中考数学几何综合圆的综合大题压轴题

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

圆的综合大题

1.如图,⊙O是△ABC的外接圆,FH是⊙O的切线,切点为F,FH∥BC,连接AF交BC于E,∠ABC的平分线BD交AF于D,连接BF.

(1)证明:AF平分∠BAC;

(2)证明:BF=FD;

(3)若EF=4,DE=3,求AD的长.

2.如图,AB是⊙O的直径,过点B作⊙O的切线BM,点P在右半圆上移动(点P与点A,B不重合),过点P作PC⊥AB,垂足为C;点Q在射线BM上移动(点M在点B的右边),且在移动过程中保持OQ∥AP.

(1)若PC,QO的延长线相交于点E,判断是否存在点P,使得点E恰好在⊙O上?若存在,求出∠APC的大小;若不存在,请说明理由;

(2)连接AQ交PC于点F,设,试问:k的值是否随点P的移动而变化?证明你的结论.

3.已知:如图1,把矩形纸片ABCD折叠,使得顶点A与边DC上的动点P重合(P不与点D,C重合),MN为折痕,点M,N分别在边BC,AD上,连接AP,MP,AM,AP与MN相交于点F.⊙O过点M,C,P.

(1)请你在图1中作出⊙O(不写作法,保留作图痕迹);

(2)与是否相等?请你说明理由;

(3)随着点P的运动,若⊙O与AM相切于点M时,⊙O又与AD相切于点H.设AB为4,请你通过计算,画出这时的图形.(图2,3供参考)

4.在⊙O中,弦AB与弦CD相交于点G,OA⊥CD于点E,过点B作⊙O的切线BF交CD的延长线于点F.

(I)如图①,若∠F=50°,求∠BGF的大小;

(II)如图②,连接BD,AC,若∠F=36°,AC∥BF,求∠BDG的大小.

5.如图,在⊙O中,半径OD⊥直径AB,CD与⊙O相切于点D,连接AC交⊙O 于点E,交OD于点G,连接CB并延长交⊙于点F,连接AD,EF.

(1)求证:∠ACD=∠F;

(2)若tan∠F=

①求证:四边形ABCD是平行四边形;

②连接DE,当⊙O的半径为3时,求DE的长.

6.如图,⊙O的直径AB为10cm,弦BC为6cm,D、E分别是∠ACB的平分线与⊙O,AB的交点,P为AB延长线上一点,且PC=PE.

(1)求AC、AD的长;

(2)试判断直线PC与⊙O的位置关系,并说明理由.

7.如图,点A是⊙O上一点,OA⊥AB,且OA=1,AB=,OB交⊙O于点D,作AC⊥OB,垂足为M,并交⊙O于点C,连接BC.

(1)求证:BC是⊙O的切线;

(2)过点B作BP⊥OB,交OA的延长线于点P,连接PD,求sin∠BPD的值.

8.如图,在△ABC中,∠ABC=90°,以AB的中点O为圆心,OA为半径的圆交AC于点D,E是BC的中点,连接DE,OE.

(1)判断DE与⊙O的位置关系,并说明理由;

(2)求证:BC2=2CD•OE;

(3)若cos∠BAD=,BE=,求OE的长.

9.已知:如图,⊙O是△ABC的外接圆,且AB=AC=13,BC=24,P A是⊙O 的切线,A为切点,割线PBD过圆心,交⊙O于另一点D,连接CD.

(1)求证:P A∥BC;

(2)求⊙O的半径及CD的长.

10.如图,已知△ABC内接于⊙O,AD平分∠BAC,交⊙O于点D,过D作⊙O 的切线与AC的延长线交于点E.

(1)求证:BC∥DE;

(2)若AB=3,BD=2,求CE的长;

(3)在题设条件下,为使BDEC是平行四边形,△ABC应满足怎样的条件(不要求证明).

11.如图,AB、BC、CD分别与⊙O相切于E、F、G,且AB∥CD,BO=6,CO=8.

(1)判断△OBC的形状,并证明你的结论;

(2)求BC的长;

(3)求⊙O的半径OF的长.

12.已知:以Rt△ABC的直角边AB为直径作⊙O,与斜边AC交于点D,过点D作⊙O的切线交BC边于点E.

(1)如图,求证:EB=EC=ED;

(2)试问在线段DC上是否存在点F,满足BC2=4DF•DC?若存在,作出点F,并予以证明;若不存在,请说明理由.

13.如图,Rt△ABC中,∠ACB=90°,以AC为直径的⊙O与AB边交于点D,过点D作⊙O的切线,交BC于点E;

(1)求证:BE=CE;

(2)若以O、D、E、C为顶点的四边形是正方形,⊙O的半径为r,求△ABC 的面积;

(3)若EC=4,BD=,求⊙O的半径OC的长.

14.已知:如图,P A、PB是⊙O的切线;A、B是切点;连接OA、OB、OP,

(1)若∠AOP=60°,求∠OPB的度数;

(2)过O作OC、OD分别交AP、BP于C、D两点,

①若∠COP=∠DOP,求证:AC=BD;

②连接CD,设△PCD的周长为l,若l=2AP,判断直线CD与⊙O的位置关

系,并说明理由.

15.如图1,已知正方形ABCD的边长为,点M是AD的中点,P是线段MD上的一动点(P不与M,D重合),以AB为直径作⊙O,过点P作⊙O的切线交BC于点F,切点为E.

(1)除正方形ABCD的四边和⊙O中的半径外,图中还有哪些相等的线段(不

能添加字母和辅助线);

(2)求四边形CDPF的周长;

(3)延长CD,FP相交于点G,如图2所示.是否存在点P,使BF•FG=CF •OF?如果存在,试求此时AP的长;如果不存在,请说明理由.

16.如图,从⊙O外一点A作⊙O的切线AB、AC,切点分别为B、C,且⊙O 直径BD=6,连接CD、AO.

(1)求证:CD∥AO;

(2)设CD=x,AO=y,求y与x之间的函数关系式,并写出自变量x的取值范围;

(3)若AO+CD=11,求AB的长.

相关文档
最新文档