2020年湖南长沙中考数学试题及答案

合集下载

湖南长沙市2020年中考数学试卷

湖南长沙市2020年中考数学试卷

湖南长沙市2020年中考数学试卷一、单选题(共12题;共24分)1. ( 2分) (2020·长沙)的值是()A. B. 6 C. 8 D.2. ( 2分) (2020·长沙)下列图形中,是轴对称图形但不是中心对称图形的是()A. B. C. D.3. ( 2分) (2020·长沙)为了将“新冠疫情对国民经济的影响降至最低,中国政府采取积极的财政税收政策,切实减轻企业负担,以促进我国进出口企业平稳发展,据国家统计局相关数据显示,2020年1月至5月,全国累计办理出口退税632400000000元,其中632400000000用科学记数法表示为()A. B. C. D.4. ( 2分) (2020·长沙)下列运算正确的是()A. B. C. D.5. ( 2分) (2020·长沙)2019年10月,《长沙晚报》对外发布长沙高铁两站设计方案,该方案以三湘四水,杜鹃花开,塑造出杜鹃花开的美丽姿态,该高铁站建设初期需要运送大量的土石方,某运输公司承担了运送总量为土石方的任务,该运输公司平均运送土石方的速度(单位:天)与完成运送任务所需的时间t(单位:天)之间的函数关系式是()A. B. C. D.6. ( 2分) (2020·长沙)从一艘船上测得海岸上高为42米的灯塔顶部的仰角是30度,船离灯塔的水平距离为()A. 米B. 米C. 21米D. 42米7. ( 2分) (2020·长沙)不等式组的解集在数轴上表示正确的是()A. B.C. D.8. ( 2分) (2020·长沙)一个不透明的袋子中装有1个红球,2个绿球,除颜色外无其他差别,从中随机摸出一个球,然后放回摇匀,再随机摸出一个,下列说法中,错误的是()A. 第一次摸出的球是红球,第二次摸出的球一定是绿球B. 第一次摸出的球是红球,第二次摸出的球不一定是绿球C. 第一次摸出的球是红球,第二次摸出的球不一定是红球D. 第一次摸出的球是红球的概率是;两次摸出的球都是红球的概率是9. ( 2分) (2020·长沙)2020年3月14日,是人类第一个“国际数学日”这个节日的昵称是“π(Day)”国际数学日之所以定在3月14日,是因为3.14与圆周率的数值最接近的数字,在古代,一个国家所算的的圆周率的精确程度,可以作为衡量这个国家当时数学与科技发展的水平的主要标志,我国南北朝时期的祖冲之是世界上最早把圆周率的精确值计算到小数点后第七位的科学巨匠,该成果领先世界一千多年,以下对圆周率的四个表述:①圆周率是一个有理数;②圆周率是一个无理数;③圆周率是一个与圆的大小无关的常数,它等于该圆的周长与直径的比;④圆周率是一个与圆大小有关的常数,它等于该圆的周长与半径的比;其中正确的是()A. ②③B. ①③C. ①④D. ②④10. ( 2分) (2020·长沙)如图,一块直角三角板的60度的顶点A与直角顶点C分别在平行线上,斜边AB平分,交直线GH于点E,则的大小为( )A. B. C. D.11. ( 2分) (2020·长沙)随着5G网络技术的发展,市场对5G产品的需求越来越大,为满足市场需求,某大型5G产品生产厂家更新技术后,加快了生产速度,现在平均每天比更新技术前多生产30万件产品,现在生产500万件产品所需的时间与更新技术前生产400万件产品所需时间相同,设更新技术前每天生产x万件,依据题意得()A. B. C. D.12. ( 2分) (2020·长沙)“闻起来臭,吃起来香”的臭豆腐是长沙特色小吃,臭豆腐虽小,但制作流程却比较复杂,其中在进行加工煎炸臭豆腐时,我们把焦脆而不糊的豆腐块数的百分比称为“可食用率”,在特定条件下,“可食用率”p与加工煎炸的时间t(单位:分钟)近似满足函数关系式:(a,b,c为常数),如图纪录了三次实验数据,根据上述函数关系和实验数据,可以得到加工煎炸臭豆腐的最佳时间为( )A. 3.50分钟B. 4.05分钟C. 3.75分钟D. 4.25分钟二、填空题(共4题;共5分)13. ( 1分) (2020·长沙)长沙地铁3号线、5号线即将运行,为了解市民每周乘地铁出行的次数,某校园小记者随机调查了100名市民,得到了如下的统计表:这次调查的众数和中位数分别是________.14. ( 1分) (2020·长沙)某数学老师在课外活动中做了一个有趣的游戏:首先发给A,B,C三个同学相同数量的扑克牌(假定发到每个同学手中的扑克牌数量足够多),然后依次完成下列三个步骤:第一步,A同学拿出三张扑克牌给B同学;第二步,C同学拿出三张扑克牌给B同学;第三步,A同学手中此时有多少张扑克牌,B同学就拿出多少张扑克牌给A同学,请你确定,最终B同学手中剩余的扑克牌的张数为________.15. ( 1分) (2020·镇江模拟)若一个圆锥的母线长是3,底面半径是1,则它的侧面展开图的面积是________.16. ( 2分) (2020·长沙)如图,点P在以MN为直径的半圆上运动,(点P与M,N不重合)平分,交PM于点E,交PQ于点F.(1)________.(2)若,则________.三、解答题(共9题;共97分)17. ( 5分) (2020·长沙)计算:18. ( 5分) (2020·长沙)先化简,再求值,其中19. ( 6分) (2020·长沙)人教版初中数学教科书八年级上册第48页告诉我们一种作已知角的平分线的方法:已知:求作:的平分线做法:①以O为圆心,适当长为半径画弧,交OA于点M,交OB于点N,②分别以点M,N为圆心,大于的长为半径画弧,两弧在的内部相交于点C③画射线OC,射线OC即为所求.请你根据提供的材料完成下面问题:(1)这种作已知角平分线的方法的依据是________(填序号).① ② ③ ④(2)请你证明OC为的平分线.20. ( 16分) (2020·长沙)2020年3月,中共中央、国务院颁布了《关于全面加强新时代大中小学劳动教育的意见》长沙市教育局发布了“普通中小学校劳动教育状况评价指标”,为了解某校学生一周劳动次数的情况,随机抽取若干学生进行调查,得到如下统计图表:(1)这次调查活动共抽取________人;(2)m=________n =________.(3)请将条形图补充完整(4)若该校学生总人数为3000人,根据调查结果,请你估计该校一周劳动4次及以上的学生人数.21. ( 10分) (2020·长沙)如图,为的直径,C为上的一点,AD与过点C的直线互相垂直,垂足为D,AC平分.(1)求证:DC为的切线;(2)若,求的半径.22. ( 10分) (2020·长沙)今年6月以来,我国多地遭遇强降雨,引发洪涝灾害,人民的生活受到了极大的影响,“一方有难,八方支援”,某市筹集了大量的生活物资,用A,B两种型号的货车,分两批运往受灾严重的地区,具体运算情况如下:(1)求A,B两种型号货车每辆满载分别能运多少吨生活物资;(2)该市后续又筹集了62.4吨生活物资,现已联系了3辆A型号货车,试问至少还需联系多少辆B型号货车才能一次性将这批生活物资运往目的地.23. ( 15分) (2020·长沙)在矩形ABCD中,E为上的一点,把沿AE翻折,使点D恰好落在BC边上的点F.(1)求证:(2)若,求EC的长;(3)若,记,求的值.24. ( 15分) (2020·长沙)我们不妨约定:若某函数图像上至少存在不同的两点关于原点对称,则把该函数称之为“H函数”,其图像上关于原点对称的两点叫做一对“H点”,根据该约定,完成下列各题(1)在下列关于x的函数中,是“H函数”的,请在相应题目后面的括号中打“√”,不是“H函数”的打“×”① ()② ()③ ()(2)若点与点关于x的“H函数” 的一对“H点”,且该函数的对称轴始终位于直线的右侧,求的值域或取值范围;(3)若关于x的“H函数” (a,b,c是常数)同时满足下列两个条件:① ,② ,求该H函数截x轴得到的线段长度的取值范围.25. ( 15分) (2020·长沙)如图,半径为4的中,弦AB的长度为,点C是劣弧上的一个动点,点D是弦AC的中点,点E是弦BC的中点,连接DE,OD,OE.(1)求的度数;(2)当点C沿着劣弧从点A开始,逆时针运动到点B时,求的外心P所经过的路径的长度;(3)分别记的面积为,当时,求弦AC的长度.答案解析部分一、单选题1.【答案】D【考点】有理数的乘方【解析】【解答】=-8,故答案为:D.【分析】利用有理数的乘方计算法则进行解答.2.【答案】B【考点】轴对称图形,中心对称及中心对称图形【解析】【解答】A、不是轴对称图形,也不是中心对称图形,不合题意;B、是轴对称图形,不是中心对称图形,符合题意;C、不是轴对称图形,也不是中心对称图形,不合题意;D、不是轴对称图形,是中心对称图形,不合题意.故答案为:B.【分析】根据轴对称图形与中心对称图形的概念求解.3.【答案】A【考点】科学记数法—表示绝对值较大的数【解析】【解答】解:632400000000元= 元.故答案为A.【分析】先将632400000000表示成a×10n的形式,其中1<| a |<10,n为将632400000000化成an×10n 的形式时小数点向左移动的位数.4.【答案】B【考点】同底数幂的除法,二次根式的乘除法,合并同类项法则及应用,幂的乘方【解析】【解答】解:A、,故本选项不符合题意;B、,故本选项符合题意;C、,故本选项不符合题意;D、,故本选项不符合题意.故答案为:B.【分析】根据合并同类项,系数相加字母和字母的指数不变;同底数幂的除法,底数不变指数相减;二次根式的乘法计算;幂的乘方,底数不变,指数相乘,利用排除法求解.5.【答案】A【考点】反比例函数的实际应用【解析】【解答】解(1)∵vt=106,∴v= ,故答案为:A.【分析】由总量=vt,求出v即可.6.【答案】A【考点】解直角三角形的应用﹣仰角俯角问题【解析】【解答】解:根据题意可得:船离海岸线的距离为42÷tan30°=42 (米).故答案为:A.【分析】在直角三角形中,已知角的对边求邻边,可以用正切函数来解决.7.【答案】D【考点】在数轴上表示不等式组的解集,解一元一次不等式组【解析】【解答】解:,由①得,x≥−2,由②得,x<2,故原不等式组的解集为:−2≤x<2.在数轴上表示为:故答案为:D.【分析】先分别解出两个不等式,然后找出解集,表示在数轴上即可.8.【答案】A【考点】列表法与树状图法,概率公式【解析】【解答】A、第一次摸出的球是红球,第二次摸出的球不一定是绿球,故不符合题意;B、第一次摸出的球是红球,第二次摸出的球不一定是绿球,故符合题意;C、第一次摸出的球是红球,第二次摸出的球不一定是红球,故符合题意;D、第一次摸出的球是红球的概率是;两次摸到球的情况共有(红,红),(红,绿1),(红,绿2),(绿1,红),(绿1,绿1),(绿1,绿2),(绿2,红),(绿2,绿1),(绿2,绿2)9种等可能的情况,两次摸出的球都是红球的有1种,∴两次摸出的球都是红球的概率是,故符合题意;故答案为:A.【分析】根据摸出球的颜色可能出现的情形及概率依次分析即可得到答案.9.【答案】A【考点】有理数及其分类,圆的认识与圆周率【解析】【解答】解:①圆周率是一个有理数,不符合题意;② 是一个无限不循环小数,因此圆周率是一个无理数,说法符合题意;③圆周率是一个与圆的大小无关的常数,它等于该圆的周长与直径的比,说法符合题意;④圆周率是一个与圆大小有关的常数,它等于该圆的周长与半径的比,说法不符合题意;故答案为:A.【分析】圆周率的含义:圆的周长和它直径的比值,叫做圆周率,用字母π表示,π是一个无限不循环小数;据此进行分析解答即可.10.【答案】C【考点】平行线的性质,角平分线的性质【解析】【解答】∵AB平分,∠CAB=60 ,∴∠DAE=60 ,∵FD∥GH,∴∠ACE+∠CAD=180 ,∴∠ACE=180 -∠CAB-∠DAE=60 ,∵∠ACB=90 ,∴∠ECB=90 -∠ACE=30 ,故答案为:C.【分析】利用角平分线的性质求得∠DAE的度数,利用平行线的性质求得∠ACE的度数,即可求解.11.【答案】B【考点】列分式方程【解析】【解答】解:设更新技术前每天生产x万件产品,则更新技术后每天生产(x+30)万件产品,依题意,得:.故答案为:B.【分析】设更新技术前每天生产x万件产品,则更新技术后每天生产(x+30)万件产品,根据工作时间=工作总量÷工作效率,再结合现在生产500万件产品所需时间与更新技术前生产400万件产品所需时间相同,即可得出关于x的分式方程.12.【答案】C【考点】待定系数法求二次函数解析式,二次函数的其他应用【解析】【解答】将(3,0.8)(4,0.9)(5,0.6)代入得:②-①和③-②得⑤-④得,解得a=﹣0.2.将a=﹣0.2.代入④可得b=1.5.对称轴= .故答案为:C.【分析】图中三个坐标代入函数关系式解出a和b,再利用对称轴公式求出即可.二、填空题13.【答案】5、5【考点】中位数,众数【解析】【解答】从表格中可得人数最多的次数是5,故众数为5.100÷2=50,即中位数为从小到大排列的第50位,故中位数为5.故答案为5、5.【分析】根据众数和中位数的概念计算即可.14.【答案】【考点】列式表示数量关系【解析】【解答】设每个同学的扑克牌的数量都是;第一步,A同学的扑克牌的数量是,B同学的扑克牌的数量是;第二步,B同学的扑克牌的数量是,C同学的扑克牌的数量是;第三步,A同学的扑克牌的数量是2( ),B同学的扑克牌的数量是( );∴B同学手中剩余的扑克牌的数量是:( ) .故答案为:.【分析】把每个同学的扑克牌的数量用相应的字母表示出来,列式表示变化情况即可找出最后答案.15.【答案】3π【考点】圆锥的计算【解析】【解答】解:圆锥的底面周长为:2×π×1=2π,侧面积为:×2π×3=3π.故答案为:3π.【分析】先求得圆锥的底面周长,再根据扇形的面积公式S= lR求得答案即可.16.【答案】(1)1(2)1【考点】角平分线的性质,等腰三角形的性质,圆周角定理,平行线分线段成比例【解析】【解答】(1)如图所示,过E作于G,则,∵MN为半圆的直径,∴,又∵平分,,∴.∵平分,∴,∵,∴,又,∴,又∵,∴,∴,又∵,∴.∵,,∴,∴在中,,又∵,∴,∴将,,代入得,,∴,即.(2)∵,∴,又∵,∴平分,即,∴,故答案为:(1) ;(2) .【分析】(1)过E作于G,可得,根据圆周角的性质可得,又平分,根据角平分线的性质可得;由,,,且,根据“等角的余角相等”可得,再根据等腰三角形的性质“等角对等边”可得,即有;由,,可得,从而可得在中有,将、、代入可得,,既而可求得的值.(2) 由得,又,根据等腰三角形的性质可得平分,即,从而可求得.三、解答题17.【答案】解:=7【考点】实数的运算,0指数幂的运算性质,负整数指数幂的运算性质,特殊角的三角函数值【解析】【分析】根据绝对值、零次幂、特殊角的三角函数值、二次根式和负整数指数幂的运算法则分别对每项进行化简,再进行加减计算即可.18.【答案】.将x=4代入可得:原式= .【考点】利用分式运算化简求值【解析】【分析】先将代数式化简,再代入值求解即可.19.【答案】(1)①(2)如图,连接MC、NC.根据作图的过程知,在△MOC与△NOC中,,∴△MOC≌△NOC(SSS),∠AOC=∠BOC,∴OC为的平分线.【考点】全等三角形的性质,三角形全等的判定(SSS)【解析】【解答】(1)根据作图的过程知道:OM=ON,OC=OC,CM=CM,所以由全等三角形的判定定理SSS 可以证得△EOC≌△DOC,从而得到OC为的平分线;故答案为:①;【分析】(1)根据作图的过程知道:OM=ON,OC=OC,CM=CM,由“SSS”可以证得△EOC≌△DOC;(2)根据作图的过程知道:OM=ON,OC=OC,CM=CM,由全等三角形的判定定理SSS可以证得△EOC≌△DOC,从而得到OC为的平分线.20.【答案】(1)200(2)86;27(3)200×20%=40(人),补全图形如下:(4)∵“4次及以上”所占的百分比为27%,∴3000×27%=810(人).答:该校一周劳动4次及以上的学生人数大约有810人.【考点】用样本估计总体,扇形统计图,条形统计图【解析】【解答】(1)这次调查活动共抽取:20÷10%=200(人)故答案为:200.(2)m=200×43%=86(人),n%=54÷200=27%,n=27,故答案为:86,27.【分析】(1)用“1次及以下”的人数除以所占的百分比,即可求出调查的总人数;(2)总人数乘以“3次”所占的百分比可得m的值,“4次及以上”的人数除以总人数可得n%的值,即可求得n的值;(3)总人数乘以“2次”所占的百分比可得“2次”的人数,再补全条形统计图即可;(4)用全校总人数乘以“4次及以上”所占的百分比即可.21.【答案】(1)连接OC,∵OA=OC,∴∠OAC=∠OCA,∵AC平分,∴∠DAC=∠OAC,∴∠DAC=∠OCA,∴AD∥OC,∴∠ADC+∠OCD=180°,∵AD⊥CD,∴∠ADC=90°,∴∠OCD=90°,∴OC⊥CD,∴DC 为的切线;(2)连接BC,在Rt△ACD中,∠ADC=90°,,∴,∴∠DAC=30°,∴∠CAB=∠DAC=30°,AC=2CD= ,∵AB是的直径,∴∠ACB=90°,∴AB= ,∴的半径为2.【考点】角平分线的性质,切线的判定,锐角三角函数的定义,解直角三角形【解析】【分析】(1)连接OC,利用角平分线的性质及同圆半径相等的性质求出∠DAC=∠OCA,得到AD∥OC,即可得到OC⊥CD得到结论;(2)连接BC,先求出,得到∠CAB=∠DAC=30°,AC=2CD= ,再根据为的直径得到∠ACB=90°,再利用三角函数求出AB.22.【答案】(1)设A,B两种型号货车每辆满载分别能运x,y吨生活物资依题意,得解得∴A,B两种型号货车每辆满载分别能运10吨,6吨生活物资(2)设还需联系m辆B型号货车才能一次性将这批生活物资运往目的地依题意,得.解得m 5.4又m为整数,∴m最小取6∴至少还需联系6辆B型号货车才能一次性将这批生活物资运往目的地.【考点】二元一次方程组的其他应用,一元一次不等式的应用【解析】【分析】(1)设A,B两种型号货车每辆满载分别能运x,y吨生活物资,根据条件建立方程组求出其解即可;(2)设还需联系m辆B型号货车才能一次性将这批生活物资运往目的地,根据题中的不等关系列出不等式解答即可.23.【答案】(1)证明:∵四边形ABCD是矩形,∴∠B=∠C=∠D=90°,∴∠AFB+∠BAF=90°,∵△AFE是△ADE翻折得到的,∴∠AFE=∠D=90°,∴∠AFB+∠CFE=90°,∴∠BAF=∠CFE,∴△ABF∽△FCE.(2)解:∵△AFE是△ADE翻折得到的,∴AF=AD=4,∴BF= ,∴CF=BC-BF=AD-BF=2,由(1)得△ABF∽△FCE,∴,∴,∴EC= .(3)解:由(1)得△ABF∽△FCE,∴∠CEF=∠BAF= ,∴tan +tan = ,设CE=1,DE=x,∵,∴AE=DE+2EC=x+2,AB=CD=x+1,AD=∵△ABF∽△FCE,∴,∴,∴,∴,∴,∴x2-4x+4=0,解得x=2,∴CE=1,CF= ,EF=x=2,AF= AD= = ,∴tan +tan = = .【考点】勾股定理,轴对称的性质,翻折变换(折叠问题),相似三角形的判定与性质,锐角三角函数的定义【解析】【分析】(1)只要证明∠B=∠C=90°,∠BAF=∠EFC即可;(2)因为△AFE是△ADE翻折得到的,得到AF=AD=4,根据勾股定理可得BF的长,从而得到CF的长,根据△ABF∽△FCE,得到,从而求出EC的长;(3)根据△ABF∽△FCE,得到∠CEF=∠BAF= ,所以tan +tan =,设CE=1,DE=x,可得到AE,AB,AD的长,根据△ABF∽△FCE,得到,将求出的值代入化简会得到关于x的一元二次方程,解之即可求出x的值,然后可求出CE,CF,EF,AF的值,代入tan +tan = 即可.24.【答案】(1)√;√;×(2)∵A,B是“H点”∴A,B关于原点对称,∴m=4,n=1∴A(1,4),B(-1,-4)代入得解得又∵该函数的对称轴始终位于直线的右侧,∴- >2∴- >2∴-1<a<0∵a+c=0∴0<c<0,综上,-1<a<0,b=4,0<c<0;(3)∵是“H函数”∴设H点为(p,q)和(-p,-q),代入得解得ap2+3c=0,2bp=q∵p2>0∴a,c异号,∴ac<0∵a+b+c=0∴b=-a-c,∵∴∴∴c2<4a2∴<4∴-2<<2∴-2<<0设t= ,则-2<t<0设函数与x轴的交点为(x1,0)(x2,0)∴====2=又∵-2<t<0∴2<<2 .【考点】一元二次方程的根与系数的关系,定义新运算,二次函数的其他应用【解析】【解答】(1)① 是“H函数”② 是“H函数”③ 不是“H函数”;故答案为:√;√;×;【分析】(1)根据“H函数”的定义即可判断;(2)先根据题意可求出m,n的取值,代入得到a,b,c的关系,再根据对称轴在x=2的右侧即可求解;(3)设“H点”为(p,q)和(-p,-q),代入得到ap2+3c=0,2bp=q,得到a,c异号,再根据a+b+c=0,代入求出的取值,设函数与x轴的交点为(x1,0)(x2,0),t= ,利用根与系数的关系得到= ,再根据二次函数的性质即可求解.25.【答案】(1)如图,过O作OH⊥AB于H,∵,∴,∴,∵,∴,∴;(2)如图,连接OC,取OC的中点G,连接DG、EG,∵D是弦AC的中点,点E是弦BC的中点,,∴OD⊥AC,OE⊥BC,即∠ODC=∠OEC=90°,∴,∴O、D、C、E四点共圆,G为△ODE的外心,∴G在以O为圆心,2为半径的圆上运动,∵,∴运动路径长为;(3)当点C靠近A点时,如图,作CN∥AB交圆O于N,作CF⊥AB交AB于F,交DE于P,作OM⊥CN 交CN于M,交DE于Q,交AB于H,连接OC,∵D是弦AC的中点,点E是弦BC的中点,∴,∵,,∴OH=2,设,,由题可知,,∴,,∴∵,∴,即,解得,∴,即,由于,∴,又∵,∴,同理当点C靠近B点时,可知,综上所述,或.【考点】勾股定理,垂径定理,三角形的外接圆与外心,弧长的计算,锐角三角函数的定义【解析】【分析】(1)过O作OH⊥AB于H,由垂径定理可知AH的长,然后通过三角函数即可得到,从而可得到的度数;(2)连接OC,取OC的中点G,连接DG、EG,可得到O、D、C、E四点共圆,G为△ODE的外心,然后用弧长公式即可算出外心P所经过的路径的长度;(3)作CN∥AB 交圆O于N,作CF⊥AB交AB于F,交DE于P,作OM⊥CN交CN于M,交DE于Q,交AB于H,连接OC,分别表示出,的面积为,,由可算出,然后可利用勾股定理求出结果.试卷分析部分1. 试卷总体分布分析2. 试卷题量分布分析3. 试卷难度结构分析4. 试卷知识点分析。

2020年湖南省长沙市中考数学试卷(有详细解析)

2020年湖南省长沙市中考数学试卷(有详细解析)

2020年湖南省长沙市中考数学试卷班级:___________姓名:___________得分:___________一、选择题(本大题共12小题,共36.0分)1.(−2)3的值等于()A. −6B. 6C. 8D. −82.下列图形中,是轴对称图形但不是中心对称图形的是()A. B. C. D.3.为了将“新冠”疫情对国民经济的影响降至最低,中国政府采取积极的财政税收政策,切实减轻企业负担,以促进我国进出口企业平稳发展.据国家统计局相关数据显示,2020年1月至5月,全国累计办理出口退税632400000000元,其中数字632400000000用科学记数法表示为()A. 6.324×1011B. 6.324×1010C. 632.4×109D. 0.6324×10124.下列运算正确的是()A. √3+√2=√5B. x8÷x2=x6C. √3×√2=√5D. (a5)2=a75.2019年10月,《长沙晚报》对外发布长沙高铁西站设计方案.该方案以“三湘四水,杜娟花开”为设计理念,塑造出“杜娟花开”的美丽姿态.该高铁站建设初期需要运送大量土石方.某运输公司承担了运送总量为106m3土石方的任务,该运输公司平均运送土石方的速度v(单位:m3/天)与完成运送任务所需时间t(单位:天)之间的函数关系式是()A. v=106t B. v=106t C. v=1106t2 D. v=106t26.从一艘船上测得海岸上高为42米的灯塔顶部的仰角为30°时,船离灯塔的水平距离是()A. 42√3米B. 14√3米C. 21米D. 42米7.不等式组{x+1≥−1x2<1的解集在数轴上表示正确的是()A. B.C. D.8.一个不透明袋子中装有1个红球,2个绿球,除颜色外无其他差别.从中随机摸出一个球,然后放回摇匀,再随机摸出一个.下列说法中,错误的是()A. 第一次摸出的球是红球,第二次摸出的球一定是绿球B. 第一次摸出的球是红球,第二次摸出的不一定是红球C. 第一次摸出的球是红球的概率是13D. 两次摸出的球都是红球的概率是199.2020年3月14日,是人类第一个“国际数学日”.这个节日的昵称是“π(Day)”.国际数学日之所以定在3月14日,是因为“3.14”是与圆周率数值最接近的数字.在古代,一个国家所算得的圆周率的精确程度,可以作为衡量这个国家当时数学与科技发展水平的一个主要标志.我国南北朝时的祖冲之是世界上最早把圆周率的精确值计算到小数点后第7位的科学巨匠,该成果领先世界一千多年.以下对于圆周率的四个表述:①圆周率是一个有理数;②圆周率是一个无理数;③圆周率是一个与圆的大小无关的常数,它等于该圆的周长与直径的比;④圆周率是一个与圆的大小有关的常数,它等于该圆的周长与半径的比.其中表述正确的序号是()A. ②③B. ①③C. ①④D. ②④10.如图:一块直角三角板的60°角的顶点A与直角顶点C分别在两平行线FD、GH上,斜边AB平分∠CAD,交直线GH于点E,则∠ECB的大小为()A. 60°B. 45°C. 30°D. 25°11.随着5G网络技术的发展,市场对5G产品的需求越来越大,为满足市场需求,某大型5G产品生产厂家更新技术后,加快了生产速度,现在平均每天比更新技术前多生产30万件产品,现在生产500万件产品所需时间与更新技术前生产400万件产品所需时间相同.设更新技术前每天生产x万件产品,依题意得()A. 400x−30=500xB. 400x=500x+30C. 400x=500x−30D. 400x+30=500x12.“闻起来臭,吃起来香”的臭豆腐是长沙特色小吃,臭豆腐虽小,但制作流程却比较复杂,其中在进行加工煎炸臭豆腐时,我们把“焦脆而不糊”的豆腐块数的百分比称为“可食用率”.在特定条件下,“可食用率”P与加工煎炸时间t(单位:分钟)近似满足的函数关系为:p=at2+bt+c(a≠0,a,b,c是常数),如图记录了三次实验的数据.根据上述函数关系和实验数据,可以得到加工煎炸臭豆腐的最佳时间为()A. 3.50分钟B. 4.05分钟C. 3.75分钟D. 4.25分钟二、填空题(本大题共4小题,共12.0分)13.长沙地铁3号线、5号线即将试运行,为了解市民每周乘坐地铁出行的次数,某校100次数7次及以上654321次及以下人数81231241564这次调查中的众数和中位数分别是______,______.14.某数学老师在课外活动中做了一个有趣的游戏:首先发给A、B、C三个同学相同数量的扑克牌(假定发到每个同学手中的扑克牌数量足够多),然后依次完成以下三个步骤:第一步,A同学拿出二张扑克牌给B同学;第二步,C同学拿出三张扑克牌给B同学;第三步,A同学手中此时有多少张扑克牌,B同学就拿出多少张扑克牌给A同学.请你确定,最终B同学手中剩余的扑克牌的张数为______.15.已知圆锥的母线长为3,底面半径为1,该圆锥的侧面展开图的面积为______.16.如图,点P在以MN为直径的半圆上运动(点P不与M,N重合),PQ⊥MN,NE平分∠MNP,交PM于点E,交PQ于点F.(1)PFPQ +PEPM=______.(2)若PN2=PM⋅MN,则MQNQ=______.三、解答题(本大题共9小题,共72.0分)17.计算:|−3|−(√10−1)0+√2cos45°+(14)−1.18.先化简再求值:x+2x2−6x+9⋅x2−9x+2−xx−3,其中x=4.19.人教版初中数学教科书八年级上册第48页告诉我们一种作已知角的平分线的方法:已知:∠AOB.求作:∠AOB的平分线.作法:(1)以点O为圆心,适当长为半径画弧,交OA于点M,交OB于点N.(2)分别以点M,N为圆心,大于12MN的长为半径画弧,两弧在∠AOB的内部相交于点C.(3)画射线OC,射线OC即为所求(如图).请你根据提供的材料完成下面问题.(1)这种作已知角的平分线的方法的依据是______.(填序号)①SSS②SAS③AAS④ASA(2)请你证明OC为∠AOB的平分线.20.2020年3月,中共中央、国务院颁布了《关于全面加强新时代大中小学劳动教育的意见》.长沙市教育局发布了“普通中小学校劳动教育状况评价指标”.为了解某校学生一周劳动次数的情况,随机抽取若干学生进行调查,得到如图统计图表:(1)这次调查活动共抽取______人;(2)m=______,n=______;(3)请将条形统计图补充完整;(4)若该校学生总人数为3000人,根据调查结果,请你估计该校一周劳动4次及以上的学生人数.21.如图,AB为⊙O的直径,C为⊙O上一点,AD与过C点的直线互相垂直,垂足为D,AC平分∠DAB.(1)求证:DC为⊙O的切线.(2)若AD=3,DC=√3,求⊙O的半径.22.今年6月以来,我国多地遭遇强降雨,引发洪涝灾害,人民的生活受到了极大的影响.“一方有难,八方支援”,某市筹集了大量的生活物资,用A,B两种型号的货车,分两批运往受灾严重的地区.具体运输情况如下:第一批第二批A型货车的辆数(单位:辆)12B型货车的辆数(单位:辆)35累计运输物资的吨数(单位:吨)2850备注:第一批、第二批每辆货车均满载(2)该市后续又筹集了62.4吨生活物资,现已联系了3辆A种型号货车.试问至少还需联系多少辆B种型号货车才能一次性将这批生活物资运往目的地?23.在矩形ABCD中,E为DC边上一点,把△ADE沿AE翻折,使点D恰好落在BC边上的点F.(1)求证:△ABF∽△FCE;(2)若AB=2√3,AD=4,求EC的长;(3)若AE−DE=2EC,记∠BAF=α,∠FAE=β,求tanα+tanβ的值.24.我们不妨约定:若某函数图象上至少存在不同的两点关于原点对称,则把该函数称之为“H函数”,其图象上关于原点对称的两点叫做一对“H点”.根据该约定,完成下列各题.(1)在下列关于x的函数中,是“H函数”的,请在相应题目后面的括号中打“√”,不是“H函数”的打“×”.①y=2x(______);②y=m(m≠0)(______);x③y=3x−1(______).(2)若点A(1,m)与点B(n,−4)是关于x的“H函数”y=ax2+bx+c(a≠0)的一对“H点”,且该函数的对称轴始终位于直线x=2的右侧,求a,b,c的值或取值范围.(3)若关于x的“H函数”y=ax2+2bx+3c(a,b,c是常数)同时满足下列两个条件:①a+b+c=0,②(2c+b−a)(2c+b+3a)<0,求该“H函数”截x轴得到的线段长度的取值范围.25.如图,半径为4的⊙O中,弦AB的长度为4√3,点C是劣弧AB⏜上的一个动点,点D是弦AC的中点,点E是弦BC的中点,连接DE、OD、OE.(1)求∠AOB的度数;(2)当点C沿着劣弧AB⏜从点A开始,逆时针运动到点B时,求△ODE的外心P所经过的路径的长度;(3)分别记△ODE,△CDE的面积为S1,S2,当S12−S22=21时,求弦AC的长度.答案和解析1.D解:(−2)3=−8,2.B解:A、既不是轴对称图形,也不是中心对称图形,故此选项不合题意;B、是轴对称图形,不是中心对称图形,故此选项符合题意;C、既不是轴对称图形,也不是中心对称图形,故此选项不合题意;D、不是轴对称图形,是中心对称图形,故此选项不合题意;3.A解:632400000000=6.324×1011,4.B解:A、√3与√2不是同类项,不能合并,计算错误,故本选项不符合题意.B、原式=x8−2=x6,计算正确,故本选项符合题意.C、原式=√3×2=√6,计算错误,故本选项不符合题意.D、原式=a5×2=a10,计算错误,故本选项不符合题意.5.A解:∵运送土石方总量=平均运送土石方的速度v×完成运送任务所需时间t,∴106=vt,∴v=106t,6.A解:根据题意可得:船离海岸线的距离为42÷tan30°=42√3(米)7.D解:由不等式组{x+1≥−1x2<1,得−2≤x<2,故该不等式组的解集在数轴表示为:8.A解:A、第一次摸出的球是红球,第二次摸出的球不一定是绿球,故本选项错误;B、第一次摸出的球是红球,第二次摸出的不一定是红球,故本选项正确;C、∵不透明袋子中装有1个红球,2个绿球,∴第一次摸出的球是红球的概率是13,故本选项正确;D、共用9种等情况数,分别是红红、红绿、红绿、绿红、绿绿、绿绿、绿红、绿绿、绿绿,则两次摸出的球都是红球的概率是19,故本选项正确;9.A解:因为圆周率是一个无理数,是一个与圆的大小无关的常数,它等于该圆的周长与直径的比,所以表述正确的序号是②③;10.C解:∵AB平分∠CAD,∴∠CAD=2∠BAC=120°,又∵DF//HG,∴∠ACE=180°−∠DAC=180°−120°=60°,又∵∠ACB=90°,∴∠ECB=∠ACB−∠ACE=90°−60°=30°,11.B解:设更新技术前每天生产x万件产品,则更新技术后每天生产(x+30)万件产品,依题意,得:400x =500x+30.12.C解:将图象中的三个点(3,0.8)、(4,0.9)、(5,0.6)代入函数关系p=at2+bt+c中,{9a+3b+c=0.8 16a+4b+c=0.9 25a+5b+c=0.6,解得{a=−0.2 b=1.5c=−1.9,所以函数关系式为:p=−0.2t2+1.5t−1.9,由题意可知:加工煎炸臭豆腐的最佳时间为抛物线顶点的横坐标:t=−b2a =− 1.52×(−0.2)=3.75,则当t=3.75分钟时,可以得到最佳时间.13.5 5解:这次调查中的众数是5,这次调查中的中位数是5+52=5,14.7解:设每人有牌x张,B同学从A同学处拿来二张扑克牌,又从C同学处拿来三张扑克牌后,则B同学有(x+2+3)张牌,A同学有(x−2)张牌,那么给A同学后B同学手中剩余的扑克牌的张数为:x+2+3−(x−2)=x+5−x+ 2=7.15.3π解:∵圆锥的侧面展开图是扇形,∴S侧=πrl=3×1π=3π,∴该圆锥的侧面展开图的面积为3π.16.1 √5−12解:(1)∵MN为⊙O的直径,∴∠MPN=90°,∵PQ⊥MN,∴∠PQN=∠MPN=90°,∵NE平分∠PNM,∴∠MNE=∠PNE,∴△PEN∽△QFN,∴PEQF =PNQN,即PEPN=QFQN①,∵∠PNQ+∠NPQ=∠PNQ+∠PMQ=90°,∴∠NPQ=∠PMQ,∵∠PQN=∠PQM=90°,∴△NPQ∽△PMQ,∴PNMP =NQPQ②,∴①×②得PEPM =QFPQ,∵QF=PQ−PF,∴PEPM =QFPQ=1−PFPQ,∴PFPQ +PEPM=1,故答案为:1;(2)∵∠PNQ=∠MNP,∠NQP=∠NPQ,∴△NPQ∽△NMP,∴PNMN =QNPN,∴PN2=QN⋅MN,∵PN 2=PM ⋅MN , ∴PM =QN , ∴MQ NQ=MQ PM,∵tan∠M =MQPM =PMMN , ∴MQ NQ =PM MN,∴MQ NQ=NQ MQ+NQ,∴NQ 2=MQ 2+MQ ⋅NQ ,即1=MQ 2NQ 2+MQ NQ,设MQNQ =x ,则x 2+x −1=0, 解得,x =√5−12,或x =−√5+12<0(舍去),∴MQ NQ=√5−12,17. 解:原式=3−1+√2×√22+4 =2+1+4 =7.18. 解:x+2x 2−6x+9⋅x 2−9x+2−xx−3=x+2(x−3)2⋅(x+3)(x−3)x+2−xx−3=x+3x−3−xx−3 =3x−3,当x =4时,原式=34−3=3.19. ①解:(1)这种作已知角的平分线的方法的依据是①SSS . 故答案为:①(2)由基本作图方法可得:OM =ON ,OC =OC ,MC =NC , 则在△OMC 和△ONC 中, {OM =ON OC =OC MC =NC, ∴△OMC≌△ONC(SSS), ∴∠AOC =∠BOC ,即OC 为∠AOB 的平分线.20.200 86 27解:(1)20÷10%=200(人),故答案为:200;(2)200×43%=86(人),54÷200=27%,即,n=27,故答案为:86,27;(3)200×20%=40(人),补全条形统计图如图所示:(4)3000×27%=810(人),答:该校3000名学生中一周劳动4次及以上的有810人.21.解:(1)如图,连接OC,∵OA=OC,∴∠OAC=∠OCA,∵AC平分∠DAB,∴∠DAC=∠OAC,∴∠OCA=∠DAC,∴AD//OC,∵AD⊥DC,∴OC⊥DC,又OC是⊙O的半径,∴DC为⊙O的切线;(2)过点O作OE⊥AC于点E,在Rt△ADC中,AD=3,DC=√3,∴tan∠DAC=DCAD =√33,∴∠DAC=30°,∴AC=2DC=2√3,∵OE⊥AC,根据垂径定理,得AE=EC=12AC=√3,∵∠EAO =∠DAC =30°,∴OA =AE cos30∘=2, ∴⊙O 的半径为2. 22. 解:(1)设A 种型号货车每辆满载能运x 吨生活物资,B 种型号货车每辆满载能运y 吨生活物资,依题意,得:{x +3y =282x +5y =50, 解得:{x =10y =6. 答:A 种型号货车每辆满载能运10吨生活物资,B 种型号货车每辆满载能运6吨生活物资.(2)设还需联系m 辆B 种型号货车才能一次性将这批生活物资运往目的地, 依题意,得:10×3+6m ≥62.4,解得:m ≥5.4,又∵m 为正整数,∴m 的最小值为6.答:至少还需联系6辆B 种型号货车才能一次性将这批生活物资运往目的地.23. (1)证明:∵四边形ABCD 是矩形,∴∠B =∠C =∠D =90°,由翻折可知,∠D =∠AFE =90°,∴∠AFB +∠EFC =90°,∠EFC +∠CEF =90°,∴∠AFB =∠FEC ,∴△ABF∽△FCE .(2)设EC =x ,由翻折可知,AD =AF =4,∴BF =√AF 2−AB 2=√16−12=2,∴CF =BC −BF =2,∵△ABF∽△FCE ,∴AB CF =BF EC , ∴2√32=2x ,∴x =2√33, ∴EC =2√33.(3)∵△ABF∽△FCE ,∴AF EF =ABCF ,∴tanα+tanβ=BF AB +EF AF =BF AB +CF AB =BF+CFAB =BCAB , 设AB =CD =a ,BC =AD =b ,DE =x ,∴AE =DE +2CE =x +2(a −x)=2a −x ,∵AD =AF =b ,DE =EF =x ,∠B =∠C =∠D =90°,∴BF =√b 2−a 2,CF =√x 2−(a −x)2=√2ax −a 2,∵AD 2+DE 2=AE 2,∴b 2+x 2=(2a −x)2,∴a 2−ax =14b 2,∵△ABF∽△FCE ,∴AB CF =BF EC , ∴√x 2−(a−x)2=√b 2−a 2a−x ,∴a 2−ax =√b 2−a 2⋅√2ax −a 2,∴14b 2=√b 2−a 2⋅√a 2−12b 2,整理得,16a 4−24a 2b 2+9b 4=0,∴(4a 2−3b 2)2=0,∴b a =2√33, ∴tanα+tanβ=BC AB =2√33.24. √ √ ×解:(1)①y =2x 是“H 函数”.②y =m x (m ≠0)是“H 函数”.③y =3x −1不是“H 函数”.故答案为:√,√,×.(2)∵A ,B 是“H 点”,∴A ,B 关于原点对称,∴m =4,n =1,∴A(1,4),B(−1,−4),代入y =ax 2+bx +c(a ≠0)得{a +b +c =4a −b +c +−4, ∴{b =4a +c =0, ∵该函数的对称轴始终位于直线x =2的右侧, ∴−b 2a >2,∴−42a >2,∴−1<a <0,∵a +c =0,∴0<c <1,综上所述,−1<a <0,b =4,0<c <1.(3)∵y =ax 2+2bx +3c 是“H 函数”,∴设H(p,q)和(−p,−q),代入得到{ap 2+2bp +3c =q ap 2−2bp +3c =−q, 解得ap 2+3c =0,2bp =q ,∵p 2>0,∴a ,c 异号,∴ac <0,∵a +b +c =0,∴b =−a −c ,∵(2c +b −a)(2c +b +3a)<0,∴(2c −a −c −a)(2c −a −c +3a)<0,∴(c −2a)(c +2a)<0,∴c 2<4a 2,∴c 2a 2<4,∴−2<c a <2, 设t =c a ,则−2<t <0,设函数与x 轴交于(x 1,0),(x 2,0),∴x 1,x 2是方程ax 2+2bx +3c =0的两根,∴|x 1−x 2|=√(x 1+x 2)2−4x 1x 2=√(−2b a )2−4⋅3c a =√4(a+c)2a 2−12c a=√4[1+2c a +(c a )2−3c a ]=2√1+2t +t 2−3t=2√(t −12)2+34, ∵−2<t <0,∴2<|x 1−x 2|<2√7.25. 解:(1)如图1中,过点O 作OH ⊥AB 于H .∵OA =OB =4,OH ⊥AB ,∴AH =HB =12AB =2√3,∠AOH =∠BOH ,∴sin∠AOH =AH AO =√32, ∴∠AOH =60°,∴∠AOB =2∠AOH =120°.(2)如图2中,连接OC.∵OA=OC=OB,AD=DC,CE=EB,∴OD⊥AC,OE⊥CB,∴∠ODC=∠OEC=90°,∴∠ODC+∠OEC=180°,∴O,D,C,E四点共圆,∴OC是直径,∴OC的中点P是△OED的外接圆的圆心,∴OP=12OC=2,∴点P的运动路径的长=120⋅π⋅2180=4π3.(3)如图3中,连接OC交AB于J,过点O作OH⊥AB于H,过点C作CK⊥AB于K.∵AD=CD,CE=EB,∴DE//AB,AB=2DE,∴△CDE∽△CAB,∴S△CDES△CAB =(DEAB)2=14,∴S△ABC=4S2,∵S△ADO=S△ODC,S△OBE=S△OEC,∴S四边形ODCE =12S四边形OACB,∴S1+S2=12(4S2+4√3)=2S2+2√3,∴S1=S2+2√3,∵S12−S22=21,∴S22+4√3S2+12−S22=21,∴S2=3√34,∴S△ABC=3√3=12×AB×CK,∴CK=32,∵OH ⊥AB ,CK ⊥AB ,∴OH//CK ,∴△CKJ∽△OHJ ,∴CK OH=CJ OJ , ∴CJ OJ =322=34, ∴CJ =37×4=127,OJ =47×4=167, ∴JK =√CJ 2−CK 2=√(127)2−(32)2=3√1514,JH =√OJ 2−OH 2=√(167)2−22=2√157, ∴KH =√152,∴AK =AH =KH =2√3−√152,∴AC =√AK 2+CK 2=√(2√3−√152)2+(32)2=√18−6√5=√15−√3.。

2020年湖南长沙市中考数学试卷(含详细解析)

2020年湖南长沙市中考数学试卷(含详细解析)
A.第一次摸出的球是红球,第二次摸出的球一定是绿球
B.第一次摸出的球是红球,第二次摸出的球不一定是绿球
C.第一次摸出的球是红球,第二次摸出的球不一定是红球
D.第一次摸出的球是红球的概率是 ;两次摸出的球都是红球的概率是
9.2020年3月14日,是人类第一个“国际数学日”这个节日的昵称是“π(Day)”国际数学日之所以定在3月14日,是因为3.14与圆周率的数值最接近的数字,在古代,一个国家所算的的圆周率的精确程度,可以作为衡量这个国家当时数学与科技发展的水平的主要标志,我国南北朝时期的祖冲之是世界上最早把圆周率的精确值计算到小数点后第七位的科学巨匠,该成果领先世界一千多年,以下对圆周率的四个表述:①圆周率是一个有理数;②圆周率是一个无理数;③圆周率是一个与圆的大小无关的常数,它等于该圆的周长与直径的比;④圆周率是一个与圆大小有关的常数,它等于该圆的周长与半径的比;其中正确的是()
A. B. C. D.
6.从一艘船上测得海岸上高为42米的灯塔顶部的仰角是30度,船离灯塔的水平距离为()
A. 米B. 米C.21米D.42米
7.不等式组 的解集在数轴上表示正确的是()
A. B.
C. D.
8.一个不透明的袋子中装有1个红球,2个绿球,除颜色外无其他差别,从中随机摸出一个球,然后放回摇匀,再随机摸出一个,下列说法中,错误的是()
第一步,A同学拿出三张扑克牌给B同学;
第二步,C同学拿出三张扑克牌给B同学;
第三步,A同学手中此时有多少张扑克牌,B同学就拿出多少张扑克牌给A同学,
请你确定,最终B同学手中剩余的扑克牌的张数为___________________.
15.若一个圆锥的母线长是3,底面半径是1,则它的侧面展开图的面积是_____.

2020年长沙市中考数学试卷

2020年长沙市中考数学试卷
3.为了将“新冠疫情对国民经济的影响降至最低,中国政府采取积极的财政税收政策,切实减轻企业负担,以促进我国进出口企业平稳发展,据国家统计局相关数据显示,2020年1月至5月,全国累计办理出口退税632400000000元,其中632400000000用科学记数法表示为()
A. B. C. D.
【答案】A
2020年长沙市初中学业水平考试试卷数学
一、选择题
1. 的值是()
A. B.6C.8D.
【答案】D
【解析】
【分析】
利用有理数的乘方计算法则进行解答.
【详解】 =-8,
故选:D.
【点睛】此题考查有理数的乘方计算法则,熟练掌握运算法则是解题的关键.
2.下列图形中,是轴对称图形但不是中心对称图形的是()
A. B.
【解析】
【分析】
先将632400000000表示成a×10n的形式,其中1<| a |<10,n为将632400000000化成an×10n的形式时小数点向左移动的位数.
【详解】解:632400000000元= 元.
故答案为A.
【点睛】本题考查了科学记数法,即将原数据写成a×10的形式,确定a和n的值是解答此类题的关键.
A. B. C. D.
【答案】A
【解析】
【分析】
由总量=vt,求出v即可.
【详解】解(1)∵vt=106,
∴v= ,
故选:A.
【点睛】本题考查了反比例函数的应用,熟练掌握反比例函数的性质是解题的关键.
6.从一艘船上测得海岸上高为42米的灯塔顶部的仰角是30度,船离灯塔的水平距离为()
A. 米B. 米C.21米D.42米
故选:B.
【点睛】本题考查了合并同类项,同底数幂的除法,二次根式的乘法,幂的乘方.很容易混淆,要熟练掌握运算法则.

2020年湖南省长沙市中考数学试题和答案

2020年湖南省长沙市中考数学试题和答案

2020年湖南省长沙市中考数学试卷一、选择题(在下列各题的四个选项中,只有一项是符合题意的.请在答题卡中填涂符合题意的选项.本大题共12个小题,每小题3分,共36分)1.(3分)(﹣2)3的值等于()A.﹣6B.6C.8D.﹣82.(3分)下列图形中,是轴对称图形但不是中心对称图形的是()A.B.C.D.3.(3分)为了将“新冠”疫情对国民经济的影响降至最低,中国政府采取积极的财政税收政策,切实减轻企业负担,以促进我国进出口企业平稳发展.据国家统计局相关数据显示,2020年1月至5月,全国累计办理出口退税632400000000元,其中数字632400000000用科学记数法表示为()A.6.324×1011B.6.324×1010C.632.4×109D.0.6324×10124.(3分)下列运算正确的是()A.+=B.x8÷x2=x6C.×=D.(a5)2=a7 5.(3分)2019年10月,《长沙晚报》对外发布长沙高铁西站设计方案.该方案以“三湘四水,杜娟花开”为设计理念,塑造出“杜娟花开”的美丽姿态.该高铁站建设初期需要运送大量土石方.某运输公司承担了运送总量为106m3土石方的任务,该运输公司平均运送土石方的速度v(单位:m3/天)与完成运送任务所需时间t(单位:天)之间的函数关系式是()A.v=B.v=106t C.v=t2D.v=106t26.(3分)从一艘船上测得海岸上高为42米的灯塔顶部的仰角为30°时,船离灯塔的水平距离是()A.42米B.14米C.21米D.42米7.(3分)不等式组的解集在数轴上表示正确的是()A.B.C.D.8.(3分)一个不透明袋子中装有1个红球,2个绿球,除颜色外无其他差别.从中随机摸出一个球,然后放回摇匀,再随机摸出一个.下列说法中,错误的是()A.第一次摸出的球是红球,第二次摸出的球一定是绿球B.第一次摸出的球是红球,第二次摸出的不一定是红球C.第一次摸出的球是红球的概率是D.两次摸出的球都是红球的概率是9.(3分)2020年3月14日,是人类第一个“国际数学日”.这个节日的昵称是“π(Day)”.国际数学日之所以定在3月14日,是因为“3.14”是与圆周率数值最接近的数字.在古代,一个国家所算得的圆周率的精确程度,可以作为衡量这个国家当时数学与科技发展水平的一个主要标志.我国南北朝时的祖冲之是世界上最早把圆周率的精确值计算到小数点后第7位的科学巨匠,该成果领先世界一千多年.以下对于圆周率的四个表述:①圆周率是一个有理数;②圆周率是一个无理数;③圆周率是一个与圆的大小无关的常数,它等于该圆的周长与直径的比;④圆周率是一个与圆的大小有关的常数,它等于该圆的周长与半径的比.其中表述正确的序号是()A.②③B.①③C.①④D.②④10.(3分)如图:一块直角三角板的60°角的顶点A与直角顶点C 分别在两平行线FD、GH上,斜边AB平分∠CAD,交直线GH 于点E,则∠ECB的大小为()A.60°B.45°C.30°D.25°11.(3分)随着5G网络技术的发展,市场对5G产品的需求越来越大,为满足市场需求,某大型5G产品生产厂家更新技术后,加快了生产速度,现在平均每天比更新技术前多生产30万件产品,现在生产500万件产品所需时间与更新技术前生产400万件产品所需时间相同.设更新技术前每天生产x万件产品,依题意得()A.=B.=C.=D.=12.(3分)“闻起来臭,吃起来香”的臭豆腐是长沙特色小吃,臭豆腐虽小,但制作流程却比较复杂,其中在进行加工煎炸臭豆腐时,我们把“焦脆而不糊”的豆腐块数的百分比称为“可食用率”.在特定条件下,“可食用率”P与加工煎炸时间t(单位:分钟)近似满足的函数关系为:p=at2+bt+c(a≠0,a,b,c是常数),如图记录了三次实验的数据.根据上述函数关系和实验数据,可以得到加工煎炸臭豆腐的最佳时间为()A.3.50分钟B.4.05分钟C.3.75分钟D.4.25分钟二、填空题(本大题共4个小题,每小题3分,共12分)13.(3分)长沙地铁3号线、5号线即将试运行,为了解市民每周乘坐地铁出行的次数,某校园小记者随机调查了100名市民,得到如下统计表:次数7次及654321次及以上以下人数81231241564这次调查中的众数和中位数分别是,.14.(3分)某数学老师在课外活动中做了一个有趣的游戏:首先发给A、B、C三个同学相同数量的扑克牌(假定发到每个同学手中的扑克牌数量足够多),然后依次完成以下三个步骤:第一步,A同学拿出二张扑克牌给B同学;第二步,C同学拿出三张扑克牌给B同学;第三步,A同学手中此时有多少张扑克牌,B同学就拿出多少张扑克牌给A同学.请你确定,最终B同学手中剩余的扑克牌的张数为.15.(3分)已知圆锥的母线长为3,底面半径为1,该圆锥的侧面展开图的面积为.16.(3分)如图,点P在以MN为直径的半圆上运动(点P不与M,N重合),PQ⊥MN,NE平分∠MNP,交PM于点E,交PQ于点F.(1)+=.(2)若PN2=PM•MN,则=.三、解答题(本大题共9个小题,第17、18、19题每小题6分,第20、21题每小题6分,第22、23题每小题6分,第24、25题每小题6分,共72分.解答应写出必要的文字说明、证明过程或演算步骤)17.(6分)计算:|﹣3|﹣(﹣1)0+cos45°+()﹣1.18.(6分)先化简再求值:•﹣,其中x=4.19.(6分)人教版初中数学教科书八年级上册第48页告诉我们一种作已知角的平分线的方法:已知:∠AOB.求作:∠AOB的平分线.作法:(1)以点O为圆心,适当长为半径画弧,交OA于点M,交OB于点N.(2)分别以点M,N为圆心,大于MN的长为半径画弧,两弧在∠AOB的内部相交于点C.(3)画射线OC,射线OC即为所求(如图).请你根据提供的材料完成下面问题.(1)这种作已知角的平分线的方法的依据是.(填序号)①SSS②SAS③AAS④ASA(2)请你证明OC为∠AOB的平分线.20.(8分)2020年3月,中共中央、国务院颁布了《关于全面加强新时代大中小学劳动教育的意见》.长沙市教育局发布了“普通中小学校劳动教育状况评价指标”.为了解某校学生一周劳动次数的情况,随机抽取若干学生进行调查,得到如图统计图表:(1)这次调查活动共抽取人;(2)m=,n=;(3)请将条形统计图补充完整;(4)若该校学生总人数为3000人,根据调查结果,请你估计该校一周劳动4次及以上的学生人数.21.(8分)如图,AB为⊙O的直径,C为⊙O上一点,AD与过C 点的直线互相垂直,垂足为D,AC平分∠DAB.(1)求证:DC为⊙O的切线.(2)若AD=3,DC=,求⊙O的半径.22.(9分)今年6月以来,我国多地遭遇强降雨,引发洪涝灾害,人民的生活受到了极大的影响.“一方有难,八方支援”,某市筹集了大量的生活物资,用A,B两种型号的货车,分两批运往受灾严重的地区.具体运输情况如下:第一批第二批A型货车的辆数(单位:辆)12B型货车的辆数(单位:辆)35累计运输物资的吨数(单位:吨)2850备注:第一批、第二批每辆货车均满载(1)求A、B两种型号货车每辆满载分别能运多少吨生活物资?(2)该市后续又筹集了62.4吨生活物资,现已联系了3辆A种型号货车.试问至少还需联系多少辆B种型号货车才能一次性将这批生活物资运往目的地?23.(9分)在矩形ABCD中,E为DC边上一点,把△ADE沿AE 翻折,使点D恰好落在BC边上的点F.(1)求证:△ABF∽△FCE;(2)若AB=2,AD=4,求EC的长;(3)若AE﹣DE=2EC,记∠BAF=α,∠FAE=β,求tanα+tanβ的值.24.(10分)我们不妨约定:若某函数图象上至少存在不同的两点关于原点对称,则把该函数称之为“H函数”,其图象上关于原点对称的两点叫做一对“H点”.根据该约定,完成下列各题.(1)在下列关于x的函数中,是“H函数”的,请在相应题目后面的括号中打“√”,不是“H函数”的打“×”.①y=2x();②y=(m≠0)();③y=3x﹣1().(2)若点A(1,m)与点B(n,﹣4)是关于x的“H函数”y =ax2+bx+c(a≠0)的一对“H点”,且该函数的对称轴始终位于直线x=2的右侧,求a,b,c的值或取值范围.(3)若关于x的“H函数”y=ax2+2bx+3c(a,b,c是常数)同时满足下列两个条件:①a+b+c=0,②(2c+b﹣a)(2c+b+3a)<0,求该“H函数”截x轴得到的线段长度的取值范围.25.(10分)如图,半径为4的⊙O中,弦AB的长度为4,点C 是劣弧上的一个动点,点D是弦AC的中点,点E是弦BC的中点,连接DE、OD、OE.(1)求∠AOB的度数;(2)当点C沿着劣弧从点A开始,逆时针运动到点B时,求△ODE的外心P所经过的路径的长度;(3)分别记△ODE,△CDE的面积为S1,S2,当S12﹣S22=21时,求弦AC的长度.答案一、选择题(在下列各题的四个选项中,只有一项是符合题意的.请在答题卡中填涂符合题意的选项.本大题共12个小题,每小题3分,共36分)1.参考答案:解:(﹣2)3=﹣8,故选:D.2.参考答案:解:A、既不是轴对称图形,也不是中心对称图形,故此选项不合题意;B、是轴对称图形,不是中心对称图形,故此选项符合题意;C、既不是轴对称图形,也不是中心对称图形,故此选项不合题意;D、不是轴对称图形,是中心对称图形,故此选项不合题意;故选:B.3.参考答案:解:632 400 000 000=6.324×1011,故选:A.4.参考答案:解:A、与不是同类项,不能合并,计算错误,故本选项不符合题意.B、原式=x8﹣2=x6,计算正确,故本选项符合题意.C、原式==,计算错误,故本选项不符合题意.D、原式=a5×2=a10,计算错误,故本选项不符合题意.故选:B.5.参考答案:解:∵运送土石方总量=平均运送土石方的速度v×完成运送任务所需时间t,∴106=vt,∴v=,故选:A.6.参考答案:解:根据题意可得:船离海岸线的距离为42÷tan30°=42(米)故选:A.7.参考答案:解:由不等式组,得﹣2≤x<2,故该不等式组的解集在数轴表示为:故选:D.8.参考答案:解:A、第一次摸出的球是红球,第二次摸出的球不一定是绿球,故本选项错误;B、第一次摸出的球是红球,第二次摸出的不一定是红球,故本选项正确;C、∵不透明袋子中装有1个红球,2个绿球,∴第一次摸出的球是红球的概率是,故本选项正确;D、共用9种等情况数,分别是红红、红绿、红绿、绿红、绿绿、绿绿、绿红、绿绿、绿绿,则两次摸出的球都是红球的概率是,故本选项正确;故选:A.9.参考答案:解:因为圆周率是一个无理数,是一个与圆的大小无关的常数,它等于该圆的周长与直径的比,所以表述正确的序号是②③;故选:A.10.参考答案:解:∵AB平分∠CAD,∴∠CAD=2∠BAC=120°,又∵DF∥HG,∴∠ACE=180°﹣∠DAC=180°﹣120°=60°,又∵∠ACB=90°,∴∠ECB=∠ACB﹣∠ACE=90°﹣60°=30°,故选:C.11.参考答案:解:设更新技术前每天生产x万件产品,则更新技术后每天生产(x+30)万件产品,依题意,得:=.故选:B.12.参考答案:解:将图象中的三个点(3,0.8)、(4,0.9)、(5,0.6)代入函数关系p=at2+bt+c中,,解得,所以函数关系式为:p=﹣0.2t2+1.5t﹣1.9,由题意可知:加工煎炸臭豆腐的最佳时间为抛物线顶点的横坐标:t=﹣=﹣=3.75,则当t=3.75分钟时,可以得到最佳时间.故选:C.二、填空题(本大题共4个小题,每小题3分,共12分)13.参考答案:解:这次调查中的众数是5,这次调查中的中位数是,故答案为:5;5.14.参考答案:解:设每人有牌x张,B同学从A同学处拿来二张扑克牌,又从C同学处拿来三张扑克牌后,则B同学有(x+2+3)张牌,A同学有(x﹣2)张牌,那么给A同学后B同学手中剩余的扑克牌的张数为:x+2+3﹣(x ﹣2)=x+5﹣x+2=7.故答案为:7.15.参考答案:解:∵圆锥的侧面展开图是扇形,∴S侧=πrl=3×1π=3π,∴该圆锥的侧面展开图的面积为3π.故答案为:3π.16.参考答案:解:(1)∵MN为⊙O的直径,∴∠MPN=90°,∵PQ⊥MN,∴∠PQN=∠MPN=90°,∵NE平分∠PNM,∴∠MNE=∠PNE,∴△PEN∽△QFN,∴,即①,∵∠PNQ+∠NPQ=∠PNQ+∠PMQ=90°,∴∠NPQ=∠PMQ,∵∠PQN=∠PQM=90°,∴△NPQ∽△PMQ,∴②,∴①×②得,∵QF=PQ﹣PF,∴=1﹣,∴+=1,故答案为:1;(2)∵∠PNQ=∠MNP,∠NQP=∠NPM,∴△NPQ∽△NMP,∴,∴PN2=QN•MN,∵PN2=PM•MN,∴PM=QN,∴,∵cos∠M=,∴,∴,∴NQ2=MQ2+MQ•NQ,即,设,则x2+x﹣1=0,解得,x=,或x=﹣<0(舍去),∴=,故答案为:.三、解答题(本大题共9个小题,第17、18、19题每小题6分,第20、21题每小题6分,第22、23题每小题6分,第24、25题每小题6分,共72分.解答应写出必要的文字说明、证明过程或演算步骤)17.参考答案:解:原式=3﹣1+4=2+1+4=7.18.参考答案:解:•﹣===,当x=4时,原式==3.19.参考答案:解:(1)这种作已知角的平分线的方法的依据是①SSS.故答案为:①(2)由基本作图方法可得:OM=ON,OC=OC,MC=NC,则在△OMC和△ONC中,,∴△OMC≌△ONC(SSS),∴∠AOC=∠BOC,即OC为∠AOB的平分线.20.参考答案:解:(1)20÷10%=200(人),故答案为:200;(2)200×43%=86(人),54÷200=27%,即,m=86,n=27,故答案为:86,27;(3)200×20%=40(人),补全条形统计图如图所示:(4)3000×27%=810(人),答:该校3000名学生中一周劳动4次及以上的有810人.21.参考答案:解:(1)如图,连接OC,∵OA=OC,∴∠OAC=∠OCA,∵AC平分∠DAB,∴∠DAC=∠OAC,∴∠OCA=∠DAC,∴AD∥OC,∵AD⊥DC,∴OC⊥DC,又OC是⊙O的半径,∴DC为⊙O的切线;(2)过点O作OE⊥AC于点E,在Rt△ADC中,AD=3,DC=,∴tan∠DAC==,∴∠DAC=30°,∴AC=2DC=2,∵OE⊥AC,根据垂径定理,得AE=EC=AC=,∵∠EAO=∠DAC=30°,∴OA==2,∴⊙O的半径为2.22.参考答案:解:(1)设A种型号货车每辆满载能运x吨生活物资,B种型号货车每辆满载能运y吨生活物资,依题意,得:,解得:.答:A种型号货车每辆满载能运10吨生活物资,B种型号货车每辆满载能运6吨生活物资.(2)设还需联系m辆B种型号货车才能一次性将这批生活物资运往目的地,依题意,得:10×3+6m≥62.4,解得:m≥5.4,又∵m为正整数,∴m的最小值为6.答:至少还需联系6辆B种型号货车才能一次性将这批生活物资运往目的地.23.参考答案:(1)证明:∵四边形ABCD是矩形,∴∠B=∠C=∠D=90°,由翻折可知,∠D=∠AFE=90°,∴∠AFB+∠EFC=90°,∠EFC+∠CEF=90°,∴∠AFB=∠FEC,∴△ABF∽△FCE.(2)设EC=x,由翻折可知,AD=AF=4,∴BF===2,∴CF=BC﹣BF=2,∵△ABF∽△FCE,∴=,∴=,∴x=,∴EC=.(3)∵△ABF∽△FCE,∴=,∴tanα+tanβ=+=+==,设AB=CD=a,BC=AD=b,DE=x,∴AE=DE+2CE=x+2(a﹣x)=2a﹣x,∵AD=AF=b,DE=EF=x,∠B=∠C=∠D=90°,∴BF=,CF==,∵AD2+DE2=AE2,∴b2+x2=(2a﹣x)2,∴a2﹣ax=b2,∵△ABF∽△FCE,∴=,∴=,∴a2﹣ax=•,∴b2=•,整理得,16a4﹣24a2b2+9b4=0,∴(4a2﹣3b2)2=0,∴=,∴tanα+tanβ==.24.参考答案:解:(1)①y=2x是“H函数”.②y=(m≠0)是“H函数”.③y=3x﹣1不是“H函数”.故答案为:√,√,×.(2)∵A,B是“H点”,∴A,B关于原点对称,∴m=4,n=﹣1,∴A(1,4),B(﹣1,﹣4),代入y=ax2+bx+c(a≠0)得,∴,∵该函数的对称轴始终位于直线x=2的右侧,∴﹣>2,∴﹣>2,∴﹣1<a<0,∵a+c=0,∴0<c<1,综上所述,﹣1<a<0,b=4,0<c<1.(3)∵y=ax2+2bx+3c是“H函数”,∴设H(p,q)和(﹣p,﹣q),代入得到,解得ap2+3c=0,2bp=q,∵p2>0,∴a,c异号,∴ac<0,∵a+b+c=0,∴b=﹣a﹣c,∵(2c+b﹣a)(2c+b+3a)<0,∴(2c﹣a﹣c﹣a)(2c﹣a﹣c+3a)<0,∴(c﹣2a)(c+2a)<0,∴c2<4a2,∴<4,∴﹣2<<2,设t=,则﹣2<t<0,设函数与x轴交于(x1,0),(x2,0),∴x1,x2是方程ax2+2bx+3c=0的两根,∴|x 1﹣x2|=====2=2,∵﹣2<t<0,∴2<|x 1﹣x2|<2.25.参考答案:解:(1)如图1中,过点O作OH⊥AB于H.∵OA=OB=4,OH⊥AB,∴AH=HB=AB=2,∠AOH=∠BOH,∴sin∠AOH==,∴∠AOH=60°,∴∠AOB=2∠AOH=120°.(2)如图2中,连接OC,取OC的中点P,连接DP,∵OA=OC=OB,AD=DC,CE=EB,∴OD⊥AC,OE⊥CB,∴∠ODC=∠OEC=90°,∴∠ODC+∠OEC=180°,∴O,D,C,E四点共圆,∴OC是直径,∴OC的中点P是△OED的外接圆的圆心,∴OP=OC=2,∴点P在以O为圆心,2为半径的圆上运动,∵∠AOB=120°,∴点P的运动路径的长==.(3)当点C靠近A点时,如图3中,当AC<BC时,连接OC交AB于J,过点O作OH⊥AB于H,过点C作CK⊥AB于K.∵AD=CD,CE=EB,∴DE∥AB,AB=2DE,∴△CDE∽△CAB,∴=()2=,∴S△ABC=4S2,∵S△ADO=S△ODC,S△OBE=S△OEC,∴S四边形ODCE=S四边形OACB,∴S 1+S2=(4S2+4)=2S2+2,∴S 1=S2+2,∵S12﹣S22=21,∴S 22+4S2+12﹣S22=21,∴S2=,∴S △ABC=3=×AB×CK,∴CK=,∵OH⊥AB,CK⊥AB,∴OH∥CK,∴△CKJ∽△OHJ,∴=,∴==,∴CJ=×4=,OJ=×4=,∴JK===,JH===,∴KH=,∴AK=AH﹣KH=2﹣,∴AC====﹣.当AC>BC时,同法可得AC=+,同理,当点C靠近B点时,可知AC==+.综上所述,满足条件的AC的值为±.。

湖南长沙市2020年中考数学试题

湖南长沙市2020年中考数学试题

【详解】
解:根据题意可得:船离海岸线的距离为 42÷tan30°=42 3 (米). 故选:A. 【点睛】 本题考查解直角三角形的应用-仰角的定义,要求学生能借助仰角构造直角三角形并解 直角三角形.
x 1 1
7.不等式组
x
的解集在数轴上表示正确的是( )
2 1
A.
B.
C. D.
【答案】D 【解析】 【分析】 先分别解出两个不等式,然后找出解集,表示在数轴上即可. 【详解】
【解析】 【分析】 根据轴对称图形与中心对称图形的概念求解. 【详解】 A、不是轴对称图形,也不是中心对称图形,不合题意; B、是轴对称图形,不是中心对称图形,符合题意; C、不是轴对称图形,也不是中心对称图形,不合题意; D、不是轴对称图形,是中心对称图形,不合题意. 故选:B. 【点睛】 本题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴, 图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转 180 度后原图形重合. 3.为了将“新冠疫情对国民经济的影响降至最低,中国政府采取积极的财政税收政策, 切实减轻企业负担,以促进我国进出口企业平稳发展,据国家统计局相关数据显示,2020 年 1 月至 5 月,全国累计办理出口退税 632400000000 元,其中 632400000000 用科学记 数法表示为( )
【答案】B
试卷第 2 页,总 28 页
…………○…………外…………○…………装…………○…………订…………○…………线…………○………… 学校:___________姓名:___________班级:___________考号:___________
…………○…………内…………○…………装…………○…………订…………○…………线…………○…………

2020年湖南长沙市中考数学试题(教师版含解析)

2020年湖南长沙市中考数学试题(教师版含解析)

2020年长沙市初中学业水平考试试卷数学 一、选择题1.()3-2的值是( )A. 6-B. 6C. 8D. 8-【答案】D【详解】()3-2=-8,故选:D.2.下列图形中,是轴对称图形但不是中心对称图形的是( ) A. B.C. D.【答案】B【详解】A 、不是轴对称图形,也不是中心对称图形,不合题意;B 、是轴对称图形,不是中心对称图形,符合题意;C 、不是轴对称图形,也不是中心对称图形,不合题意;D 、不是轴对称图形,是中心对称图形,不合题意.故选:B .3.为了将“新冠疫情对国民经济的影响降至最低,中国政府采取积极的财政税收政策,切实减轻企业负担,以促进我国进出口企业平稳发展,据国家统计局相关数据显示,2020年1月至5月,全国累计办理出口退税632400000000元,其中632400000000用科学记数法表示为( )A. 116.23410⨯B. 106.23410⨯C. 96.23410⨯D. 126.23410⨯【答案】A【详解】解:632400000000元=116.23410⨯元.故答案为A .4.下列运算正确的是( )A. 325+=B. 826x x x ÷=C. 325⨯=D. ()257a a = 【答案】B【详解】解:A 、325,故本选项错误;B 、826x x x ÷=,故本选项正确;C 、3265⨯=≠,故本选项错误; D 、()25107a a a =≠,故本选项错误.故选:B .5.2019年10月,《长沙晚报》对外发布长沙高铁两站设计方案,该方案以三湘四水,杜鹃花开 ,塑造出杜鹃花开的美丽姿态,该高铁站建设初期需要运送大量的土石方,某运输公司承担了运送总量为6310m 土石方的任务,该运输公司平均运送土石方的速度v (单位:3/m 天)与完成运送任务所需的时间t (单位:天)之间的函数关系式是( )A. 610v t= B. 610v = C. 26110v t = D. 6210v t =【答案】A【详解】解(1)∵vt=106, ∴v=610t, 故选:A .6.从一艘船上测得海岸上高为42米的灯塔顶部的仰角是30度,船离灯塔的水平距离为( )A. 423米B. 143米C. 21米D. 42米【答案】A【详解】解:根据题意可得:船离海岸线的距离为42÷tan30°=423(米). 故选:A . 7.不等式组1112x x +≥-⎧⎪⎨<⎪⎩的解集在数轴上表示正确的是( ) A. B.C. D.【答案】D【详解】解:1112xx+≥-⎧⎪⎨<⎪⎩①②,由①得,x≥−2,由②得,x<2,故原不等式组的解集为:−2≤x<2.在数轴上表示为:故答案为:D.8.一个不透明的袋子中装有1个红球,2个绿球,除颜色外无其他差别,从中随机摸出一个球,然后放回摇匀,再随机摸出一个,下列说法中,错误的是()A. 第一次摸出的球是红球,第二次摸出的球一定是绿球B. 第一次摸出的球是红球,第二次摸出的球不一定是绿球C. 第一次摸出的球是红球,第二次摸出的球不一定是红球D. 第一次摸出的球是红球的概率是13;两次摸出的球都是红球的概率是19【答案】A【详解】A、第一次摸出的球是红球,第二次摸出的球不一定是绿球,故错误;B、第一次摸出的球是红球,第二次摸出的球不一定是绿球,故正确;C、第一次摸出的球是红球,第二次摸出的球不一定是红球,故正确;D、第一次摸出的球是红球的概率是13;两次摸到球的情况共有(红,红),(红,绿1),(红,绿2),(绿1,红),(绿1,绿1),(绿1,绿2),(绿2,红),(绿2,绿1),(绿2,绿2)9种等可能的情况,两次摸出的球都是红球的有1种,∴两次摸出的球都是红球的概率是19,故正确;故选:A.9.2020年3月14日,是人类第一个“国际数学日”这个节日的昵称是“π(Day)”国际数学日之所以定在3月14日,是因为3.14与圆周率的数值最接近的数字,在古代,一个国家所算的的圆周率的精确程度,可以作为衡量这个国家当时数学与科技发展的水平的主要标志,我国南北朝时期的祖冲之是世界上最早把圆周率的精确值计算到小数点后第七位的科学巨匠,该成果领先世界一千多年,以下对圆周率的四个表述:①圆周率是一个有理数;②圆周率是一个无理数;③圆周率是一个与圆的大小无关的常数,它等于该圆的周长与直径的比;④圆周率是一个与圆大小有关的常数,它等于该圆的周长与半径的比;其中正确的是( )A. ②③B. ①③C. ①④D. ②④【答案】A【详解】解:①圆周率是一个有理数,错误;②π是一个无限不循环小数,因此圆周率是一个无理数,说法正确;③圆周率是一个与圆的大小无关的常数,它等于该圆的周长与直径的比,说法正确;④圆周率是一个与圆大小有关的常数,它等于该圆的周长与半径的比,说法错误;故选:A .10.如图,一块直角三角板的60度的顶点A 与直角顶点C 分别在平行线,FD GH 上,斜边AB 平分CAD ∠,交直线GH 于点E ,则ECB ∠的大小为( )A. 60︒B. 45︒C. 30︒D. 25︒【答案】C 【详解】∵AB 平分CAD ∠,∠CAB=60︒,∴∠DAE=60︒,∵FD ∥GH ,∴∠ACE+∠CAD=180︒,∴∠ACE=180︒-∠CAB-∠DAE=60︒,∵∠ACB=90︒,∴∠ECB=90︒-∠ACE=30︒,故选:C .11.随着5G 网络技术的发展,市场对5G 产品的需求越来越大,为满足市场需求,某大型5G 产品生产厂家更新技术后,加快了生产速度,现在平均每天比更新技术前多生产30万件产品,现在生产500万件产品所需的时间与更新技术前生产400万件产品所需时间相同,设更新技术前每天生产x万件,依据题意得()A.40050030x x=-B.40050030x x=+C.40050030x x=-D.40050030x x=+【答案】B【详解】解:设更新技术前每天生产x万件产品,则更新技术后每天生产(x+30)万件产品,依题意,得:40050030x x=+.故选:B.12.“闻起来臭,吃起来香”的臭豆腐是长沙特色小吃,臭豆腐虽小,但制作流程却比较复杂,其中在进行加工煎炸臭豆腐时,我们把焦脆而不糊的豆腐块数的百分比称为“可食用率”,在特定条件下,“可食用率”p与加工煎炸的时间t(单位:分钟)近似满足函数关系式:2p at bt c=++(0,a≠a,b,c为常数),如图纪录了三次实验数据,根据上述函数关系和实验数据,可以得到加工煎炸臭豆腐的最佳时间为( )A. 3.50分钟B. 4.05分钟C. 3.75分钟D. 4.25分钟【答案】C【详解】将(3,0.8)(4,0.9)(5,0.6)代入2p at bt c=++得:0.8930.91640.6255a b ca b ca b c=++⎧⎪=++⎨⎪=++⎩①②③②-①和③-②得0.1=70.39a ba b+⎧⎨-=+⎩④⑤⑤-④得0.4=2a-,解得a=﹣0.2.将a=﹣0.2.代入④可得b=1.5.对称轴=1.53.7522(0.2)ba--==⨯-.故选C.二、填空题13.长沙地铁3号线、5号线即将运行,为了解市民每周乘地铁出行的次数,某校园小记者随机调查了100名市民,得到了如下的统计表:这次调查的众数和中位数分别是___________________________.【答案】5、5【详解】从表格中可得人数最多的次数是5,故众数为5.100÷2=50,即中位数为从小到大排列的第50位,故中位数为5.故答案为5、5.14.某数学老师在课外活动中做了一个有趣的游戏:首先发给A ,B ,C 三个同学相同数量的扑克牌(假定发到每个同学手中的扑克牌数量足够多),然后依次完成下列三个步骤:第一步,A 同学拿出三张扑克牌给B 同学;第二步,C 同学拿出三张扑克牌给B 同学;第三步,A 同学手中此时有多少张扑克牌,B 同学就拿出多少张扑克牌给A 同学,请你确定,最终B 同学手中剩余的扑克牌的张数为___________________.【答案】9【详解】设每个同学的扑克牌的数量都是x ;第一步,A 同学的扑克牌的数量是3x -,B 同学的扑克牌的数量是3x +;第二步,B 同学的扑克牌的数量是33x ++,C 同学的扑克牌的数量是3x -;第三步,A 同学的扑克牌的数量是2(3x -),B 同学的扑克牌的数量是33x ++-(3x -);∴B 同学手中剩余的扑克牌的数量是:33x ++-(3x -)9=.故答案为:9.15.若一个圆锥的母线长是3,底面半径是1,则它的侧面展开图的面积是_____.【答案】3π.【详解】解:圆锥的底面周长为:2×π×1=2π,侧面积为:12×2π×3=3π. 故答案为:3π.16.如图,点P 在以MN 为直径的半圆上运动,(点P 与M ,N 不重合),PQ MN NE ⊥平分MNP ∠,交PM 于点E ,交PQ 于点F .(1) PF PE PQ PM+=___________________.(2)若2PN PM PN =⋅,则MQ NQ =___________________.【答案】 (1). 1 (2). 1 【详解】(1)如图所示,过E 作GE MN ⊥于G ,则90NGE ∠=︒,∵MN 为半圆的直径,∴90MPN ∠=︒,又∵NE 平分MNP ∠,90NGE ∠=︒,∴PE GE =.∵NE 平分MNP ∠,∴PNE MNE ∠=∠,∵90EPN FQN ∠=∠=︒,∴90,90PNE PEN MNE QFN ∠+∠=︒∠+∠=︒,又QFN PFE ∠=∠,∴90,90PNE PEN MNE PFE ∠+∠=︒∠+∠=︒,又∵PNE MNE ∠=∠,∴PEN PFE ∠=∠,∴PE PF =,又∵PE GE =,∴GE PF =. ∵PQ MN ⊥,GE MN ⊥,∴//GE PQ ,∴在PMQ 中,EM GE PM PQ=,又∵EM PM PE =-, ∴PM PE GE PM PQ-=, ∴将GE PF =,PE PF =,代入PM PE GE PM PQ-=得,PM PF PF PM PQ -=, ∴1PF PE PM PF PF PQ PM PM PM-+=+=, 即1PF PE PQ PM+=. (2)∵2PN PM PN =⋅,∴PN PM =,又∵PQ MN ⊥,∴PQ 平分MN ,即MQ NQ =, ∴1MQ NQ=, 故答案为:(1) 1PF PE PQ PM +=;(2) 1MQ NQ=. 三、解答题17.计算:)10131454-︒⎛⎫--++ ⎪⎝⎭ 【答案】7【详解】解:)10131454-︒⎛⎫--+ ⎪⎝⎭ =3114-++=718.先化简,再求值22296923x x x x x x x +-⋅--++-,其中4x =【答案】33x -,3 【详解】()()()22233292336923233333x x x x x x x x x x x x x x x x x x x +-+-++⋅-=⋅-=-=-++-+-----. 将x=4代入可得:原式=333343x ==--. 19.人教版初中数学教科书八年级上册第48页告诉我们一种作已知角的平分线的方法:已知:AOB ∠求作:AOB ∠的平分线做法:(1)以O 为圆心,适当长为半径画弧,交OA 于点M ,交OB 于点N ,(2)分别以点M ,N 为圆心,大于12MN 的长为半径画弧,两弧在AOB ∠的内部相交于点C (3)画射线OC ,射线OC 即为所求.请你根据提供的材料完成下面问题:(1)这种作已知角平分线的方法的依据是__________________(填序号).①SSS ②SAS ③AAS ④ASA(2)请你证明OC 为AOB ∠的平分线.【答案】(1)①;(2)证明见解析【详解】(1)根据作图的过程知道:OM=ON ,OC=OC ,CM=CM ,所以由全等三角形的判定定理SSS 可以证得△EOC ≌△DOC ,从而得到OC 为AOB ∠的平分线;故答案为:①;(2)如图,连接MC 、NC .根据作图的过程知,在△MOC 与△NOC 中,OM ON OC OC CM CN ⎧⎪⎨⎪⎩===,∴△MOC ≌△NOC (SSS ),∠AOC=∠BOC ,∴OC 为AOB ∠的平分线.20.2020年3月,中共中央、国务院颁布了《关于全面加强新时代大中小学劳动教育的意见》长沙市教育局发布了“普通中小学校劳动教育状况评价指标”,为了解某校学生一周劳动次数的情况,随机抽取若干学生进行调查,得到如下统计图表:(1)这次调查活动共抽取___________人;(2)_________;____________m n ==.(3)请将条形图补充完整(4)若该校学生总人数为3000人,根据调查结果,请你估计该校一周劳动4次及以上的学生人数.【答案】(1)200;(2)86,27;(3)图形见解析;(4)810人【详解】解:(1)这次调查活动共抽取:20÷10%=200(人) 故答案为:200.(2)m=200×43%=86(人),n%=54÷200=27%,n=27,故答案为:86,27.(3)200×20%=40(人), 补全图形如下:(4)∵“4次及以上”所占的百分比为27%,∴3000×27%=810(人). 答:该校一周劳动4次及以上的学生人数大约有810人.21.如图,AB 为O 的直径,C 为O 上的一点,AD 与过点C 的直线互相垂直,垂足为D ,AC 平分DAB ∠. (1)求证:DC 为O 的切线;(2)若3,3AD DC ==,求O 的半径.【答案】(1)详见解析;(2)2【详解】(1)连接OC ,∵OA=OC ,∴∠OAC=∠OCA ,∵AC 平分DAB ∠,∴∠DAC=∠OAC ,∴∠DAC=∠OCA ,∴AD ∥OC ,∴∠ADC+∠OCD=180°,∵AD ⊥CD ,∴∠ADC=90°, ∴∠OCD=90°,∴OC ⊥CD ,∴DC 为O 的切线;(2)连接BC ,在Rt △ACD 中,∠ADC=90°,3,3AD DC ==,∴3tan CD DAC AD ∠==, ∴∠DAC=30°,∴∠CAB=∠DAC=30°,AC=2CD=23,∵AB 是O 的直径,∴∠ACB=90°,∴AB=4cos AC CAB =∠, ∴O 的半径为2.22.今年6月以来,我国多地遭遇强降雨,引发洪涝灾害,人民的生活受到了极大的影响,“一方有难,八方支援”,某市筹集了大量的生活物资,用A ,B 两种型号的货车,分两批运往受灾严重的地区,具体运算情况如下:第一批 第二批 A 型货车的辆数(单位:辆)1 2 B 型货车的辆数(单位:辆) 3 5累计运送货物的顿数(单位:吨)28 50备注:第一批、第二批每辆货车均满载(1)求A ,B 两种型号货车每辆满载分别能运多少吨生活物资; (2)该市后续又筹集了62.4吨生活物资,现已联系了3辆A 型号货车,试问至少还需联系多少辆B 型号货车才能一次性将这批生活物资运往目的地.【答案】(1)A ,B 两种型号货车每辆满载分别能运10吨,6吨生活物资;(2)6.【详解】解:(1)设A ,B 两种型号货车每辆满载分别能运x ,y 吨生活物资依题意,得328,2550,x y x y +=⎧⎨+=⎩解得10,6,x y =⎧⎨=⎩ ∴A ,B 两种型号货车每辆满载分别能运10吨,6吨生活物资(2)设还需联系m 辆B 型号货车才能一次性将这批生活物资运往目的地依题意,得310662.4m ⨯+≥.解得m ≥5.4又m 为整数,∴m 最小取6∴至少还需联系6辆B 型号货车才能一次性将这批生活物资运往目的地.23.在矩形ABCD 中,E 为DC 上的一点,把ADE ∆沿AE 翻折,使点D 恰好落在BC 边上的点F .(1)求证:ABF FCE ∆∆(2)若23,4AB AD ==,求EC 的长;(3)若2AE DE EC -=,记,BAF FAE αβ∠=∠=,求tan tan αβ+的值.【答案】(1)证明过程见解析;(2)33;(3)233. 【详解】(1)证明:∵四边形ABCD 是矩形,∴∠B=∠C=∠D=90°,∴∠AFB+∠BAF=90°,∵△AFE 是△ADE 翻折得到的, ∴∠AFE=∠D=90°,∴∠AFB+∠CFE=90°,∴∠BAF=∠CFE ,∴△ABF ∽△FCE .(2)解:∵△AFE 是△ADE 翻折得到的,∴AF=AD=4,∴BF=()22224232AF AB -=-=, ∴CF=BC-BF=AD-BF=2,由(1)得△ABF ∽△FCE ,∴CE CF BF AB=, ∴223CE =, ∴EC=233. (3)解:由(1)得△ABF ∽△FCE ,∴∠CEF=∠BAF=α,∴tan α+tan β=BF EF CE EF AB AF CF AF+=+, 设CE=1,DE=x ,∵2AE DE EC -=,∴AE=DE+2EC=x+2,AB=CD=x+1,2244AE DE x -=+∵△ABF ∽△FCE ,∴AB CF AF EF=,x =,211x x-=,∴12= ∴x =,∴x2-4x+4=0,解得x=2,∴CE=1,,EF=x=2,= ∴tan α+tanβ=CE EFCF AF += 24.我们不妨约定:若某函数图像上至少存在不同的两点关于原点对称,则把该函数称之为“H 函数”,其图像上关于原点对称的两点叫做一对“H 点”,根据该约定,完成下列各题(1)在下列关于x 的函数中,是“H 函数”的,请在相应题目后面的括号中打“√”,不是“H 函数”的打“×” ①2y x =( ) ②m y (m 0)x=≠( ) ③31y x =-( ) (2)若点()1,A m 与点(),4B n -关于x 的“H 函数” ()20y ax bx c a =++≠的一对“H 点”,且该函数的对称轴始终位于直线2x =的右侧,求,,a b c 的值域或取值范围;(3)若关于x 的“H 函数” 223y ax bx c =++(a ,b ,c 是常数)同时满足下列两个条件:①0a b c ++=,②(2)(23)0c b a c b a +-++<,求该H 函数截x 轴得到的线段长度的取值范围.【答案】(1)√;√;×;(2)-1<a <0,b=4,0<c <0;(3)2<12x x -<. 【详解】(1)①2y x =是 “H 函数”②m y (m 0)x =≠是 “H 函数”③31y x =-不是 “H 函数”; 故答案为:√;√;×;(2)∵A,B 是“H 点”∴A,B 关于原点对称,∴m=4,n=1∴A(1,4),B (-1,-4)代入()20y ax bx c a =++≠得44a b c a b c ++=⎧⎨-+=-⎩ 解得40b a c =⎧⎨+=⎩又∵该函数的对称轴始终位于直线2x =的右侧,∴-2b a>2 ∴-42a >2 ∴-1<a <0∵a+c=0∴0<c <0,综上,-1<a <0,b=4,0<c <0;(3)∵223y ax bx c =++是“H 函数”∴设H 点为(p,q )和(-p,-q ), 代入得222323ap bp c q ap bp c q⎧++=⎨-+=-⎩解得ap 2+3c=0,2bp=q∵p 2>0∴a,c 异号,∴ac <0∵a+b+c=0∴b=-a-c ,∵(2)(23)0c b a c b a +-++<∴(2)(23)0c a c a c a c a -----+<∴(2)(2)0c a c a -+<∴c 2<4a 2∴22c a<4 ∴-2<c a<2 ∴-2<c a<0 设t=c a ,则-2<t <0 设函数与x 轴的交点为(x 1,0)(x 2,0)∴x 1, x 2是方程223ax bx c ++=0的两根∴12x x -== 又∵-2<t <0∴2<12x x -<.25.如图,半径为4的O 中,弦AB 的长度为点C 是劣弧AB 上的一个动点,点D 是弦AC 的中点,点E 是弦BC 的中点,连接DE ,OD ,OE .(1)求AOB ∠的度数;(2)当点C 沿着劣弧AB 从点A 开始,逆时针运动到点B 时,求ODE ∆的外心P 所经过的路径的长度;(3)分别记,ODE CDE ∆∆的面积为12,S S ,当221221S S -=时,求弦AC 的长度.【答案】(1)120AOB ∠=︒;(2)43π;(3)153AC =-或153AC =+. 【详解】解:(1)如图,过O 作OH ⊥AB 于H ,∵3AB =∴1232AH AB == ∴233AH cos OAH AO ===∠ ∴30OAH =︒∠,∵OA OB =,∴30OBH OAH ==︒∠∠,∴1803030120AOB =︒-︒-︒=︒∠;(2)如图,连接OC ,取OC 的中点G ,连接DG 、EG ,∵D 是弦AC 的中点,点E 是弦BC 的中点,OA OB OC ==,∴OD ⊥AC ,OE ⊥BC ,即∠ODC=∠OEC=90°,∴122OG DG GE GC OC =====, ∴O 、D 、C 、E 四点共圆,G 为△ODE 的外心,∴G 在以O 为圆心,2为半径的圆上运动,∵120AOB ∠=︒,∴运动路径长为120241803ππ⨯=; (3)当点C 靠近A 点时,如图,作CN ∥AB 交圆O 于N ,作CF ⊥AB 交AB 于F ,交DE 于P ,作OM ⊥CN 交CN 于M ,交DE 于Q ,交AB 于H ,连接OC ,∵D 是弦AC 的中点,点E 是弦BC 的中点,∴1232DE AB == ∵30OAH =︒∠,4OA =,∴OH=2,设1OQ h =,2CP h =,由题可知12OM h h =+,12OH h h =-,∴1112S DE h =⨯⨯,2212S DE h =⨯⨯, ∴()12121211112222S S DE h DE h DE h h DE OM +=⨯⨯+⨯⨯=⨯⨯+=⨯⨯ ()12121211112222S S DE h DE h DE h h DE OH -=⨯⨯-⨯⨯=⨯⨯-=⨯⨯ ∵()()2212121221S S S S S S -=+-=,∴112122DE OM DE OH ⎛⎫⎛⎫⨯⨯⨯⨯= ⎪⎪⎝⎭⎝⎭,即1122122OM ⎛⎫⎛⎫⨯⨯= ⎪⎪⎝⎭⎝⎭, 解得72OM =,∴2CM ==,即2FH =,由于AH =2AF =, 又∵73222CF MH OM OH ==-=-=,∴AC ==同理当点C 靠近B 点时,可知AC ==综上所述,AC =AC =。

湖南长沙市2020年中考数学试题(Word版,含答案与解析)

湖南长沙市2020年中考数学试题(Word版,含答案与解析)

湖南长沙市2020年中考数学试卷一、单选题(共12题;共24分)1.(-2)3的值是()A. −6B. 6C. 8D. −8【答案】 D【考点】有理数的乘方【解析】【解答】(-2)3=-8,故答案为:D.【分析】利用有理数的乘方计算法则进行解答.2.下列图形中,是轴对称图形但不是中心对称图形的是()A. B.C. D.【答案】B【考点】轴对称图形,中心对称及中心对称图形【解析】【解答】A、不是轴对称图形,也不是中心对称图形,不合题意;B、是轴对称图形,不是中心对称图形,符合题意;C、不是轴对称图形,也不是中心对称图形,不合题意;D、不是轴对称图形,是中心对称图形,不合题意.故答案为:B.【分析】根据轴对称图形与中心对称图形的概念求解.3.为了将“新冠疫情对国民经济的影响降至最低,中国政府采取积极的财政税收政策,切实减轻企业负担,以促进我国进出口企业平稳发展,据国家统计局相关数据显示,2020年1月至5月,全国累计办理出口退税632400000000元,其中632400000000用科学记数法表示为()A. 6.234×1011B. 6.234×1010C. 6.234×109D. 6.234×1012【答案】A【考点】科学记数法—表示绝对值较大的数【解析】【解答】解:632400000000元= 6.234×1011元.故答案为A.【分析】先将632400000000表示成a×10n的形式,其中1<| a |<10,n为将632400000000化成an×10n 的形式时小数点向左移动的位数.4.下列运算正确的是()A. √3+√2=√5B. x 8÷x 2=x 6C. √3×√2=√5D. (a 5)2=a 7【答案】 B【考点】同底数幂的除法,二次根式的乘除法,合并同类项法则及应用,幂的乘方【解析】【解答】解:A 、 √3+√2≠√5 ,故本选项不符合题意;B 、 x 8÷x 2=x 6 ,故本选项符合题意;C 、 √3×√2=√6≠√5 ,故本选项不符合题意;D 、 (a 5)2=a 10≠a 7 ,故本选项不符合题意.故答案为:B .【分析】根据合并同类项,系数相加字母和字母的指数不变;同底数幂的除法,底数不变指数相减;二次根式的乘法计算;幂的乘方,底数不变,指数相乘,利用排除法求解.5.2019年10月,《长沙晚报》对外发布长沙高铁两站设计方案,该方案以三湘四水,杜鹃花开 ,塑造出杜鹃花开的美丽姿态,该高铁站建设初期需要运送大量的土石方,某运输公司承担了运送总量为 106m 3土石方的任务,该运输公司平均运送土石方的速度 v (单位: m 3/ 天)与完成运送任务所需的时间t (单位:天)之间的函数关系式是( )A. v =106t B. v =106 C. v =1106t 2 D. v =106t 2 【答案】 A【考点】反比例函数的实际应用【解析】【解答】解(1)∵vt=106 ,∴v= 106t ,故答案为:A .【分析】由总量=vt ,求出v 即可.6.从一艘船上测得海岸上高为42米的灯塔顶部的仰角是30度,船离灯塔的水平距离为( )A. 42√3 米B. 14√3 米C. 21米D. 42米【答案】 A【考点】解直角三角形的应用﹣仰角俯角问题【解析】【解答】解:根据题意可得:船离海岸线的距离为42÷tan30°=42 √3 (米).故答案为:A .【分析】在直角三角形中,已知角的对边求邻边,可以用正切函数来解决.7.不等式组 {x +1≥−1x 2<1 的解集在数轴上表示正确的是( )A. B.C.D.【答案】 D 【考点】在数轴上表示不等式组的解集,解一元一次不等式组【解析】【解答】解: {x +1≥−1①x 2<1② , 由①得, x≥−2,由②得, x <2,故原不等式组的解集为:−2≤x <2.在数轴上表示为:故答案为:D .【分析】先分别解出两个不等式,然后找出解集,表示在数轴上即可.8.一个不透明的袋子中装有1个红球,2个绿球,除颜色外无其他差别,从中随机摸出一个球,然后放回摇匀,再随机摸出一个,下列说法中,错误的是( )A. 第一次摸出的球是红球,第二次摸出的球一定是绿球B. 第一次摸出的球是红球,第二次摸出的球不一定是绿球C. 第一次摸出的球是红球,第二次摸出的球不一定是红球D. 第一次摸出的球是红球的概率是 13 ;两次摸出的球都是红球的概率是 19【答案】 A【考点】列表法与树状图法,概率公式【解析】【解答】A 、第一次摸出的球是红球,第二次摸出的球不一定是绿球,故不符合题意; B 、第一次摸出的球是红球,第二次摸出的球不一定是绿球,故符合题意;C 、第一次摸出的球是红球,第二次摸出的球不一定是红球,故符合题意;D 、第一次摸出的球是红球的概率是 13 ;两次摸到球的情况共有(红,红),(红,绿1),(红,绿2),(绿1,红),(绿1,绿1),(绿1,绿2),(绿2,红),(绿2,绿1),(绿2,绿2)9种等可能的情况,两次摸出的球都是红球的有1种,∴两次摸出的球都是红球的概率是 19 ,故符合题意;故答案为:A.【分析】根据摸出球的颜色可能出现的情形及概率依次分析即可得到答案.9.2020年3月14日,是人类第一个“国际数学日”这个节日的昵称是“π(Day )”国际数学日之所以定在3月14日,是因为3.14与圆周率的数值最接近的数字,在古代,一个国家所算的的圆周率的精确程度,可以作为衡量这个国家当时数学与科技发展的水平的主要标志,我国南北朝时期的祖冲之是世界上最早把圆周率的精确值计算到小数点后第七位的科学巨匠,该成果领先世界一千多年,以下对圆周率的四个表述:①圆周率是一个有理数;②圆周率是一个无理数;③圆周率是一个与圆的大小无关的常数,它等于该圆的周长与直径的比;④圆周率是一个与圆大小有关的常数,它等于该圆的周长与半径的比;其中正确的是( )A. ②③B. ①③C. ①④D. ②④【答案】 A【考点】有理数及其分类,圆的认识与圆周率【解析】【解答】解:①圆周率是一个有理数,不符合题意;② π是一个无限不循环小数,因此圆周率是一个无理数,说法符合题意;③圆周率是一个与圆的大小无关的常数,它等于该圆的周长与直径的比,说法符合题意;④圆周率是一个与圆大小有关的常数,它等于该圆的周长与半径的比,说法不符合题意;故答案为:A.【分析】圆周率的含义:圆的周长和它直径的比值,叫做圆周率,用字母π表示,π是一个无限不循环小数;据此进行分析解答即可.10.如图,一块直角三角板的60度的顶点A与直角顶点C分别在平行线FD,GH上,斜边AB平分∠CAD,交直线GH于点E,则∠ECB的大小为( )A. 60°B. 45°C. 30°D. 25°【答案】C【考点】平行线的性质,角平分线的性质【解析】【解答】∵AB平分∠CAD,∠CAB=60 °,∴∠DAE=60 °,∵FD∥GH,∴∠ACE+∠CAD=180 °,∴∠ACE=180 °-∠CAB-∠DAE=60 °,∵∠ACB=90 °,∴∠ECB=90 °-∠ACE=30 °,故答案为:C.【分析】利用角平分线的性质求得∠DAE的度数,利用平行线的性质求得∠ACE的度数,即可求解.11.随着5G网络技术的发展,市场对5G产品的需求越来越大,为满足市场需求,某大型5G产品生产厂家更新技术后,加快了生产速度,现在平均每天比更新技术前多生产30万件产品,现在生产500万件产品所需的时间与更新技术前生产400万件产品所需时间相同,设更新技术前每天生产x万件,依据题意得()A. 400x−30=500xB. 400x=500x+30C. 400x =500x−30D. 400x+30=500x【答案】B【考点】列分式方程【解析】【解答】解:设更新技术前每天生产x万件产品,则更新技术后每天生产(x+30)万件产品,依题意,得:400x =500x+30.故答案为:B .【分析】设更新技术前每天生产x 万件产品,则更新技术后每天生产(x+30)万件产品,根据工作时间=工作总量÷工作效率,再结合现在生产500万件产品所需时间与更新技术前生产400万件产品所需时间相同,即可得出关于x 的分式方程.12.“闻起来臭,吃起来香”的臭豆腐是长沙特色小吃,臭豆腐虽小,但制作流程却比较复杂,其中在进行加工煎炸臭豆腐时,我们把焦脆而不糊的豆腐块数的百分比称为“可食用率”,在特定条件下,“可食用率”p 与加工煎炸的时间t (单位:分钟)近似满足函数关系式: p =at 2+bt +c ( a ≠0, a ,b ,c 为常数),如图纪录了三次实验数据,根据上述函数关系和实验数据,可以得到加工煎炸臭豆腐的最佳时间为( )A. 3.50分钟B. 4.05分钟C. 3.75分钟D. 4.25分钟【答案】 C【考点】待定系数法求二次函数解析式,二次函数的其他应用【解析】【解答】将(3,0.8)(4,0.9)(5,0.6)代入 p =at 2+bt +c 得:{0.8=9a +3b +c ①0.9=16a +4b +c ②0.6=25a +5b +c ③ ②-①和③-②得 {0.1=7a +b ④−0.3=9a +b ⑤ ⑤-④得 −0.4=2a ,解得a=﹣0.2.将a=﹣0.2.代入④可得b=1.5.对称轴= −b 2a =−1.52×(−0.2)=3.75 .故答案为:C .【分析】图中三个坐标代入函数关系式解出a 和b,再利用对称轴公式求出即可.二、填空题(共4题;共5分)13.长沙地铁3号线、5号线即将运行,为了解市民每周乘地铁出行的次数,某校园小记者随机调查了100名市民,得到了如下的统计表:这次调查的众数和中位数分别是________.【答案】 5、5【考点】中位数,众数【解析】【解答】从表格中可得人数最多的次数是5,故众数为5.100÷2=50,即中位数为从小到大排列的第50位,故中位数为5.故答案为5、5.【分析】根据众数和中位数的概念计算即可.14.某数学老师在课外活动中做了一个有趣的游戏:首先发给A,B,C三个同学相同数量的扑克牌(假定发到每个同学手中的扑克牌数量足够多),然后依次完成下列三个步骤:第一步,A同学拿出二张扑克牌给B同学;第二步,C同学拿出三张扑克牌给B同学;第三步,A同学手中此时有多少张扑克牌,B同学就拿出多少张扑克牌给A同学,请你确定,最终B同学手中剩余的扑克牌的张数为________.【答案】7【考点】列式表示数量关系【解析】【解答】设每个同学的扑克牌的数量都是x;第一步,A同学的扑克牌的数量是x−2,B同学的扑克牌的数量是x+2;第二步,B同学的扑克牌的数量是x+2+3,C同学的扑克牌的数量是x−3;第三步,A同学的扑克牌的数量是2( x−2),B同学的扑克牌的数量是x+2+3−( x−2)=7;∴B同学手中剩余的扑克牌的数量是:7.故答案为:7.【分析】把每个同学的扑克牌的数量用相应的字母表示出来,列式表示变化情况即可找出最后答案.15.若一个圆锥的母线长是3,底面半径是1,则它的侧面展开图的面积是________.【答案】3π【考点】圆锥的计算【解析】【解答】解:圆锥的底面周长为:2×π×1=2π,侧面积为:12×2π×3=3π.故答案为:3π.【分析】先求得圆锥的底面周长,再根据扇形的面积公式S= 12lR求得答案即可.16.如图,点P在以MN为直径的半圆上运动,(点P与M,N不重合)PQ⊥MN,NE平分∠MNP,交PM于点E,交PQ于点F.(1)PFPQ +PEPM=________.(2)若PN2=PM⋅MN,则MQNQ=________.【答案】(1)1(2)√5−12【考点】圆周角定理,相似三角形的判定与性质【解析】【解答】(1)如图所示,过E作GE⊥MN于G,则∠NGE=90°,∵MN为半圆的直径,∴∠MPN=90°,又∵NE平分∠MNP,∠NGE=90°,∴PE=GE.∵NE平分∠MNP,∴∠PNE=∠MNE,∵∠EPN=∠FQN=90°,∴∠PNE+∠PEN=90°,∠MNE+∠QFN=90°,又∠QFN=∠PFE,∴∠PNE+∠PEN=90°,∠MNE+∠PFE=90°,又∵∠PNE=∠MNE,∴∠PEN=∠PFE,∴PE=PF,又∵PE=GE,∴GE=PF.∵PQ⊥MN,GE⊥MN,∴GE//PQ,∴在△PMQ中,EMPM =GEPQ,又∵EM=PM−PE,∴PM−PEPM =GEPQ,∴将GE=PF,PE=PF,代入PM−PEPM =GEPQ得,PM−PFPM=PFPQ,∴PFPQ +PEPM=PM−PFPM+PFPM=1,即PFPQ+PEPM=1.(2)∵∠PNQ=∠MNP,∠NQP=∠NPM,∴△NPQ∽△NMP,∴PNMN =QNPN,∴PN2=QN•MN,∵PN2=PM•MN,∴PM=QN,∴MQNQ =MQPN,∵cos∠M=MQPM =PMMN,∴MQNQ =PMMN,∴MQNQ =NQMQ+NQ,∴NQ2=MQ2+MQ•NQ,即1=MQ2NQ2+MQNQ,设MQNQ=x,则x2+x-1=0,解得,x=√5−12,或x=−√5+12<0(舍去),∴MQNQ =√5−12.故答案为:(1) 1 ;(2) √5−12.【分析】(1)过E作GE⊥MN于G,可得∠NGE=90°,根据圆周角的性质可得∠MPN=90°,又NE平分∠MNP,根据角平分线的性质可得PE=GE;由∠PNE=∠MNE,∠PNE+∠PEN= 90°,∠MNE+∠QFN=90°,且∠QFN=∠PFE,根据“等角的余角相等”可得∠PEN=∠PFE,再根据等腰三角形的性质“等角对等边”可得PE=PF,即有GE=PF;由PQ⊥MN,GE⊥MN,可得GE//PQ,从而可得在△PMQ中有EMPM =GEPQ,将EM=PM−PE、PE=GE、GE=PF代入可得,PM−PFPM =PFPQ,既而可求得PFPQ+PEPM的值.(2)证明△NPQ∽△NMP,得PN2=NQ•MN,结合已知条件得PM=NQ,再根据三角函数得MQNQ =PMMN,进而得MQ与NQ的方程,再解一元二次方程得答案﹒三、解答题(共9题;共97分)17.计算:|−3|−(√10−1)0+√2cos45°+(14)−1【答案】解:|−3|−(√10−1)0+√2cos45°+(14)−1=3−1+1+4=7【考点】实数的运算,0指数幂的运算性质,负整数指数幂的运算性质,特殊角的三角函数值【解析】【分析】根据绝对值、零次幂、特殊角的三角函数值、二次根式和负整数指数幂的运算法则分别对每项进行化简,再进行加减计算即可.18.先化简,再求值x+2x2−6x+9⋅x2−9x+2−xx−3,其中x=4【答案】x+2x2−6x+9⋅x2−9x+2−xx−3=x+2(x−3)2⋅(x+3)(x−3)x+2−xx−3=x+3x−3−xx−3=3x−3.将x=4代入可得:原式= 3x−3=34−3=3.【考点】利用分式运算化简求值【解析】【分析】先将代数式化简,再代入值求解即可.19.人教版初中数学教科书八年级上册第48页告诉我们一种作已知角的平分线的方法:已知:∠AOB求作:∠AOB的平分线做法:①以O为圆心,适当长为半径画弧,交OA于点M,交OB于点N,②分别以点M,N为圆心,大于12MN的长为半径画弧,两弧在∠AOB的内部相交于点C ③画射线OC,射线OC即为所求.请你根据提供的材料完成下面问题:(1)这种作已知角平分线的方法的依据是________(填序号).① SSS② SAS③ AAS④ ASA(2)请你证明OC为∠AOB的平分线.【答案】(1)①(2)如图,连接MC、NC.根据作图的过程知,在△MOC与△NOC中,{OM =ONOC =OC CM =CN,∴△MOC ≌△NOC (SSS ),∠AOC=∠BOC ,∴OC 为 ∠AOB 的平分线.【考点】三角形全等及其性质,三角形全等的判定(SSS )【解析】【解答】(1)根据作图的过程知道:OM=ON ,OC=OC ,CM=CM ,所以由全等三角形的判定定理SSS 可以证得△EOC ≌△DOC ,从而得到OC 为 ∠AOB 的平分线;故答案为:①;【分析】(1)根据作图的过程知道:OM=ON ,OC=OC ,CM=CM ,由“SSS”可以证得△EOC ≌△DOC ;(2)根据作图的过程知道:OM=ON ,OC=OC ,CM=CM ,由全等三角形的判定定理SSS 可以证得△EOC ≌△DOC ,从而得到OC 为 ∠AOB 的平分线.20.2020年3月,中共中央、国务院颁布了《关于全面加强新时代大中小学劳动教育的意见》长沙市教育局发布了“普通中小学校劳动教育状况评价指标”,为了解某校学生一周劳动次数的情况,随机抽取若干学生进行调查,得到如下统计图表:(1)这次调查活动共抽取________人;(2)m=________n =________.(3)请将条形图补充完整(4)若该校学生总人数为3000人,根据调查结果,请你估计该校一周劳动4次及以上的学生人数.【答案】 (1)200(2)86;27(3)200×20%=40(人),补全图形如下:(4)∵“4次及以上”所占的百分比为27%,∴3000×27%=810(人).答:该校一周劳动4次及以上的学生人数大约有810人.【考点】用样本估计总体,扇形统计图,条形统计图【解析】【解答】(1)这次调查活动共抽取:20÷10%=200(人)故答案为:200.(2)m=200×43%=86(人),n%=54÷200=27%,n=27,故答案为:86,27.【分析】(1)用“1次及以下”的人数除以所占的百分比,即可求出调查的总人数;(2)总人数乘以“3次”所占的百分比可得m的值,“4次及以上”的人数除以总人数可得n%的值,即可求得n的值;(3)总人数乘以“2次”所占的百分比可得“2次”的人数,再补全条形统计图即可;(4)用全校总人数乘以“4次及以上”所占的百分比即可.21.如图,AB为⊙O的直径,C为⊙O上的一点,AD与过点C的直线互相垂直,垂足为D,AC平分∠DAB.(1)求证:DC为⊙O的切线;(2)若AD=3,DC=√3,求⊙O的半径.【答案】(1)连接OC,∵OA=OC,∴∠OAC=∠OCA,∵AC平分∠DAB,∴∠DAC=∠OAC,∴∠DAC=∠OCA,∴AD∥OC,∴∠ADC+∠OCD=180°,∵AD⊥CD,∴∠ADC=90°,∴∠OCD=90°,∴OC⊥CD,∴DC为⊙O的切线;(2)连接BC,在Rt△ACD中,∠ADC=90°,AD=3,DC=√3,∴tan∠DAC=CDAD =√33,∴∠DAC=30°,∴∠CAB=∠DAC=30°,AC=2CD= 2√3,∵AB是⊙O的直径,∴∠ACB=90°,∴AB= ACcos∠CAB=4,∴⊙O的半径为2.【考点】角平分线的性质,切线的判定,锐角三角函数的定义,解直角三角形【解析】【分析】(1)连接OC,利用角平分线的性质及同圆半径相等的性质求出∠DAC=∠OCA,得到AD∥OC,即可得到OC⊥CD得到结论;(2)连接BC,先求出tan∠DAC=CDAD =√33,得到∠CAB=∠DAC=30°,AC=2CD= 2√3,再根据AB为⊙O的直径得到∠ACB=90°,再利用三角函数求出AB.22.今年6月以来,我国多地遭遇强降雨,引发洪涝灾害,人民的生活受到了极大的影响,“一方有难,八方支援”,某市筹集了大量的生活物资,用A,B两种型号的货车,分两批运往受灾严重的地区,具体运算情况如下:(1)求A ,B 两种型号货车每辆满载分别能运多少吨生活物资;(2)该市后续又筹集了62.4吨生活物资,现已联系了3辆A 型号货车,试问至少还需联系多少辆B 型号货车才能一次性将这批生活物资运往目的地.【答案】 (1)设A ,B 两种型号货车每辆满载分别能运x ,y 吨生活物资依题意,得 {x +3y =28,2x +5y =50,解得 {x =10,y =6, ∴A ,B 两种型号货车每辆满载分别能运10吨,6吨生活物资(2)设还需联系m 辆B 型号货车才能一次性将这批生活物资运往目的地依题意,得 3×10+6m ≥62.4 .解得m ≥ 5.4又m 为整数,∴m 最小取6∴至少还需联系6辆B 型号货车才能一次性将这批生活物资运往目的地.【考点】二元一次方程组的其他应用,一元一次不等式的应用【解析】【分析】(1)设A ,B 两种型号货车每辆满载分别能运x ,y 吨生活物资,根据条件建立方程组求出其解即可;(2)设还需联系m 辆B 型号货车才能一次性将这批生活物资运往目的地,根据题中的不等关系列出不等式解答即可.23.在矩形ABCD 中,E 为 DC 上的一点,把 ΔADE 沿AE 翻折,使点D 恰好落在BC 边上的点F .(1)求证: ΔABF ∼ΔFCE(2)若 AB =2√3,AD =4 ,求EC 的长;(3)若 AE −DE =2EC ,记 ∠BAF =α,∠FAE =β ,求 tanα+tanβ 的值.【答案】 (1)证明:∵四边形ABCD 是矩形,∴∠B=∠C=∠D=90°,∴∠AFB+∠BAF=90°,∵△AFE 是△ADE 翻折得到的,∴∠AFE=∠D=90°,∴∠AFB+∠CFE=90°,∴∠BAF=∠CFE ,∴△ABF ∽△FCE .(2)解:∵△AFE 是△ADE 翻折得到的,∴AF=AD=4,∴BF= √AF2−AB2=√42−(2√3)2=2,∴CF=BC-BF=AD-BF=2,由(1)得△ABF∽△FCE,∴CEBF =CFAB,∴CE2=2√3,∴EC= 2√33.(3)解:由(1)得△ABF∽△FCE,∴∠CEF=∠BAF= α,∴tan α+tan β= BFAB +EFAF=CECF+EFAF,设CE=1,DE=x,∵AE−DE=2EC,∴AE=DE+2EC=x+2,AB=CD=x+1,AD= √AE2−DE2=√4x+4∵△ABF∽△FCE,∴ABAF =CFEF,∴√4x+4=√x2−1x,∴√x+1)22√x+1=√x+1·√x−1x,∴12=√x+1x,∴x=2√x−1,∴x2-4x+4=0,解得x=2,∴CE=1,CF= √x2−1=√3,EF=x=2,AF= AD= √AE2−DE2=√4x+4= 2√3,∴tan α+tan β= CECF +EFAF=√3+2√3=2√33.【考点】勾股定理,轴对称的性质,翻折变换(折叠问题),相似三角形的判定与性质,锐角三角函数的定义【解析】【分析】(1)只要证明∠B=∠C=90°,∠BAF=∠EFC即可;(2)因为△AFE是△ADE翻折得到的,得到AF=AD=4,根据勾股定理可得BF的长,从而得到CF的长,根据△ABF∽△FCE,得到CEBF =CFAB,从而求出EC的长;(3)根据△ABF∽△FCE,得到∠CEF=∠BAF= α,所以tan α+tan β= BFAB +EFAF=CECF+EF AF ,设CE=1,DE=x,可得到AE,AB,AD的长,根据△ABF∽△FCE,得到ABAF=CFEF,将求出的值代入化简会得到关于x的一元二次方程,解之即可求出x的值,然后可求出CE,CF,EF,AF的值,代入tan α+tan β= CECF +EFAF即可.24.我们不妨约定:若某函数图像上至少存在不同的两点关于原点对称,则把该函数称之为“H函数”,其图像上关于原点对称的两点叫做一对“H点”,根据该约定,完成下列各题(1)在下列关于x的函数中,是“H函数”的,请在相应题目后面的括号中打“√”,不是“H函数”的打“×”① y=2x(________)② y=mx(m≠0)(________)③ y=3x−1(________)(2)若点A(1,m)与点B(n,−4)关于x的“H函数” y=ax2+bx+c(a≠0)的一对“H点”,且该函数的对称轴始终位于直线x=2的右侧,求a,b,c的值域或取值范围;(3)若关于x的“H函数” y=ax2+2bx+3c(a,b,c是常数)同时满足下列两个条件:① a+b+c= 0,② (2c+b−a)(2c+b+3a)<0,求该H函数截x轴得到的线段长度的取值范围.【答案】(1)√;√;×(2)∵A,B是“H点”∴A,B关于原点对称,∴m=4,n=1∴A(1,4),B(-1,-4)代入y=ax2+bx+c(a≠0)得{a+b+c=4a−b+c=−4解得{b=4a+c=0又∵该函数的对称轴始终位于直线x=2的右侧,∴- b2a>2∴- 42a>2∴-1<a<0∵a+c=0∴0<c<1,综上,-1<a<0,b=4,0<c<1;(3)∵y=ax2+2bx+3c是“H函数”∴设H 点为(p,q )和(-p,-q ),代入得 {ap 2+2bp +3c =q ap 2−2bp +3c =−q解得ap 2+3c=0,2bp=q∵p 2>0∴a,c 异号,∴ac <0∵a+b+c=0∴b=-a-c ,∵ (2c +b −a)(2c +b +3a)<0∴ (2c −a −c −a)(2c −a −c +3a)<0∴ (c −2a)(c +2a)<0∴c 2<4a 2∴ c 2a 2 <4∴-2< c a <2∴-2< c a <0设t= c a ,则-2<t <0设函数与x 轴的交点为(x 1,0)(x 2,0)∴x 1, x 2是方程 ax 2+2bx +3c =0的两根∴ |x 1−x 2|=√(x 1+x 2)2−4x 1x 2= √(−2b a )2−4⋅3c a= √4(a+c)2a 2−12c a = √4[1+2c a +(c a )2−3c a ]=2 √1+2t +t 2−3t= 2√(t −12)2+34又∵-2<t <0∴2< |x 1−x 2| <2 √7 .【考点】一元二次方程的根与系数的关系,定义新运算,二次函数的其他应用【解析】【解答】(1)① y =2x 是 “H 函数”② y =m x (m ≠0) 是 “H 函数”③ y =3x −1 不是 “H函数”;故答案为:√;√;×;【分析】(1)根据“H 函数”的定义即可判断;(2)先根据题意可求出m,n 的取值,代入 y =ax 2+bx +c(a ≠0) 得到a,b,c 的关系,再根据对称轴在x=2的右侧即可求解;(3)设“H 点”为(p,q )和(-p,-q ),代入 y =ax 2+2bx +3c 得到ap 2+3c=0,2bp=q ,得到a,c 异号,再根据a+b+c=0,代入 (2c +b −a)(2c +b +3a)<0 求出 c a 的取值,设函数与x 轴的交点为(x 1,0)(x 2,0),t= c a ,利用根与系数的关系得到|x 1−x 2|=√(x 1+x 2)2−4x 1x 2 = 2√(t −12)2+34 ,再根据二次函数的性质即可求解. 25.如图,半径为4的 ⊙O 中,弦AB 的长度为 4√3 ,点C 是劣弧 AB⌢ 上的一个动点,点D 是弦AC 的中点,点E 是弦BC 的中点,连接DE ,OD ,OE .(1)求 ∠AOB 的度数;(2)当点C 沿着劣弧 AB⌢ 从点A 开始,逆时针运动到点B 时,求 ΔODE 的外心P 所经过的路径的长度; (3)分别记 ΔODE,ΔCDE 的面积为 S 1,S 2 ,当 S 12−S 22=21 时,求弦AC 的长度.【答案】 (1)如图,过O 作OH ⊥AB 于H ,∵ AB =4√3 ,∴ AH =12AB =2√3 ,∴ cos ∠OAH =AH AO =2√34=√32 , ∴ ∠OAH =30° ,∵ OA =OB ,∴ ∠OBH =∠OAH =30° ,∴ ∠AOB =180°−30°−30°=120° ;(2)如图,连接OC ,取OC 的中点G ,连接DG 、EG ,∵D是弦AC的中点,点E是弦BC的中点,OA=OB=OC,∴OD⊥AC,OE⊥BC,即∠ODC=∠OEC=90°,∴OG=DG=GE=GC=12OC=2,∴O、D、C、E四点共圆,G为△ODE的外心,∴G在以O为圆心,2为半径的圆上运动,∵∠AOB=120°,∴运动路径长为120π×2180=43π;(3)当点C靠近A点时,如图,作CN∥AB交圆O于N,作CF⊥AB交AB于F,交DE于P,作OM⊥CN 交CN于M,交DE于Q,交AB于H,连接OC,∵D是弦AC的中点,点E是弦BC的中点,∴DE=12AB=2√3,∵∠OAH=30°,OA=4,∴OH=2,设OQ=ℎ1,CP=ℎ2,由题可知OM=ℎ1+ℎ2,OH=ℎ1−ℎ2,∴S1=12×DE×ℎ1,S2=12×DE×ℎ2,∴ S 1+S 2=12×DE ×ℎ1+12×DE ×ℎ2=12×DE ×(ℎ1+ℎ2)=12×DE ×OMS 1−S 2=12×DE ×ℎ1−12×DE ×ℎ2=12×DE ×(ℎ1−ℎ2)=12×DE ×OH ∵ S 12−S 22=(S 1+S 2)(S 1−S 2)=21 , ∴ (12×DE ×OM)(12×DE ×OH)=21 ,即 (12×2√3×OM)(12×2√3×2)=21 ,解得 OM =72 ,∴ CM =√42−(72)2=√152 ,即 FH =√152, 由于 AH =2√3 ,∴ AF =2√3−√152 , 又∵ CF =MH =OM −OH =72−2=32 ,∴ AC =√(2√3−√152)2+(32)2=√15−√3 , 同理当点C 靠近B 点时,可知 AC =√(2√3+√152)2+(32)2=√15+√3 , 综上所述, AC =√15−√3 或 AC =√15+√3 .【考点】勾股定理,垂径定理,三角形的外接圆与外心,弧长的计算,锐角三角函数的定义【解析】【分析】(1)过O 作OH ⊥AB 于H ,由垂径定理可知AH 的长,然后通过三角函数即可得到 ∠OAB ,从而可得到 ∠AOB 的度数;(2)连接OC ,取OC 的中点G ,连接DG 、EG ,可得到O 、D 、C 、E 四点共圆,G 为△ODE 的外心,然后用弧长公式即可算出外心P 所经过的路径的长度;(3)作CN ∥AB 交圆O 于N ,作CF ⊥AB 交AB 于F ,交DE 于P ,作OM ⊥CN 交CN 于M ,交DE 于Q ,交AB 于H ,连接OC ,分别表示出 ΔODE , ΔCDE 的面积为 S 1 , S 2 ,由 S 12−S 22=21 可算出 OM =72 ,然后可利用勾股定理求出结果.。

2020年中考数学试题解析(含答案)湖南长沙

2020年中考数学试题解析(含答案)湖南长沙
保证原创精品 已受版权保护
2020 年中考数学试卷参考答案与试题解析
湖南省长沙市
一、选择题(共 10 小题,每小题 3 分,共 30 分)
1. 1 的倒数是( ) 2
A、2 考点: 倒数.
B、-2
C、 1 2
分析:根据乘积为的 1 两个数倒数,可得一个数的倒数.
解答: 解:
1
的倒数是
2,
2
故选:A.
∴AD=AB=2, 又∵∠DAB=60°, ∴△DAB 是等边三角形, ∴AD=BD=AB=2, 则对角线 BD 的长是 2. 故选:C. 点评:此题主要考查了菱形的性质以及等边三角形的判定,得出△DAB 是等边三角形是解题关 键.
9.(3 分)(2020•长沙)下列四个圆形图案中,分别以它们所在圆的圆心为旋转中心,顺时针旋转
1
保证原创精品 已受版权保护
故选 B. 点评: 本题考查了平均数及中位数的知识,中位数是将一组数据从小到大(或从大到小)重新排列
后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.
4.(3 分)(2020•长沙)平行四边形的对角线一定具有的性质是(
A. 相等
B. 互相平分
C.互相垂直
选项不符合题意;
B、六棱柱的主视图、左视图、俯视图分别为四边形,四边形,六边形,故 B 选项不符合题
意;
C、球的主视图、左视图、俯视图分别为三个全等的圆,故 C 选项符合题意;
D、四棱锥的主视图、左视图、俯视图分别为三角形,三角形,四边形,故 D 选项不符合题
意;
故选 C.
点评: 考查三视图的有关知识,注意三视图都相同的常见的几何体有球和正方体.
5.(3 分)(2020•长沙)下列计算正确的是( )

2020年湖南省长沙市中考数学试题

2020年湖南省长沙市中考数学试题
的数据.根据上述函数关系和实验数据,可以得到加工煎炸臭豆腐的最佳时间为
A. 3.50 分钟
B. 4.05 分钟
C. 3.75 分钟
D. 4.25 分钟
第 10 题图
第 12 题图
二、填空题(本大题共 4 个小题,每小题 3 分,共 12 分)
13.长沙地铁 3 号线、5 号线即将试运行,为了解市民每周乘坐地铁出行的次数,某校园小
实减轻企业负担,以促进我国进出口企业平稳发展.据国家统计局相关数据显示,2020 年
1 月至 5 月,全国累计办理出口退税 632 400 000 000 元,其中数字 632 400 000 000 用科
学记数法表示为
A. 6.324 ×1011
B. 6.324 ×1010
C. 632.4 ×109
展水平的一个主要标志.我国南北朝时的祖冲之是世界上最早把圆周率的精确值计算
到小数点后第 7 位的科学巨匠,该成果领先世界一千多年.以下对于圆周率的四个表述:
①圆周率是一个有理数;
②圆周率是一个无理数;
③圆周率是一个与圆的大小无关的常数,它等于该圆的周长与直径的比;
④圆周率是一个与圆的大小有关的常数,它等于该圆的周长与半径的比.
A.第一次摸出的球是红球,第二次摸出的球一定是绿球; B.第一次摸出的球是红球,第二次摸出的不一定是红球;
C.第一次摸出的球是红球的概率是 1 ; 3
D.两次摸出的球都是红球的概率是
1 9
.
9.2020 年 3 月 14 日,是人类第一个“国际数学日”.这个节日的昵称是“π(Day)”. 国际数学日之所以定在 3 月 14 日,是因为“3.14”是与圆周率数值最接近的数字.在古 代,一个国家所算得的圆周率的精确程度,可以作为衡量这个国家当时数学与科技发

湖南长沙市2020年中考数学试题(含答案)

湖南长沙市2020年中考数学试题(含答案)
故选:B.
【点睛】本题考查了合并同类项,同底数幂的除法,二次根式的乘法,幂的乘方.很容易混淆,要熟练掌握运算法则.
5.2019年10月,《长沙晚报》对外发布长沙高铁两站设计方案,该方案以三湘四水,杜鹃花开,塑造出杜鹃花开的美丽姿态,该高铁站建设初期需要运送大量的土石方,某运输公司承担了运送总量为 土石方的任务,该运输公司平均运送土石方的速度 (单位: 天)与完成运送任务所需的时间t(单位:天)之间的函数关系式是()
A.第一次摸出 球是红球,第二次摸出的球一定是绿球
B.第一次摸出的球是红球,第二次摸出的球不一定是绿球
C.第一次摸出的球是红球,第二次摸出的球不一定是红球
D.第一次摸出的球是红球的概率是 ;两次摸出的球都是红球的概率是
9.2020年3月14日,是人类第一个“国际数学日”这个节日的昵称是“π(Day)”国际数学日之所以定在3月14日,是因为3.14与圆周率的数值最接近的数字,在古代,一个国家所算的的圆周率的精确程度,可以作为衡量这个国家当时数学与科技发展的水平的主要标志,我国南北朝时期的祖冲之是世界上最早把圆周率的精确值计算到小数点后第七位的科学巨匠,该成果领先世界一千多年,以下对圆周率的四个表述:①圆周率是一个有理数;②圆周率是一个无理数;③圆周率是一个与圆的大小无关的常数,它等于该圆的周长与直径的比;④圆周率是一个与圆大小有关的常数,它等于该圆的周长与半径的比;其中正确的是()
16.如图,点P在以MN为直径的半圆上运动,(点P与M,N不重合) 平分 ,交PM于点E,交PQ于点F.
(1) ___________________.
(2)若 ,则 ___________________.
三、解答题
17.计算:
18.先化简,再求值 ,其中
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
23.在矩形ABCD中,E为 上的一点,把 沿AE翻折,使点D恰好落在BC边上的点F.
(1)求证:
(2)若 ,求EC的长;
(3)若 ,记 ,求 的值.
24.我们不妨约定:若某函数图像上至少存在不同的两点关于原点对称,则把该函数称之为“H函数”,其图像上关于原点对称的两点叫做一对“H点”,根据该约定,完成下列各题
13.5、514. 15.3π.16. (1).1(2).1
17.7
解:
=7
18. ,3

将x=4代入可得:
原式= .
19.(1)①;(2)证明见解析
(1)根据作图的过程知道:OM=ON,OC=OC,CM=CM,所以由全等三角形的判定定理SSS可以证得△EOC≌△DOC,从而得到OC为 的平分线;
故答案为:①;
16.如图,点P在以MN为直径的半圆上运动,(点P与M,N不重合) 平分 ,交PM于点E,交PQ于点F.
(1) ___________________.
(2)若 ,则 ___________________.
三、解答题
17.计算:
18.先化简,再求值 ,其中
19.人教版初中数学教科书八年级上册第48页告诉我们一种作已知角的平分线的方法:
∴∠AFB+∠CFE=90°,
∴∠BAF=∠CFE,
∴△ABF∽△FCE.
(2)解:∵△AFE是△ADE翻折得到的,
∴AF=AD=4,
∴BF= ,
∴CF=BC-BF=AD-BF=2,
由(1)得△ABF∽△FCE,
∴பைடு நூலகம்,
∴ ,
∴EC= .
(3)
解:由(1)得△ABF∽△FCE,
∴∠CEF=∠BAF= ,
第一批
第二批
A型货车的辆数(单位:辆)
1
2
B型货车的辆数(单位:辆)
3
5
累计运送货物的顿数(单位:吨)
28
50
备注:第一批、第二批每辆货车均满载
(1)求A,B两种型号货车每辆满载分别能运多少吨生活物资;
(2)该市后续又筹集了62.4吨生活物资,现已联系了3辆A型号货车,试问至少还需联系多少辆B型号货车才能一次性将这批生活物资运往目的地.
① ② ③ ④
(2)请你证明OC为 的平分线.
20.2020年3月,中共中央、国务院颁布了《关于全面加强新时代大中小学劳动教育的意见》长沙市教育局发布了“普通中小学校劳动教育状况评价指标”,为了解某校学生一周劳动次数的情况,随机抽取若干学生进行调查,得到如下统计图表:
(1)这次调查活动共抽取___________人;
A. B. C. D.
4.下列运算正确的是()
A. B. C. D.
5.2019年10月,《长沙晚报》对外发布长沙高铁两站设计方案,该方案以三湘四水,杜鹃花开,塑造出杜鹃花开的美丽姿态,该高铁站建设初期需要运送大量的土石方,某运输公司承担了运送总量为 土石方的任务,该运输公司平均运送土石方的速度 (单位: 天)与完成运送任务所需的时间t(单位:天)之间的函数关系式是()
(2) .
(3)请将条形图补充完整
(4)若该校学生总人数为3000人,根据调查结果,请你估计该校一周劳动4次及以上的学生人数.
21.如图, 为 直径,C为 上的一点,AD与过点C的直线互相垂直,垂足为D,AC平分 .
(1)求证:DC为 的切线;
(2)若 ,求 的半径.
22.今年6月以来,我国多地遭遇强降雨,引发洪涝灾害,人民的生活受到了极大的影响,“一方有难,八方支援”,某市筹集了大量的生活物资,用A,B两种型号的货车,分两批运往受灾严重的地区,具体运算情况如下:
(2)如图,
连接MC、NC.
根据作图的过程知,
在△MOC与△NOC中,

∴△MOC≌△NOC(SSS),
∠AOC=∠BOC,
∴OC为 的平分线.
20.(1)200;(2)86,27;(3)图形见解析;(4)810人
解:(1)这次调查活动共抽取:20÷10%=200(人)
故答案为:200.
(2)m=200×43%=86(人),
第一步,A同学拿出三张扑克牌给B同学;
第二步,C同学拿出三张扑克牌给B同学;
第三步,A同学手中此时有多少张扑克牌,B同学就拿出多少张扑克牌给A同学,
请你确定,最终B同学手中剩余的扑克牌的张数为___________________.
15.若一个圆锥的母线长是3,底面半径是1,则它的侧面展开图的面积是_____.
∵AC平分 ,
∴∠DAC=∠OAC,
∴∠DAC=∠OCA,
∴AD∥OC,
∴∠ADC+∠OCD=180°,
∵AD⊥CD,
∴∠ADC=90°,
∴∠OCD=90°,
∴OC⊥CD,
∴DC为 的切线;
(2)连接BC,
在Rt△ACD中,∠ADC=90°, ,
∴ ,
∴∠DAC=30°,
∴∠CAB=∠DAC=30°,AC=2CD= ,

=
=
=
=2
=
又∵-2<t<0
∴2< <2 .
25.(1) ;(2) ;(3) 或 .
解:(1)如图,过O作OH⊥AB于H,
∵ ,
∴ ,
∴ ,
∴ ,
∵ ,
∴ ,
∴ ;
(2)如图,连接OC,取OC的中点G,连接DG、EG,
∵D是弦AC的中点,点E是弦BC的中点, ,
∴OD⊥AC,OE⊥BC,即∠ODC=∠OEC=90°,
已知:
求作: 的平分线
做法:(1)以O为圆心,适当长为半径画弧,交OA于点M,交OB于点N,
(2)分别以点M,N为圆心,大于 的长为半径画弧,两弧在 的内部相交于点C
(3)画射线OC,射线OC即 所求.
请你根据提供 材料完成下面问题:
(1)这种作已知角平分线的方法的依据是__________________(填序号).
∵AB是 的直径,
∴∠ACB=90°,
∴AB= ,
∴ 的半径为2.
22.(1)A,B两种型号货车每辆满载分别能运10吨,6吨生活物资;(2)6.
解:(1)设A,B两种型号货车每辆满载分别能运x,y吨生活物资
依题意,得 解得
∴A,B两种型号货车每辆满载分别能运10吨,6吨生活物资
(2)设还需联系m辆B型号货车才能一次性将这批生活物资运往目的地
n%=54÷200=27%,n=27,
故答案为:86,27.
(3)200×20%=40(人),
补全图形如下:
(4)∵“4次及以上”所占的百分比为27%,
∴3000×27%=810(人).
答:该校一周劳动4次及以上的学生人数大约有810人.
21.(1)详见解析;(2)2
(1)连接OC,
∵OA=OC,
∴∠OAC=∠OCA,
∴ ,
∴O、D、C、E四点共圆,G为△ODE的外心,
∴G在以O为圆心,2为半径的圆上运动,
∴tan +tan = ,
设CE=1,DE=x,
∵ ,
∴AE=DE+2EC=x+2,AB=CD=x+1,AD=
∵△ABF∽△FCE,
∴ ,
∴ ,
∴ ,
∴ ,
∴ ,
∴x2-4x+4=0,
解得x=2,
∴CE=1,CF= ,EF=x=2,AF= AD= = ,
∴tan +tan = = .
24. (1)√;√;×;(2)-1<a<0,b=4,0<c<0;(3)2< <2 .
A. B. C. D.
12.“闻起来臭,吃起来香”的臭豆腐是长沙特色小吃,臭豆腐虽小,但制作流程却比较复杂,其中在进行加工煎炸臭豆腐时,我们把焦脆而不糊的豆腐块数的百分比称为“可食用率”,在特定条件下,“可食用率”p与加工煎炸的时间t(单位:分钟)近似满足函数关系式: ( a,b,c为常数),如图纪录了三次实验数据,根据上述函数关系和实验数据,可以得到加工煎炸臭豆腐的最佳时间为( )
25.如图,半径为4的 中,弦AB的长度为 ,点C是劣弧 上的一个动点,点D是弦AC的中点,点E是弦BC的中点,连接DE,OD,OE.
(1)求 的度数;
(2)当点C沿着劣弧 从点A开始,逆时针运动到点B时,求 的外心P所经过的路径的长度;
(3)分别记 的面积为 ,当 时,求弦AC的长度.
参考答案
1-12DBABA ADAAC BC
依题意,得 .
解得m 5.4
又m为整数,∴m最小取6
∴至少还需联系6辆B型号货车才能一次性将这批生活物资运往目的地.
23.(1)证明过程见解析;(2) ;(3) .
(1)证明:∵四边形ABCD是矩形,
∴∠B=∠C=∠D=90°,
∴∠AFB+∠BAF=90°,
∵△AFE是△ADE翻折得到的,
∴∠AFE=∠D=90°,
(3)∵ 是“H函数”
∴设H点为(p,q)和(-p,-q),
代入得
解得ap2+3c=0,2bp=q
∵p2>0
∴a,c异号,
∴ac<0
∵a+b+c=0
∴b=-a-c,



∴c2<4a2
∴ <4
∴-2< <2
∴-2< <0
设t= ,则-2<t<0
设函数与x轴的交点为(x1,0)(x2,0)
∴x1, x2是方程 =0的两根
(1)① 是“H函数”② 是“H函数”③ 不是“H函数”;
故答案为:√;√;×;
(2)∵A,B是“H点”
∴A,B关于原点对称,
∴m=4,n=1
∴A(1,4),B(-1,-4)
相关文档
最新文档