概率论第三章第3节条件分布,独立性

合集下载

概率论与数理统计第三章

概率论与数理统计第三章
P ( X Y 1) 1 2dxdy . 2 D
x y 1
y=x G D O 1 x+y=1 x

f ( x, y )dxdy
(2)
P(Y X )
2
dx
0
1
x
2
x
2dy 1 / 3 .
y 1 0
y = x2
y=x G
1 x
(3) P(| X | 0.3) P(0.3 X 0.3)
pij P( X xi ) P(Y y j X xi ) .
例3.1.1 设随机变量X在1,2,3三个整数中等可能取值,另一个随机 变量Y在1~X中等可能地取一整数值,求(X,Y)的概率分布。
解:由假设,随机变量X的可能取值为1,2,3. 而Y≤X,故Y 的可能取值范围也 为1,2,3. 首先,当 j>i 时,{X=i,Y=j} 为不可能事件,故 P(X=i,Y=j)=0,j>i. 当 j≤i 时,根据概率的乘法公式,有 P(X=i,Y=j)=P(X=i)•P(Y=j | X=i) =1/i • 1/3,i=1,2,3. 由此得(X, Y)的概率分布如下:
3.2 边缘分布
二维随机变量的联合分布是把(X,Y)看作一个整体的 分布。其中分量X和Y都是一维随机变量,也有各自的 分布,分别称X和Y的分布为二维随机变量(X,Y)关于 X和Y的边缘分布。 设二维随机变量(X,Y)的分布函数为F(x,y),分别记 关于X和Y的边缘分布函数为Fx(x)和Fy(y),由于 Fx(x)=P(X≤x,Y<+∞ )=F(x,+∞ ), 同理,有 Fy(y)=F(+∞ ,y). 由此看出,边缘分布函数Fx(x),Fy(y)完全由联合分布 函数F(x,y)来确定。

概率论第三章 多维随机变量及其分布

概率论第三章  多维随机变量及其分布

1 3
概率论
y
y x
o
x
概率论
四、课堂练习
设随机变量(X,Y)的概率密度是
f
x,
y
k
6
x
y,
0,
0 x 2,2 y 4, 其它.
(1) 确定常数 k;
(2) 求概率 PX 1,Y 3 .
解 (1) 1 f x, ydxdy
R2
k
2 dx
46
0
2
x
y dy
k
2 dx
46
概率论
同理, Y的分布律为:
P{Y y j} pij ˆ p•j , j 1,2,, i1
分别称pi• (i 1, 2,), 和p• j , (j 1, 2,)为(X, Y)关于 X和关于Y的边缘分布律.
概率论
例1 把一枚均匀硬币抛掷三次,设X为三次 抛掷中正面出现的次数 ,而 Y 为正面出现次数与 反面出现次数之差的绝对值 , 求 (X ,Y) 的分布律 和边缘分布律.
也就是说,对于给定的
不同的 对应
不同的二维正态分布,但它们的边缘分布却都是一样的.
此例表明 由边缘分布一般不能确定联合分布.
概率论
五、小结
1. 在这一讲中,我们与一维情形相对照,介 绍了二维随机变量的边缘分布. 2. 请注意联合分布和边缘分布的关系: 由联合分布可以确定边缘分布; 但由边缘分布一般不能确定联合分布.
随机变量维(X,Y )的概率密度 , 或 称为随机变量 X 和 Y 的联合概 率密度.
概率论
一维随机变量X
连续型
F x x
f tdt
x
X的概率密度函数
f x x R

《概率论》第3章§3条件分布

《概率论》第3章§3条件分布

G
第三章 多维随机变量及其分布
§3
条件分布
12/17 12/17
设 ( X ,Y) 服从圆域 G : x2 + y 2 ≤ 1 上的均匀分布. 服从圆域 上的均匀分布. 求条件概率密度 f X|Y (x | y) f X |Y (x | y)表示固定 Y = y时 ( X ,Y)的密度及 Y的边缘密度分别为 y 2 , 1 y 2 ) ~ y 2 X y 2 U( 1 1/ π, x + ≤1 1 f (x, y) = y 其它 0,
p13 P{X =1| Y = 3 = p. = 0 = 0 } 3 7/ 48 p23 P{X = 2| Y = 3 = p. = 0 = 0 } 3 7/ 48 即在 Y = 3的条件下 ,Y = 3} = p33 = 1/12 = 4 P{ X = 3| X的条件分布律为 p.3 7/ 48 7 X=k 1 p43 2 3 4 1/163/ 73 P{{X=k | YY 3}3 = p.0 =4/ 7 = PX = 4| = = } 0 第三章 48 7 3 7/ 多维随机变量及其分布
P(B)
在形式上很相似! 在形式上很相似!
f (x, y) fY| X ( y | x) = f X (x)
(∞ < y < ∞)
F | X ( y | x) = ∫∞ fY| X (v | x)dv (∞< y < ∞) Y
x
第三章 多维随机变量及其分布
§3
f X |Y (x | y) ≥ 0
y
y=x
y {x>0.5,0.5<0.5 x y<
∫∫ f (x, y)dxdy
∫∫
x 1dxdy

概率论与数理统计课件第三章

概率论与数理统计课件第三章

f
(x,
y)
1
21 2
1
2
exp
1
2(1 2 )
(x
1)2
2 1
2
(x
1)( y 1 2
2 )
(y
2)2
2 2
其中1、2、1、 2、都是常数,且1 0, 2 0,1 1.
则称(X,Y)服从参数为1、2、1、的二2、维 正态分布,
记为
(X
,Y)
~
N (1,
2
,
2 1
,
2 2
2F(x, y) f (x, y) xy
(5)若(X,Y)为二维连续型随机向量,联合概率密度为f(x,y),则
F(x,y) P{X x,Y y}
返回
X
18


例5 设二维随机变量(X,Y)的概率密度为
Ae2(x y) , x 0, y 0
f (x, y)
0, 其他
(1)确定常数A;
分别为(X,Y)关于X和Y的边缘分布函数.
返回
X
25


例1 设二维随机向量(X,Y)的联合分布函数为
(1 e2x )(1 e3y ), x 0, y 0,
F(x, y)
0, 其他.
求边缘分布 FX (x), FY ( y)
当x
0时,FX
(x)
lim (1
y
e2 x
)(1
e3 y
)
1
e2 x
返回
X
14

例3 设随机变量Y~N(0,1),令
0, X 1 1,
| Y | 1
0,
|Y
|

随机变量的独立性,条件分布

随机变量的独立性,条件分布
的充要条件是: 0
证 由上节知
pX (x)
1
( x μ1 )2
e , 2σ12
2πσ1
x .
pY ( y)
1
e ,
(
y μ2
2
σHale Waihona Puke 2 2)2
2 σ2
y .
pX
(x)
pY
( y)
1 2πσ1
e ,
1 2
(
x
μ1 σ12
)2
(
y
μ2
σ
2 2
)2
2
x, y R
p(x, y)
1
e 1 2(1 ρ
2
)
(
x
μ1 σ12
)
2
2
ρ
(
x
μ1 )( y σ1 σ2
μ2
)
(
y
μ2
σ
2 2
)
2
2σ1σ2 1 ρ2
pX
(x) pY
( y)
1 2πσ1
e
1 2
(
x μ1 σ12
)2
(
y
μ2
σ
2 2
)2
2
0
0
显然有 p(x, y) pX (x) pY ( y) 故X与Y相互独立.
p( x, y)
p (x y)
.
XY
pY ( y)

x
pX Y (x y)d x
x p(x, y) d x 为在Y y 的 pY ( y)
条件下, X 的条件分布函数,记为
P{X x Y y} 或 FX Y ( x y),

x p(x, y) FX Y ( x y) P{X x Y y} pY ( y) d x.

10条件分布与独立性

10条件分布与独立性

f (x,y)=fX(x)fY(y).
特别地,令x = μ1,y = μ2, 由上述等式得到
1
1,
2 1 2 1 2 2 1 2
从而ρ = 0.
综上所述, 得到以下的重要结论: 定理2 对于二维正态随机变量(X, Y), X与 Y相互独立的充要条件是参数ρ = 0.
讲评 随机变量的独立性往往由实际问题
PX≤ x Y y为随机变量X在条件Y= y下的条件
分布函数, 记作 FX Y ( x y).

x f (x, y)
FX Y ( x y)
dx. fY ( y)
则上式就是在给定条件Y= y下, 随机变量X的
条件分布函数.
而 f (x, y) 称为在给定条件
fY ( y)
Y= y下X的条件概率密度,
L
f (x1, x2,L , xn)dx2dx3L dxn,
(3.5)
fX1,X2 (x1, x2)
L
f (x1, x2,L , xn)dx3dx4L dxn.
(3.6)
定义2 若对于所有的实数x1,x2,…, xn有
F(x1, x2,L , xn) FX1 (x1)FX 2 (x2)L FXn (xn) (3.7) ,
随机变量的独立性是概率论与数理统计 中的一个很重要的概念,它是由随机事件的相 互独立性引申而来的.我们知道,两个事件A与B 是相互独立的,当且仅当它们满足条件 P(AB)=P(A)P(B).
由此, 可引出两个随机变量的相互独立性.
设X,Y为两个随机变量,于是{X≤x},{Y≤y}为 两个随机事件, 则两事件{X≤x},{Y≤y}相互独立, 相当于下式成立 P{X≤x,Y≤y}=P{X≤x} P{Y≤y}, 或写成 F(x,y)=FX(x)FY(y).

概率论与数理统计(理工类,第四版)吴赣昌主编课后习题答案第三章

概率论与数理统计(理工类,第四版)吴赣昌主编课后习题答案第三章

第三章多维随机变量及其分布3.1 二维随机变量及其分布习题1设(X,Y)的分布律为X\Y12311/61/91/1821/3a1/9求a.分析:dsfsd1f6d54654646解答:由分布律性质∑i⋅jPij=1,可知1/6+1/9+1/18+1/3+a+1/9=1,解得a=2/9.习题2(1)2.设(X,Y)的分布函数为F(x,y),试用F(x,y)表示:(1)P{a<X≤b,Y≤c};解答:P{a<X≤b,Y≤c}=F(b,c)-F(a,c).习题2(2)2.设(X,Y)的分布函数为F(x,y),试用F(x,y)表示:(2)P{0<Y≤b};解答:P{0<Y≤b}=F(+∞,b)-F(+∞,0).习题2(3)2.设(X,Y)的分布函数为F(x,y),试用F(x,y)表示:(3)P{X>a,Y≤b}.解答:P{X>a,Y≤b}=F(+∞,b)-F(a,b).习题3(1)3.设二维离散型随机变量的联合分布如下表:试求:(1)P{12<X<32,0<Y<4;解答:P{12<X<23,0<Y<4P{X=1,Y=1}+P{X=1,Y=2}+P{X=1,Y=3}=P{X=1,Y=1}+P{X=1,Y=2}+P{X=1,Y=3}=14+0+0=14.习题3(2)3.设二维离散型随机变量的联合分布如下表:试求:(2)P{1≤X≤2,3≤Y≤4};解答:P{1≤X≤2,3≤Y≤4}=P{X=1,Y=3}+P{X=1,Y=4}+P{X=2,Y=3}+P{X=2,Y=4}=0+116+0+14=516.习题3(3)3.设二维离散型随机变量的联合分布如下表:试求:(3)F(2,3).解答:F(2,3)=P(1,1)+P(1,2)+P(1,3)+P(2,1)+P(2,2)+P(2,3)=14+0+0+116+14+0=916.习题4设X,Y为随机变量,且P{X≥0,Y≥0}=37,P{X≥0}=P{Y≥0}=47,求P{max{X,Y}≥0}.解答:P{max{X,Y}≥0}=P{X,Y至少一个大于等于0}=P{X≥0}+P{Y≥0}-P{X≥0,Y≥0}=47+47-37=57.习题5(X,Y)只取下列数值中的值:(0,0),(-1,1),(-1,13),(2,0)且相应概率依次为16,13,112,512,请列出(X,Y)的概率分布表,并写出关于Y的边缘分布.解答:(1)因为所给的一组概率实数显然均大于零,且有16+13+112+512=1,故所给的一组实数必是某二维随机变量(X,Y)的联合概率分布. 因(X,Y)只取上述四组可能值,故事件:{X=-1,Y=0},{X=0,Y=13,{X=0,Y=1},{X=2,Y=13,{X=2,Y=1}均为不可能事件,其概率必为零. 因而得到下表:Y01/31pk7/121/121/3习题6设随机向量(X,Y)服从二维正态分布N(0,0,102,102,0),其概率密度为f(x,y)=1200πex2+y2200,求P{X≤Y}.解答:由于P{X≤Y}+P{X>Y}=1,且由正态分布图形的对称性,知P{X≤Y}=P{X>Y},故P{X≤Y}=12.习题7设随机变量(X,Y)的概率密度为f(x,y)={k(6-x-y),0<x<2,2<y<40,其它, (1)确定常数k;(2)求P{X<1,Y<3};(3)求P{X<1.5};(4)求P{X+Y≤4}.解答:如图所示(1)由∫-∞+∞∫-∞+∞f(x,y)dxdy=1,确定常数k.∫02∫24k(6-x-y)dydx=k∫02(6-2x)dx=8k=1,所以k=18.(2)P{X<1,Y<3}=∫01dx∫2318(6-x-y)dy=38.(3)P{X<1.5}=∫01.5dx∫2418(6-x-y)dy=2732.(4)P{X+Y≤4}=∫02dx∫24-x18(6-x-y)dy=23.习题8已知X和Y的联合密度为f(x,y)={cxy,0≤x≤1,0≤y≤10,其它,试求:(1)常数c;(2)X和Y的联合分布函数F(x,y).解答:(1)由于1=∫-∞+∞∫-∞+∞f(x,y)dxdy=c∫01∫01xydxdy=c4,c=4.(2)当x≤0或y≤0时,显然F(x,y)=0;当x≥1,y≥1时,显然F(x,y)=1;设0≤x≤1,0≤y≤1,有F(x,y)=∫-∞x∫-∞yf(u,v)dudv=4∫0xudu∫0yvdv=x2y2.设0≤x≤1,y>1,有F(x,y)=P{X≤1,Y≤y}=4∫0xudu∫01ydy=x2.最后,设x>1,0≤y≤1,有F(x,y)=P{X≤1,Y≤y}=4∫01xdx∫0yvdv=y2.函数F(x,y)在平面各区域的表达式F(x,y)={0,x≤0或y≤0x2,0≤x≤1,y>1x2y2,0≤x≤1,0≤y≤1.y2,x>习题9设二维随机变量(X,Y)的概率密度为f(x,y)={4.8y(2-x),0≤x≤1,x≤y≤10,其它,求边缘概率密度fY(y).解答:fX(x)=∫-∞+∞f(x,y)dy={∫0x4.8y(2-x)dy,0≤x≤10,其它={2.4x2(2-x),0≤x≤10,其它.fY(y)=∫-∞+∞f(x,y)dx={∫0y4.8y(2-x)dx,0≤y≤10,其它={2.4y(4y-y2),0≤y≤10,其它.习题10设(X,Y)在曲线y=x2,y=x所围成的区域G里服从均匀分布,求联合分布密度和边缘分布密度. 解答:区域G的面积A=∫01(x-x2)dx=16,由题设知(X,Y)的联合分布密度为f(x,y)={6,0≤x≤1,x2≤y≤x0,其它,从而fX(x)=∫-∞+∞f(x,y)dy=6∫x2xdy=6(x-x2),0≤x≤1,即fX(x)={6(x-x2),0≤x≤10,其它,fY(y)=∫-∞+∞f(x,y)dx=6∫yydx=6(y-y),0≤y≤1,即fY(y)={6(y-y),0≤y≤10,其它.3.2 条件分布与随机变量的独立性习题1二维随机变量(X,Y)的分布律为从而(X,Y)的联合概率分布为P{X≤a,∣X∣≤a}=P{X≤a}⋅P{∣X∣≤a},而事件{∣X∣≤a}⊂{X≤a},故由上式有P{∣X∣≤a}==P{X≤a}⋅P{∣X∣≤a},⇒P{∣X∣≤a}(1-P{X≤a})=0⇒P{∣X≤a∣}=0或1=P{X≤a}⋅(∀a>0)但当a>0时,两者均不成立,出现矛盾,故X与∣X∣不独立.习题9设X和Y是两个相互独立的随机变量,X在(0,1)上服从均匀分布,Y的概率密度为fY(y)={12e-y2,y>00,y≤0,(1)求X与Y的联合概率密度;(2)设有a的二次方程a2+2Xa+Y=0,求它有实根的概率.解答:(1)由题设易知fX(x)={1,0<x<10,其它,又X,Y相互独立,故X与Y的联合概率密度为f(x,y)=fX(x)⋅fY(y)={12e-y2,0<x<1,y>00,其它;(2)因{a有实根}={判别式Δ2=4X2-4Y≥0}={X2≥Y},故如图所示得到:P{a有实根}=P{X2≥Y}=∫∫x2>yf(x,y)dxdy=∫01dx∫0x212e-y2dy=-∫01e-x22dx=1-[∫-∞1e-x22dx-∫-∞0e-x22dx]=1-2π[12π∫-∞1e-x22dx-12π∫-∞0e-x22dx]=1-2π[Φ(1)-Φ(0),又Φ(1)=0.8413,Φ(0)=0.5,于是Φ(1)-Φ(0)=0.3413,所以P{a有实根}=1-2π[Φ(1)-Φ(0)]≈1-2.51×0.3413=0.1433.3.3 二维随机变量函数的分布习题1设随机变量X和Y相互独立,且都等可能地取1,2,3为值,求随机变量U=max{X,Y}和V=min{X,Y}的联合分布.解答:由于U≥V,可见P{U=i,V=j}=0(i<j).此外,有P{U=V=i}=P{X=Y=i}=1/9(i=1,2,3),P{U=i,V=j}=P{X=i,Y=j}+P{X=j,Y=i}=2/9(i>j),于是,随机变量U和V的联合概率分布为=∫01dy∫y2y12dx=14,P{U=1,V=1}=1-P{U=0,V=0}-P{U=0,V=1}-P{U=1,V=0}=1/2,即U\V01011/401/41/2习题4设(X,Y)的联合分布密度为f(x,y)=12πe-x2+y22,Z=X2+Y2,求Z的分布密度.解答:FZ(z)=P{Z≤z}=P{X2+Y2≤z}.当z<0时,FZ(z)=P(∅)=0;当z≥0时,FZ(z)=P{X2+Y2≤z2}=∫∫x2+y2≤z2f(x,y)dxdy=12π∫∫x2+y2≤z2e-x2+y22dxdy=12π∫02πdθ∫0ze-ρ22ρdρ=∫0ze-ρ22ρdρ=1-e-z22.故Z的分布函数为FZ(z)={1-e-z22,z≥00,z<0.Z的分布密度为fZ(z)={ze-z22,z>00,z≤0.习题5设随机变量(X,Y)的概率密度为f(x,y)={12(x+y)e-(x+y),x>0,y>00,其它,(1)问X和Y是否相互独立?(2)求Z=X+Y的概率密度.解答:(1)fX(x)=∫-∞+∞f(x,y)dy={∫0+∞12(x+y)e-(x+y)dy,x>00,x≤0\under2line令x+y=t{∫x+∞12te-tdt=12(x+1)e-x,x>00,x≤0,由对称性知fY(y)={12(y+1)e-y,y>00,y≤0,显然f(x,y)≠fX(x)fY(y),x>0,y>0,所以X与Y不独立.(2)用卷积公式求fZ(z)=∫-∞+∞f(x,z-x)dx.当{x>0z-x>0即{x>0x<z时,f(x,z-x)≠0,所以当z≤0时,fZ(z)=0;当z>0时,fZ(z)=∫0z12xe-xdx=12z2e-z.于是,Z=X+Y的概率密度为fZ(z)={12z2e-z,z>00,z≤0.习题6设随机变量X,Y相互独立,若X服从(0,1)上的均匀分布,Y服从参数1的指数分布,求随机变量Z=X+Y的概率密度.解答:据题意,X,Y的概率密度分布为fX(x)={1,0<x<10,其它,fY(y)={e-y,y≥00,y<0,由卷积公式得Z=X+Y的概率密度为fZ(z)=∫-∞+∞fX(x)fY(z-x)dx=∫-∞+∞fX(z-y)fY(y)dy=∫0+∞fX(z-y)e-ydy.由0<z-y<1得z-1<y<z,可见:当z≤0时,有fX(z-y)=0,故fZ(z)=∫0+∞0⋅e-ydy=0;当z>0时,fZ(z)=∫0+∞fX(z-y)e-ydy=∫max(0,z-1)ze-ydy=e-max(0,z-1)-e-z,即fZ(z)={0,z≤01-e-z,0<z≤1e1-z-e-z,z>1.习题7设随机变量(X,Y)的概率密度为f(x,y)={be-(x+y),0<x<1,0<y<+∞,0,其它.(1)试确定常数b;(2)求边缘概率密度fX(x),fY(y);(3)求函数U=max{X,Y}的分布函数.解答:(1)由∫-∞+∞∫-∞+∞f(x,y)dxdy=1,确定常数b.∫01dx∫0+∞be-xe-ydy=b(1-e-1)=1,所以b=11-e-1,从而f(x,y)={11-e-1e-(x+y),0<x<1,0<y<+∞,0,其它.(2)由边缘概率密度的定义得fX(x)={∫0+∞11-e-1e-(x+y)dy=e-x1-e-x,0<x<1,0,其它,fY(x)={∫0111-e-1e-(x+y)dx=e-y,0<y<+∞,0,其它(3)因为f(x,y)=fX(x)fY(y),所以X与Y独立,故FU(u)=P{max{X,Y}≤u}=P{X≤u,Y≤u}=FX(u)F Y(u),其中FX(x)=∫0xe-t1-e-1dt=1-e-x1-e-1,0<x<1,所以FX(x)={0,x≤0,1-e-x1-e-1,0<x<1,1,x≥1.同理FY(y)={∫0ye-tdt=1-e-y,0<y<+∞,0,y≤0,因此FU(u)={0,u<0,(1-e-u)21-e-1,0≤u<1,1-e-u,u≥1.习题8设系统L是由两个相互独立的子系统L1和L2以串联方式联接而成,L1和L2的寿命分别为X与Y,其概率密度分别为ϕ1(x)={αe-αx,x>00,x≤0,ϕ2(y)={βe-βy,y>00,y≤0,其中α>0,β>0,α≠β,试求系统L的寿命Z的概率密度.解答:设Z=min{X,Y},则F(z)=P{Z≥z}=P{min(X,Y)≤z}=1-P{min(X,Y)>z}=1-P{X≥z,Y≥z}=1-[1P{X<z}][1-P{Y<z}]=1-[1-F1{z}][1-F2{z}]由于F1(z)={∫0zαe-αxdx=1-e-αz,z≥00,z<0,F2(z)={1-e-βz,z≥00,z<0,故F(z)={1-e-(α+β)z,z≥00,z<0,从而ϕ(z)={(α+β)e-(α+β)z,z>00,z≤0.习题9设随机变量X,Y相互独立,且服从同一分布,试证明:P{a<min{X,Y}≤b}=[P{X>a}]2-[P{X>b}]2.解答:设min{X,Y}=Z,则P{a<min{X,Y}≤b}=FZ(b)-FZ(a),FZ(z)=P{min{X,Y}≤z}=1-P{min{X,Y}>z}=1-P{X>z,Y>z}=1-P{X>z}P{Y>z}=1-[P{X>z}]2,代入得P{a<min{X,Y}≤b}=1-[P{X>b}]2-(1-[P{X>a}]2)=[P{X>a}]2-[P{X>b}]2.证毕.复习总结与总习题解答习题1在一箱子中装有12只开关,其中2只是次品,在其中取两次,每次任取一只,考虑两种试验:(1)放回抽样;(2)不放回抽样.我们定义随机变量X,Y如下:X={0,若第一次取出的是正品1,若第一次取出的是次品, Y={0,若第二次取出的是正品1,若第二次取出的是次品,试分别就(1),(2)两种情况,写出X和Y的联合分布律.解答:(1)有放回抽样,(X,Y)分布律如下:P{X=0,Y=0}=10×1012×12=2536; P{X=1,Y=0}=2×1012×12=536,P{X=0,Y=1}=10×212×12=536, P{X=1,Y=1}=2×212×12=136,(2)不放回抽样,(X,Y)的分布律如下:P{X=0,Y=0}=10×912×11=4566, P{X=0,Y=1}=10×212×11=1066,P{X=1,Y=1}=2×112×11=166,习题2假设随机变量Y服从参数为1的指数分布,随机变量Xk={0,若Y≤k1,若Y>k(k=1,2),求(X1,X2)的联合分布率与边缘分布率.解答:因为Y服从参数为1的指数分布,X1={0,若Y≤11,若Y>1, 所以有P{X1=1}=P{Y>1}=∫1+∞e-ydy=e-1,P{X1=0}=1-e-1,同理P{X2=1}=P{Y>2}=∫2+∞e-ydy=e-2,P{X2=0}=1-e-2,因为P{X1=1,X2=1}=P{Y>2}=e-2,P{X1=1,X2=0}=P{X1=1}-P{X1=1,X2=1}=e-1-e-2,P{X1=0,X2=0}=P{Y≤1}=1-e-1,P{X1=0,X2=1}=P{X1=0}-P{X1=0,X2=0}=0,故(X1,X2)联合分布率与边缘分布率如下表所示:习题3在元旦茶话会上,每人发给一袋水果,内装3只橘子,2只苹果,3只香蕉. 今从袋中随机抽出4只,以X记橘子数,Y记苹果数,求(X,Y)的联合分布.解答:X可取值为0,1,2,3,Y可取值0,1,2.P{X=0,Y=0}=P{∅}=0,P{X=0,Y=1}=C30C21C33/C84=2/70,P{X=0,Y=2}=C30C22C32/C84=3/70,P{X=1,Y=0}=C31C20C33/C84=3/70,P{X=1,Y=1}=C31C21C32/C84=18/70,P{X=1,Y=2}=C31C22C31/C84=9/70,P{X=2,Y=0}=C32C20C32/C84=9/70,P{X=2,Y=1}=C32C21C31/C84=18/70,P{X=2,Y=2}=C32C22C30/C84=3/70,P{X=3,Y=0}=C33C20C31/C84=3/70,P{X=3,Y=1}=C33C21C30/C84=2/70,P{X=3,Y=2}=P{∅}=0,所以,(X,Y)的联合分布如下:习题4设随机变量X与Y相互独立,下表列出了二维随机变量(X,Y)的联合分布律及关于X与Y解答:由题设X与Y相互独立,即有pij=pi⋅p⋅j(i=1,2;j=1,2,3), p⋅1-p21=p11=16-18=124,又由独立性,有p11=p1⋅p⋅1=p1⋅16故p1⋅=14.从而p13=14-124-18, 又由p12=p1⋅p⋅2, 即18=14⋅p⋅2.从而p⋅2=12. 类似的有p⋅3=13,p13=14,p2⋅=34.将上述数值填入表中有习题5设随机变量(X,Y)的联合分布如下表:求:(1)a值;(2)(X,Y)的联合分布函数F(x,y);(3)(X,Y)关于X,Y的边缘分布函数FX(x)与FY(y).解答:(1)\because由分布律的性质可知∑i⋅jPij=1, 故14+14+16+a=1,∴a=13.(2)因F(x,y)=P{X≤x,Y≤y}①当x<1或y<-1时,F(x,y)=0;②当1≤x<2,-1≤y<0时,F(x,y)=P{X=1,Y=-1}=1/4;③当x≥2,-1≤y<0时,F(x,y)=P{X=1,Y=-1}+P{X=2,Y=-1}=5/12;④当1≤x<2,y>0时,F(x,y)=P{X=1,Y=-1}+P{X=1,Y=0}=1/2;⑤当x≥2,y≥0时,F(x,y)=P{X=1,Y=-1}+P{X=2,Y=-1}+P{X=1,Y=0}+P{X=2,Y=0}=1;综上所述,得(X,Y)联合分布函数为F(x,y)={0,x<1或y<-11/4,1≤x<2,-1≤y<05/12,x≥2,-1≤y<01/2,1≤x<2,y≥01,x≥2,y≥0.(3)由FX(x)=P{X≤x,Y<+∞}=∑xi<x∑j=1+∞pij, 得(X,Y)关于X的边缘分布函数为:FX(x)={0,x<114+14,1≤x<214+14+16+13,x≥2={0,x<11/2,1≤x<21,x≥2,同理,由FY(y)=P{X<+∞,Y≤y}=∑yi≤y∑i=1+∞Pij, 得(X,Y)关于Y的边缘分布函数为FY(y)={0,y<-12/12,-1≤y<01,y≥0.习题6设随机变量(X,Y)的联合概率密度为f(x,y)={c(R-x2+y2),x2+y2<R0,x2+y2≥R,求:(1)常数c; (2)P{X2+Y2≤r2}(r<R).解答:(1)因为1=∫-∞+∞∫-∞+∞f(x,y)dydx=∫∫x2+y2<Rc(R-x2+y)dxdy=∫02π∫0Rc(R-ρ)ρdρdθ=cπR33,所以有c=3πR3.(2)P{X2+Y2≤r2}=∫∫x2+y2<r23πR3[R-x2+y2]dxdy=∫02π∫0r3πR3(R-ρ)ρdρdθ=3r2R2(1-2r3R).习题7设f(x,y)={1,0≤x≤2,max(0,x-1)≤y≤min(1,x)0,其它,求fX(x)和fY(y).解答:max(0,x-1)={0,x<1x-1,x≥1, min(1,x)={x,x<11,x≥1,所以,f(x,y)有意义的区域(如图)可分为{0≤x≤1,0≤y≤x},{1≤x≤2,1-x≤y≤1},即f(x,y)={1,0≤x≤1,0≤y≤x1,1≤x≤2,x-1≤y≤1,0,其它所以fX(x)={∫0xdy=x,0≤x<1∫x-11dy=2-x,1≤x≤20,其它,fY(y)={∫yy+1dx=1,0≤y≤10,其它.习题8若(X,Y)的分布律为则α,β应满足的条件是¯, 若X与Y独立,则α=¯,β=¯.解答:应填α+β=13;29;19.由分布律的性质可知∑i⋅jpij=1, 故16+19+118+13+α+β=1,即α+β=13.又因X与Y相互独立,故P{X=i,Y=j}=P{X=i}P{Y=j}, 从而α=P{X=2,Y=2}=P{X=i}P{Y=j},=(19+α)(14+α+β)=(19+α)(13+13)=29,β=P{X=3,Y=2}=P{X=3}P{Y=2}=(118+β)(13+α+β)=(118+β)(13+13),∴β=19.习题9设二维随机变量(X,Y)的概率密度函数为f(x,y)={ce-(2x+y),x>0,y>00,其它,(1)确定常数c; (2)求X,Y的边缘概率密度函数;(3)求联合分布函数F(x,y); (4)求P{Y≤X};(5)求条件概率密度函数fX∣Y(x∣y); (6)求P{X<2∣Y<1}.解答:(1)由∫-∞+∞∫-∞+∞f(x,y)dxdy=1求常数c.∫0+∞∫0+∞ce-(2x+y)dxdy=c⋅(-12e-2x)\vline0+∞⋅(-e-y)∣0+∞=c2=1,所以c=2.(2)fX(x)=∫-∞+∞f(x,y)dy={∫0+∞2e-2xe-ydy,x>00,x≤0={2e-2x,x>00,x≤0,fY(y)=∫-∞+∞f(x,y)dx={∫0+∞2e-2xe-ydx,y>00,其它={e-y,y>00,y≤0.(3)F(x,y)=∫-∞x∫-∞yf(u,v)dvdu={∫0x∫0y2e-2ue-vdvdu,x>0,y>00,其它={(1-e-2x)(1-e-y),x>0,y>00,其它.(4)P{Y≤X}=∫0+∞dx∫0x2e-2xe-ydy=∫0+∞2e-2x(1-e-x)dx=13.(5)当y>0时,fX∣Y(x∣y)=f(x,y)fY(y)={2e-2xe-ye-y,x>00,x≤0={2e-2x,x>00,x≤0.(6)P{X<2∣Y<1}=P{X<2,Y<1}P{Y<1}=F(2,1)∫01e-ydy=(1-e-1)(1-e-4)1-e-1=1-e-4.习题10设随机变量X以概率1取值为0, 而Y是任意的随机变量,证明X与Y相互独立.解答:因为X的分布函数为F(x)={0,当x<0时1,当x≥0时, 设Y的分布函数为FY(y),(X,Y)的分布函数为F(x,y),则当x<0时,对任意y, 有F(x,y)=P{X≤x,Y≤y}=P{(X≤x)∩(Y≤y)}=P{∅∩(Y≤y)}=P{∅}=0=FX(x)FY(y);当x≥0时,对任意y, 有F(x,y)=P{X≤x,Y≤y}=P{(X≤x)∩(Y≤y)}=P{S∩(Y≤y)}=P{Y≤y}=Fy(y)=FX(x)FY(y),依定义,由F(x,y)=FX(x)FY(y)知,X与Y独立.习题11设连续型随机变量(X,Y)的两个分量X和Y相互独立,且服从同一分布,试证P{X≤Y}=1/2. 解答:因为X,Y独立,所以f(x,y)=fX(x)fY(y).P{X≤Y}=∫∫x≤yf(x,y)dxdy=∫∫x≤yfX(x)fY(y)dxdy=∫-∞+∞[fY(y)∫-∞yfX(x)dx]dy=∫-∞+∞[fY(y)FY(y)]dy=∫-∞+∞FY(y)dFY(y)=F2(y)2∣-∞+∞=12,也可以利用对称性来证,因为X,Y独立同分布,所以有P{X≤Y}=P{Y≤X},而P{X≤Y}+P{X≥Y}=1, 故P{X≤Y}=1/12.习题12设二维随机变量(X,Y)的联合分布律为若X与Y相互独立,求参数a,b,c的值.解答:关于X的边缘分布为由于X与Y独立,则有p22=p2⋅p⋅2 得b=(b+19)(b+49) ①p12=p1⋅p⋅2 得19=(a+19)(b+49) ②由式①得b=29, 代入式②得a=118. 由分布律的性质,有a+b+c+19+19+13=1,代入a=118,b=29, 得c=16.易验证,所求a,b,c的值,对任意的i和j均满足pij=pi⋅×p⋅j.因此,所求a,b,c的值为a=118,b=29,c=16.习题13已知随机变量X1和X2的概率分布为且P{X1X2=0}=1.(1)求X1和X2的联合分布律;(2)问X1和X2是否独立?解答:(1)本题是已知了X1与X2的边缘分布律,再根据条件P{X1X2=0}=1, 求出联合分布. 列表如下:P{X1=1,X2=1}=0,P{X1=-1,X2=1}=0.再由p⋅1=p-11+p11+p01, 得p01=12, p-10=p-1⋅=p-11=14,p10=p1⋅-p11=14,从而得p00=0.(2)由于p-10=14≠p-1⋅⋅p⋅0=14⋅12=18, 所以知X1与X2不独立.习题14设(X,Y)的联合密度函数为f(x,y)={1πR2,x2+y2≤R20,其它,(1)求X与Y的边缘概率密度;(2)求条件概率密度,并问X与Y是否独立?解答:(1)当x<-R或x>R时,fX(x)=∫-∞+∞f(x,y)dy=∫-∞+∞0dy=0;当-R≤x≤R时,fX(x)=∫-∞+∞f(x,y)dy=1πR2∫-R2-x2R2-x2dy=2πR2R2-x2.于是fX(x)={2R2-x2πR2,-R≤x≤R0,其它.由于X和Y的地位平等,同法可得Y的边缘概率密度是:fY(y)={2R2-y2πR2,-R≤y≤R0,其它.(2)fX∣Y(x∣y)=f(x,y)fY(y)注意在y处x值位于∣x∣≤R2-y2这个范围内,f(x,y)才有非零值,故在此范围内,有fX∣Y(x∣y)=1πR22πR2⋅R2-y2=12R2-y2,即Y=y时X的条件概率密度为fX∣Y(x∣y)={12R2-y2,∣x∣≤R2-y20,其它.同法可得X=x时Y的条件概率密度为fY∣X(y∣x)={12R2-x2,∣y∣≤R2-x20,其它.由于条件概率密度与边缘概率密度不相等,所以X与Y不独立.习题15设(X,Y)的分布律如下表所示X\Y -112-12 1/102/103/102/101/101/10求:(1)Z=X+Y; (2)Z=max{X,Y}的分布律.解答:与一维离散型随机变量函数的分布律的计算类似,本质上是利用事件及其概率的运算法则. 注意,Z的相同值的概率要合并.概率(X,Y)X+YXYX/Ymax{X,Y}1/102/103/102/101/101/10(-1,-1)(-1,1)(-1,2)(2,-1)(2,1)(2,2)-2011341-1-2-2241-1-1/2-221-112222于是(1)习题16设(X,Y)的概率密度为f(x,y)={1,0<x<1,0<y<2(1-x)0,其他,求Z=X+Y的概率密度.解答:先求Z的分布函数Fz(z),再求概率密度fz(z)=dFz(z)dz.如右图所示.当z<0时,Fz(z)=P{X+Y≤z}=0;当0≤z<1时,Fz(z)=P{X+Y≤z}=∫∫x+y≤zf(x,y)dxdy=∫0zdx∫0z-x1dy=∫0z(z-x)dx=z2-12x2∣0z=12z2;当1≤z<2时,Fz(z)=∫02-zdx∫0z-xdy+∫2-z1dx∫02(1-x)dy=z(2-z)-12(2-z)2+(z-1)2;当z≥2时,∫∫Df(x,y)dxdy=∫01dx∫02(1-x)dy=1.综上所述Fz(z)={0,z<012z2,0≤z<1z(2-z)-12(2-z)2+(z-1)2,1≤z<21,z≥2,故fz(z)={z,0≤z<12-z,1≤z<20,其它.习题17设二维随机变量(X,Y)的概率密度为f(x,y)={2e-(x+2y),x>0,y>00,其它,求随机变量Z=X+2Y的分布函数.解答:按定义FZ(Z)=P{x+2y≤z},当z≤0时,FZ(Z)=∫∫x+2y≤zf(x,y)dxdy=∫∫x+2y≤z0dxdy=0.当z>0时,FZ(Z)=∫∫x+2y≤zf(x,y)dxdy=∫0zdx∫0(z-x)/22e-(x+2y)dy=∫0ze-x⋅(1-ex-z)dx=∫0z(e-x-e-z)dx=[-e-x]∣0z-ze-z=1-e-z-ze-z,故分布函数为FZ(Z)={0,z≤01-e-z-ze-z,z>0.习题18设随机变量X与Y相互独立,其概率密度函数分别为fX(x)={1,0≤x≤10,其它, fY(y)={Ae-y,y>00,y≤0,求:(1)常数A; (2)随机变量Z=2X+Y的概率密度函数.解答:(1)1=∫-∞+∞fY(y)dy=∫0+∞A⋅e-ydy=A.(2)因X与Y相互独立,故(X,Y)的联合概率密度为f(x,y)={e-y,0≤x≤1,y>00,其它.于是当z<0时,有F(z)=P{Z≤z}=P{2X+Y≤z}=0;当0≤z≤2时,有F(z)=P{2X+Y≤z}=∫0z/2dx∫0z-2xe-ydy=∫0z/2(1-e2x-z)dx;当z>2时,有F(z)=P{2X+Y≤2}=∫01dx∫0z-2xe-ydy=∫01(1-e2x-z)dx.利用分布函数法求得Z=2X+Y的概率密度函数为fZ(z)={0,z<0(1-e-z)/2,0≤z<2(e2-1)e-z/2,z≥2.习题19设随机变量X,Y相互独立,若X与Y分别服从区间(0,1)与(0,2)上的均匀分布,求U=max{X,Y}与V=min{X,Y}的概率密度.解答:由题设知,X与Y的概率密度分别为fX(x)={1,0<x<10,其它, fY(y)={1/2,0<y<20,其它,于是,①X与Y的分布函数分别为FX(x)={0,x≤0x,0≤x<11,x≥1, FY(y)={0,y<0y/2,0≤y<21,y≥2,从而U=max{X,Y}的分布函数为FU(u)=FX(u)FY(u)={0,u<0u2/2,0≤u<1u/2,1≤u<21,u≥2,故U=max{X,Y}的概率密度为fU(u)={u,0<u<11/2,1≤u<20,其它.②同理,由FV(v)=1-[1-FX(v)][1-FY)]=FX(v)+FY(v)-FX(v)FY(v)=FX(v)+FY(v)-FU(v),得V=min{X,Y}的分布函数为FV(v)={0,v<0v2(3-v),0≤v<11,v≥1,故V=min{X,Y}的概率密度为fV(v)={32-v,0<v<10,其它.注:(1)用卷积公式,主要的困难在于X与Y的概率密度为分段函数,故卷积需要分段计算;(2)先分别求出X,Y的分布函数FX(x)与FY(y), 然后求出FU(u),再求导得fU(u); 同理先求出FV(v), 求导即得fV(v).。

概率论与数理统计总结之第三章

概率论与数理统计总结之第三章

第三章 多维随机变量及其分布第一节二维随机变量的概念1.二维随机变量定义:设(X,Y)是二维随机变量,记为:(,){()()}=≤⋂≤F x y P X x Y y (,)=≤≤P X x Y y (,)-∞<<∞-∞<<∞x y称(,)F x y 为X 与Y 的分布函数,或称X 与Y 的联合分布函数}}(){{(,lim (,)→+∞=≤=≤≤+∞=X y F x P X x P X x Y F x y}}(){{,lim (,)→+∞=≤=≤+∞≤=Y x F y P Y y P X Y y F x y分布函数(,)F x y 性质:1)(,)F x y 是变量x 和变量y 的不减函数,(分别关于x 和y 有单调不减性) 2)0(,)1≤≤F x y ,任意一边趋于-∞=0.F(∞,∞)=1(用来确定未知参数).3)(,)(0,)(0,0)=+=++F x y F x y F x y ,即(,)F x y 分别关于x 右连续,关于y 也右连续,4)对于任意11221212(,),(,),,,<<x y x y x x y y 下述不等式成立(可用于判定二元函数(,)F x y 是不是某二维随机变量的分布函数):22211112(,)(,)(,)(,)0-+-≥F x y F x y F x y F x y 2.二维离散型随机变量:定义:如果二维随机变量(X,Y)只取有限对或可列无穷多对,则称(X,Y)是二维离散型随机变量其概率{,},,1,2,====i i ij P X x Y y p i j …为二维离散型随机变量(X,Y)的分布律,或随机变量X 和Y 是联合分布律 性质:1.0,(i,j 1.2.....)≥=ij P2.1≤≤=∑∑i i ijx x y yp满足以上两条,即为二维离散型随机变量的分布律. 注;步骤:定取值,求概率,验证1.离散型随机变量X 和Y 的联合分布函数为(,)≤≤=∑∑i i ijx x y yF x y p,其中和式是对一切满足,≤≤i i x x y y 的i,j 来求和的边缘分布定义:对于离散型随机变量(X,Y),分量X 和Y 的分布律(), 1.2...(), 1.2..的边缘分布律:的边缘分布律:••========∑∑i i ij jJ i ij iX p P X x p i Y p P Y y p i ,0,0(, 1.2....)1•••≥≥===∑∑i j jiip p i j pi p联合确定边缘,但一般情况,边缘不能确定的联合,除非相互独立. 比如;有放回的摸球,就是X ,Y 相互独立. 不放回地摸球,是条件分布.3.二维连续型随机变量的概率密度和边缘概率密度. 对比一维的: 概率密度:()()1∞-∞==⎰f x f x dx ,分布律:{}(),≤≤=⎰b aP a x b f x dx 分布函数:()()-∞=⎰xF x f t dt二维:定义:设二维随机变量(X,Y)的分布函数为(,)F x y ,若存在非负可积函数(,)f x y ,使得对于任意实数x,y 有(,)(,)-∞-∞=⎰⎰xyF x y f u v dudv ,则称(X,Y)为二维连续型随机变量,(,)f x y 称为(X,Y)的概率密度,或联合概率密度.概率密度的性质: 1.(,)F x y ≥0 2.(,)1∞∞-∞-∞=⎰⎰f x y dxdy只要具有以下两条性质,必可作为某二维随机变量的概率密度.3.已知(X,Y)的概率密度(,)f x y ,则(X,Y)在平面区域D 内取值的概率为:{(,)}(,)∈=⎰⎰DP X Y D f x y dxdy (作二重积分)(随机点(X,Y)落在平面区域D 上的概率等于以平面区域D 为底,以曲面(,)=z f x y 顶的典顶的体积) 4.若(,)F x y 在点(x,y)连续,则有2(,)(,)∂=∂∂F x y f x y x y(连续就能根据分布律求概率密度)1) 当求()=P X Y 时,它只是一条线,所以:()0==P X Y2) 一个方程有无实根:20++=ax bx c ,即求:22240,40,40,一个实根无实根两个实根+=+<+>b ac b ac b ac均匀分布:定义:设D 为平面上的有界区域,其面积为S ,且0>S ,如果二维随机变量(X,Y)的概率密度为1,(x,y)(,)0,其它⎧∈⎪=⎨⎪⎩Df x y S,则称(X,Y)服从区域D 上的均匀分布(或叫(X,Y)在D 上服从均匀分布,记作(X,Y )D U . 两种特殊情形:1) D 为矩形,,c )≤≤≤≤a x b y d 时,1,()()(,),c )0,其它⎧⎪--=≤≤≤≤⎨⎪⎩b a dc f x y a x b y d2) D 为圆形,如(X,Y)在以原点为圆心,R 为半径的圆域上服从均匀分布,则(X,Y)的概率密度为:22221,(,))0,其它π⎧⎪=+≤⎨⎪⎩f x y x y R R定义:对连续型随机变量(X,Y),分量X,Y 的概率密度称为(X,Y)关于X 或Y 的边缘概率密度,记作(),X f x ().Y f y X 的分布函数:()(,)(,)∞-∞-∞⎡⎤=∞=⎢⎥⎣⎦⎰⎰xX F x F x f u v dv du (让Y趋于正无穷) Y 的分布函数:()(,)(,)∞-∞-∞⎡⎤=∞=⎢⎥⎣⎦⎰⎰yY F y F y f u v du dv (让X趋于正无穷) X 的概率密度:()(,),()∞-∞=-∞<<∞⎰X f x f x y dy xY 的概率密度:()(,),()∞-∞=-∞<<∞⎰Y f y f x y dx y(二维的边缘概率密度是直接以联合概率密度在负无穷到正无穷对对应元素积分,其间需要对划分区间的作分别积分)(X,Y)的概率密度:(,)(,)[(,)]-∞-∞-∞-∞==⎰⎰⎰⎰x yx yf x y f u v dudv f u v dv du二维正态分布: 二维正态221212(,)(,,,,)σσρX Y N u u 分布函数的性质:1.211()(,)σX N u ,222()(,)σY N u 边缘服从一维正态分布2.0,ρ=⇔xy X Y 独立(相关系数为O,则两个随机变量独立)3.212()()σ++k X k Y N u (线性组合按一维正态处理)4. 1212(),±±k X k Y c X c Y 服从二维正态(如:(,)+-X Y X Y ) 条件分布:设(X,Y)是二维离散型随机变量,对于固定的j ,若{}0=>j P Y y ,则称{=i P X x |{,}},1,2,{}⋅=======i j ij j j jP X x Y y p Y y i P Y y p …为在=j Y y 条件下随机变量X 的条件分布律同样地,若{}0,=>i P X x 则称{=j P Y y |{,}},1,2,{}⋅=======i j ij i i i P X x Y y p X x j P X x p …为=i X x 条件下随机变量Y 的条件分布律 变形,即得求联合分布律的方法.设二维随机变量(X,Y)的概率密度为f(x,y),(X,Y)关于Y 的边缘概率密度为()Y f y .若对于固定的y,()0,>Y f y 则称(,)()Y f x y f y 为在Y=y 的条件下X 的条件概率密度称|(,)(|)()-∞-∞=⎰⎰xxX Y Y f x y f x y dx dx f y 为在Y=y 的条件下,X 的条件分布函数,记为P{X ≤x|Y=y}或|(|)X Y F x y ,即|(,)(|){|}()-∞=≤==⎰x X Y Y f x y F x y P X x Y y dx f y 设F(x,y)及(),()X Y F x F y 分别是二维随机变量(X,Y)的分布函数及边缘分布函数,若对于所有x,y 有P{X ≤x,Y ≤y}=P{X ≤x}P{Y ≤y},即(,)()()=X Y F x y F x F y ,则称随机变量X 和Y 是相互独立的设(X,Y)是连续型随机变量,(,),(),()X Y f x y f x f y 分别为(X,Y)的概率密度和边缘概率密度,则X 和Y 相互独立的条件等价于(,)()()=X Y f x y f x f y 在平面上几乎处处成立(除去面积为0的集合以外,处处成立)第二节随机变量的独立性1. 两个随机变量的独立性 定义:设(,),().()X Y F x y F x F y 分别是二维随机变量(X,Y)的分布函数和两个边缘分布函数,若对任意实数,x y 有(,)().()=X Y F x y F x F y ,则称X 与Y 相互独立.可用于判断独立性(随机变量独立,对任意实数x,y,事件X ,Y ≤≤x y 相互独立) 以上公式等价于:(X ,Y )(X ).()≤≤=≤≤X Y P x y P x P Y y 可类推至多个函数的情况.1)如果X,Y 随机变量独立,().()连续f x g y ,(通过函数作用)则().()f x g y 也独立.(可类推至多个随机变量的情况)例:X,Y 独立,则22,x y 独立.2)如果1212,...,...,YYYm m X X X 相互独立,12m 121()()...()()()....()和,f x f x f x g y g y g y 也相互独立。

【学习课件】第三章概率论与数理统计

【学习课件】第三章概率论与数理统计

解 确定随机变量的取值:
及F(2,2).
p i j P Xi,Yj
F ( x , y) = P { X x , Y y}
{ P X { X i , Y i } j } { Y { X j } i } { Y j } pij
P Y j|X iP X i
xi x yjy
为 X, Y的 分 布 函 数 , 或 X与 Y的 联 合 分 布 函 数 。
X x ,Y y X x Y y
几 何 意 义 : 分 布 函 数 Fx0,y0表 示 随 机 点 X,Y落 在 区 域
x,y,xx0,yy0
中 的 概 率 。 如 图 阴 影 部 分 所 示 :
y
x0, y0
X=xi ,Y y j
P X=xi
pij , j=1, 2, pi
为给定条件X xi时,Y的条件概率分布律。
3、条件概率分布律
给定条件Yyj时,X的条件概率分布律记作:
X|Yyj
P X=xi |Yyj
pij ,i= 1, 2, pj
X |Y yj
P X |Y y j
x1
p1 j
X , Y ~P X=xi, Y=y j pij , i, j=1, 2,
则称 P X=xi | Y y j
P X=xi ,Y y j P Y=y j
pij , i=1, 2, p j
为给定条件Y y j时,X的条件概率分布律;
P Y=y j | X=xi
P
= limPX x,Y y lim Fx, y
y
y
0, x 0; =x2, 0 x 1;
1, 1 x.
FYy PY yPX ,Y y
= limPX x,Y y limFx, y

大学概率论第三章----随机向量

大学概率论第三章----随机向量

大学概率论第三章----随机向量第三章 随机向量第一节 二维随机向量及其分布1、二维随机向量及其分布函数定义1:设E 是一个随机试验,它的样本空间是{}e Ω=.设X(e)与Y(e)是定义在同一样本空间Ω上的两个随机变量,则称(X(e),Y(e))为Ω上的二维随机向量或二维随机变量。

简记为(X,Y).定义2:设(X,Y)是二维随机向量,对于任意实数x,y ,称二元函数 F(x,y)=P{X ≦x ,Y ≦y}为二维随机向量(X,Y)的分布函数或联合分布函数。

(X,Y)的分布函数满足如下基本性质: (1)F(x,y)是变量x,y 的不减函数. (2)0≦F(x,y)≦1,(,)0y F y -∞=对于任意的 ,(,)0x F x -∞=对于任意的(,)0(,)1F F -∞-∞=+∞+∞=,(3)(,), (,)(0,)(,)(,0)F x y x y F x y F x y F x y F x y =+=+关于是右连续的,即, 1122121222211211(4)(,)(,),, (,)(,)(,)(,)0x y x y x x y y F x y F x y F x y F x y <<--+≥对于任意和,有2、二维离散型随机变量定义3:若二维随机向量(X,Y)的所有可能取值是有限对或无限可列多对,则称(X,Y) 为二维离散型随机向量。

设(X,Y)的一切可能值为(,) , ,1,2,i j X Y i j =L ,且(X,Y)取各对可能值的概率为,(,), ,1,2,i j i j P X Y P i j ==L(1) 非负性:,0, ,1,2,i j P i j ≥=L ;,(2)1ij i jp =∑规范性:, (,){,}i i ijx x y yX Y F x y P X x Y Y p ≤≤=≤≤=∑∑离散型随机变量的联合分布函数为定义4:{,}(,1,2,...)(,)ij P X x Y Y p i j X Y X Y ≤≤==称为二维离散型随机变量的概率分布或分布律,或随机变量和的联合分布律。

概率论与数理统计总结之第三章

概率论与数理统计总结之第三章

第三章 多维随机变量及其分布 二维随机变量:一般,设E 是一个随机试验,它的样本空间是S={e}.设X=X(e)和Y=Y(e)是定义在S 上的随机变量,由它们构成的一个向量(X,Y),叫做二维随机向量或二维随机变量。

设(X,Y)是二维随机变量,对于任意实数x,y,二元函数:)}(){(),(y Y x X P y x F ≤⋂≤=),(y Y x X P ≤≤=称为二维随机变量(X,Y )的分布函数,或称随机变量X 和Y 的联合分布函数分布函数F(x,y)具有以下基本性质: 1.F (x,y)是变量x 和变量y 的不减函数,即对于任意固定的y ,当);,(),(,1212y x F y x F x x ≥> 对于任意固定的x ,当),(),(,1212y x F y x F y y ≥> 2.0≤F(x,y)≤1,且对于任意固定的y ,F (-∞,y)=0, 对于任意固定的x, F (x ,-∞)=0, F (-∞,-∞)=0,F (∞,∞)=13.F(x,y )=F(x+0,y ),F(x,y+0),即F(x,y )关于x 右连续,关于y 也右连续4.对于任意,,),,(),,(21212211y y x x y x y x <<下述不等式成立 0),(),(),(),(21111222≥-+-y x F y x F y x F y x F离散型随机变量:如果二维随机变量(X,Y)全部可能取到的不相同的值是有限对或可列无限多对,则称(X,Y )是离散型随机变量称,2,1,,},{====j i p y Y x X P ij i i ……为二维离散型随机变量(X,Y )的分布律,或随机变量X 和Y 是联合分布律 表格形式表示联合分布律: Y X1x… i x… 1y11p … 1i p… ………j yj p 1… ij p… ………离散型随机变量X 和Y 的联合分布函数为∑∑≤≤=x x yy ij i i p y x F ),(,其中和式是对一切满足y y x x i i ≤≤,的i,j 来求和的连续型随机变量:对于二维随机变量(X,Y )的分布函数F (x,y),如果存在非负的函数f(x,y)使得对于任意x,y 有 ⎰⎰∞-∞-=y xdudv v u f y x F ),(),(,则称(X,Y )是连续型的二维随机变量,函数f(x,y)称为二维随机变量(X,Y )的概率密度,或称为随机变量X 和Y 的联合概率密度概率密度的性质: 1.f(x,y)≥0 2.⎰⎰∞∞-∞∞-=∞∞=1),(),(F dxdy y x f3.设G 是xOy 平面上的区域,点(X,Y )落在G 内的概率为 ⎰⎰=∈Gdxdy y x f G Y X P ),(}),{(4.若f(x,y)在点(x,y )连续,则有),(),(2y x f y x y x F =∂∂∂一般,设E 是一个随机试验,它的样本空间是S={e},设),(),(2211e X X e X X ==…),(,e X X n n =是定义在S 上的随机变量,由它们构成的一个n 维向量,,(21X X …),n X 叫做n 维随机向量或n 维随机变量对于任意n 个实数n x x x n ,,^,,21元函数},^,{),^,(111n n n x X x X P x x F ≤≤=称为n 维随机变量,,(21X X …),n X 的分布函数或随机变量n X X X ,^,,21的联合分布函数。

概率论第三章(3,4,5)

概率论第三章(3,4,5)

e x y
y
x0
对y>0 P{ X>1| Y=y }

1
ex y dx e x y
1 y
y 1
e
例3 设( X, Y )服从单位圆上的均匀分布, 概率密度为:
1 2 2 , x y 1 f ( x , y ) 0, 其它
2
求 fY |X ( y | x ) y 1 x 解:
体重X 的分布
身高Y 的分布
现在若限制1.7<Y<1.8(米), 在这个条件下 去求X的条件分布,这就意味着要从该校的学 生中把身高在1.7米和1.8米之间的那些人都挑 出来,然后在挑出的学生中求其体重的分布. 容易想象,这个分布与不加这个条件 时的分布会很不一样.
一、离散型r.v.的条件分布 定义1: 设 (X,Y) 是二维离散型随机变量,
f ( x, y) f X ( x) fY ( y)
故X和Y不独立 .
对于正态分布有如下结论:
二维随机变量 ( X , Y ) ~ N (1, 2 ,1, 2 , ),
则X,Y相互独立 0
n维随机变量的边缘分布与独立性
1.边缘分布
设n维随机变量(X1,X2,...,Xn)的分布函数为 F(x1,x2,...,xn), (X1,X2,...,Xn)的k(1k<n)维 边缘分布函数就随之确定,
P( X xi |Y y j ) 0,
i = 1,2, …
i 1
P( X xi | Y y j ) 1

例1 一射手进行射击,击中目标的概率为 p,(0<p<1), 射击进行到击中目标两次为 止。以 X 表示首次击中目标所进行的射击次数, 以 Y 表示总共进行的射击次数。试求 X 和 Y 的联合分布及条件分布.

《概率论与数理统计》第三章

《概率论与数理统计》第三章

§1 二维随机变量
定义:设E是一个随机试验,样本空间S={e}; 设X=X(e)和Y=Y(e)是定义
y
X e,Y e
在S上的随机变量,由它们构成的
向量(X,Y)叫做二维随机向量 或二维随机变量。
e S
x
定义:设(X,Y)是二维随机变量对于任意实数x,y,
二元函数
ቤተ መጻሕፍቲ ባይዱ
y
F(x, y) P(X x) (Y y)
1 4
1 i
,
ji
0, j i
(X,Y)的联合分布律为:
YX
1
1
1/4
23 4 1/8 1/12 1/16
2
0 1/8 1/12 1/16
3
0
0 1/12 1/16
4
0
0 0 1/16
例3:设有10件产品,其中7件正品,3件次品。现从中
任取一件产品,取后不放回,令
1 X 0
第一次取到的产品是次品 1
z f (x, y)为顶面的柱体体积。
所以 X,Y 落在面积为零的区域的概率为零。
例3:设二维随机变量(X,Y)具有概率密度:
2e(2x y) , x 0,y 0
y f (x, y) 0,
其他
1 求分布函数F(x, y);2求P{X 2,Y 3};
3求P(Y X )的概率
解: (1)当x>0,y>0时
f (x, y)xy
————————
概率微分
(4) f ( x, y)的作用 : 求二维随机变量(X,Y)取值
落在区域G内的事件的概率
P((X ,Y ) G) f ( x, y)dxdy
G
G
注:1在几何上,z f (x, y)表示空间一个曲面,

概率论第三章-随机向量的独立性

概率论第三章-随机向量的独立性

f X ( x) =
1 e 2π σ 1

( x − µ 1 )2
2 2σ 1
fY ( y ) =
2π σ 2
1

( y − µ 2 )2
2 2σ 2
e
X~ N(µ1,σ12 ) , (
Y~ N(µ2,σ22 ) (
二维正态随机向量( 二维正态随机向量(X,Y)的两个分量独立的充要条件是 )
ρ= 0
P {X ≤ a , X ≤ b} = P {X ≤ a}P { X ≤ b}
对所有实数对(a, b) 均成立. 对所有实数对( 均成立. 随机事件{ 有下述关系: 2) 随机事件{ X≤a } 与{︱X︱ ≤a } 有下述关系:
{X
从而
≤ a} = {− a ≤ X ≤ a} ⊂ {X ≤ a}
P{ X ≤ a , X ≤ a } = P{ X ≤ a }
维随机变量X 相互独立, 维随机变量 例如3维随机变量 1 ,X2 ,X3 相互独立,则 X12 , X22 , X32 也相互独立 相互独立. X1 +X2与X3也相互独立 相互独立. sinX1 与X3也相互独立. 相互独立.
X1 +X2与X1 -X2 不一定相互独立. 不一定相互独立
随机变量的独立性本质上 是事件的独立性
FX ( x) FY ( y )
∀ i, j
1) 对于离散型的随机变量,X与Y相互独立的充要条件为:
P{ X = xi , Y = y j } = P{ X = xi } ⋅ P {Y = y j }
2) 对于连续型的随机变量, X与Y相互独立的充要条件为:
f ( x , y ) = f X ( x) fY ( y ) 几乎处处成立。

第3.2.3节随机向量,随机变量的独立性(3)独立性

第3.2.3节随机向量,随机变量的独立性(3)独立性

又 p1( x)
1
( x )2
e 2σ2 , x ;
2 σ
p2
(
y)


1 2b
,
b y b,
0, 其它.

p(x,y)
1
2b

1
e ,
(x )2 2σ2

其中 x , b y b.
当 y b 时, p( x, y) 0.
1
1
1
6
1
2
3
p2 P{Y yj } 1 2
2 1 9

1
9
3
p1 P{X xi }
1
1
18
Hale Waihona Puke 31 3
1 2
18
3
(1)由分布律的性质知 0, 0, 2 1,
3
故与应满足的条件是 : 0, 0 且 1 .
σ1σ2
σ
2 2
0
3. n个随机变量的独立性(集合论观点)
设1,2 ,L ,n为n维随机变量,如果对任意的一维
博雷尔点集A1,A2 ,L ,An ,
P{1 A1 ,2 A2 ,L ,n An } P{1 A1 },L , P{n An }
1,2 ,L
与相互独立 p1( x) p2( y) p( x, y)

1 2πσ1σ2
exp{ 1 2
(x
1 )2
σ12

(
y
2)2
σ22
}

1 2πσ1σ2
1

《概率论与数理统计》三

《概率论与数理统计》三
称F(x,y)为二维随机变量(X,Y)的分布函数,或称为随机变量X 和Y 的联合分布函数。
y (x,y)
y y2
y1
O
x
O x1
x2
x
P{x1 X x2, y1 Y y2} F(x2, y2 ) F(x1, y2 ) F(x2, y1) F(x1, y1)
➢ 分布函数F(x,y)的性质
设(X,Y)的所有可能取值:(xi, yj), i,j=1,2…,
P{X xi ,Y y j } ˆ pij ,( i, j 1,2,)

1 0 pij 1,

2
pij 1.
j1 i1


函 F ( x, y) pij

xi x yjy
Y X
x1 x2 xi
y1
p1 1 p21
记为
(X
,Y)
~
N (1,
2
,
2 1
,
22,
)
四、多维随机变量
(1)设E是一随机试验, 是其样本空间,X1,X2,...Xn 是定义在上的n个随机变量,则称n维向量(X1,X2,...Xn ) 为定义在 上的n维随机向量或n维随机变量.
(2)对n个任意实数,令
F(x1, x2 ,, xn ) P{X1 x1, X2 x2 ,Xn xn}
标 (X,Y)表示, 也就是 中每一元素都可用一对数来
表示, 把X, Y看成变量, X 与Y 都是随机变量, (X,Y) 共同刻化试验的结果, 这就是二维随机变量.
例2 考察某地一天的天气情况, 即同时考虑最高气温、 最低气温、气压、风力、降雨量,这就需要5个变量 来表示可能的试验结果,这就是五维随机变量.

概率论与数理统计教程(茆诗松)第三章

概率论与数理统计教程(茆诗松)第三章

19 December 2020
华东师范大学
第三章 多维随机变量及其分布
3.2.1 边际分布函数
第29页
巳知 (X, Y) 的联合分布函数为 F(x, y),
则 X FX (x) = F(x, +),
Y FY (y) = F(+ , y).
19 December 2020
华东师范大学
第三章 多维随机变量及其分布
3.2.2 边际分布列 巳知 (X, Y) 的联合分布列为 pij, 则
X 的分布列为: Y 的分布列为:
第30页
19 December 2020
华东师范大学
第三章 多维随机变量及其分布
Y X
yy 12
y j
x1
pp 11 12
p 1j
x2
pp p
21 22
2j
xi
pp p
i1 i2
ij
p pp p
注 意 点 (1)
第33页
➢ 由联合分布可以求出边际分布. ➢ 但由边际分布一般无法求出联合分布. ➢ 所以联合分布包含更多的信息.
19 December 2020
华东师范大学
第三章 多维随机变量及其分布
第34页
注 意 点 (2)
➢ 二维正态分布的边际分布是一维正态:
若 (X, Y) N (
),
1
e3 y
(6
2x) / 3
dx
0 3 0
2 (e 3 2x e6 )dx 1 7e6 0
19 December 2020
第27页
y
2
2x+3y=6
0
3x
华东师范大学
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

20
P{ X
i 1
xi
|Y
yj}
i 1
pij p• j
p• j p• j
1.
即条件分布率是分布率。
目 录 前一页 后一页 退 出
例1 Y X x1 x2
xi p j
y1
y2

yj
pi
p11
p12

p1 j
p1
p 21
p 22
… p2 j
p 2
p i1
pi 2

p ij
pi
p 1
p2
… p j
P( X
x2 Y
y2 )
p22 p•2
第三章 随机变量及其分布
§3条件分布
例2 一射手进行射击,击中目标的概率为 p,射击
到击中目标两次为止。设以 X 表示首次击 中目标
所进行的射击次数,以 Y 表示总共进行 的射击次
数,试求 X 和 Y 的联合分布律以及条件分布律。
解:Y 的取值是 2, 3, 4, ;
p2q n2 pqnm1 , pq m 1
n m 1, m 2,
PX m pqm1, m 1,2,
P X m, Y n qn2 p2 , n 2,3, ; m 1,2, n 1
目 录 前一页 后一页 退 出
第三章 随机变量及其分布
§3条件分布
例3 设某班车起点站上车人数 X 服从参数为 ( 0)
第三章 随机变量及其分布
§3 条件分布
• 条件分布律 • 条件分布函数 • 条件概率密度 预备知识:条件概率、联合分布率和边缘概率
目 录 前一页 后一页 退 出
第三章 随机变量及其分布
一 、离散型随机变量的条件分布律
§3条件分布
设 ( X ,Y ) 是二维离散型随机变量,其分布律为 P{ X= xi ,Y= yj }= pi j , i , j=1,2,...
的泊松分布,每位乘客在中途下车的概率为 p(0 p 1),
且中途下车与否相互独立。以 Y 表示在中途下车的人 数,求:
(1)在发车时有n个乘客的条件下,中途有m个人下 车的概率;
(2)二维随机变量(X,Y ) 的概率分布。
解:
(1)
P{Y
m
|
X
n}
C
m n
p m (1
p)nm ,
m 0,1, , n, n 0,1,2, .
(X, Y ) 关于 X 和关于 Y 的边缘分布律分别为:
P{ X xi } pi• pi j , i 1,2, j 1
P{Y y j } p• j pi j , j 1,2, i 1
目 录 前一页 后一页 退 出
第三章 随机变量及其分布
由条件概率公式 P( A | B) P( AB) P(B)
P X m, Y n qn2 p2 , n 2,3, ; m 1,2, n 1
目 录 前一页 后一页 退 出
第三章 随机变量及其分布
§3条件分布
在 X= m 条件下随机变量Y 的条件分布律为
当m=1,2,3,… 时,
P{Y n | X m} P{ X m,Y n} P{X m}
}
F(x, y ) F(x, y )
lim
0 FY ( y ) FY ( y )
自然地引出如下定义:
§3条件分布

定义:设( X ,Y ) 是二维离散型随机变量,对于固定 的 j , 若P{Y= yj }>0, 则称
P{ X
xi
|Y
yj}
P{X xi ,Y P{Y y j }
yj}
pij p• j
,i 1,2,
为在Y= yj 条件下随机变量 X 的条件分布律。
目 录 前一页 后一页 退 出
lim
0 P{ y Y y }
存在,则称为在条件Y= y下X的条件分布函数, 写成 P{ X x |Y= y },或记为 FX|Y(x|y).
目 录 前一页 后一页 退 出
第三章 随机变量及其分布
§3条件分布
FX |Y
(x
|
y)
lim
0
P{X x, P{ y
y
Y
Y y
y
}
PX m P X m, Y n p2 qn2 n
p 2 q m1 pq m1 , 1q
n m1
m 1,2,
§3条件分布
Y 的边缘分布律为
P{Y n} P{ X m,Y n}
n1
m
p2qn2 (n 1) p2q n2 , n 2,3,
m 1
P X m, Y n qn2 p2 , n 2,3, ; m 1,2, n 1
目 录 前一页 后一页 退 出
第三章 随机变量及其分布
在Y=n 条件下随机变量 X 的条件分布律为 §3条件分布
当 n=2,3,… 时,
P{X m | Y n} P{ X m,Y n}
P{Y n}
qn2 p2
1
,
(n 1) p2qn2 n 1
m 1,2, , n 1;
P{Y n} (n 1) p2qn2 , n 2,3,
X 的取值是 1, 2, , 并且 X Y.
X ,Y 的联合分布律为
( 其中q 1 p )
P X m, Y n qm1 p qnm1 p qn2 p2
n 2,3, ; m 1,2, , n 1. 目 录 前一页 后一页 退 出
第三章 随机变量及其分布
例2(续)
X 的边缘分布律为
第三章 随机变量及其分布
同样对于固定的 i, 若P{X= xi}>0, 则称
§3条件分布
P{Y
yj
|X
xi }
P{X xi ,Y y j } P{X xi }
pij pi•
,
j 1,2,
为在 X= xi 条件下随机变量Y 的条件分布律。
条件分布律具有分布律的以下特性:
10 P{ X= xi |Y= yj }0;
目 录 前一页 后一页 退 出
第三章 随机变量及其分布
(2) 联合分布率为
§3条件分布
P{X n,Y m} P{Y m | X n}P{X n}
C
m n
pm (1
p)nm
n
n!
e
,
m
0,1,
n,
n
0,1,2,
二、条件分布函数
设 ( X ,Y ) 是二维连续型随机变量,由于
P{Y y} 0, 所以 P{X x | Y y} 无意义.
因此我们利用极限的方法来引入条件分布函数的概 念。
目 录 前一页 后一页 退 出
第三章 随机变量及其分布
定义:给定 y,设对于任意固定的正数 ,§3条件分布 P{ y- < Y y + }>0, 若对于任意实数 x,极限
lim P{X x | y Y y }
0
P{X x, y Y y }
相关文档
最新文档