第四章 蛋白质
第四章 蛋白质的功能【生物化学】
• 153个氨基酸残基的多肽主链 • 由长短不等的8段直ɑ-螺旋组 成(A,B,C,D,E,F,G,H) • 螺旋段间为自由卷曲,相应的 非螺旋区段(也称拐弯)为 NA(N-末端区段)、AB、 BC…FG、GH、HC (C-末端区 段)。其中4个脯氨酸各处于一 个拐弯处。Ser, Thr, Asn, lle处于 其余4个拐弯处; • 整个分子分成两层,构成其单 结构域。
卟啉环 血红素
卟啉的充填模型
氧可以与血红素辅基结合
蛋白质不能与氧发生可逆结合, 而是通过与原卟啉Ⅸ固定的铁原 子来进行的 原卟啉Ⅸ与Fe的络合物铁原卟 啉Ⅸ称血红素,血红素位于肌红 蛋白分子的一个沟缝中。 卟啉环的中心亚铁原子只有六 个配位键,四个与平面的卟啉环 的氮原子结合,另外两个与卟啉 平面垂直 配体的4个氮原子有助于抑制 血红素铁原子转变为三价态。亚 铁可以可逆地结合氧,三价铁则 不能结合氧。
氧与肌红蛋白的结合
氧结合部位
亚铁离子的第5配位键与肌红蛋 白组氨酸残基(His F8)(近侧) 的咪唑N结合 如果Fe以三价存在,Fe3+将与水 结合而不能再与氧结合,血红素周围 的疏水环境能保护Fe2+不被氧化成 Fe3+ 远侧组氨酸残基为E7,其咪唑环N 能与O2分子相互作用,使O2分子夹 在Fe和咪唑环中间的空间位阻区域。
Hb含4个血红素辅基,能结合4个O2。Hb中作为氧结合部位的空穴与 Mb中的极相似, 它们都有两个关键的His残基(E7和F8)和两个疏水残基 (Phe-CDl和Leu-F4)。
血红蛋白(Hb)的三维结构
四个氧的结合部位彼此保 持一定的距离 两个不同亚基间即α1β2 或α2β1间作用力大而α α或β β间作用力小.
血红蛋白的结构与功能
第四章蛋白质的共价结构
• 一级结构的全部内容包括: 多肽链数目、氨基酸组成、氨基酸顺序、连接方式、 二硫键的数目和位置、非氨基酸成分等
自1953年Sanger F.报道了牛胰岛素两条多肽链 的氨基酸序列以来,已有100,000多个不同蛋白质 的氨基酸序列被测定(简称蛋白质测序)。
蛋白质的一级结构研究
研究一级结构需要阐明的内容: • 1)蛋白质分子的多肽链数目。 • 2)每条肽链的末端残基种类。 • 3)每条肽链的氨基酸顺序。 • 4)链内或链间二硫键的配置等。
测定蛋白质的一级结构的主要意义: • 一级结构是研究高级结构的基础。 • 可以从分子水平阐明蛋白质的结构与功能的关系。 • 可以为生物进化理论提供依据。 • 可以为人工合成蛋白质提供参考顺序。
CH C
N
CH COO -
O
Peptide bond
* 两分子氨基酸缩合形成二肽,三分子氨基酸 缩合则形成三肽……
* 由二十个以内氨基酸相连而成的肽称为寡肽 (oligopeptide),由更多的氨基酸相连形成的 肽称多肽(polypeptide)。
* 肽链中的氨基酸分子因为脱水缩合而基团不全, 被称为氨基酸残基(residue)。
R2 O
R3 O
H2N CH C HN CH C HN CH C
N端
氨基酸残基 氨基酸残基
肽链书写方式:N端→C端 肽链有链状、环状和分支状。
Rn O HN CH COH
C端
命名:根据氨基酸组成,由N端→C端命名
O
O
H3C CH C HN CH2 C HN CH COOH
NH2
CH2
CH H3C CH3
蛋白质的一级结构是指蛋 白质多肽链中氨基酸的排 列顺序,包括二硫键的位 置。其中最重要的是多肽 链的氨基酸顺序,它是蛋 白质生物功能的基础。
蛋白质
pH=9 -
pH>ppIH=pI
4.2 基本结构单位——氨基酸
阴离子 pI= ½ (pKn+pKn+1) = ½ (2.34+9.60) = 5.97
两性离子
阳离子
甘氨酸的滴定曲线
4.2 基本结构单位——氨基酸
光学性质
280nm吸收值的测定是蛋 白质定量最常用的方法
芳香族氨基酸 的紫外吸收谱
4.2 基本结构单位——氨基酸
4.3 肽
四肽的形成
4.3 肽
肽的结构和表示法
肽键 性质相当于双键 酰胺平面
氨基端 或N端
多肽链中的氨基酸单位称为氨基酸残基 主链:氨基酸由肽键连接成的长链骨架 侧链:各氨基酸残基的R基团
羧基端 或C端
4.3 肽
中文表示法:从肽链的N端开始,对氨基酸残基逐一命名, 残基称氨酰,如:甲硫氨酰天冬氨酰亮氨酰酪氨酸 三字母表示法: Met-Asp-Leu-Tyr 或 Met.Asp.Leu.Tyr 单字母表示法:MDLY
4.4 蛋白质的分子结构
蛋白质的分子结构
4.4 蛋白质的分子结构
蛋白质的一级结构及其测定 蛋白质的分子构象 蛋白质分子结构与功能的关系
4.4 蛋白质的分子结构
蛋白质的一级结构及其测定 蛋白质的一级结构
指蛋白质分子中氨基酸残基的连接方式和排列 顺序。包括肽链的数目、端基的组成、氨基酸 的排列和二硫键的位置等,又称化学结构
表示法 三字母表示法 单字母表示法 标注二硫键
牛胰岛素
4.4 蛋白质的分子结构
蛋白质一级结构的测定
蛋白质制剂的纯化 活性蛋白质(未变性蛋白质)分子量测定 活性蛋白质肽链数的测定和分离 氨基酸序列测定
蛋白质的稳定性和稳定化
A
B
C
A.用多功能试剂交联;B.共价或非共价连于载体上 C.包埋到载体的紧密孔中
二、非共价修饰
反相胶束 添加剂
蛋白质间非共价相连,形成的多聚体或者
聚合体的活力和稳定性常比单体高
反胶束是由两性化合物在占优势的有机相中形 成的。它不仅可以保护酶,还能提高酶活力, 改变酶的专一性。
反相胶束示意图
固定化可通过下列效应影响酶的稳定性:
空间障碍:由于空间障碍可以防止蛋白水解
酶的作用,阻挡酶与化学失活剂的接触,同时
阻碍氧向酶的扩散可以保护对氧不稳定的酶
扩散机制: 使酶发生交联或包埋在载体紧
密的孔中可以使酶的构象更加坚牢,从而阻止
酶构象从折叠态向伸展态过渡。
一 酶固定到载体上后可产生空间障碍,结果其他大
质信息进行基因和蛋白质序列的改造, 通过定
点突变使得所表达的蛋白质产生相应的特征改
变。
组合设计(combinational design)
和数据驱动设计(data-driven design)
是另外两种最新的可以提高蛋白质稳定
性的蛋白质工程技术。
组合设计:
是通过一种策略使得在基因水平上产生 差异化,同时,通常需要大量的高通量筛选 来鉴别设计是否获得成功。组合设计方法的 目标在于通过在蛋白质随机位点引入随机突
进化目的的一种技术。
随着突变方法、突变体高通量筛选技术、基因结
构与功能研究的突破,特别是PCR 技术的进一步
成熟,DNA 改组技术(DNA shuffling)更加成熟,
使得DNA 改组成为蛋白质体外分子进化的主流技
术。
DNA 改组技术具有许多重要优点, 例如不需要
事先了解结构信息,也不需要了解蛋白质的功能
第四章__蛋白质--王镜岩《生物化学》第三版笔记(完美打印版)
侧链含酰胺基:Asn(N), Gln(Q)
侧链显碱性:Arg(R), Lys(K)
2.芳香族氨基酸 包括苯丙氨酸(Phe,F)和酪氨酸(Tyr,Y)两种。 酪氨酸是合成甲状腺素的原料。
3.杂环氨基酸 包括色氨酸(Trp,W)、组氨酸(His)和脯氨酸(Pro)三种。其中的色氨酸与芳香族氨基酸都含苯环,都有紫外吸收(280nm)。所以可通过测量蛋白质的紫外吸收来测定蛋白质的含量。组氨酸也是碱性氨基酸,但碱性较弱,在生理条件下是否带电与周围内环境有关。它在活性中心常起传递电荷的作用。组氨酸能与铁等金属离子配位。脯氨酸是唯一的仲氨基酸,是α-螺旋的破坏者。
B是指Asx,即Asp或Asn;Z是指Glx,即Glu或Gln。
基本氨基酸也可按侧链极性分类:
非极性氨基酸:Ala, Val, Leu, Ile, Met, Phe, Trp, Pro共八种
极性不带电荷:Gly, Ser, Thr, Cys, Asn, Gln, Tyr共七种
带正电荷:Arg, Lys, His
二、蛋白质的分类
(一)按分子形状分类
1.球状蛋白 外形近似球体,多溶于水,大都具有活性,如酶、转运蛋白、蛋白激素、抗体等。球状蛋白的长度与直径之比一般小于10。
2.纤维状蛋白 外形细长,分子量大,大都是结构蛋白,如胶原蛋白,弹性蛋白,角蛋白等。纤维蛋白按溶解性可分为可溶性纤维蛋白与不溶性纤维蛋白。前者如血液中的纤维蛋白原、肌肉中的肌球蛋白等,后者如胶原蛋白,弹性蛋白,角蛋白等结构蛋白。
三.蛋白质的结构
一级结构 结构特点、测定步骤、常用方法、酶
二级结构 四种 结构特点、数据、超二级结构
食品营养学-第四章-蛋白质
下公式推算出蛋白质的大致含量:
1/16 % 100克样品中蛋白质的含量 (g %) = 每克样品含氮克数× 6.25×100
一块块砖头垒成了万里长城
氨基酸就是构成蛋白质这个 “万里长城”的基石
必需氨基酸 构成蛋白质的氨基酸常见约有20种,其中 有8种是人体自身不能合成的必需通过食物 摄入称为必需氨基酸。
缬氨酸 、亮氨酸、异亮氨酸、 苯丙氨酸、蛋氨酸、丝氨酸、 苏氨酸、赖氨酸。
氨基酸模式 (amino acid pattern) 是指某种蛋白质中各种必需氨基酸的构成比例。
当食物蛋白质的氨基酸模式越接近人体蛋白质的 氨基酸模式时,必需氨基酸被机体利用的程度也越高, 则食物蛋白质的营养价值越高。 其中氨基酸模式与人体蛋白质氨基酸模式最接近的 某种蛋白质常被作为参考蛋白 (reference protein) ,通常为鸡蛋蛋白质。
蛋白质的食物来源
蛋白质广泛存在于动物性食物(畜、禽、鱼、 蛋、奶)和植物性食物(豆类、谷类)中。
动物性蛋白质质量好,在人体内利用率高,但 同时富含脂肪酸和胆固醇。
植物性蛋白质利用率较低。我国膳食谷类蛋白 为主。 大豆蛋白质量好,利用率高。 应注意膳食中蛋白质互补!
6、蛋白质缺乏的表现
按照蛋白质营养价值高低分类
完全蛋白质
半完全蛋白质
不完全蛋白质
种类齐全 数量充足 比例合适
种类齐全
种类不全
食物蛋白质中一种或几种必需氨基酸含量 相对较低,导致其它必需氨基酸在体内不能被 充分利用,造成食物蛋白质营养价值降低,则 这些含量较低的氨基酸称限制氨基酸 (limiting amino acid,LAA)。其中含量最低 的称第一限制氨基酸。
二、蛋白质的组成
第四章蛋白质(中医)PPT课件
.
17
三、肽
(一)肽(peptide)
* 肽键(peptide bond)是由一个氨基酸的羧基与另一个氨基酸的-氨基脱水缩合 而形成的化学键。
.
18
O
NH2-CH-C +
H OH
甘氨酸
O NH-CH-C
H H OH
甘氨酸
-HOH
O
O
NH2-CH-C-N-CH-C
H HH OH
肽键 .
甘氨酰甘氨酸
天冬氨酸 aspartic acid Asp D 2.97 谷氨酸 glutamic acid Glu E 3.22
赖氨酸
lysine
Lys K 9.74
精氨酸 arginine Arg R 10.76
组氨酸 histidine
.
His H 7.59
12
半胱氨酸
-OOC-CH-CH2-SH + HS-CH2-CH-COO-
分子,占人体干重的45%,某些组织含量更 高,例如脾、肺及横纹肌等高达80%。
.
2
2. 蛋白质具有重要的生物学功能
1)作为生物催化剂(酶) 2)代谢调节作用 3)免疫保护作用 4)物质的转运和存储 5)运动与支持作用 6)参与细胞间信息传递
3. 氧化供能
.
3
第一节
蛋白质的分子组成
The Molecular Component of Protein
三酮反应。
⒉双缩脲反应(biuret reaction)
蛋白质和多肽分子中肽键在稀碱溶液中与
硫酸铜共热,呈现紫色或红色,此反应称为双
缩脲反应,双缩脲反应可用来检测蛋白质水解
程度。
.
第四章 蛋白质的性质、分类及研究方法
多肽序列分析实例
蛋白质研究方法
假定你发现一种新的蛋白质:蛋白质X 1. 如何得到这种蛋白质?
蛋白质的分离、纯化技术 2. 这种蛋白质的大小?
(SDS-PAGE) 3.它的pI是多少?
(等电聚焦) 4. 其他细胞或其他生物体内是否存在? (Western印迹) 5. 其一级结构如何?
`
• N末端:
• Sanger法(FDNB)
• C端:
肼解法
此法是多肽链C-端氨基酸分析法。多肽与肼在无水条件下加 热,C-端氨基酸即从肽链上解离出来,其余的氨基酸则变成 肼化物。肼化物能够与苯甲醛缩合成不溶于水的物质而与C-
端氨基酸分离。
RO H2N CH C
R n-1O
Rn O
HN CH C HN CH C OH
几种蛋白酶特异性的比较
蛋白质的各种 间接测定法。
先得到某一种蛋白质基因的核苷酸序列,然后根据通用的 遗传密码表间接推导出由其决定的氨基酸序列。(DNA测定 序列简单,无法确定最终加工后蛋白质序列、修饰后蛋白 质序列、二硫键信息)
蛋白质一级结构直接测定法的主要步骤
沉降系数S:
大分子沉降速度的量度,等于每单位离心场 的速度。 或S=v/ω^2‧r。s是沉降系数,ω是离心转子 的角速度(弧度/秒),r是到旋转中心的距 离,v是沉降速度。 沉降系数以每单位重力的沉降速度表示, (the velocity per unit force)并且生物大分 子通常为1~500×10^-13秒范围 如令1×10^-13=S 那么生物大分子沉降系数 通常为1~500S S=(p-m)V/f
第四章 蛋白质的性 质分类及研究方法
第四章 蛋白质的重要性质
(六)蛋白质的的分离、纯化与鉴定
1.蛋白质分离、纯化的过程和一般原则
(1)前处理(Pretreatment)---细胞破碎,蛋白
质从原来的组织或细胞中以溶解的状态释放出来。
(2)粗分级(Rough fractionation) 当蛋白质混
合物的提取液获得后,选用一套适当分离纯化方法
,使目的蛋白与大量的杂蛋白分离开。
四.蛋白质的重要性质
(六)蛋白质的的分离、纯化与鉴定
2.蛋白质分离纯化的一般方法 (1)根据蛋白质分子大小不同的分离方法
a. 透析和超滤 透析(dialysis)
b. 和超滤(ultrafiltration)
四.蛋白质的重要性质
(六)蛋白质的的分离、纯化与鉴定 2.蛋白质分离纯化的一般方法 (1)根据蛋白质分子大小不同的分离方法 b. 密度梯度(区带)离心 c. 凝胶过滤(gel filtration)
2.蛋白质分离纯化的一般方法
(3)根据蛋白质电荷不同的分离方法 a. 电泳--在电场中,带电颗粒向着与其带相反电荷的 电极移动,这种现象称电泳(electrophoresis)。
四.蛋白质的重要性质
影响迁移率的因素:电位梯度
电流密度
导电性
环境pH (分子电荷)
离子强度
分子的大小、形状
根据电泳的原理和影响因素可以设计不同的电 泳方法以达到预期的目的
四.蛋白质的重要性质
(二)两性解离及等电点
蛋白质的等电点(pI):当某蛋白质在一定的pH
的溶液中,所带的正负电荷相等,它在电场中既不向
阳极也不向阴极移动,此时溶液的pH值叫做该蛋白质
的等电点。
蛋白质的带电性质与溶液的pH有关。利用蛋白质 的两性解离可以通过电泳分离纯化蛋白质。
第四章蛋白质的营养
2)特点:缺乏的氨基酸常常是EAA ;常发 生在低蛋白饲粮和生长快、高产的动物; 缺乏症可通过补充所缺乏的氨基酸而缓解 或纠正。
(4)氨基酸中毒
由于饲粮中某种氨基酸含量过高而引起 动物生产性能下降,添加其他氨基酸可部 分缓解中毒症,但不能完全消除。
生长猪:10种EAA---- 赖 、蛋 、色 、苯丙、 亮、异亮、缬、苏、组、精氨酸;
成年猪禽:8种---不包含组氨酸和精氨酸;
生长禽:13种----部分节约EAA的AA。 丝氨酸→甘氨酸(部分) 胱氨酸→蛋氨酸(50%) 酪氨酸→苯丙氨酸(30-50%) 5.条件性必需氨基酸:
是指饲粮中各种氨基酸的数量和相互间的 比例与动物的需要量相符合。说明该饲粮 (料)的氨基酸是平衡的,反之,则为不 平衡。 只有在饲粮中氨基酸保持平衡状态下,氨 基酸才能最有效地被利用,任何一种氨基 酸的不平衡都会导致动物体内的蛋白质消 耗增多,而生产性能也将明显降低。
(2)水桶理论
(3)氨基酸的缺乏
9.氨基酸互补
也称蛋白质互补,是指两种或两种以上的 蛋白质通过混合,以弥补各自在氨基酸组 成和含量上的营养缺陷。
生产实践中,这是提高蛋白质生物学价值 的有效方法。混合料蛋白质的生物学价值 高于任何一种单一饲料的蛋白质生物学价 值。是配合饲料生产的理论基础之一。
三、AA平衡理论及理想蛋白质
1.AA平衡理论 (1)AA平衡的概念
特定条件下必需由饲料供给的AA.
如:对仔猪, Arg、Glu是条件性EAA
6.非必需氨基酸(NEAA,Non-essential amino acid):是指可不由饲粮提供,动物体内的合成完
全可以满足需要的氨基酸。但并不是指动物在生 长和维持生命活动的过程中不需要这些氨基酸。
第4章 蛋白质
将H原子靠近自己,观察CAR的走向,逆时 针(左转)为L型,顺时针(右转)为D型。 D:dextro 右 C:carboxyl group ; 拉丁语中 L: levo 左 A:amino group ;
R:residue ;
A L型
C R
R A
C D型
24
• 天然pr中的aa均为L-型; • 两型aa的生理功能不同。
抗 体
11
6、激素作用:
胰岛素等
7、接受和传递信息的受体:
受体蛋白
8、控制细胞生长、分化:
生长因子、阻遏蛋白
9、毒蛋白:
植物、微生物、昆虫所分泌
10、许多蛋白在凝血作用、通透作用、 营养作用、记忆活动等方面起重要作用。
12
二、蛋白质的含量与分布
动物性食品:肌肉、皮、骨骼、血液、乳 和蛋中; 植物性食品:籽实和块根、块茎; 在微生物中也含有丰富的蛋白质 一般食物蛋白质含量:肉类(包括鱼类)为10 %~30%;乳类为1.5%~3.8%;蛋类为11%~ 14%;干豆类20%~49.8%,坚果类(核桃仁、 榛子仁等)为15%~26%;谷类果实6%~10%, 薯类约为2%~3%。
6
一、蛋白质的生物学功能
(一)组织、细胞中主要蛋白质的功能 1、催化作用 • 几乎所有的酶都是蛋白质
7
2、生物体的结构成分
膜 蛋 白
8
3、运输和储存
血红蛋白在血中输送氧 肌红蛋白在肌肉中输送氧
•膜蛋白起运输作用
9
4、在协调运动中的作用中
动物的肌肉收缩、细菌的鞭毛运动神经传 导
10
5、在识别、防御免疫保护作用
54
1.氨基酸的连接方式——肽键
• 肽键(peptide bond):为1个氨基酸的α氨基和另一氨基酸的α-羧基之间脱水后 形成的共价键,即酰胺键。 • 此为蛋白质中氨基酸连接的基本方式。
第四章 蛋白质 习题答案
第四章蛋白质一、单项选择题1、变性蛋白质的主要特点是( D )A 共价键被破坏B 不易被蛋白酶水解C 溶解度增加D 生物学活性丧失2、除( B )外,其他基本氨基酸都有旋光性。
A、谷氨酸B、甘氨酸C、蛋氨酸D、苏氨酸3、组成蛋白质的基本单位是:( A )A L-α-氨基酸B D-α-氨基酸C L-β-氨基酸D L.D-α-氨基酸4、由氨基酸和其他非蛋白质化合物组成的蛋白质称为( B )A、简单蛋白B、结合蛋白C、脂蛋白D、糖蛋白5、除了八种必需氨基酸外,婴儿特殊需要的必需氨基酸是( C )A、色氨酸B、亮氨酸C、组氨酸D、酪氨酸6、氨基酸一般不能溶解在(D )A、盐酸 B、氢氧化钠溶液C、氢氧化钾溶液D、乙醇溶液7、下面能与茚三酮溶液发生反应并呈黄色的氨基酸有(C )A、色氨酸B、亮氨酸C、脯氨酸D、酪氨酸8、下列几种氨基酸中哪一种不属于必需氨基酸?( D )A、赖氨酸B、亮氨酸C、色氨酸D、丝氨酸9、在加工脱水猪肉时,干燥前先调节肉的pH,使其远离蛋白质等电点,复水时较易嫩化,这主要是利用了蛋白质的( A )A、水化作用B、乳化性质C、起泡性质D、胶凝作用10、新鲜的猪肉在很高的压力下都不能把其中的水分压挤出来,这主要是(D )A、水化作用B、乳化性质C、起泡性质D、胶凝作用11、食品卫生中的利用乙醇消毒灭菌和加热蒸煮杀菌,是利用了蛋白质的(C )A、水化作用B、乳化性质C、变性作用D、胶凝作用12、使肌肉呈红色的蛋白质是( C )A、肌溶蛋白B、肌粒蛋白C、肌红蛋白D、肌球蛋白13、小麦蛋白中缺乏(B ),并不是一种良好蛋白质来源,需要与其他蛋白质配合。
A、色氨酸B、赖氨酸C、组氨酸D、酪氨酸14、热处理对蛋白质有有利的一面,主要有( B )A、引起含硫蛋白质的分解B、在热处理过程中发生的褐变反应C、导致蛋白质效价的降低D、产生有毒物质15、食品中粗蛋白质测定方法中,最为经典的测定方法是(A )A、凯氏定氮法B、双缩脲法C、紫外分光光度法D、水杨酸比色法16、维系(B )级结构的化学键主要是氢键。
食品化学 第四章蛋白质 (蛋白质的性质及食品加工对其影响)
α– 螺旋结构
β-折叠:指两条或多条几乎完全伸展的多肽链靠
链间氢键连结而形成的锯齿状折叠构象。
血红蛋白的四级结构
一、两性电离和等电点
1、电离 蛋白质同氨基酸一样也是两性电解质,即能 和酸作用,也能和碱作用。 蛋白质分子中可解离基团主要是侧链基团, 也包括末端氨基和羧基。
2、等电点
(pI ):当某蛋白质在一定 蛋白质的等电点 蛋白质的等电点( pI) 的pH 的溶液中,所带的正负电荷相等,它在电场 pH的溶液中,所带的正负电荷相等,它在电场 pH 值 中既不向阳极也不向阴极移动,此时溶液的 中既不向阳极也不向阴极移动,此时溶液的pH pH值 叫做该蛋白质的等电点。 pH 有关。利用蛋 蛋白质的带电性质与溶液的 蛋白质的带电性质与溶液的pH pH有关。利用蛋 电泳分离纯化蛋白质 。 白质的两性解离可以通过 白质的两性解离可以通过电泳分离纯化蛋白质 电泳分离纯化蛋白质。
肌红蛋白
79
燕麦球蛋白
108
� 低温:主要是一些酶在冷冻条件下失活
� ①冻结使蛋白质周围的水与其结合状态发生变化,从而破 坏了维持蛋白质构象的力。 � ②大量的水结成冰后,使得剩余水中的无机盐浓度大大提 高,局部高浓度的盐使蛋白质发生变性。 � 某些蛋白质经过低温处理后发生可逆变性,如有些酶(L苏氨酸脱氨酶)在室温下比较稳定,而在0℃时不稳定。 � 某些蛋白质(11S 大豆蛋白、麦醇溶蛋白、卵蛋白和乳蛋 白)在低温或冷冻时发生聚集和沉淀,当温度回升至室温 可再次溶解。
1、误食重金属盐类时,喝大量牛奶、蛋清或豆 浆能解毒吗?说说理由。
原因:重金属对身体的毒害主要来自使蛋白质变性, 从而失去生物活性,牛奶富含蛋白质,可以竞争重金属离 子,使变性的蛋白质不再是人体的蛋白质而是牛奶的蛋白 质,这样就可以保护人体。其实不是解毒,而是应急,如 果已经中毒,喝牛奶就没有用了。 2、做胃透视时要服“钡餐”-BaSO4为何不会中毒,能 否改服BaCO3? 原因:选择BaSO4,因为碳酸钡会与胃酸反应生成钡 离子,钡离子有毒的!
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(3)氨基酸的“活化”与核糖体结合技术。
如果把氨基酸与ATP和肝脏细胞质共培养,氨基酸就会 被固定在某些热稳定且可溶性RNA分子(transfer RNA, tRNA)上。现将氨基酸活化后的产物称为氨基酰-tRNA (aminoacyl-tRNA),并把催化该过程的酶称为氨基酰 - tRNA合成酶(aminoacyl-tRNA Synthetase)。
蛋白质合成是一个需能反应,要有各种高能化合物的参 与
• 在真核生物中有将近300种生物大分子与蛋白质的生物合成有关, 细胞用来进行合成代谢的总能量的90%消耗在蛋白质合成过程中, 而参与蛋白质合成的各种组分约占细胞干重的35%。
Contents
● 遗传密码——三联子 ● tRNA的结构、功能与种类 ● 核糖体的结构与功能 ● 蛋白质合成的过程 ● 蛋白质的运转机制 年代破译遗传密码方面的三项重要成果: (1)Paul Zamecnik等人证实细胞中蛋白质合成的场所。 他们把放射性标记的氨基酸注射到大鼠体内,经过一段时间后 取其肝脏,进行蔗糖梯度沉淀并分析各种细胞成份中的放射性 蛋白质。 如果注射后经数小时(或数天)收获肝脏,所有细胞成份中 都带有放射性标记的蛋白质; 如果注射后几分钟内即收获肝脏,那么,放射性标记只存在 于含有核糖体颗粒的细胞质成份中。
(2)Francis Crick等人第一次证实只有用三联子密码的形式才能 把包含在由AUGC四个字母组成遗传信息(核酸)准确无误地翻 译成由20种不同氨基酸组成的蛋白质序列,实现遗传信息的表达。
实验1: 用吖啶类试剂(诱导核苷酸插入或丢失)处理T4噬菌体rII位点
上的两个基因,使之发生移码突变(frame-shift),就生成完全 不同的、没有功能的蛋白质。
实验6:
以随机共聚物指导多肽合成。Nirenberg及Ochoa等又用各种 随机的多聚物作模板合成多肽。例如,以只含A、C的多聚核苷酸 作模板,任意排列时可出现8种三联子,即CCC、CCA、CAC、ACC、 CAA、ACA、AAC、AAA,获得由天冬酰胺(Asn)、(组氨酸)His、脯 氨酸(Pro)、谷胺酰胺(Gln)、苏氨酸(Thr)、赖氨酸(Lys)等6种 氨基酸组成的多肽。
实验5:
多聚三核苷酸为模板时也可能只合成2种多肽:5’…GUA GUA GUA GUA GUA…3’ 或 5’…UAG UAG UAG UAG UAG…3’ 或5’…AGU AGU AGU AGU AGU…3’由第二种读码方式产生的密码子UAG 是终止密码,不编码任何氨基酸,因此,只产生GUA(缬氨酸,Val)或AGU (丝氨酸,Ser)。
2: 9种; 4: 5种;
编码某一氨基酸的密码子越多,该氨基酸在蛋白质 中出现的频率就越高。Arg例外
(三)遗传密码的性质
2、通用性与特殊性
蛋白质生物合成的整套密码,从原核生物到 人类都通用。
已发现少数例外,如动物细胞的线粒体、植 物细胞的叶绿体。
线粒体与核DNA密码子使用情况的比较
生物
所有 酵母 果蝇
其余手臂均由碱基配对产生的杆状 结构和无法配对的套索状结构所组 成, • TψC臂是根据3个核苷酸命名的,
其中ψ表示拟尿嘧啶,是tRNA分 子所拥有的不常见核苷酸。 • 反密码子臂是根据位于套索中央 的三联反密码子命名的。 • D臂是根据它含有二氢尿嘧啶 (dihydrouracil)命名的。
与氨基酸结合
摆动配对
U
mRNA 5' AUU
AUC AUA
3'
UAI UAI UAI
tRNA
5'
5'
5'
3'
Ile
3'
Ile
3'
Ile
密码子、反密码子配对的摆动现象
tRNA反密码子 第1位碱基
I
U G AC
mRNA密码子 第3位碱基
U, C, A A, G U, C U G
Contents
● 遗传密码——三联子 ● tRNA的结构、功能与种类 ● 核糖体的结构与功能 ● 蛋白质合成的过程 ● 蛋白质的运转机制
密码 子 UGA CUA AGA
线粒体DNA编 核DNA编码的
码的氨基酸
氨基酸
色氨酸
终止子
苏氨酸
亮氨酸
丝氨酸
精氨酸
哺乳类 AGA/G 终止子
精氨酸
哺乳类 AUA 甲硫氨酸 异亮氨酸
(三)遗传密码的性质
3、 连续性
编码蛋白质氨基酸序列的各个三联体密 码连续阅读,密码间既无间断也无重叠。
• 基因损伤引起mRNA阅读框架内的碱基发生插入或缺 失,可能导致移码突变(frameshift mutation)。
第四章 蛋白质
翻译:指将mRNA链上的核甘酸从一个特定的起始位
点开始,按每三个核甘酸代表一个氨基酸的原则,
依次合成一条多肽链的过程。
(1)翻译的起始
核糖体与mRNA结合并与氨酰—tRNA生成起始复合物;
(2)肽链的延伸
由于核糖体沿mRNA 5'端向3'端移动,开始了从N端向 C端的多肽合成,这是蛋白质合成过程中速度最快的阶 段;
1、简并性
由一种以上密码子编码同一个氨基酸的现象 称为简并(degeneracy),对应于同一氨基酸的 密码子称为同义密码子(synonymous codon)。
终止密码子:UAA, UGA, UAG
减少了变异对生物的影响
1:甲硫氨酸(ATG), 色氨酸(UGG) 3:异亮氨酸; 6:精氨酸, 亮氨酸, 丝氨酸
3′
4
20 (×)
mRNA 5′ AUCGACCUGAGC
3′
42=16
20 (×)
mRNA 5′ AUCGACCUGAGC
3′
43=64
20 (√)
三联子密码
为什么3个核苷酸决定一个氨基酸呢?
mRNA中只有4种核苷酸,而蛋白质中有20种氨基酸, 若以一种核苷酸代表一种氨基酸,只能代表4种(4^1=4)。 若以两种核苷酸作为一个密码(二联子),能代表 4^2=16种氨基酸。而假定以3个核苷酸代表一个氨基酸, 则可以有4^3=64种密码,满足了编码20种氨基酸的需 要。
密码子的实验证明
实验2:
研究烟草坏死卫星病毒发现,其外壳蛋白亚 基由400个氨基酸组成,相应的RNA片段长 1200个核苷酸,与密码三联子体系正好相吻合。
实验3:
以均聚物为模板指导多肽的合成。 在含有tRNA、核糖体、AAtRNA合成酶及其它蛋白质因子的细胞抽提物中加入mRNA或人工 合成的均聚物作为模板以及ATP、GTP、氨基酸等成分时又能合成 新的肽链,新生肽链的氨基酸顺序由外加的模板来决定。
以人工合成的三核苷酸如UUU、UCU、UGU等为模板, 在含核糖体、AA-tRNA的反应液中保温后通过硝酸纤维 素滤膜,只有游离的AA-tRNA因相对分子质量小而通过 滤膜,而核糖体或与核糖体结合的AA-tRNA则留在滤膜 上,这样可把已结合与未结合的AA-tRNA分开。
氨基酸
氨基酸是蛋白质合成的原料,常见的有20种氨 基酸,称α-氨基酸;
1961年,Nirenberg等以poly(U)作模板时发现合成了多聚苯 丙氨酸,从而推出UUU代表苯丙氨酸(Phe)。以poly(C)及 poly(A)做模板分别得到多聚脯氨酸(Pro)和多聚赖氨酸(Lys)。
实验4:
以特定序列的共聚物为模板指导多肽的合成。以多聚 二核苷酸作模板可合成由2个氨基酸组成的多肽, 5‘…UGU GUG UGU GUG UGU GUG…3’,不管读码从 U开始还是从G开始,都只能有UGU(半胱氨酸,Cys)及 GUG(缬氨酸,Val)两种密码子。
多余臂是区分tRNA 的主要特征
所有的tRNA都能与核糖体的P位点和A位点结合。 通过反密码子:密码子的配对与 mRNA结合,而3’端恰好 将氨基酸送到正在延伸的多肽上。
二、tRNA的结构、功能与种类
(一) tRNA的结构
2、三级结构: “L”形 氢键
三叶草二级结构具有四个臂
L 型三 维结构两个双螺旋区相互垂直
由于小片段碱基互补配对,三叶草 形tRNA分子上有4条根据它们的结 构或已知功能命名的手臂:
受体臂(acceptor arm), • 主要由链两端序列碱基配对形成
的杆状结构和3'端未配对的3~4个 碱基所组成,其3'端的最后3个碱 基序列永远是CCA,最后一个碱 基的3'或2'自由羟基(一OH)可以被 氨酰化。
二、tRNA的结构、功能与种类
tRNA在蛋白质合成中处于关键地位,
• 为每个三联密码子翻译成氨基酸提供了接合体, • 为准确无误地将所需氨基酸运送到核糖体上提供了运送载体,
它又被称为第二遗传密码。
• tRNA参与多种反应,并与多种蛋白质和核酸相互识别,这就决定 了它们在结构上存在大量的共性。
(一) tRNA的结构 1、二级结构:三叶草形
3’
5’
氨基酸茎
D环
TψC 环
可变环
TψC 环 D环
氨基酸茎 3’
5’
可变环
反密码子环
反密码子环
图 14-15 tRNA 由三叶草型折叠成 L 型三维结构
(二) tRNA的功能
1、解读mRNA的遗传信息 2、运输的工具,运载氨基酸
tRNA有两个关键部位: ● 3’端CCA:接受氨基酸,形成氨酰-tRNA。 ●与mRNA结合部位—反密码子部位
结构通式:
H NH3+ C COO -
R
氨基酸是兼性离子,不同种氨基酸,R基的不同, 带电情况不一样,各性质也有所差异。
氨基酸
20种氨基酸主要特征分析
遗传密码的破译,即确定代表每种氨基酸的具体密码。
●至1966年,20种氨基酸对应的61个密码子和三 个终止密码子全部被查清。