合直线的非线性误差小,所以最小二乘法拟合更合理。

重复性误差δR 和迟滞误差δH 是一致的。

1—10 用一个一阶传感器系统测量100Hz 的正弦信号时,如幅值误差限制在5%以内,则其时间常数应取多少?若用该系统测试50Hz 的正弦信号,问此时的幅值误差和相位差为多?解: 根据题意()mV)(77.2042.08826.076626.03.0022.06942.23.083.34022.02222-=-=-⨯⨯-⨯=-⋅-⋅=∑∑∑∑∑∑x x n xy x y x a ())MPa /mV (5.1713.0022.0683.343.0942.26222=-⨯⨯-⨯=-⋅-=∑∑∑∑∑x x n y x xy n k %41.0%100)77.2(38.1407.0±=⨯--±=L δ1—13 已知某二阶传感器系统的固有频率0=10kHz ,阻尼比ζ=0.1,若要求传感器的输出幅值误差小于3%,试确定该传感器的工作频率范围。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第1章传感器与检测技术基础思考题答案l.检测系统由哪几部分组成? 说明各部分的作用。

答:一个完整的检测系统或检测装置通常是由传感器、测量电路和显示记录装置等几部分组成,分别完成信息获取、转换、显示和处理等功能。

当然其中还包括电源和传输通道等不可缺少的部分。

下图给出了检测系统的组成框图。

检测系统的组成框图传感器是把被测量转换成电学量的装置,显然,传感器是检测系统与被测对象直接发生联系的部件,是检测系统最重要的环节,检测系统获取信息的质量往往是由传感器的性能确定的,因为检测系统的其它环节无法添加新的检测信息并且不易消除传感器所引入的误差。

测量电路的作用是将传感器的输出信号转换成易于测量的电压或电流信号。

通常传感器输出信号是微弱的,就需要由测量电路加以放大,以满足显示记录装置的要求。

根据需要测量电路还能进行阻抗匹配、微分、积分、线性化补偿等信号处理工作。

显示记录装置是检测人员和检测系统联系的主要环节,主要作用是使人们了解被测量的大小或变化的过程。

2.什么是传感器?它由哪几个部分组成?分别起到什么作用?解:传感器是一种以一定的精确度把被测量转换为与之有确定对应关系的、便于应用的某种物理量的测量装置,能完成检测任务;传感器由敏感元件,转换元件,转换电路组成。

敏感元件是直接感受被测量,并输出与被测量成确定关系的物理量;转换元件把敏感元件的输出作为它的输入,转换成电路参量;上述电路参数接入基本转换电路,便可转换成电量输出。

3.传感器技术的发展动向表现在哪几个方面?解:(1)开发新的敏感、传感材料:在发现力、热、光、磁、气体等物理量都会使半导体硅材料的性能改变,从而制成力敏、热敏、光敏、磁敏和气敏等敏感元件后,寻找发现具有新原理、新效应的敏感元件和传感元件。

(2)开发研制新型传感器及组成新型测试系统①MEMS技术要求研制微型传感器。

如用于微型侦察机的CCD传感器、用于管道爬壁机器人的力敏、视觉传感器。

②研制仿生传感器③研制海洋探测用传感器④研制成分分析用传感器⑤研制微弱信号检测传感器(3)研究新一代的智能化传感器及测试系统:如电子血压计,智能水、电、煤气、热量表。

它们的特点是传感器与微型计算机有机结合,构成智能传感器。

系统功能最大程度地用软件实现。

(4)传感器发展集成化:固体功能材料的进一步开发和集成技术的不断发展,为传感器集成化开辟了广阔的前景。

(5)多功能与多参数传感器的研究:如同时检测压力、温度和液位的传感器已逐步走向市场。

4.传感器的性能参数反映了传感器的什么关系?静态参数有哪些?解:在生产过程和科学实验中,要对各种各样的参数进行检测和控制,就要求传感器能感受被测非电量的变化并将其不失真地变换成相应的电量,这取决于传感器的基本特性,即输出—输入特性。

衡量静态特性的重要指标是线性度、灵敏度,迟滞和重复性等。

5.某位移传感器,在输入量变化5 mm时,输出电压变化为300 mV,求其灵敏度。

解:其灵敏度333001060510UkX--∆⨯===∆⨯6.某线性位移测量仪,当被测位移由4.5mm 变到5.0mm 时,位移测量仪的输出电压由3.5V 减至2.5V ,求该仪器的灵敏度。

解:该仪器的灵敏度为25.40.55.35.2-=--=S mV/mm7.某测温系统由以下四个环节组成,各自的灵敏度如下: 铂电阻温度传感器: 0.45Ω/℃电桥: 0.02V/Ω放大器: 100(放大倍数)笔式记录仪: 0.2cm/V求:(1)测温系统的总灵敏度;(2)记录仪笔尖位移4cm 时,所对应的温度变化值。

解:(1)测温系统的总灵敏度为18.02.010002.045.0=⨯⨯⨯=S cm/℃(2)记录仪笔尖位移4cm 时,所对应的温度变化值为22.2218.04==t ℃8.有三台测温仪表,量程均为0~800℃,精度等级分别为2.5级、2.0级和1.5级,现要测量500℃的温度,要求相对误差不超过2.5%,选那台仪表合理?解:2.5级时的最大绝对误差值为20℃,测量500℃时的相对误差为4%;2.0级时的最大绝对误差值为16℃,测量500℃时的相对误差为3.2%;1.5级时的最大绝对误差值为12℃,测量500℃时的相对误差为2.4%。

因此,应该选用1.5级的测温仪器。

9.什么是系统误差和随机误差?正确度和精密度的含义是什么? 它们各反映何种误差?答:系统误差是指在相同的条件下,多次重复测量同一量时,误差的大小和符号保持不变,或按照一定的规律变化的误差。

随机误差则是指在相同条件下,多次测量同一量时,其误差的大小和符号以不可预见的方式变化的误差。

正确度是指测量结果与理论真值的一致程度,它反映了系统误差的大小,精密度是指测量结果的分散程度,它反映了随机误差的大小。

10.试分析电压输出型直流电桥的输入与输出关系。

答:如图所示,电桥各臂的电阻分别为R1、R2、R3、R4。

U 为电桥的直流电源电压。

当四臂电阻R1=R2=R3=R4=R时,称为等臂电桥;当R1=R2=R,R3=R4=R’(R≠R’)时,称为输出对称电桥;当R1=R4=R,R2=R3 =R’(R≠R’)时,称为电源对称电桥。

D直流电桥电路当电桥输出端接有放大器时,由于放大器的输入阻抗很高,所以可以认为电桥的负载电阻为无穷大,这时电桥以电压的形式输出。

输出电压即为电桥输出端的开路电压,其表达式为U R R R R R R R R U o ))((432142313++-= (1)设电桥为单臂工作状态,即R 1为应变片,其余桥臂均为固定电阻。

当R 1感受被测量产生电阻增量ΔR 1时,由初始平衡条件R 1R 3=R 2R 4得3421R R R R =,代入式(1),则电桥由于ΔR 1产生不平衡引起的输出电压为U R R R R R R U R R R R U )()()(1122121122120∆+=∆+= (2) 对于输出对称电桥,此时R 1=R 2=R ,R 3=R 4=R ’,当R 1臂的电阻产生变化ΔR 1=ΔR ,根据(2)可得到输出电压为)(4)()(20R R U RR R R RR U U ∆=∆+= (3) 对于电源对称电桥,R 1=R 4=R ,R 2=R 3=R ’。

当R 1臂产生电阻增量ΔR 1=ΔR 时,由式(2)得)()(20RR R R R R U U ∆'+'= (4) 对于等臂电桥R 1=R 2=R 3=R 4=R ,当R 1的电阻增量ΔR 1=ΔR 时,由式(2)可得输出电压为)(4)()(20R R U RR R R RR U U ∆=∆+= (5) 由上面三种结果可以看出,当桥臂应变片的电阻发生变化时,电桥的输出电压也随着变化。

当ΔR <<R 时,电桥的输出电压与应变成线性关系。

还可以看出在桥臂电阻产生相同变化的情况下,等臂电桥以及输出对称电桥的输出电压要比电源对称电桥的输出电压大,即它们的灵敏度要高。

因此在使用中多采用等臂电桥或输出对称电桥。

在实际使用中为了进一步提高灵敏度,常采用等臂电桥,四个被测信号接成两个差动对称的全桥工作形式,R 1=R +ΔR ,R 2=R -ΔR ,R 3=R +ΔR ,R 4=R -ΔR ,将上述条件代入式(1)得⎪⎭⎫ ⎝⎛∆=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛∆=R R U R R U U 440 (6)由式(6)看出,由于充分利用了双差动作用,它的输出电压为单臂工作时的4倍,所以大大提高了测量的灵敏度。

11. .用测量范围为-50~150KPa 的压力传感器测量140KPa 压力时,传感器测得示值为142KPa ,求该示值的绝对误差、实际相对误差、标称相对误差和引用误差。

解:绝对误差:X L ∆=-=142-140=2 相对误差100%L δ∆=⨯=2100% 1.4285%140⨯= 标称相对误差即%100⨯∆=x ξ=2100% 1.4084%142⨯= 引用误差100%-γ∆=⨯测量范围上限测量范围下限 =22100%1%150(50)200=⨯=--第2章 电阻式传感器思考题答案1.金属电阻应变片与半导体材料的电阻应变效应有什么不同? 答:金属电阻的应变效应主要是由于其几何形状的变化而产生的,半导体材料的应变效应则主要取决于材料的电阻率随应变所引起的变化产生的。

2.直流测量电桥和交流测量电桥有什么区别?答:它们的区别主要是直流电桥用直流电源,只适用于直流元件,交流电桥用交流电源,适用于所有电路元件。

3.热电阻测量时采用何种测量电路?为什么要采用这种测量电路?说明这种电路的工作原理。

答:通常采用电桥电路作为测量电路。

为了克服环境温度的影响常采用下图所示的三导线四分之一电桥电路。

由于采用这种电路,热电阻的两根引线的电阻值被分配在两个相邻的桥臂中,如果t t R R 21=,则由于环境温度变化引起的引线电阻值变化造成的误差被相互抵消。

热电阻的测量电路4.采用阻值为120Ω灵敏度系数K =2.0的金属电阻应变片和阻值为120Ω的固定电阻组成电桥,供桥电压为4V ,并假定负载电阻无穷大。

当应变片上的应变分别为1和1 000时,试求单臂、双臂和全桥工作时的输出电压,并比较三种情况下的灵敏度。

解:单臂时40UK U ε=,所以应变为1时66010*******--⨯=⨯⨯==U K U ε/V ,应变为1000时应为33010*******--⨯=⨯⨯==U K U ε/V ;双臂时20U K U ε=,所以应变为1时66010*******--⨯=⨯⨯==U K U ε/V ,应变为1000时应为330104210242--⨯=⨯⨯==U K U ε/V ;全桥时U K U ε=0,所以应变为1时60108-⨯=U /V ,应变为1000时应为30108-⨯=U /V 。

从上面的计算可知:单臂时灵敏度最低,双臂时为其两倍,全桥时最高,为单臂的四倍。

5.采用阻值R =120Ω灵敏度系数K =2.0的金属电阻应变片与阻值R =120Ω的固定电阻组成电桥,供桥电压为10V 。

当应变片应变为1000时,若要使输出电压大于10mV ,则可采用何种工作方式(设输出阻抗为无穷大)?解:由于不知是何种工作方式,可设为n ,故可得:101010230 nn U K U -⨯⨯==εmV 得n 要小于2,故应采用全桥工作方式。

6.如图所示为一直流电桥,供电电源电动势E =3V ,R 3=R 4=100Ω,R 1和R 2为同型号的电阻应变片,其电阻均为50Ω,灵敏度系数K =2.0。

两只应变片分别粘贴于等强度梁同一截面的正反两面。

设等强度梁在受力后产生的应变为5 000,试求此时电桥输出端电压U 0。

R 2题6图解:此电桥为输出对称电桥,故15210532230=⨯⨯⨯==-U K U ε/mV 7.光敏电阻有哪些重要特性,在工业应用中是如何发挥这些特性的?答:光敏电阻是采用半导体材料制作,利用内光电效应工作的光电元件。

相关文档
最新文档