绝对值不等式(绝对值三角不等式与绝对值不等式的解法)

合集下载

绝对值不等式(绝对值三角不等式与绝对值不等式的解法)

绝对值不等式(绝对值三角不等式与绝对值不等式的解法)

提出问题:
你能看出下面两个不等式的解集吗?
⑴ x 1
⑵ x 1
主要方法有:
法一:利用绝对值的几何意义观察; 法二:利用绝对值的定义去掉绝对值符号,需要分类讨论; 法三:两边同时平方去掉绝对值符号; 法四:利用函数图象观察.
这也是解其他含绝对值不等式的四种常用思路.
探索:不等式|x|<1的解集.
方法一:利用绝对值的几何意义观察
思考四:若变为不等式|x-1|+|x+2|<k的解集 为 ,则k的取值范围是 k 3
练习:解不等式│x+1│–│x–2│≥1
x | x 1
作出f (x) │x +1│–│x – 2│的图像, 并思考f (x)的最大和最小值
│x +1│–│x – 2│ k恒成立,k的取值范围是 │x +1│–│x – 2│ k恒成立,k的取值范围是
2x 4, x 1
例1. 解不等式|x-1|+|x+2|≥5
y
2x 6, x 2 y 2, 2 x 1
2x 4, x 1
如图,作出函数的图象,
函数的零点是-3,2.
-2 1
-3
2x
-2
由图象可知,当x 3或x 2时,y 0,
∴原不等式的解集为{x|x≤-3 或 x≥2}.
ab a b
当向量 a, 共b 线时,
同向: a b a b 反向: a b a b
y
ab b
a
O
x
ab a b
定理1 如果a,b是实数,则 a b a b
定理1的完善
绝对值三角不等式
a b ab a b
a b ab a b
定理1的推广 如果a,b,c是实数,则

(复习指导)选修4—5 第1课时 绝对值不等式含解析

(复习指导)选修4—5 第1课时 绝对值不等式含解析

选修4—5不等式选讲必备知识预案自诊知识梳理1.绝对值三角不等式(1)定理1:若a,b是实数,则|a+b|≤,当且仅当时,等号成立;(2)性质:|a|-|b|≤|a±b|≤|a|+|b|;(3)定理2:若a,b,c是实数,则|a-c|≤,当且仅当时,等号成立.2.绝对值不等式的解法(1)含绝对值的不等式|x|<a与|x|>a(a>0)的解法:①|x|<a⇔-a<x<a;②|x|>a⇔x>a或x<-a.(2)|ax+b|≤c(c>0)和|ax+b|≥c(c>0)型不等式的解法:①|ax+b|≤c⇔;②|ax+b|≥c⇔.(3)|x-a|+|x-b|≥c(c>0)和|x-a|+|x-b|≤c(c>0)型不等式的解法:①利用绝对值不等式的几何意义求解,体现了数形结合的思想;②利用“零点分段法”求解,体现了分类讨论的思想;③通过构造函数,利用函数的图像求解,体现了函数与方程及数形结合的思想.3.基本不等式定理1:设a,b∈R,则a2+b2≥,当且仅当a=b时,等号成立.定理2:若a,b为正数,则a+b2≥√ab,当且仅当a=b时,等号成立.定理3:若a,b,c为正数,则a+b+c3≥√abc3,当且仅当a=b=c时,等号成立.定理4:若a1,a2,…,a n为n个正数,则a1+a2+…+a nn ≥√a1a2…a nn,当且仅当a1=a2=…=a n时,等号成立.4.柯西不等式(1)若a,b,c,d都是实数,则(a2+b2)(c2+d2)≥(ac+bd)2,当且仅当ad=bc时,等号成立.(2)设a1,a2,a3,…,a n,b1,b2,b3,…,b n是实数,则(a12+a22+…+a n2)(b12+b22+…+b n2)≥(a1b1+a2b2+…+a n b n)2,当且仅当b i=0(i=1,2,…,n)或存在一个数k,使得a i=kb i(i=1,2,…,n)时,等号成立.(3)柯西不等式的向量形式:设α,β是两个向量,则|α||β|≥|α·β|,当且仅当β是零向量或存在实数k,使α=kβ时,等号成立.5.不等式证明的方法证明不等式常用的方法有比较法、综合法、分析法、放缩法以及利用绝对值三角不等式、柯西不等式法等.考点自诊1.判断下列结论是否正确,正确的画“√”,错误的画“×”.(1)对|a-b|≤|a|+|b|,当且仅当ab≤0时,等号成立.()(2)|a+b|+|a-b|≥|2a|.()(3)|x-a|+|x-b|的几何意义是表示数轴上的点x到点a,b的距离之和.()(4)用反证法证明命题“a,b,c全为0”时假设为“a,b,c全不为0”.()(5)若m=a+2b,n=a+b2+1,则n≥m.() 2.若|a-c|<|b|,则下列不等式正确的是()A.a<b+cB.a>c-bC.|a|>|b|-|c|D.|a|<|b|+|c|3.若不等式|x+1x|>|a-2|+1对于一切非零实数x均成立,则实数a的取值范围是() A.(2,3) B.(1,2)C.(1,3)D.(1,4)4.设a,b,m,n∈R,且a2+b2=5,ma+nb=5,则√m2+n2的最小值为.5.若存在实数x使|x-a|+|x-1|≤3成立,则实数a的取值范围是.第1课时绝对值不等式关键能力学案突破考点绝对值不等式的解法【例1】(2020全国1,理23)已知函数f(x)=|3x+1|-2|x-1|.(1)画出y=f(x)的图像;(2)求不等式f(x)>f(x+1)的解集.解题心得解含有两个以上绝对值符号的不等式的方法解法1:利用绝对值不等式的几何意义求解,体现了数形结合的思想;解法2:利用“零点分段法”求解,即令各个绝对值式子等于0,求出各自零点,把零点在数轴上从小到大排列,然后按零点分数轴形成的各区间去绝对值,进而将绝对值不等式转化为常规不等式,体现了分类讨论的思想;解法3:通过构造函数,利用函数的图像求解,体现了函数与方程的思想.对点训练1(2019全国2,理23)已知f(x)=|x-a|x+|x-2|(x-a).(1)当a=1时,求不等式f(x)<0的解集;(2)若x∈(-∞,1)时,f(x)<0,求a的取值范围.考点求参数范围(多考向探究)考向1分离参数法求参数范围【例2】(2017全国3,理23)已知函数f(x)=|x+1|-|x-2|.(1)求不等式f(x)≥1的解集;(2)若不等式f(x)≥x2-x+m的解集非空,求m的取值范围.解题心得在不等式有解或成立的情况下,求参数的取值范围,可以采取分离参数,通过求对应函数最值的方法获得.对点训练2已知f(x)=|x+1|,g(x)=2|x|+a,(1)当a=-1时,求不等式f(x)≥g(x)的解集;(2)若存在x0∈R使得f(x0)≥g(x0)成立,求a的取值范围.考向2利用函数最值求参数范围【例3】(2020辽宁大连一中6月模拟,23)已知函数f(x)=x|x-a|,a∈R.(1)当f(1)+f(-1)>1时,求a的取值范围;+|y-a|恒成立,求a的取值范围.(2)若a>0,对任意x,y∈(-∞,a],都有不等式f(x)≤y+54解题心得1.对于求参数范围问题,可将已知条件进行等价转化,得到含有参数的不等式恒成立,此时通过求函数的最值得到关于参数的不等式,解不等式得参数范围.2.解答此类问题应熟记以下转化:f(x)>a恒成立⇔f(x)min>a;f(x)<a恒成立⇔f(x)max<a;f(x)>a有解⇔f(x)max>a;f(x)<a有解⇔f(x)min<a;f(x)>a无解⇔f(x)max≤a;f(x)<a无解⇔f(x)min≥a.对点训练3(2020山西太原三模,23)已知函数f(x)=|x+1|+|x-2a|,a∈R.(1)若a=1,解不等式f(x)<4;(2)对任意的实数m,若总存在实数x,使得m2-2m+4=f(x),求实数a的取值范围.考向3恒等转化法求参数范围【例4】(2020全国2,理23)已知函数f(x)=|x-a2|+|x-2a+1|.(1)当a=2时,求不等式f(x)≥4的解集;(2)若f(x)≥4,求a的取值范围.解题心得在不等式成立的前提下求参数范围,通常对不等式进行等价变形,求出不等式的解,然后根据已知条件确定参数范围.对点训练4(2018全国1,理23)已知f(x)=|x+1|-|ax-1|.(1)当a=1时,求不等式f(x)>1的解集;(2)若x∈(0,1)时不等式f(x)>x成立,求a的取值范围.考点求函数或代数式的最值(多考向探究)考向1利用基本不等式求最值【例5】(2020河北石家庄二模,文23)函数f(x)=|2x-1|+|x+2|.(1)求函数f(x)的最小值;(2)若f(x)的最小值为M,a+2b=2M(a>0,b>0),求证:1a+1+12b+1≥47.解题心得在求某一代数式的最值时,根据已知条件利用基本不等式a 2+b 2≥2ab ,a+b2≥√ab (a ,b 为正数),a+b+c3≥√abc 3(a ,b ,c 为正数)对代数式进行适当的放缩,从而得出其最值.对点训练5(2020河南开封三模)关于x 的不等式|x-2|<m (m ∈N +)的解集为A ,且32∈A ,12∉A. (1)求m 的值;(2)设a ,b ,c 为正实数,且a+b+c=3m ,求√a +√b +√c 的最大值.考向2 利用绝对值三角不等式求最值【例6】已知函数f (x )=2|x+a|+|x -1a|(a ≠0).(1)当a=1时,解不等式f (x )<4;(2)求函数g (x )=f (x )+f (-x )的最小值.解题心得利用绝对值三角不等式求函数或代数式的最值时,往往需要对函数或代数式中的几个绝对值里面的代数式等价变形,使相加或相减后对消变量,得到常数.对点训练6已知函数f (x )=|2x+1|-|x-1|. (1)求f (x )+|x-1|+|2x-3|的最小值;(2)若不等式|m-1|≥f (x )+|x-1|+|2x-3|有解,求实数m 的取值范围.考向3利用放缩法求最值【例7】(2019全国3,理23)设x,y,z∈R,且x+y+z=1.(1)求(x-1)2+(y+1)2+(z+1)2的最小值;(2)若(x-2)2+(y-1)2+(z-a)2≥13成立,证明:a≤-3或a≥-1.解题心得利用放缩法求代数式的最值,一般利用基本不等式,绝对值三角不等式及数学结论进行放缩,在放缩的过程中,结合已知条件消去变量得到常量,从而得到代数式的最值.对点训练7已知实数m,n满足2m-n=3.(1)若|m|+|n+3|≥9,求实数m的取值范围;(2)求|53m-13n|+|13m-23n|的最小值.1.绝对值不等式主要利用“零点分段法”求解,有时也利用函数图像通过观察得出不等式的解集.2.含绝对值不等式的恒成立问题的求解方法(1)分离参数法:运用“f(x)≤a⇔f(x)max≤a,f(x)≥a⇔f(x)min≥a”可解决恒成立中的参数范围问题.(2)数形结合法:在研究不等式f(x)≤g(x)恒成立问题时,若能作出两个函数的图像,通过图像的位置关系可直观解决问题.3.求函数或代数式的最值主要应用基本不等式、绝对值三角不等式以及通过放缩求解.在解决有关绝对值不等式的问题时,充分利用绝对值不等式的几何意义解决问题能有效避免分类讨论不全面的问题.若用零点分段法求解,要掌握分类讨论的标准,做到不重不漏.选修4—5 不等式选讲必备知识·预案自诊知识梳理1.(1)|a|+|b| ab ≥0 (3)|a-b|+|b-c| (a-b )(b-c )≥02.(2)①-c ≤ax+b ≤c ②ax+b ≥c 或ax+b ≤-c3.2ab考点自诊1.(1)√ (2)√ (3)√ (4)× (5)√2.D |a|-|c|≤|a-c|<|b|,即|a|<|b|+|c|,故选D .3.C 因为|x +1x |=|x|+|1x |≥2,要使对于一切非零实数x ,|x +1x|>|a-2|+1恒成立,则|a-2|+1<2,即1<a<3.4.√5 由柯西不等式可知(a 2+b 2)(m 2+n 2)≥(ma+nb )2,即5(m 2+n 2)≥25,当且仅当an=bm 时,等号成立,所以√m 2+n 2≥√5.5.[-2,4] ∵|x-a|+|x-1|≥|(x-a )-(x-1)|=|a-1|,要使|x-a|+|x-1|≤3有解,可使|a-1|≤3,∴-3≤a-1≤3,∴-2≤a ≤4.第1课时 绝对值不等式 关键能力·学案突破 例1解(1)由题设知f (x )={-x -3,x ≤-13,5x -1,-13<x ≤1,x +3,x >1.y=f (x )的图像如图所示.(2)函数y=f (x )的图像向左平移1个单位长度后得到函数y=f (x+1)的图像.y=f (x )的图像与y=f (x+1)的图像的交点坐标为-76,-116.由图像可知当且仅当x<-76时,y=f (x )的图像在y=f (x+1)的图像上方. 故不等式f (x )>f (x+1)的解集为(-∞,-76). 对点训练1解(1)当a=1时,f (x )=|x-1|x+|x-2|·(x-1).当x<1时,f (x )=-2(x-1)2<0; 当x ≥1时,f (x )≥0.所以,不等式f (x )<0的解集为(-∞,1). (2)因为f (a )=0,所以a ≥1. 当a ≥1,x ∈(-∞,1)时,f (x )=(a-x )x+(2-x )(x-a )=2(a-x )(x-1)<0. 所以,a 的取值范围是[1,+∞). 例2解(1)f (x )={-3,x <-1,2x -1,-1≤x ≤2,3,x >2.当x<-1时,f (x )≥1无解;当-1≤x ≤2时,由f (x )≥1得,2x-1≥1,解得1≤x ≤2; 当x>2时,由f (x )≥1解得x>2. 所以f (x )≥1的解集为{x|x ≥1}.(2)由f (x )≥x 2-x+m 得m ≤|x+1|-|x-2|-x 2+x. 而|x+1|-|x-2|-x 2+x ≤|x|+1+|x|-2-x 2+|x|=-(|x |-32)2+54≤54,且当x=32时,|x+1|-|x-2|-x 2+x=54. 故m 的取值范围为(-∞,54].对点训练2解(1)当a=-1时原不等式可化为|x+1|-2|x|≥-1,设φ(x )=|x+1|-2|x|={x -1,x ≤-1,3x +1,-1<x <0,-x +1,x ≥0,则{x ≤-1,x -1≥-1,或{-1<x <0,3x +1≥-1,或{x ≥0,-x +1≥-1. 即-23≤x ≤2.所以原不等式的解集为-23,2.(2)若存在x 0∈R 使得f (x 0)≥g (x 0)成立,等价于|x+1|≥2|x|+a 有解, 由(1)即φ(x )≥a 有解,即a ≤φ(x )max ,由(1)可知,φ(x )在(-∞,0)单调递增,在[0,+∞)单调递减, 所以φ(x )max =φ(0)=1,所以a ≤1.故a 的取值范围为(-∞,1].例3解(1)f (1)+f (-1)=|1-a|-|1+a|>1,若a ≤-1,则1-a+1+a>1,得2>1,即当a ≤-1时,不等式恒成立;若-1<a<1,则1-a-(1+a )>1,得a<-12,即-1<a<-12; 若a ≥1,则-(1-a )-(1+a )>1,得-2>1,此时不等式无解. 综上所述,a 的取值范围是-∞,-12.(2)由题意知,要使不等式恒成立,只需f (x )max ≤y+54+|y-a|min .当x ∈(-∞,a ]时,f (x )=-x 2+ax ,f (x )max =f a 2=a 24. 因为y+54+|y-a|≥a+54, 所以当y ∈-54,a 时,y+54+|y-a|min =a+54=a+54.于是a 24≤a+54,解得-1≤a ≤5.结合a>0,所以a 的取值范围是(0,5].对点训练3解(1)当a=1时,f (x )<4,即|x+1|+|x-2|<4,化为{x <-1,2x >-3或{-1≤x ≤2,3<4或{x >2,2x -1<4,解得-32<x<-1或-1≤x ≤2或2<x<52,综上,-32<x<52,即不等式f (x )<4的解集为-32,52.(2)根据题意,得m 2-2m+4的取值范围是f (x )值域的子集.m 2-2m+4=(m-1)2+3≥3,又f (x )=|x+1|+|x-2a|≥|2a+1|, 所以f (x )的值域为[|2a+1|,+∞).故|2a+1|≤3,解得-2≤a ≤1,即实数a 的取值范围为[-2,1].例4解(1)当a=2时,f (x )={7-2x ,x ≤3,1,3<x ≤4,2x -7,x >4.因此,不等式f (x )≥4的解集为{x |x ≤32或x ≥112}. (2)因为f (x )=|x-a 2|+|x-2a+1|≥|a 2-2a+1|=(a-1)2,故当(a-1)2≥4,即|a-1|≥2时,f (x )≥4. 所以当a ≥3或a ≤-1时,f (x )≥4.当-1<a<3时,f (a 2)=|a 2-2a+1|=(a-1)2<4. 所以a 的取值范围是(-∞,-1]∪[3,+∞).对点训练4解(1)当a=1时,f (x )=|x+1|-|x-1|,即f (x )={-2,x ≤-1,2x ,-1<x <1,2,x ≥1.故不等式f (x )>1的解集为{x |x >12}.(2)当x ∈(0,1)时|x+1|-|ax-1|>x 成立等价于当x ∈(0,1)时|ax-1|<1成立. 若a ≤0,则当x ∈(0,1)时|ax-1|≥1;若a>0,|ax-1|<1的解集为0<x<2a ,所以2a ≥1,故0<a ≤2. 综上,a 的取值范围为(0,2]. 例5(1)解f (x )=|2x-1|+|x+2|={-3x -1,x ≤-2,-x +3,-2<x <12,3x +1,x ≥12,当x ≤-2时,f (x )≥5;当-2<x<12时,52<f (x )<5; 当x ≥12时,f (x )≥52. 所以f (x )的最小值为52. (2)证明由(1)知M=52,即a+2b=5.又因为a>0,b>0,所以1a+1+12b+1=17[(a+1)+(2b+1)]1a+1+12b+1=172+2b+1a+1+a+12b+1 ≥172+2√2b+1a+1·a+12b+1 =47,当且仅当a=2b ,即a=52,b=54时,等号成立.所以1a+1+12b+1≥47. 对点训练5解(1)由已知得{|32-2|<m ,|12-2|≥m ,解得12<m ≤32.因为m ∈N *,所以m=1.(2)因为a+b+c=3,所以√a +√b +√c =√1·a +√1·b +√1·c ≤1+a 2+1+b 2+1+c2=3+a+b+c2=3, 当且仅当a=b=c=1时,等号成立.所以√a +√b +√c 的最大值为3.例6解(1)∵a=1,∴原不等式为2|x+1|+|x-1|<4,∴{x <-1,-2x -2-x +1<4,或 {-1≤x ≤1,2x +2-x +1<4,或{x >1,2x +2+x -1<4,∴-53<x<-1或-1≤x<1或∅. ∴原不等式的解集为(-53,1).(2)由题意得g (x )=f (x )+f (-x )=2(|x+a|+|x-a|)+(|x +1a |+|x -1a |)≥2|2a|+2|a |≥4√2.当且仅当2|a|=1|a |,即a=±√22,且-√22≤x ≤√22时,g (x )取最小值4√2. 对点训练6解(1)f (x )+|x-1|+|2x-3|=|2x+1|-|x-1|+|x-1|+|2x-3|=|2x+1|+|2x-3|≥|2x+1-(2x-3)|=4,当-12≤x ≤32时等号成立,所以f (x )+|x-1|+|2x-3|的最小值为4.(2)不等式|m-1|≥f (x )+|x-1|+|2x-3|有解,∴|m-1|≥[f (x )+|x-1|+|2x-3|]min .∴|m-1|≥4,∴m-1≤-4或m-1≥4,即m ≤-3或m ≥5,∴实数m 的取值范围是(-∞,-3]∪[5,+∞).例7(1)解由于[(x-1)+(y+1)+(z+1)]2=(x-1)2+(y+1)2+(z+1)2+2[(x-1)(y+1)+(y+1)(z+1)+(z+1)(x-1)]≤3[(x-1)2+(y+1)2+(z+1)2],故由已知得(x-1)2+(y+1)2+(z+1)2≥43,当且仅当x=53,y=-13,z=-13时等号成立.所以(x-1)2+(y+1)2+(z+1)2的最小值为43.(2)证明由于[(x-2)+(y-1)+(z-a )]2=(x-2)2+(y-1)2+(z-a )2+2[(x-2)(y-1)+(y-1)(z-a )+(z-a )(x-2)]≤3[(x-2)2+(y-1)2+(z-a )2],故由已知得(x-2)2+(y-1)2+(z-a )2≥(2+a )23,当且仅当x=4-a 3,y=1-a 3,z=2a -23时等号成立. 因此(x-2)2+(y-1)2+(z-a )2的最小值为(2+a )23.由题设知(2+a )23≥13,解得a ≤-3或a ≥-1.对点训练7解因为2m-n=3,所以2m=n+3.(1)|m|+|n+3|=|m|+|2m|=3|m|≥9,所以|m|≥3,所以m ≤-3或m ≥3.故m 的取值范围为(-∞,-3]∪[3,+∞).(2)53m-13n +13m-23n =53m-13(2m-3)+13m-23(2m-3)=|m+1|+|m-2|≥3,当且仅当-1≤m ≤2(或-5≤n ≤1)时等号成立, 所以53m-13n +13m-23n 的最小值是3.。

01绝对值不等式(含经典例题+答案)

01绝对值不等式(含经典例题+答案)

绝对值不等式一、绝对值三角不等式1.定理1:如果a,b是实数,则|a+b|≤|a|+|b|,当且仅当ab≥0时,等号成立.2.定理2:如果a,b,c是实数,则|a-c|≤|a-b|+|b-c|,当且仅当(a-b)(b-c)≥0时,等号成立.二、绝对值不等式的解法(1)|a x+b|≤c⇔-c≤a x+b≤c ;(2)|a x+b|≥c⇔a x+b≥c或a x+b≤-c .3.|x-a|+|x-b|≥c(c>0)和|x-a|+|x-b|≤c(c>0)型不等式的解法方法一:利用绝对值不等式的几何意义求解,体现了数形结合的思想.方法二:利用“零点分段法”求解,体现了分类讨论的思想;方法三:通过构造函数,利用函数的图像求解,体现了函数与方程的思想.二、绝对值不等式的解法(1)|a x+b|≤c⇔-c≤ax+b≤c ;(2)|a x+b|≥c⇔ax+b≥c或ax+b≤-c .3.|x-a|+|x-b|≥c(c>0)和|x-a|+|x-b|≤c(c>0)型不等式的解法方法一:利用绝对值不等式的几何意义求解,体现了数形结合的思想.方法二:利用“零点分段法”求解,体现了分类讨论的思想;方法三:通过构造函数,利用函数的图像求解,体现了函数与方程的思想.1.不等式|a|-|b|≤|a+b|≤|a|+|b|,右侧“=”成立的条件是ab≥0,左侧“=”成立的条件是ab≤0且|a|≥|b|;不等式|a|-|b|≤|a-b|≤|a|+|b|,右侧“=”成立的条件是ab≤0,左侧“=”成立的条件是ab≥0且|a|≥|b|.2.|x-a|+|x-b|≥c表示到数轴上点A(a),B(b)距离之和大于或等于c的所有点,只要在数轴上确定出具有上述特点的点的位置,就可以得出不等式的解.例4:若不等式|x+1|+|x-2|≥a对任意x∈R恒成立,则a的取值范围是________.解:由于|x+1|+|x-2|≥|(x+1)-(x-2)|=3,所以只需a≤3即可.若本题条件变为“∃x∈R使不等式|x+1|+|x-2|<a成立为假命题”,求a的范围.解:由条件知其等价命题为对∀x∈R,|x+1|+|x-2|≥a恒成立,故a≤(|x+1|+|x-2|)min,又|x+1|+|x-2|≥|(x+1)-(x-2)|=3,∴a≤3.例5:不等式log3(|x-4|+|x+5|)>a对于一切x∈R恒成立,则实数a的取值范围是________.解:由绝对值的几何意义知:|x-4|+|x+5|≥9,则log3(|x-4|+|x+5|)≥2所以要使不等式log3(|x-4|+|x+5|)>a对于一切x∈R恒成立,则需a<2.例6:某地街道呈现东——西,南——北向的网络状,相邻街距都为1,两街道相交的点称为格点.若以相互垂直的两条街道为轴建立直角坐标系,现有下述格点(-2,2),(3,1),(3,4),(-2,3),(4,5),(6,6)为报刊零售点,请确定一个格点(除零售点外)________为发行站,使6个零售点沿街道到发行站之间的路程的和最短.解:设格点(x,y)(其中x,y∈Z)为发行站,使6个零售点沿街道到发行站之间的路程的和最短,即使(|x+2|+|y-2|+(|x-3|+|y-1|)+(|x-3|+|y-4|)+(|x+2|+|y-3|)+(|x-4|+|y-5|)+(|x-6|+|y-6|)=[(|x+2|+|x-6|)+(|x+2|+|x-4|)+2|x-3|]+[|y-1|+|y-2|+|y-3|+|y-4|+|y-5|+|y-6|]取得最小值的格点(x,y)(其中x,y∈Z).注意到[(|x+2|+|x-6|)+(|x+2|+|x-4|) +2|x-3|]≥|(x+2)-(x-6)|+|(x+2)-(x-4)|+0=14,当且仅当x=3取等号;|y-1|+|y-2|+|y-3|+|y-4|+|y-5|+|y-6|=(|y-1|+|y-6|)+(|y-2|+|y-5|+(|y-3|+|y-4|)≥|(y-1)-(y-6)|+|(y-2)-(y-5)|+|(y-3)-(y-4)|=9,当且仅当y=3或y=4时取等号.因此,应确定格点(3,3)或(3,4)为发行站.又所求格点不能是零售点,所以应确定格点(3,3)为发行站.1.对绝对值三角不等式定理|a|-|b|≤|a±b|≤|a|+|b|中等号成立的条件要深刻理解,特别是用此定理求函数的最值时.2.该定理可以强化为:||a|-|b||≤|a±b|≤|a|+|b|,它经常用于证明含绝对值的不等式.3.对于求y=|x-a|+|x-b|或y=|x+a|-|x-b|型的最值问题利用绝对值三角不等式更简洁、方便.例7:设函数f(x)=|x-a|+3x,其中a>0.(1)当a=1时,求不等式f(x)≥3x+2的解集;(2)若不等式f(x)≤0的例9:已知关于x的不等式|2x+1|+|x-3|>2a-32恒成立,求实数a的取值范围.y =⎩⎪⎨⎪⎧ -3x +2,x <-12,x +4,-12≤x <3,3x -2,x ≥3,∴当x =-12时,y =|2x +1|+|x -3|取最小值72,∴72>2a -32,即得a <52. 例10:已知f (x )=1+x 2,a ≠b ,求证:|f (a )-f (b )|<|a -b |.解:∵|f (a )-f (b )|=|1+a 2-1+b 2|=|a 2-b 2|1+a 2+1+b 2=|a -b ||a +b |1+a 2+1+b 2, 又|a +b |≤|a |+|b |=a 2+b 2<1+a 2+1+b 2,∴|a +b |1+a 2+1+b 2<1.∵a ≠b ,∴|a -b |>0.∴|f (a )-f (b )|<|a -b |.例11:已知a ,b ∈R 且a ≠0,求证:|a |2|a |≥|a |2-|b |2. 证明:①若|a |>|b |,则左边=|a +b |·|a -b |2|a |=|a +b |·|a -b ||a +b +a -b |≥|a +b |·|a -b ||a +b |+|a -b |=11|a +b |+1|a -b |. ∵1|a +b |≤1|a |-|b |,1|a -b |≤1|a |-|b |,∴1|a +b |+1|a -b |≤2|a |-|b |.∴左边≥|a |-|b |2=右边,∴原不等式成立. ②若|a|=|b|,则a 2=b 2,左边=0=右边,∴原不等式成立.③若|a|<|b|,则左边>0,右边<0,原不等式显然成立.综上可知原不等式成立.证明:|f(x)-f(a)|=|x 2-x +43-a 2+a -43|=|(x -a)(x +a -1)|=|x -a|·|x +a -1|.∵|x -a|<1, ∴|x|-|a|≤|x -a|<1.∴|x|<|a|+1.∴|f(x)-f(a)|=|x -a|·|x +a -1|<|x +a -1|≤|x|+|a|+1<2(|a|+1). 例13:已知函数f (x )=log 2(|x -1|+|x -5|-a ).(1)当a =2时,求函数f (x )的最小值;(2)当函数f (x )的定义域为R 时,求实数a 的取值范围.解:函数的定义域满足|x -1|+|x -5|-a >0,即|x -1|+|x -5|>a .(1)当a =2时,f (x )=log 2(|x -1|+|x -5|-2),设g (x )=|x -1|+|x -5|,则g (x )=|x -1|+|x -5|=⎩⎪⎨⎪⎧ 2x -6,x ≥5,4,1<x <5,6-2x ,x ≤1,g (x )min =4,f (x )min =log 2(4-2)=1.(2)由(1)知,g (x )=|x -1|+|x -5|的最小值为4,|x -1|+|x -5|-a >0,∴a <4.∴a 的取值范围是(-∞,4). x -4|-|x -2|>1.解:(1)f (x )=⎩⎪⎨⎪⎧ -2, x >4,-2x +6, 2≤x ≤4,2, x <2.则函数y =f (x )的图像如图所示.(2)由函数y =f (x )的图像容易求得不等式|x -4|-|x -2|>1的解集为5,2⎛⎫-∞ ⎪⎝⎭。

高1数学绝对值三角不等式知识点

高1数学绝对值三角不等式知识点

高1数学绝对值三角不等式知识点数学课本中不等式这一部分包含绝对值三角不等式,同学们需要重点关注,下面是店铺给大家带来的高1数学绝对值三角不等式知识点,希望对你有帮助。

高1数学绝对值三角不等式知识点(一)绝对值三角不等式绝对值三角不等式:1、基本形式如果a,b都是实数,则|a+b|≤|a|+|b|,当且仅当ab≥0时,等号成立;2、变式如果a,b都是实数,则。

三角不等式的解法利用三角函数线或正弦、余弦、正切函数的图象写出解集.高1数学绝对值三角不等式知识点(二)绝对值的三角不等式;不等式证明的基本方法二.教学目的1、掌握绝对值的三角不等式;2、掌握不等式证明的基本方法三.知识分析[绝对值的三角不等式]定理1若a,b为实数,则,当且仅当ab≥0时,等号成立。

几何说明:(1)当ab>0时,它们落在原点的同一边,此时a与-b 的距离等于它们到原点距离之和。

(2)如果ab<0,则a,b分别落在原点两边,a与-b的距离严格小于a与b到原点距离之和(下图为ab<0,a>0,b<0的情况,ab<0的其他情况可作类似解释)。

|a-b|表示a-b与原点的距离,也表示a到b之间的距离。

定理2设a,b,c为实数,则,等号成立,即b落在a,c之间。

推论1推论2[不等式证明的基本方法]1、比较法是证明不等式的一种最基本的方法,也是一种常用的方法,基本不等式就是用比较法证得的。

比较法有差值、比值两种形式,但比值法必须考虑正负。

比较法证不等式有作差(商)、变形、判断三个步骤,变形的主要方向是因式分解、配方,判断过程必须详细叙述。

如果作差后的式子可以整理为关于某一个变量的二次式,则可考虑用到判别式法证。

2、所谓综合法,就是从题设条件和已经证明过的基本不等式出发,不断用必要条件替换前面的不等式,直至推出要证明的结论,可简称为“由因导果”,在使用综合法证明不等式时,要注意基本不等式的应用。

所谓分析法,就是从所要证明的不等式出发,不断地用充分条件替换前面的不等式,或者是显然成立的不等式,可简称“执果索因”,在使用分析法证明不等式时,习惯上用“”表述。

高中数学课件第一节 绝对值不等式

高中数学课件第一节  绝对值不等式
数学
首页
上一页
下一页
末页
第一节
绝对值不等式
结束
3.如果关于 x 的不等式|x-3|-|x-4|<a 的解集不是空集,求 实数 a 的取值范围.
解:注意到||x-3|-|x-4||≤|(x-3)-(x-4)|=1,-1≤|x- 3|-|x-4|≤1.若不等式|x-3|-|x-4|<a 的解集是空集, 则有 |x-3|-|x-4|≥a 对任意的 x∈R 都成立, 即有(|x-3|-|x- 4|)min≥a, a≤-1.因此, 由不等式|x-3|-|x-4|<a 的解集不 是空集可得,实数 a 的取值范围是 a>-1.
1 1 2t-1<2x<1,t- <x< ,∴t=0. 2 2 2.设不等式|x+1|-|x-2|>k 的解集为 R,求实数 k 的取值范围.
[试一试]
解:法一:根据绝对值的几何意义,设数 x,-1,2 在 数轴上对应的点分别为 P,A,B,则原不等式等价于 |PA|-|PB|>k 恒成立. ∵|AB|=3, 即|x+1|-|x-2|≥- 3.故当 k<-3 时,原不等式恒成立.
为数轴上两点的距离求解. 5.数形结合法:在直角坐标系中作出不等式两边所对应的两个
函数的图象,利用函数图象求解.
数学
首页
上一页
下一页
末页
第一节
绝对值不等式
结束
[练一练]
1.在实数范围内,解不等式|2x-1|+|2x+1|≤6.
解:法一:分类讨论去绝对值号解不等式. 1 3 1 1 当 x> 时,原不等式转化为 4x≤6⇒x≤ ;当- ≤x≤ 时,原 2 2 2 2 1 不等式转化为 2≤6,恒成立;当 x<- 时,原不等式转化为- 2

【高中数学】绝对值不等式

【高中数学】绝对值不等式

【高中数学】绝对值不等式一、基础知识1.绝对值三角不等式定理1:如果a,b是实数,则|a+b|≤|a|+|b|,当且仅当ab≥0时,等号成立.定理2:如果a,b,c是实数,那么|a-c|≤|a-b|+|b-c|,当且仅当(a-b)(b-c)≥0时,等号成立.↓|a|-|b|≤|a-b|≤|a|+|b|,当且仅当|a|≥|b|且ab≥0时,左边等号成立,当且仅当ab≤0时,右边等号成立.2.绝对值不等式的解法(1)|x|<a与|x|>a型不等式的解法不等式a>0a=0a<0|x|<a{x|-a<x<a}∅∅|x|>a{x|x>a或x<-a}{x|x∈R且x≠0}R(2)|ax+b|≤c(c>0)和|ax+b|≥c(c>0)型不等式的解法:①|ax+b|≤c⇔-c≤ax+b≤c;②|ax+b|≥c⇔ax+b≥c或ax+b≤-c.|x-a|+|x-b|≥c和|x-a|+|x-b|≤c型不等式的解法及体现数学思想①利用绝对值不等式的几何意义求解,体现了数形结合的思想;②利用“零点分段法”求解,体现了分类讨论的思想;③通过构造函数,利用函数的图象求解,体现了函数与方程的思想.考点一绝对值不等式的解法[典例](2016·全国卷Ⅰ)已知函数f(x)=|x+1|-|2x-3|.(1)画出y =f (x )的图象;(2)求不等式|f (x )|>1的解集.[解](1)由题意得f (x )-4,x ≤-1,x -2,-1<x ≤32,x +4,x >32,故y =f (x )的图象如图所示.(2)由f (x )的函数表达式及图象可知,当f (x )=1时,可得x =1或x =3;当f (x )=-1时,可得x =13或x =5.故f (x )>1的解集为{x |1<x <3},f (x )<-1|x <13或x>5所以|f (x )|>1|x <13或1<x <3或x>5[题组训练]1.解不等式|x +1|+|x -1|≤2.解:当x <-1时,原不等式可化为-x -1+1-x ≤2,解得x ≥-1,又因为x <-1,故无解;当-1≤x ≤1时,原不等式可化为x +1+1-x =2≤2,恒成立;当x >1时,原不等式可化为x +1+x -1≤2,解得x ≤1,又因为x >1,故无解;综上,不等式|x +1|+|x -1|≤2的解集为[-1,1].2.(2019·沈阳质检)已知函数f (x )=|x -a |+3x ,其中a ∈R .(1)当a =1时,求不等式f (x )≥3x +|2x +1|的解集;(2)若不等式f (x )≤0的解集为{x |x ≤-1},求a 的值.解:(1)当a =1时,f (x )=|x -1|+3x .法一:由f (x )≥3x +|2x +1|,得|x -1|-|2x +1|≥0,当x >1时,x -1-(2x +1)≥0,得x ≤-2,无解;当-12≤x ≤1时,1-x -(2x +1)≥0,得-12≤x ≤0;当x <-12时,1-x -(-2x -1)≥0,得-2≤x <-12.∴不等式的解集为{x |-2≤x ≤0}.法二:由f (x )≥3x +|2x +1|,得|x -1|≥|2x +1|,两边平方,化简整理得x 2+2x ≤0,解得-2≤x ≤0,∴不等式的解集为{x |-2≤x ≤0}.(2)由|x -a |+3x ≤0≥a ,x -a ≤0<a ,x +a ≤0,≥a ,≤a 4<a ,≤-a 2.当a >0|x ≤-a 2由-a2=-1,得a =2.当a =0时,不等式的解集为{x |x ≤0},不合题意.当a <0|x ≤a 4由a4=-1,得a =-4.综上,a =2或a =-4.考点二绝对值不等式性质的应用[典例](2019·湖北五校联考)已知函数f (x )=|2x -1|,x ∈R .(1)解不等式f (x )<|x |+1;(2)若对x ,y ∈R,有|x -y -1|≤13,|2y +1|≤16,求证:f (x )<1.[解](1)∵f (x )<|x |+1,∴|2x -1|<|x |+1,≥12,x -1<x +1x <12,-2x <x +1≤0,-2x <-x +1,得12≤x <2或0<x <12或无解.故不等式f (x )<|x |+1的解集为{x |0<x <2}.(2)证明:f (x )=|2x -1|=|2(x -y -1)+(2y +1)|≤|2(x -y -1)|+|2y +1|=2|x -y -1|+|2y +1|≤2×13+16=56<1.故不等式f (x )<1得证.[解题技法]绝对值不等式性质的应用利用不等式|a +b |≤|a |+|b |(a ,b ∈R )和|a -b |≤|a -c |+|c -b |(a ,b ∈R),通过确定适当的a ,b ,利用整体思想或使函数、不等式中不含变量,可以求最值或证明不等式.[题组训练]1.求函数f (x )=|x +2019|-|x -2018|的最大值.解:因为f (x )=|x +2019|-|x -2018|≤|x +2019-x +2018|=4037,所以函数f (x )=|x +2019|-|x -2018|的最大值为4037.2.若x ∈[-1,1],|y |≤16,|z |≤19,求证:|x +2y -3z |≤53.证明:因为x ∈[-1,1],|y |≤16,|z |≤19,所以|x +2y -3z |≤|x |+2|y |+3|z |≤1+2×16+3×19=53,所以|x +2y -3z |≤53成立.考点三绝对值不等式的综合应用[典例](2018·合肥质检)已知函数f (x )=|2x -1|.(1)解关于x 的不等式f (x )-f (x +1)≤1;(2)若关于x 的不等式f (x )<m -f (x +1)的解集不是空集,求m 的取值范围.[解](1)f (x )-f (x +1)≤1⇔|2x -1|-|2x +1|≤1,≥12,x -1-2x -1≤1-12<x <12,-2x -2x -1≤1≤-12,-2x +2x +1≤1,解得x ≥12或-14≤x <12,即x ≥-14,所以原不等式的解集为-14(2)由条件知,不等式|2x -1|+|2x +1|<m 有解,则m >(|2x -1|+|2x +1|)min 即可.由于|2x -1|+|2x +1|=|1-2x |+|2x +1|≥|1-2x +(2x +1)|=2,当且仅当(1-2x )(2x +1)≥0,即x ∈-12,12时等号成立,故m >2.所以m 的取值范围是(2,+∞).[解题技法]两招解不等式问题中的含参问题(1)转化①把存在性问题转化为求最值问题;②不等式的解集为R 是指不等式的恒成立问题;③不等式的解集为∅的对立面也是不等式的恒成立问题,此类问题都可转化为最值问题,即f (x )<a 恒成立⇔a >f (x )max ,f (x )>a 恒成立⇔a <f (x )min .(2)求最值求含绝对值的函数最值时,常用的方法有三种:①利用绝对值的几何意义;②利用绝对值三角不等式,即|a |+|b |≥|a ±b |≥||a |-|b ||;③利用零点分区间法.[题组训练]1.(2018·全国卷Ⅱ)设函数f (x )=5-|x +a |-|x -2|.(1)当a =1时,求不等式f (x )≥0的解集;(2)若f (x )≤1,求a 的取值范围.解:(1)当a =1时,f (x )x +4,x <-1,,-1≤x ≤2,2x +6,x >2.当x <-1时,由2x +4≥0,解得-2≤x <-1,当-1≤x ≤2时,显然满足题意,当x >2时,由-2x +6≥0,解得2<x ≤3,故f (x )≥0的解集为{x |-2≤x ≤3}.(2)f (x )≤1等价于|x +a |+|x -2|≥4.而|x +a |+|x -2|≥|a +2|,且当x =2时等号成立.故f (x )≤1等价于|a +2|≥4.由|a +2|≥4可得a ≤-6或a ≥2.所以a 的取值范围是(-∞,-6]∪[2,+∞).2.(2018·广东珠海二中期中)已知函数f (x )=|x +m |+|2x -1|(m ∈R ),若关于x 的不等式f (x )≤|2x +1|的解集为A ,且34,2⊆A ,求实数m 的取值范围.解:∵34,2⊆A ,∴当x ∈34,2时,不等式f (x )≤|2x +1|恒成立,即|x +m |+|2x -1|≤|2x +1|在x ∈34,2上恒成立,∴|x +m |+2x -1≤2x +1,即|x +m |≤2在x ∈34,2上恒成立,∴-2≤x +m ≤2,∴-x -2≤m ≤-x +2在x ∈34,2上恒成立,∴(-x -2)max ≤m ≤(-x +2)min ,∴-114≤m ≤0,故实数m 的取值范围是-114,0.[课时跟踪检测]1.求不等式|2x -1|+|2x +1|≤6的解集.解:<-12,-2x -2x -1≤6-12≤x ≤12,-2x +2x +1≤6>12,x -1+2x +1≤6.解得-32≤x ≤32,|-32≤x ≤322.已知函数f (x )=|x -4|+|x -a |(a ∈R )的最小值为a .(1)求实数a 的值;(2)解不等式f (x )≤5.解:(1)f (x )=|x -4|+|x -a |≥|a -4|=a ,从而解得a =2.(2)由(1)知,f (x )=|x -4|+|x -2|2x +6,x ≤2,,2<x ≤4,x -6,x >4.故当x ≤2时,由-2x +6≤5,得12≤x ≤2;当2<x ≤4时,显然不等式成立;当x >4时,由2x -6≤5,得4<x ≤112,故不等式f (x )≤5|12≤x ≤1123.(2018·全国卷Ⅰ)已知f (x )=|x +1|-|ax -1|.(1)当a =1时,求不等式f (x )>1的解集;(2)若x ∈(0,1)时不等式f (x )>x 成立,求a 的取值范围.解:(1)当a =1时,f (x )=|x +1|-|x -1|,即f (x )2,x ≤-1,x ,-1<x <1,,x ≥1.故不等式f (x )>1|x >12(2)当x ∈(0,1)时|x +1|-|ax -1|>x 成立等价于当x ∈(0,1)时|ax -1|<1成立.若a ≤0,则当x ∈(0,1)时,|ax -1|≥1;若a >0,则|ax -1|<1|0<x <2a 所以2a ≥1,故0<a ≤2.综上,a 的取值范围为(0,2].4.设函数f (x )=|3x -1|+ax +3.(1)若a =1,解不等式f (x )≤4;(2)若f (x )有最小值,求实数a 的取值范围.解:(1)当a =1时,f (x )=|3x -1|+x +3≤4,即|3x -1|≤1-x ,x -1≤3x -1≤1-x ,解得0≤x ≤12,所以f(x)≤4的解集为0,12.(2)因为f(x)3+a)x+2,x≥13,a-3)x+4,x<13,所以f(x)+3≥0,-3≤0,解得-3≤a≤3,即实数a的取值范围是[-3,3].5.(2019·贵阳适应性考试)已知函数f(x)=|x-2|-|x+1|.(1)解不等式f(x)>-x;(2)若关于x的不等式f(x)≤a2-2a的解集为R,求实数a的取值范围.解:(1)原不等式等价于f(x)+x>0,不等式f(x)+x>0可化为|x-2|+x>|x+1|,当x<-1时,-(x-2)+x>-(x+1),解得x>-3,即-3<x<-1;当-1≤x≤2时,-(x-2)+x>x+1,解得x<1,即-1≤x<1;当x>2时,x-2+x>x+1,解得x>3,即x>3,综上所述,不等式f(x)+x>0的解集为{x|-3<x<1或x>3}.(2)由不等式f(x)≤a2-2a可得|x-2|-|x+1|≤a2-2a,∵|x-2|-|x+1|≤|x-2-x-1|=3,当且仅当x∈(-∞,-1]时等号成立,∴a2-2a≥3,即a2-2a-3≥0,解得a≤-1或a≥3.∴实数a的取值范围为(-∞,-1]∪[3,+∞).6.已知函数f(x)=|x-a|+|x+1|.(1)若a=2,求不等式f(x)>x+2的解集;(2)如果关于x的不等式f(x)<2的解集不是空集,求实数a的取值范围.解:(1)当a=2时,f(x)2x+1,x<-1,,-1≤x<2,x-1,x≥2,不等式f(x)>x+2<-1,2x+1>x+21≤x<2,>x+2≥2,x-1>x+2,解得x<1或x>3,故原不等式的解集为{x|x<1或x>3}.(2)∵f(x)=|x-a|+|x+1|≥|(x-a)-(x+1)|=|a+1|,当(x-a)(x+1)≤0时取等号.∴若关于x的不等式f(x)<2的解集不是空集,只需|a+1|<2,解得-3<a<1,即实数a的取值范围是(-3,1).7.已知函数f(x)=|2x-a|+a.(1)当a=2时,求不等式f(x)≤6的解集;(2)设函数g (x )=|2x -1|.当x ∈R 时,f (x )+g (x )≥3,求a 的取值范围.解:(1)当a =2时,f (x )=|2x -2|+2.解不等式|2x -2|+2≤6,得-1≤x ≤3.因此f (x )≤6的解集为{x |-1≤x ≤3}.(2)当x ∈R 时,f (x )+g (x )=|2x -a |+a +|1-2x |≥3,即|x -a 2|+|12-x |≥3-a2.又x -a 2|+|12-x=|12-a 2|,所以|12-a2|≥3-a2,解得a ≥2.所以a 的取值范围是[2,+∞).8.(2018·福州质检)设函数f (x )=|x -1|,x ∈R .(1)求不等式f (x )≤3-f (x -1)的解集;(2)已知关于x 的不等式f (x )≤f (x +1)-|x -a |的解集为M M ,求实数a 的取值范围.解:(1)因为f (x )≤3-f (x -1),所以|x -1|≤3-|x -2|⇔|x -1|+|x -2|≤3<1,-2x ≤3≤x ≤2,≤3或>2,x -3≤3,解得0≤x <1或1≤x ≤2或2<x ≤3,所以0≤x ≤3,故不等式f (x )≤3-f (x -1)的解集为[0,3].(2)M ,所以当x f (x )≤f (x +1)-|x -a |恒成立,而f (x )≤f (x +1)-|x -a |⇔|x -1|-|x |+|x -a |≤0⇔|x -a |≤|x |-|x -1|,因为x |x -a |≤1,即x -1≤a ≤x +1,由题意,知x -1≤a ≤x +1对于任意的x 所以12≤a ≤2,故实数a 的取值范围为12,2.。

绝对值型不等式和三角不等式类型

绝对值型不等式和三角不等式类型

绝对值型不等式和三角不等式定理1 如果a, b 是实数,则 |a+b|≤|a|+|b|(当且仅当ab ≥0时,等号成立)。

绝对值三角不等式.a b a b a b a b -≤-≤±≤+(a,b 为实数)定理2 如果a, b, c 是实数,那么 |a-c|≤|a-b|+|b-c|(当且仅当(a-b)(b-c)≥0时,等号成立)。

证明:根据绝对值三角不等式有|a-c|=|(a-b)+(b-c)|≤|a-b|+|b-c|(当且仅当(a-b)(b-c)≥0时,等号成立)。

绝对值三角不等式能应用定理解决一些证明和求最值问题。

题型一 解绝对值不等式【例1】设函数f (x )=|x -1|+|x -2|.(1)解不等式f (x )>3;(2)若f (x )>a 对x ∈R 恒成立,求实数a 的取值范围.【解析】(1)所以不等式f (x )>3的解集为(-∞,0)∪(3,+∞).(2)因为f (x )=⎪⎩⎪⎨⎧-.2>3,-22,≤≤1,1<1,,23x x x x x 所以f (x )min =1.因为f (x )>a 恒成立,所以a <1,即实数a 的取值范围是(-∞,1).【变式训练1】设函数f (x )=|x +1|+|x -2|+a .(1)当a =-5时,求函数f (x )的定义域;(2)若函数f (x )的定义域为R ,试求a 的取值范围.【解析】(1)由题设知|x +1|+|x -2|-5≥0,如图,在同一坐标系中作出函数y=|x +1|+|x -2|和y =5的图象,知定义域为(-∞,-2]∪[3,+∞).(2)由题设知,当x ∈R 时,恒有|x +1|+|x -2|+a ≥0,即|x +1|+|x -2|≥-a ,又由(1)知|x +1|+|x -2|≥3,所以-a ≤3,即a ≥-3.题型二 绝对值三角不等式的应用[例2] (1)求函数y =|x -3|-|x +1|的最大值和最小值.(2)设a ∈R ,函数f (x )=ax 2+x -a (-1≤x ≤1).若|a |≤1,求|f (x )|的最大值.[思路点拨] 利用绝对值三角不等式或函数思想方法可求解.[解] (1)法一:||x -3|-|x +1||≤|(x -3)-(x +1)|=4,∴-4≤|x -3|-|x +1|≤4.∴y max =4,y min =-4.法二:把函数看作分段函数.y =|x -3|-|x +1|=⎩⎨⎧ 4,x <-1,2-2x ,-1≤x ≤3,-4,x >3.∴-4≤y ≤4.∴y max =4,y min =-4.(2)|x |≤1,|a |≤1,∴|f (x )|=|a (x 2-1)+x |≤|a (x 2-1)|+|x |=|a ||x 2-1|+|x |≤|x 2-1|+|x | =1-|x 2|+|x |=-|x |2+|x |+1 =-(|x |-12)2+54≤54. ∴|x |=12时,|f (x )|取得最大值54.规律:(1)利用绝对值不等式求函数最值,要注意利用绝对值的性质进行转化,构造绝对值不等式的形式.(2)求最值时要注意等号成立的条件,它也是解题的关键.3.若a ,b ∈R ,且|a |≤3,|b |≤2则|a +b |的最大值是________,最小值是________.解析:|a |-|b |≤|a +b |≤|a |+|b |,∴1=3-2≤|a +b |≤3+2=5.答案:5 14.求函数f (x )=|x -1|+|x +1|的最小值.解:∵|x -1|+|x +1|=|1-x |+|x +1|≥|1-x +x +1|=2,当且仅当(1-x )(1+x )≥0,即-1≤x ≤1时取等号.∴当-1≤x ≤1时,函数f (x )=|x -1|+|x +1| 取得最小值2.5.若对任意实数,不等式|x +1|-|x -2|>a 恒成立,求a 的取值范围.解:a <|x +1|-|x -2|对任意实数恒成立,∴a <[|x +1|-|x -2|]min.∵||x +1|-|x -2||≤|(x +1)-(x -2)|=3,∴-3≤|x +1|-|x -2|≤3.∴[|x +1|-|x -2|]min =-3.∴a <-3.即a 的取值范围为(-∞,-3).题型三 解绝对值三角不等式【例2】已知函数f (x )=|x -1|+|x -2|,若不等式|a +b |+|a -b |≥|a |f (x )对a ≠0,a 、b ∈R 恒成立,求实数x 的范围.【解析】由|a +b |+|a -b |≥|a |f (x )且a ≠0得|a +b |+|a -b ||a |≥f (x ). 又因为|a +b |+|a -b ||a |≥|a +b +a -b ||a |=2,则有2≥f (x ). 解不等式|x -1|+|x -2|≤2得12≤x ≤52. 【变式训练2】(2010深圳)若不等式|x +1|+|x -3|≥a +4a对任意的实数x 恒成立,则实数a 的取值范围是 .【解析】(-∞,0)∪{2}.题型四 利用绝对值不等式求参数范围【例3】(2009辽宁)设函数f (x )=|x -1|+|x -a |.(1)若a =-1,解不等式f (x )≥3;(2)如果∀x ∈R ,f (x )≥2,求a 的取值范围.【解析】(1)当a =-1时,f (x )=|x -1|+|x +1|.由f (x )≥3得|x -1|+|x +1|≥3,综上得f (x )≥3的解集为(-∞,-32]∪[32,+∞). (2)综上可知a 的取值范围为(-∞,-1]∪[3,+∞).【变式训练3】关于实数x 的不等式|x -12(a +1)2|≤12(a -1)2与x 2-3(a +1)x +2(3a +1)≤0 (a ∈R )的解集分别为A ,B .求使A ⊆B 的a 的取值范围.【解析】由不等式|x -12(a +1)2|≤12(a -1)2⇒-12(a -1)2≤x -12(a +1)2≤12(a -1)2, 解得2a ≤x ≤a 2+1,于是A ={x |2a ≤x ≤a 2+1}.由不等式x 2-3(a +1)x +2(3a +1)≤0⇒(x -2)[x -(3a +1)]≤0,①当3a +1≥2,即a ≥13时,B ={x |2≤x ≤3a +1}, 因为A ⊆B ,所以必有⎩⎨⎧++1,3≤1,2≤22a a a 解得1≤a ≤3;②当3a +1<2,即a <13时, B ={x |3a +1≤x ≤2}, 因为A ⊆B ,所以⎩⎨⎧++2,≤1,2≤132a a a 解得a =-1. 综上使A ⊆B 的a 的取值范围是a =-1或1≤a ≤3.总结提高1.“绝对值三角不等式”的理解及记忆要结合三角形的形状,运用时注意等号成立的条件.2.绝对值不等式的解法中,||x <a 的解集是(-a ,a );||x >a 的解集是(-∞,-a )∪(a ,+∞),它可以推广到复合型绝对值不等式||ax +b ≤c ,||ax +b ≥c 的解法,还可以推广到右边含未知数x 的不等式,如||3x +1≤x -1⇒1-x ≤3x +1≤x -1.3.含有两个绝对值符号的不等式,如||x -a +||x -b ≥c 和||x -a +||x -b ≤c 型不等式的解法有三种,几何解法和代数解法以及构造函数的解法,其中代数解法主要是分类讨论的思想方法,这也是函数解法的基础,这两种解法都适宜于x 前面系数不为1类型的上述不等式,使用范围更广.类型一:含一个绝对值符号的不等式的解法含一个绝对值符号的不等式的一般形式为()()f x g x > 或 ()()f x g x <,解这种不等式我们最常用的方法是等价转化法,有时也可用分类讨论法.例1.解不等式2|55|1x x -+<.[分析]利用|f(x)|<a(a>0) ⇔-a<f(x)<a 去掉绝对值后转化为我们熟悉的一元二次不等式组.解:原不等式等价于21551x x -<-+<,即22551(1)551(2)x x x x ⎧-+<⎪⎨-+>-⎪⎩ 由(1)得:14x <<;由(2)得:2x <或3x >, 所以,原不等式的解集为{|12x x <<或34}x <<.[注]本题也可用数形结合法来求解.在同一坐标系中画出函数2551y x x y =-+=与的图象,解方程2551x x -+=,再对照图形写出此不等式的解集.例2. 解不等式4321x x ->+.[分析]利用|f(x)|<g(x) ⇔-g(x)<f(x)<g(x)和|f(x)|>g(x) ⇔f(x)>g(x)或f(x)<-g(x)去掉绝对值后转化为我们熟悉的一元一次、一元二次不等式组来处理或用分类讨论法解之.方法一:原不等式转化为4321x x ->+或43(21)x x -<-+,解之得原不等式的解集为123x x x ⎧⎫><⎨⎬⎩⎭或.方法二:原不等式等价于4304321x x x -≥⎧⎨->+⎩或430(43)21x x x -<⎧⎨-->+⎩.解之得342x x ⎧≥⎪⎨⎪>⎩ 或3413x x ⎧<⎪⎪⎨⎪<⎪⎩,即2x >或13x <.所以原不等式的解集为123x x x ⎧⎫><⎨⎬⎩⎭或. [注]⑴.通过例2可以发现:形如)()(x g x f <,)()(x g x f >型不等式,这类不等式如果用分类讨论的方法求解,显得比较繁琐,用同解变形法则更为简洁.⑵.分类讨论法也可讨论()0()0g x g x ≤f 或而解之,这实际上是同解变形法的推导依据.类型二:含两个绝对值符号的不等式的解法 含两个绝对值符号的不等式,我们常见的形式为:1122a x b a x b c +±+> 或 1122a x b a x b c +±+<()0c ≥,我们解这种不等式常用的方法有零点分段法和构造函数的方法,有时候也可利用绝对值的几何意义和平方法.例3.解不等式||||x x +<+123[分析]两边都含绝对值符号,所以都是非负,故可两边平方,通过移项,使其转化为:“两式和”与“两式差”的积的方法进行,即:|()f x |<|()g x |⇔22()()f x g x <⇔[()()][()()]f x g x f x g x +-<0解:原不等式0)1()32()32()1(|32||1|222222>+-+⇔+<+⇔+<+⇔x x x x x x 解得x x <->-243或,故原不等式的解集为{|}x x x <->-243或 例4.解不等式127x x ++-≥.[分析]解法一 利用绝对值的几何意义(体现了数形结合的思想). 不等式127x x ++-≥的几何意义是表示数轴上与()1A -、()2B 两点距离之和大于等于7的点,而A 、B 的距离之和为3,因此线段AB 上每一点到A 、B 的距离之和都等于3,A 左侧的点到A 、B 的距离之和等于这点到A 点距离的2倍加3,B 右侧的点到A 、B 的距离之和等于这点到B 点距离的2倍加3.图1由图1可知:原不等式的解集为{}34x x x ≤-≥或.解法二 利用1020x x +=-=,的零点,把数轴分为三段,然后分段考虑.把原不等式化为不含绝对值符号的不等式求解(零点分段讨论法).(1)当1x <-时,原不等式同解于13127x x x x <-⎧⇒≤-⎨---+≥⎩,,; (2)当12x -≤≤时,原不等式同解于12127x x x -≤≤⎧⇒⎨+-+≥⎩,, 无解; (3)当2x >时,原不等式同解于24127x x x x >⎧⇒≥⎨++-≥⎩,,. 综上知,原不等式的解集为{}34x x x ≤-≥或.解法三 通过构造函数,利用函数图像(体现了函数与方程的思想). 原不等式可化为1270x x ++--≥.令()127f x x x =++--,则(1)(2)7(1)()(1)(2)7(12)(1)(2)7(2)x x x f x x x x x x x -+---<-⎧⎪=+----≤≤⎨⎪++-->⎩⇔26(1)()4(12)28(2)x x f x x x x --<-⎧⎪=--≤≤⎨⎪->⎩,,, 可解得原不等式的解集为{}34x x x ≤-≥或.例5 解关于x 的不等式|log ||log |a a ax x 22<+[分析]原不等式可化为|log ||log |122+<+a a x x ,一般会分类讨论去绝对值号解题,即:通常分log log a a x x <--≤<12120,,log a x ≥0三种情况去绝对值符号,再分a a ><<101或进行讨论,这样做过程冗长,极易出错根据此题特点,不妨改变一下操作程序,即原不等式两边平方,再由定义去绝对值号,则分析将十分清晰,过程也简洁得多.解:原不等式可化为|log ||log |122+<+a a x x ,将两边平方可得:4414422(log )log (log )|log |a a a a x x x x ++<++,则有:(1)log ,(log )log a a a x x x ≥<⎧⎨⎩⇒≤<01012; (2)log ,log log log a a a a x x x x <+-<⎧⎨⎩⇒-<<03830302. 综上知-<<31log a x ,故当a >1时,解为a x a -<<3;当01<<a 时,解为a x a <<-3 [注]形如()120ax b ax b c c +-+>>和()120ax b ax b c c +++<>的含两个绝对值符号的不等式用平方法并不是很麻烦,可以通过两次平方去掉绝对值化为一般的不等式,所以我们在解题的过程中要选择一个合适的方法进行求解. 例6解不等式 2331x x --≤[分析]解含有双层绝对值符号的不等式的基本思想就是一层一层的去掉绝对值,使不等式化为不含绝对值的一般不等式.常用的方法有等价转化法、零点分段法和平方法,当然利用绝对值不等式的性质求解不等式是一种比较简单的方法,但这种方法比较抽象,一般不容易想到.但本题不可以采用零点分段法,也不能采用平方法,因为平方后既含有x 的项,又含有x 的项,所以我们先把不等式进行等价转化,然后把它看成有关x 的一元二次不等式组进行求解.解: 2331x x --≤ ⇔ 21331x x -≤--≤ ⇔ 22320340x x x x ⎧--≥⎪⎨--≤⎪⎩,,⇔ 22320340x x x x ⎧--≥⎪⎨--≤⎪⎩,,⇔324x x ⎧≥⎪⎨⎪≤⎩, ⇔332244x x x ⎧+≤-≥⎪⎨⎪-≤≤⎩或, ∴原不等式的解集为44⎡⎤--⎢⎥⎣⎦⎣⎦U ,. 类型三:含参数的绝对值不等式的解法解含参数的绝对值不等式的思想就是首先要对参数的情况进行分情况讨论,然后分别在各种情况下对不等式进行求解,最后把各种结果综合在一起就可以得到原不等式的解.另外,有一些题也可通过转化,不进行讨论就可以轻松的解答出来.例7 解关于x 的不等式 34422+>+-m m mx x[分析]本题若从表面现象看当含一个根号的无理根式不等式来解,运算理较大.若化简成3|2|+>-m m x ,则解题过程更简单.在解题过程中需根据绝对值定义对3m +的正负进行讨论.解:原不等式等价于 3|2|+>-m m x当03>+m 即3->m 时,)3(232+-<-+>-m m x m m x 或∴333-<+>m x m x 或当03=+m 即3-=m 时, 0|6|>+x ∴x ≠-6当03<+m 即3-<m 时, x ∈R[注]形如|()f x |<a ,|()f x |>a (a R ∈)型不等式,简捷解法是等价命题法,即:例8 (2004年海南卷)解关于x 的不等式a x x a x x +-->+--1111 [分析]利用)()(x f x f <,无解或0)()()(<⇔>x f x f x f ,即利用绝对值的定义法求解.解:0111111<+--⇔+-->+--a x x a x x a x x a x a x -<-⇔<+-⇔11011 (1) 当0=a 时,原不等式等价于:1011<⇔<-x x (2) 当0>a 时,原不等式等价于:111011<<-⇔<-<-x ax a (3) 当0<a 时,原不等式等价于:01<-x 或ax 11->-1<⇔x 或a x 11-> 综上所述:(1) 当0=a 时,原不等式的解集为:{}1<x x(2) 当0>a 时,原不等式的解集为:⎭⎬⎫⎩⎨⎧<<-111x a x (3) 当0<a 时,原不等式的解集为:⎭⎬⎫⎩⎨⎧-><a x x x 111或 类型四:含参绝对值不等式有解、解集为空与恒成立问题 例9 (2010高考安徽卷)不等式a a x x 3132-≤--+对任意的实数恒成立,则实数a 的取值范围是( )A .(][)+∞-∞-,41,Y B.(][)+∞-∞-,52,YC.[]2,1D.(][)+∞-∞-,21,Y[分析]要使a a x x 3132-≤--+对任意实数x 恒成立,只要|x +3|-|x -1|的最大值小于或等于23a a -.方法一:形如使,x m x n c x m x n c ---≤-+-≤恒成立型不等式.可利用绝对值三角不等式:b a b a b a +≤±≤-,结合极端性原理即可解得,即:()()()max c x m x n c x m x n x m x n n m ≥---⇔≥---=---=-;()()()m n n x m x n x m x c n x m x c -=---=---≤⇔-+-≤min ; 解:设函数()()41313)(=--+≤--+=x x x x x f ,所以4)(max =x f 而不等式a a x x 3132-≤--+对任意的实数x 恒成立.故41432≥-≤⇒≥-a a a a 或,故选择A方法二:因|x +3|的几何意义为数轴上点x 到-3的距离,|x -1|的几何意义为数轴上点x 到1的距离,|x +3|-|x -1|的几何意义为数轴上点x 到-3与1的距离的差,其最大值可求.解:根据绝对值的几何意义,设数x ,-3,1在数轴上对应的点分别为P 、A 、B ,则原不等式即求|PA|-|PB|≤23a a -成立∵|AB|=4,即|x +3|-|x -1|≤4故当23a a -≥4时,即41432≥-≤⇒≥-a a a a 或原不等式恒成立[注]⑴. 此题也可把不等式的左边用零点分段的方法改写成分段函数,通过画出图象,观察k 的取值范围,但过程较繁.⑵. 转化思想在解中有很重要的作用,比如:恒成立问题、定义域为R 、有解或解集为空等问题都可转化为求最大、最小值问题.[变式] (2012陕西文理)若存在实数x 使|||1|3x a x -+-≤成立,则实数a 的取值范围是___________.[解析]:1|||1|3a x a x -≤-+-≤,解得:24a -≤≤例10(2012课标文理)已知函数()f x =|||2|x a x ++-.(Ⅰ)当3a =-时,求不等式 ()f x ≥3的解集;(Ⅱ) 若()f x ≤|4|x -的解集包含[1,2],求a 的取值范围.[分析]本题(Ⅱ)有些同学可能会去解()f x ≤|4|x -这个不等式,再分析该不等式的解集与[1,2]的集合关系,结果将问题复杂化.这个问题实际上可转化为不等式()f x ≤|4|x -在[1,2]恒成立的问题而解之.解:(1)当3a =-时,()3323f x x x ≥⇔-+-≥2323x x x ≤⎧⇔⎨-+-≥⎩或23323x x x <<⎧⇔⎨-+-≥⎩或3323x x x ≥⎧⇔⎨-+-≥⎩ 1x ⇔≤或4x ≥(2)原命题()4f x x ⇔≤-在[1,2]上恒成立 24x a x x ⇔++-≤-在[1,2]上恒成立22x a x ⇔--≤≤-在[1,2]上恒成立 30a ⇔-≤≤ 例11(2010全国卷)设函数)(x f =24x - + 1. (Ⅰ)画出函数y=)(x f 的图像:(Ⅱ)若不等式)(x f ≤ax 的解集非空,求a 的取值范围解:(Ⅰ)由于25,2()23,2x x f x x x -+⎧=⎨-≥⎩p 则函数()y f x =的图像如图所示.(Ⅱ)由函数()y f x =与函数y ax =的图像可知,当且仅当12a ≥或2a -p 时,函数()y f x =与函数y ax =的图像有交点.故不等式)(x f ≤a 的解集非空时,a 的取值范围为()1,2,2⎡⎫-∞-⋃∞⎪⎢⎣⎭[注]㈠.此题巧用构造函数法利用数形结合法解第二问,比参变分离法转化为最值问题求解更为简洁,避免了分类讨论的麻烦.㈡.含参绝对值不等式有解、解集为空与恒成立问题的等价转换(函数法): ⑴.()f x a ≤有解()min a f x ⇒≥;()f x a ≤解集为空集()min a f x ⇒<;这两者互补.()f x a ≤恒成立()max a f x ⇒≥.⑵.()f x a <有解()min a f x ⇒>;()f x a <解集为空集()min a f x ⇒≤;这两者互补.()f x a <恒成立()max a f x ⇒>.⑶.()f x a ≥有解()max a f x ⇒≤;()f x a ≥解集为空集()max a f x ⇒>;这两者互补.()f x a ≥恒成立()min a f x ⇒≤.⑷.()f x a >有解()max a f x ⇒<;()f x a >解集为空集()max a f x ⇒≤;这两者互补.()f x a >恒成立()min a f x ⇒≤.类型五 绝对值三角不等式问题例12 已知13)(2+-=x x x f ,1<-a x ,求证:)1(2)()(+<-a a f x f[分析]本题中给定函数)(x f 和条件1<-a x ,注意到要证的式子右边不含x ,因此对条件1<-a x 的使用可有几种选择:(1)直接用;(2)打开绝对值用11+<<-a x a ,替出x ;(3)用绝对值的性质11+<⇒<-≤-a x a x a x 进行替换. 证明:∵13)(2+-=x x x f ,∴13)(2+-=a a a f , ∵1<-a x ,∴1<-≤-a x a x .∴1+<a x , ∴x a a x a f x f -+-=-22)()()())((a x a x a x --+-=)1)((-+-=a x a x 1-+⋅-=a x a x)1(21111+=+++<++<-+<a a a a x a x ,即)1(2)()(+<-a a f x f .[注]这是绝对值和函数的综合题,这类题通常要涉及绝对值及绝对值不等式的性质等综合知识的运用.分析中对条件1<-a x 使用时出现的三种可能是经常碰到的,要结合求证,灵活选用.例13 已知函数f(x)=21x +,a,b ∈R ,且b a ≠,求证|f(a)-f(b)|<|a-b|.[分析]要证|||11|22b a b a -<+-+,考察左边,是否能产生|a-b|. 证明:|f(a)-f(b)|=||||||||11|||11|222222b a b a b a b a b a b a +-⋅+<+++-=+-+||||||||||||b a b a b a b a -=-⋅++≤(其中||122a a a =>+,同理|,|12b b >+∴||||111122b a b a +<+++)[注]⑴.证题时,应注意式子两边代数式的联系,找出它们的共同点是证题成功的第一步.此外,综合运用不等式的性质是证题成功的关键.如在本例中,用到了不等式的传递性,倒数性质,以及“三角形不等式”等等.⑵.本题的背景知识与解析几何有关.函数21x y +=是双曲线,122=-x y 的上支,而||2121x x y y --(即|)()(|ba b f a f --),则表示该图象上任意两点连线的斜率的绝对值,很显然这一斜率的范围是在(-1,1)之间.类型六 含有绝对值的不等式的应用含绝对值的不等式常用来解决一些有关集合、函数、数列、平面向量、解析几何的问题,也用来解决一些实际问题,通常解决这些问题就是根据题意列出含有绝对值符号的不等式,然后解出这个不等式就可以得到问题的答案,解这些不等式的常用的方法就是我们上面所总结的方法.例14 (2004届湖北省黄冈中学综合测试题)已知条件a x p >-|15:|和条件01321:2>+-x x q ,请选取适当的实数a 的值,分别利用所给的两个条件作为A 、B 构造命题:“若A 则B ”,并使得构造的原命题为真命题,而其逆命题为假命题.则这样的一个原命题可以是什么?并说明为什么这一命题是符合要求的命题.[分析]本题为一开放性命题,由于能得到的答案不唯一,使得本题的求解没有固定的模式,考生既能在一般性的推导中找到一个满足条件的a ,也能先猜后证,所找到的实数a 只需满足2151≤-a ,且≥+51a1即可.这种新颖的命题形式有较强的综合性,同时也是对于四个命题考查的一种新尝试,如此命题可以考查学生探究问题、解决问题的能力,符合当今倡导研究性学习的教学方向.解:已知条件p 即a x -<-15,或a x >-15,∴51a x -<,或51ax +>, 已知条件q 即01322>+-x x ,∴21<x ,或1>x ;令4=a ,则p 即53-<x ,或1>x ,此时必有q p ⇒成立,反之不然. 故可以选取的一个实数是4=a ,A 为p ,B 为q ,对应的命题是若p 则q , 由以上过程可知这一命题的原命题为真命题,但它的逆命题为假命题. 例15 已知数列通项公式n n naa a a a 2sin 23sin 22sin 2sin 32++++=Λ对于正整数m 、n ,当n m >时,求证:n n m a a 21<-.[分析]已知数列的通项公式是数列的前n 项和,它的任意两项差还是某个数列的和,再利用不等式n n a a a a a a +++≤+++ΛΛ2121,问题便可解决.证明:∵n m > ∴mn n n m maa n a n a a 2sin 2)2sin(2)1sin(21+++++=-++Λ mn n ma a n a n 2sin 2)2sin(2)1sin(21+++++≤++Λ211)211(21212121121--=+++≤-+++n m n m n n Λ )12110(21)211(21<-<<-=--nm n n m n . [注]⑴.以121+n 为首项,以21为公比,共有n m -项的等比数列的和,误认为共有1--n m 项是常见错误.⑵.弦函数的值域,即1sin ≤α,1cos ≤α,是解本题的关键.⑶.把不等式、三角函数、数列、n 个变量的绝对值不等式问题连在一起,是一个较为典型的综合题目.如果将本题中的正弦改为余弦,不等式同样成立.[高考试题精选] 2011年试题: 一、选择题:1. (2011年高考山东卷理科4)不等式|5||3|10x x -++≥的解集为 (A )[-5.7] (B )[-4,6](C )(,5][7,)-∞-⋃+∞ (D )(,4][6,)-∞-⋃+∞ 【答案】D 【解析】由不等式的几何意义知,式子|3||5|++-x x 表示数轴的点)(x 与点(5)的距离和与点(-3)的距离之和,其距离之和的最小值为8,结合数轴,选项D 正确 二、填空题1. (2011年高考天津卷理科13)已知集合{}1|349,|4,(0,)A x R x x B x R x t t t⎧⎫=∈++-≤=∈=+∈+∞⎨⎬⎩⎭,则集合A B ⋂=________.【答案】{}52|≤≤-∈x R x【解析】∵{}{}54|9|4||3||≤≤-∈=≤-++∈=x R x x x R x A ,()()⎭⎬⎫⎩⎨⎧+∞∈-⨯≥∈=⎭⎬⎫⎩⎨⎧+∞∈-+=∈=,0,6142|,0,614|t t t x R x t t t x R x B {}2|-≥∈=x R x ,∴{}{}{}52|2|54|≤≤-∈=-≥∈≤≤-∈=x R x x R x x R x B A I I .对于实数x ,y ,若11≤-x ,12≤-y ,则12+-y x 的最大值为 .【答案】53. (2011年高考广东卷理科9)不等式130x x +--≥的解集是______. 【解析】}1|{≥x x 。

【高中数学】秒杀秘诀MS01绝对值不等式

【高中数学】秒杀秘诀MS01绝对值不等式

绝对值不等式一、绝对值三角不等式1.定理1:如果a ,b 是实数,则|a +b|≤|a|+|b|,当且仅当ab ≥0时,等号成立.2.定理2:如果a ,b ,c 是实数,则|a -c |≤|a -b |+|b -c |,当且仅当(a -b )(b -c )≥0时,等号成立.二、绝对值不等式的解法1.含绝对值的不等式|x|<a 与|x|>a 的解集不等式a >0a =0a <0|x |<a-a <x <a ∅∅|x |>a x >a 或x <-a x ≠0R(1)|a x +b|≤c ⇔-c ≤a x +b ≤c ;(2)|a x +b|≥c ⇔a x +b ≥c 或a x +b ≤-c .3.|x -a |+|x -b|≥c(c>0)和|x -a |+|x -b |≤c(c>0)型不等式的解法方法一:利用绝对值不等式的几何意义求解,体现了数形结合的思想.方法二:利用“零点分段法”求解,体现了分类讨论的思想;方法三:通过构造函数,利用函数的图像求解,体现了函数与方程的思想.二、绝对值不等式的解法1.含绝对值的不等式|x|<a 与|x|>a 的解集不等式a >0a =0a <0|x |<a -a <x <a ∅∅|x |>a x >a 或x <-a x ≠0R(1)|a x +b|≤c ⇔-c ≤ax +b ≤c ;(2)|a x +b|≥c ⇔ax +b ≥c 或ax +b ≤-c .3.|x -a|+|x -b|≥c(c>0)和|x -a|+|x -b|≤c(c>0)型不等式的解法方法一:利用绝对值不等式的几何意义求解,体现了数形结合的思想.方法二:利用“零点分段法”求解,体现了分类讨论的思想;方法三:通过构造函数,利用函数的图像求解,体现了函数与方程的思想.解:原不等式可化为2x -1≥0,x +(2x -1)<3或2x -1<0,x -(2x -1)<3.解得12≤x <43或-2<x <12.解:(1)证明:f (x )=|x -2|-|x -5|=-3,x ≤2,2x -7,2<x <5,3,x ≥5.当2<x <5时,-3<2x -7<3.所以-3≤f (x )≤3.(2)由(1)可知,当x ≤2时,f (x )≥x 2-8x +15的解集为空集;当2<x <5时,f (x )≥x 2-8x +15的解集为{x |5-3≤x <5};当x ≥5时,f (x )≥x 2-8x +15的解集为{x |5≤x ≤6}.综上,不等式f (x )≥x 2-8x +15的解集为{x |5-3≤x ≤6}.解:由题知,|x -1|+|x -2|≤|a -b |+|a +b ||a |恒成立,故|x -1|+|x -2|不大于|a -b |+|a +b ||a |的最小值.∵|a +b |+|a -b |≥|a +b +a -b |=2|a |,当且仅当(a +b )(a -b )≥0时取等号,∴|a -b |+|a +b ||a |的最小值等于2.∴x 的取值范围即为不等式|x -1|+|x -2|≤2的解.解不等式得12≤x ≤52.式|a|-|b|≤|a -b|≤|a|+|b|,右侧“=”成立的条件是ab≤0,左侧“=”成立的条件是ab≥0且|a|≥|b|.2.|x -a|+|x -b|≥c 表示到数轴上点A(a),B(b)距离之和大于或等于c 的所有点,只要在数轴上确定出具有上述特点的点的位置,就可以得出不等式的解.例4:若不等式|x +1|+|x -2|≥a 对任意x ∈R 恒成立,则a 的取值范围是________.解:由于|x +1|+|x -2|≥|(x +1)-(x -2)|=3,所以只需a≤3即可.若本题条件变为“∃x ∈R 使不等式|x +1|+|x -2|<a 成立为假命题”,求a 的范围.解:由条件知其等价命题为对∀x ∈R ,|x +1|+|x -2|≥a 恒成立,故a≤(|x +1|+|x -2|)min ,又|x +1|+|x -2|≥|(x +1)-(x -2)|=3,∴a≤3.例5:不等式log3(|x -4|+|x +5|)>a 对于一切x ∈R 恒成立,则实数a 的取值范围是________.解:由绝对值的几何意义知:|x -4|+|x +5|≥9,则log3(|x -4|+|x +5|)≥2所以要使不等式log3(|x -4|+|x +5|)>a 对于一切x ∈R 恒成立,则需a<2.例6:某地街道呈现东——西,南——北向的网络状,相邻街距都为1,两街道相交的点称为格点.若以相互垂直的两条街道为轴建立直角坐标系,现有下述格点(-2,2),(3,1),(3,4),(-2,3),(4,5),(6,6)为报刊零售点,请确定一个格点(除零售点外)________为发行站,使6个零售点沿街道到发行站之间的路程的和最短.解:设格点(x ,y)(其中x ,y ∈Z)为发行站,使6个零售点沿街道到发行站之间的路程的和最短,即使(|x +2|+|y -2|+(|x -3|+|y -1|)+(|x -3|+|y -4|)+(|x +2|+|y -3|)+(|x -4|+|y -5|)+(|x -6|+|y -6|)=[(|x +2|+|x -6|)+(|x +2|+|x -4|)+2|x -3|]+[|y -1|+|y -2|+|y -3|+|y -4|+|y -5|+|y -6|]取得最小值的格点(x ,y)(其中x ,y ∈Z).注意到[(|x +2|+|x -6|)+(|x +2|+|x -4|)+2|x -3|]≥|(x +2)-(x -6)|+|(x +2)-(x -4)|+0=14,当且仅当x =3取等号;|y -1|+|y -2|+|y -3|+|y -4|+|y -5|+|y -6|=(|y -1|+|y -6|)+(|y -2|+|y -5|+(|y -3|+|y -4|)≥|(y -1)-(y -6)|+|(y -2)-(y -5)|+|(y -3)-(y -4)|=9,当且仅当y =3或y =4时取等号.因此,应确定格点(3,3)或(3,4)为发行站.又所求格点不能是零售点,所以应确定格点(3,3)为发行站.1.对绝对值三角不等式定理|a|-|b|≤|a±b|≤|a|+|b|中等号成立的条件要深刻理解,特别是用此定理求函数的最值时.2.该定理可以强化为:||a|-|b||≤|a±b|≤|a|+|b|,它经常用于证明含绝对值的不等式.3.对于求y =|x -a|+|x -b|或y =|x +a|-|x -b|型的最值问题利用绝对值三角不等式更简洁、方便.例7:设函数f(x)=|x -a|+3x ,其中a>0.(1)当a =1时,求不等式f(x)≥3x +2的解集;(2)若不等式f(x)≤0的解:(1)当a =1时f(x)≥3x +2可化为|x -1|≥2.由此可得x≥3或x≤-1.故不等式f(x)≥3x +2的解集为{x|x≥3或x≤-1}.(2)由f(x)≤0得|x -a|+3x≤0.此不等式化为不等式组x ≥a ,x -a +3x ≤0,或x ≤a ,a -x +3x ≤0,即x ≥a ,x ≤a 4,或x ≤a ,x ≤-a 2.因为a >0,所以不等式组的解集为{x |x ≤-a 2}.由题设可得-a 2=-1,故a =2.解:当x >1时,原不等式等价于2x <3⇒x <32,∴1<x <32;当-1≤x ≤1时,原不等式等价于x +1-x +1<3,此不等式恒成立,∴-1≤x ≤1;当x <-1时,原不等式等价于-2x <3⇒x >-32,∴-32<x <-1.综上可得:-32<x <32。

绝对值不等式考点与题型归纳

绝对值不等式考点与题型归纳

绝对值不等式考点与题型归纳一、基础知识1.绝对值三角不等式定理1:如果a,b是实数,则|a+b|≤|a|+|b|,当且仅当ab≥0时,等号成立.定理2:如果a,b,c是实数,那么|a-c|≤|a-b|+|b-c|,当且仅当(a-b)(b-c)≥0时,等号成立.↓|a|-|b|≤|a-b|≤|a|+|b|,当且仅当|a|≥|b|且ab≥0时,左边等号成立,当且仅当ab≤0时,右边等号成立.2.绝对值不等式的解法(1)|x|<a与|x|>a型不等式的解法(2)|ax+b|≤c(c>0)和|ax+b|≥c(c>0)型不等式的解法:①|ax+b|≤c⇔-c≤ax+b≤c;②|ax+b|≥c⇔ax+b≥c或ax+b≤-c.|x-a|+|x-b|≥c和|x-a|+|x-b|≤c型不等式的解法及体现数学思想①利用绝对值不等式的几何意义求解,体现了数形结合的思想;②利用“零点分段法”求解,体现了分类讨论的思想;③通过构造函数,利用函数的图象求解,体现了函数与方程的思想.考点一绝对值不等式的解法[典例] (2016·全国卷Ⅰ)已知函数f (x )=|x +1|-|2x -3|.(1)画出y =f (x )的图象; (2)求不等式|f (x )|>1的解集.[解] (1)由题意得f (x )=⎩⎨⎧x -4,x ≤-1,3x -2,-1<x ≤32,-x +4,x >32,故y =f (x )的图象如图所示.(2)由f (x )的函数表达式及图象可知, 当f (x )=1时,可得x =1或x =3;当f (x )=-1时,可得x =13或x =5.故f (x )>1的解集为{x |1<x <3},f (x )<-1的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x <13或x >5. 所以|f (x )|>1的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x <13或1<x <3或x >5.[题组训练]1.解不等式|x +1|+|x -1|≤2. 解:当x <-1时,原不等式可化为-x -1+1-x ≤2, 解得x ≥-1,又因为x <-1,故无解; 当-1≤x ≤1时,原不等式可化为x +1+1-x =2≤2,恒成立; 当x >1时,原不等式可化为x +1+x -1≤2, 解得x ≤1,又因为x >1,故无解;综上,不等式|x +1|+|x -1|≤2的解集为[-1,1]. 2.(2019·沈阳质检)已知函数f (x )=|x -a |+3x ,其中a ∈R . (1)当a =1时,求不等式f (x )≥3x +|2x +1|的解集; (2)若不等式f (x )≤0的解集为{x |x ≤-1},求a 的值. 解:(1)当a =1时,f (x )=|x -1|+3x .法一:由f (x )≥3x +|2x +1|,得|x -1|-|2x +1|≥0, 当x >1时,x -1-(2x +1)≥0,得x ≤-2,无解; 当-12≤x ≤1时,1-x -(2x +1)≥0,得-12≤x ≤0;当x <-12时,1-x -(-2x -1)≥0,得-2≤x <-12.∴不等式的解集为{x |-2≤x ≤0}.法二:由f (x )≥3x +|2x +1|,得|x -1|≥|2x +1|, 两边平方,化简整理得x 2+2x ≤0, 解得-2≤x ≤0,∴不等式的解集为{x |-2≤x ≤0}.(2)由|x -a |+3x ≤0,可得⎩⎪⎨⎪⎧ x ≥a ,4x -a ≤0或⎩⎪⎨⎪⎧x <a ,2x +a ≤0,即⎩⎪⎨⎪⎧ x ≥a ,x ≤a 4或⎩⎪⎨⎪⎧x <a ,x ≤-a 2.当a >0时,不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x ≤-a 2. 由-a2=-1,得a =2.当a =0时,不等式的解集为{x |x ≤0},不合题意.当a <0时,不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x ≤a 4. 由a4=-1,得a =-4. 综上,a =2或a =-4.考点二 绝对值不等式性质的应用[典例] (2019·湖北五校联考)已知函数f (x )=|2x -1|,x ∈R . (1)解不等式f (x )<|x |+1;(2)若对x ,y ∈R ,有|x -y -1|≤13,|2y +1|≤16,求证:f (x )<1.[解] (1)∵f (x )<|x |+1,∴|2x -1|<|x |+1,即⎩⎪⎨⎪⎧ x ≥12,2x -1<x +1或⎩⎪⎨⎪⎧0<x <12,1-2x <x +1或⎩⎪⎨⎪⎧x ≤0,1-2x <-x +1,得12≤x <2或0<x <12或无解. 故不等式f (x )<|x |+1的解集为{x |0<x <2}.(2)证明:f (x )=|2x -1|=|2(x -y -1)+(2y +1)|≤|2(x -y -1)|+|2y +1|=2|x -y -1|+|2y +1|≤2×13+16=56<1.故不等式f (x )<1得证.[解题技法] 绝对值不等式性质的应用利用不等式|a +b |≤|a |+|b |(a ,b ∈R )和|a -b |≤|a -c |+|c -b |(a ,b ∈R),通过确定适当的a ,b ,利用整体思想或使函数、不等式中不含变量,可以求最值或证明不等式.[题组训练]1.求函数f (x )=|x +2 019|-|x -2 018|的最大值.解:因为f (x )=|x +2 019|-|x -2 018|≤|x +2 019-x +2 018|=4 037, 所以函数f (x )=|x +2 019|-|x -2 018|的最大值为4 037. 2.若x ∈[-1,1],|y |≤16,|z |≤19,求证:|x +2y -3z |≤53.证明:因为x ∈[-1,1],|y |≤16,|z |≤19,所以|x +2y -3z |≤|x |+2|y |+3|z |≤1+2×16+3×19=53,所以|x +2y -3z |≤53成立.考点三 绝对值不等式的综合应用[典例] (2018·合肥质检)已知函数f (x )=|2x -1|. (1)解关于x 的不等式f (x )-f (x +1)≤1;(2)若关于x 的不等式f (x )<m -f (x +1)的解集不是空集,求m 的取值范围. [解] (1)f (x )-f (x +1)≤1⇔|2x -1|-|2x +1|≤1,则⎩⎪⎨⎪⎧ x ≥12,2x -1-2x -1≤1或⎩⎪⎨⎪⎧ -12<x <12,1-2x -2x -1≤1或⎩⎪⎨⎪⎧x ≤-12,1-2x +2x +1≤1, 解得x ≥12或-14≤x <12,即x ≥-14,所以原不等式的解集为⎣⎡⎭⎫-14,+∞. (2)由条件知,不等式|2x -1|+|2x +1|<m 有解, 则m >(|2x -1|+|2x +1|)min 即可.由于|2x -1|+|2x +1|=|1-2x |+|2x +1|≥|1-2x +(2x +1)|=2,当且仅当(1-2x )(2x +1)≥0,即x ∈⎣⎡⎦⎤-12,12时等号成立,故m >2.所以m 的取值范围是(2,+∞). [解题技法] 两招解不等式问题中的含参问题 (1)转化①把存在性问题转化为求最值问题;②不等式的解集为R 是指不等式的恒成立问题;③不等式的解集为∅的对立面也是不等式的恒成立问题,此类问题都可转化为最值问题,即f (x )<a 恒成立⇔a >f (x )max ,f (x )>a 恒成立⇔a <f (x )min .(2)求最值求含绝对值的函数最值时,常用的方法有三种: ①利用绝对值的几何意义;②利用绝对值三角不等式,即|a |+|b |≥|a ±b |≥||a |-|b ||; ③利用零点分区间法. [题组训练]1.(2018·全国卷Ⅱ)设函数f (x )=5-|x +a |-|x -2|. (1)当a =1时,求不等式f (x )≥0的解集; (2)若f (x )≤1,求a 的取值范围.解:(1)当a =1时,f (x )=⎩⎪⎨⎪⎧2x +4,x <-1,2,-1≤x ≤2,-2x +6,x >2.当x <-1时,由2x +4≥0,解得-2≤x <-1, 当-1≤x ≤2时,显然满足题意, 当x >2时,由-2x +6≥0,解得2<x ≤3, 故f (x )≥0的解集为{x |-2≤x ≤3}. (2)f (x )≤1等价于|x +a |+|x -2|≥4.而|x +a |+|x -2|≥|a +2|,且当x =2时等号成立. 故f (x )≤1等价于|a +2|≥4. 由|a +2|≥4可得a ≤-6或a ≥2.所以a 的取值范围是(-∞,-6]∪[2,+∞).2.(2018·广东珠海二中期中)已知函数f (x )=|x +m |+|2x -1|(m ∈R ),若关于x 的不等式f (x )≤|2x +1|的解集为A ,且⎣⎡⎦⎤34,2⊆A ,求实数m 的取值范围.解:∵⎣⎡⎦⎤34,2⊆A ,∴当x ∈⎣⎡⎦⎤34,2时,不等式f (x )≤|2x +1|恒成立, 即|x +m |+|2x -1|≤|2x +1|在x ∈⎣⎡⎦⎤34,2上恒成立, ∴|x +m |+2x -1≤2x +1,即|x +m |≤2在x ∈⎣⎡⎦⎤34,2上恒成立, ∴-2≤x +m ≤2,∴-x -2≤m ≤-x +2在x ∈⎣⎡⎦⎤34,2上恒成立, ∴(-x -2)max ≤m ≤(-x +2)min ,∴-114≤m ≤0,故实数m 的取值范围是⎣⎡⎦⎤-114,0. [课时跟踪检测]1.求不等式|2x -1|+|2x +1|≤6的解集.解:原不等式可化为⎩⎪⎨⎪⎧ x <-12,1-2x -2x -1≤6或⎩⎪⎨⎪⎧-12≤x ≤12,1-2x +2x +1≤6或⎩⎪⎨⎪⎧x >12,2x -1+2x +1≤6. 解得-32≤x ≤32,即原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪-32≤x ≤32. 2.已知函数f (x )=|x -4|+|x -a |(a ∈R )的最小值为a . (1)求实数a 的值; (2)解不等式f (x )≤5.解:(1)f (x )=|x -4|+|x -a |≥|a -4|=a , 从而解得a =2.(2)由(1)知,f (x )=|x -4|+|x -2|=⎩⎪⎨⎪⎧-2x +6,x ≤2,2,2<x ≤4,2x -6,x >4.故当x ≤2时,由-2x +6≤5,得12≤x ≤2;当2<x ≤4时,显然不等式成立; 当x >4时,由2x -6≤5,得4<x ≤112,故不等式f (x )≤5的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪12≤x ≤112. 3.(2018·全国卷Ⅰ)已知f (x )=|x +1|-|ax -1|. (1)当a =1时,求不等式f (x )>1的解集;(2)若x ∈(0,1)时不等式f (x )>x 成立,求a 的取值范围. 解:(1)当a =1时,f (x )=|x +1|-|x -1|, 即f (x )=⎩⎪⎨⎪⎧-2,x ≤-1,2x ,-1<x <1,2,x ≥1.故不等式f (x )>1的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x >12.(2)当x ∈(0,1)时|x +1|-|ax -1|>x 成立等价于当x ∈(0,1)时|ax -1|<1成立. 若a ≤0,则当x ∈(0,1)时,|ax -1|≥1;若a >0,则|ax -1|<1的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪0<x <2a , 所以2a ≥1,故0<a ≤2.综上,a 的取值范围为(0,2]. 4.设函数f (x )=|3x -1|+ax +3. (1)若a =1,解不等式f (x )≤4;(2)若f (x )有最小值,求实数a 的取值范围. 解:(1)当a =1时,f (x )=|3x -1|+x +3≤4,即|3x -1|≤1-x ,x -1≤3x -1≤1-x ,解得0≤x ≤12,所以f (x )≤4的解集为⎣⎡⎦⎤0,12. (2)因为f (x )=⎩⎨⎧(3+a )x +2,x ≥13,(a -3)x +4,x <13,所以f (x )有最小值的充要条件为⎩⎪⎨⎪⎧a +3≥0,a -3≤0,解得-3≤a ≤3,即实数a 的取值范围是[-3,3].5.(2019·贵阳适应性考试)已知函数f (x )=|x -2|-|x +1|. (1)解不等式f (x )>-x ;(2)若关于x 的不等式f (x )≤a 2-2a 的解集为R ,求实数a 的取值范围. 解:(1)原不等式等价于f (x )+x >0,不等式f (x )+x >0可化为|x -2|+x >|x +1|, 当x <-1时,-(x -2)+x >-(x +1),解得x >-3,即-3<x <-1; 当-1≤x ≤2时,-(x -2)+x >x +1,解得x <1,即-1≤x <1; 当x >2时,x -2+x >x +1,解得x >3,即x >3,综上所述,不等式f (x )+x >0的解集为{x |-3<x <1或x >3}. (2)由不等式f (x )≤a 2-2a 可得|x -2|-|x +1|≤a 2-2a ,∵|x -2|-|x +1|≤|x -2-x -1|=3,当且仅当x ∈(-∞,-1]时等号成立, ∴a 2-2a ≥3,即a 2-2a -3≥0,解得a ≤-1或a ≥3. ∴实数a 的取值范围为(-∞,-1]∪[3,+∞). 6.已知函数f (x )=|x -a |+|x +1|.(1)若a =2,求不等式f (x )>x +2的解集;(2)如果关于x 的不等式f (x )<2的解集不是空集,求实数a 的取值范围. 解:(1)当a =2时,f (x )=⎩⎪⎨⎪⎧-2x +1,x <-1,3,-1≤x <2,2x -1,x ≥2,不等式f (x )>x +2等价于⎩⎪⎨⎪⎧ x <-1,-2x +1>x +2或⎩⎪⎨⎪⎧ -1≤x <2,3>x +2或⎩⎪⎨⎪⎧x ≥2,2x -1>x +2,解得x <1或x >3,故原不等式的解集为{x |x <1或x >3}.(2)∵f (x )=|x -a |+|x +1|≥|(x -a )-(x +1)|=|a +1|,当(x -a )(x +1)≤0时取等号. ∴若关于x 的不等式f (x )<2的解集不是空集,只需|a +1|<2, 解得-3<a <1,即实数a 的取值范围是(-3,1). 7.已知函数f (x )=|2x -a |+a .(1)当a =2时,求不等式f (x )≤6的解集;(2)设函数g (x )=|2x -1|.当x ∈R 时,f (x )+g (x )≥3,求a 的取值范围. 解:(1)当a =2时,f (x )=|2x -2|+2. 解不等式|2x -2|+2≤6,得-1≤x ≤3. 因此f (x )≤6的解集为{x |-1≤x ≤3}.(2)当x ∈R 时,f (x )+g (x )=|2x -a |+a +|1-2x |≥3, 即⎪⎪⎪⎪x -a 2+⎪⎪⎪⎪12-x ≥3-a 2. 又⎝⎛⎭⎫⎪⎪⎪⎪x -a 2+⎪⎪⎪⎪12-x min =⎪⎪⎪⎪12-a 2, 所以⎪⎪⎪⎪12-a 2≥3-a 2,解得a ≥2.所以a 的取值范围是[2,+∞).8.(2018·福州质检)设函数f (x )=|x -1|,x ∈R . (1)求不等式f (x )≤3-f (x -1)的解集;(2)已知关于x 的不等式f (x )≤f (x +1)-|x -a |的解集为M ,若⎝⎛⎭⎫1,32⊆M ,求实数a 的取值范围.解:(1)因为f (x )≤3-f (x -1),所以|x -1|≤3-|x -2|⇔|x -1|+|x -2|≤3⇔⎩⎪⎨⎪⎧x <1,3-2x ≤3或⎩⎨⎧1≤x ≤2,1≤3或⎩⎪⎨⎪⎧x >2,2x -3≤3, 解得0≤x <1或1≤x ≤2或2<x ≤3,所以0≤x ≤3,故不等式f (x )≤3-f (x -1)的解集为[0,3].(2)因为⎝⎛⎭⎫1,32⊆M , 所以当x ∈⎝⎛⎭⎫1,32时,f (x )≤f (x +1)-|x -a |恒成立, 而f (x )≤f (x +1)-|x -a |⇔|x -1|-|x |+|x -a |≤0⇔|x -a |≤|x |-|x -1|,因为x ∈⎝⎛⎭⎫1,32,所以|x -a |≤1,即x -1≤a ≤x +1, 由题意,知x -1≤a ≤x +1对于任意的x ∈⎝⎛⎭⎫1,32恒成立, 所以12≤a ≤2,故实数a 的取值范围为⎣⎡⎦⎤12,2.。

绝对值三角不等式的解法技巧和注意事项

绝对值三角不等式的解法技巧和注意事项

绝对值三角不等式的解法技巧和注意事项
绝对值三角不等式是高中数学中常见的一类不等式,它的解法技巧和注意事项如下。

解法技巧:
1. 分析绝对值的取值范围:对于绝对值不等式|f(x)| < a,首先需要确定f(x)的取值范围。

根据绝对值的定义,当f(x)的取值在-a 和a之间时,不等式成立。

2. 分类讨论:根据f(x)的取值范围进行分类讨论,将不等式分为多个情况进行分析。

例如,当f(x) > 0时,|f(x)| = f(x);当f(x) < 0时,|f(x)| = -f(x)。

根据不同情况,构建等式或不等式进行求解。

3. 利用绝对值性质简化不等式:绝对值有一些基本的性质,如|a+b| ≤ |a| + |b|和|a-b| ≥ ||a| - |b||。

在解决绝对值三角不等式时,可以通过利用这些性质将复杂的不等式简化为更简单的形式。

注意事项:
1. 确定变量的定义域:在解决绝对值三角不等式时,需要考虑变量的取值范围,即定义域。

根据函数的定义域,确定绝对值的取值范围,从而确定不等式的解集。

2. 注意绝对值的符号:绝对值的结果总是非负数,即|a| ≥ 0。

在解决绝对值三角不等式时,需要根据不等式的符号确定绝对值的符号,避免出现不符合实际情况的解。

3. 将不等式化为关于绝对值的形式:有时候,需要将不等式转化为关于绝对值的形式,例如将|x+a| -b。

通过求解这两个不等式得到更精确的解集。

绝对值三角不等式的解法技巧和注意事项上述所述,可以帮助我们更好地理解和解决这类不等式问题。

绝对值三角不等式

绝对值三角不等式

a ,a>0 1.绝对值的定义: |a|= 0 ,a=0
-a ,a<0 2.绝对值的几何意义:
|a|
A
0
a
实数a绝对值|a|表示 数轴上坐标为A的点 到原点的距离.
|a-b|
A
B
a
b
实数a,b之差的绝对值 |a-b|,表示它们在数轴上 对应的A,B之间的距离.
3.绝对值的运算性质:
a |a|
a2 a , ab a b , | b | | b |
探究
设a, b为实数, 你能比较 a b 与之a 间 的b 大
小关系吗?
当ab>0时,a b a b 当ab<0时,a b a b 当ab=0时,a b a b
ab a b
定理1 如果a,b是实数,则 a b a b
当且仅当 ab 时0,等号成立。
你能解释它的几何意义吗?
绝对值不等式
1、绝对值三角不等式 2、绝对值不等式的解法
1、绝对值三角不等式
在数轴上,
a 的几何意义 表示点A到原点的距离 a b 的几何意义 表示数轴上A,B两点之间的距离
a b 的几何意义 表示数轴上A,B’( B与B’关
于原点对称)两点之间的距离
a A
0
a
x
ab
ab
B’
A
B
-b
a
O
bx
当向量 a, 不b 共线时,
ab a b
探究:当向量 a, b共线
时,又怎样的结论?
同向: a b a b 反向: a b a b
ห้องสมุดไป่ตู้
y
ab b
Oa
x
ab a b

绝对值不等式复习

绝对值不等式复习


.
(2)|ax+b|≥c⇔ ax+b≥c或ax+b≤-c
(3)|x-a|+|x-b|≥c(c>0)和|x-a|+|x-b|≤c(c>0)型不等式的解
法:
方法一:利用绝对值不等式的几何意义求解,体现了数形结 合的思想;
方法二:利用“零点分段法”求解,体现了分类讨论的思想;
方法三:通过构造函数,利用函数的图象求解,体现了函数 与方程的思想.
1.已知函数 f(x)=|x-8|-|x-4|.
(1)作出函数y=f(x)的图象;
(2)解不等式|x-8|-|x-4|>2.
x≤4, 4, 解:(1)f(x)=-2x+12, 4<x≤8, -4, x>8, 图象如下:
(2)不等式|x-8|-|x-4|>2,即 f(x)>2. 由-2x+12=2,得 x=5. 由函数 f(x)图象可知,原不等式的解集为(-∞,5).
3.设函数 f(x)=x2-2x,实数 a 满足|x-a|<1. 求证:|f(x)-f(a)|<2|a|+3.
证明:法一:∵f(x)=x2-2x, ∴|f(x)-f(a)|=|x2-2x-a2+2a| =|(x-a)· (x+a-2)| =|x-a||x+a-2|<|x+a-2| =|(x-a)+2a-2|
法二:因为|2x+1|+|2x-3|≥|(2x+1)-(2x-3)|=4. 所以 f(x)min=4+a, 要使 f(x)≥3a2 对一切实数 x 恒成立,只要 4+a≥3a2,
4 4 解得-1≤a≤ .所以 a 的取值范围为-1,3. 3
对于求 y=|x-a|+|x-b|或 y=|x+a|-|x-b|型的最 值问题,利用绝对值不等式的性质更方便.形如 y=|x -a|+|x-b|的函数只有最小值,形如 y=|x-a|-|x-b| 的函数既有最大值又有最小值.

绝对值不等式

绝对值不等式

2.两个等价关系 (1)|x|<a⇔-a<x<a(a >0). (2)|x|>a⇔x<-a或x>a(a >0). 3.一个关键 解绝对值不等式的关键是去掉绝对值符号.
4.一个口诀 解含绝对值的不等式的基本思路可概括为十二字口诀 “找零点,分区间,逐个解,并起来”.
【教材母题变式】
1.已知x,y∈R,且|x+y|≤
当x∈(-∞,-1)时,g(x)单调递减,f(x)单调递增,
且g(-1)=f(-1)=2. 综上所述,f(x)≥g(x)的解集为 [1, 17 1].
2
②依题意得:-x2+ax+4≥2在[-1,1]恒成立.
即x2-ax-2≤0在[-1,1]恒成立.
则只需
12 a
12
•1 2
a 1
解0,得-1≤a≤1.
≤|x-a|+|2a-1|<1+|2a-1|≤1+|2a|+1 =2(|a|+1), 即|f(x)-f(a)|<2(|a|+1).
【技法点拨】 绝对值不等式性质的应用 利用不等式|a+b|≤|a|+|b|(a,b∈R)和|a-b|≤|ac|+|c-b|(a,b∈R),通过确定适当的a,b,利用整体思 想或使函数、不等式中不含变量,可以(1)求最值. (2)证明不等式.
解得x<3,
又因为x<-2,所以x<-2;
(ⅱ)当-2≤x≤ 时1 ,f(x)=1-2x-x-2=-3x-1,
2
令-3x-1>0,解得x<-1 ,
3
又因为-2≤x≤ 1,所以-2≤x<- ; 1

选修4-5第1讲绝对值不等式

选修4-5第1讲绝对值不等式

不等式选作第1讲 绝对值不等式 1.绝对值三角不等式定理1:如果a ,b 是实数,则|a +b |≤|a |+|b |,当且仅当ab ≥0时,等号成立.定理2:如果a ,b ,c 是实数,那么|a -c |≤|a -b |+|b -c |,当且仅当(a -b )(b -c )≥0时,等号成立. 2.绝对值不等式的解法(1)含绝对值的不等式|x |<a 与|x |>a 的解集:(2)|ax +b |①|ax +b |≤c ⇔-c ≤ax +b ≤c ;②|ax +b |≥c ⇔ax +b ≥c 或ax +b ≤-c .考点一__含绝对值不等式的解法________________解不等式|x -1|+|x +2|≥5.[解] 法一:如图,设数轴上与-2,1对应的点分别是A ,B ,则不等式的解就是数轴上到A 、B 两点的距离之和不少于5的点所对应的实数.显然,区间[-2,1]不是不等式的解集.把A 向左移动一个单位到点A 1,此时|A 1A |+|A 1B |=1+4=5.把点B 向右移动一个单位到点B 1,此时|B 1A |+|B 1B |=5,故原不等式的解集为(-∞,-3]∪[2,+∞).法二:原不等式|x -1|+|x +2|≥5⇔⎩⎪⎨⎪⎧x ≤-2,-(x -1)-(x +2)≥5或⎩⎪⎨⎪⎧-2<x <1,-(x -1)+x +2≥5或⎩⎪⎨⎪⎧x ≥1,x -1+x +2≥5, 解得x ≥2或x ≤-3,∴原不等式的解集为(-∞,-3]∪[2,+∞).[规律方法] 形如|x -a |+|x -b |≥c (或≤c )型的不等式主要有三种解法:(1)分段讨论法:利用绝对值号内式子对应方程的根,将数轴分为(-∞,a ],(a ,b ],(b ,+∞)(此处设a <b )三个部分,在每个部分上去掉绝对值号分别列出对应的不等式求解,然后取各个不等式解集的并集. (2)几何法:利用|x -a |+|x -b |>c (c >0)的几何意义:数轴上到点x 1=a 和x 2=b 的距离之和大于c 的全体,|x -a |+|x -b |≥|x -a -(x -b )|=|a -b |.(3)图象法:作出函数y 1=|x -a |+|x -b |和y 2=c 的图象,结合图象求解.1.解不等式|x +3|-|2x -1|<x2+1.解:①当x <-3时,原不等式化为-(x +3)-(1-2x )<x2+1,解得x <10,∴x <-3.②当-3≤x <12时,原不等式化为(x +3)-(1-2x )<x 2+1,解得x <-25,∴-3≤x <-25.③当x ≥12时,原不等式化为(x +3)-(2x -1)<x2+1,解得x >2,∴x >2.综上可知,原不等式的解集为⎩⎨⎧⎭⎬⎫x |x <-25或x >2.考点二__绝对值不等式性质的应用______________确定“|x -a |<m 且|y -a |<m ”是“|x -y |<2m (x ,y ,a ,m ∈R )”的什么条件.[解] ∵|x -y |=|(x -a )-(y -a )|≤|x -a |+|y -a |<m +m =2m , ∴|x -a |<m 且|y -a |<m 是|x -y |<2m 的充分条件.取x =3,y =1,a =-2,m =2.5,则有|x -y |=2<5=2m ,但|x -a |=5,不满足|x -a |<m =2.5, 故|x -a |<m 且|y -a |<m 不是|x -y |<2m 的必要条件.故为充分不必要条件. [规律方法] 两数和与差的绝对值不等式的性质|a |-|b |≤|a ±b |≤|a |+|b |. (1)对绝对值三角不等式定理|a |-|b |≤|a ±b |≤|a |+|b |中等号成立的条件要深刻理解,特别是用此定理求函数的最值时.(2)该定理可强化为||a |-|b ||≤|a ±b |≤|a |+|b |,它经常用于证明含绝对值的不等式.2.若不等式|x +1|+|x -2|≥a 对任意x ∈R 恒成立,求a 的取值范围.解:由于|x +1|+|x -2|≥|(x +1)-(x -2)|=3,所以只需a ≤3即可.故a 的取值范围为(-∞,3]. 考点三__绝对值不等式的综合应用______________(2013·高考辽宁卷)已知函数f (x )=|x -a |,其中a >1.(1)当a =2时,求不等式f (x )≥4-|x -4|的解集;(2)已知关于x 的不等式|f (2x +a )-2f (x )|≤2的解集为{x |1≤x ≤2},求a 的值. [解] (1)当a =2时,f (x )+|x -4|=⎩⎪⎨⎪⎧-2x +6,x ≤2,2,2<x <4,2x -6,x ≥4.当x ≤2时,由f (x )≥4-|x -4|,得-2x +6≥4,解得x ≤1;当2<x <4时,f (x )≥4-|x -4|无解;当x ≥4时,由f (x )≥4-|x -4|,得2x -6≥4,解得x ≥5. 所以f (x )≥4-|x -4|的解集为{x |x ≤1或x ≥5}. (2)记h (x )=f (2x +a )-2f (x ),则h (x )=⎩⎪⎨⎪⎧-2a ,x ≤0,4x -2a ,0<x <a ,2a ,x ≥a .由|h (x )|≤2,解得a -12≤x ≤a +12.又已知|h (x )|≤2的解集为{x |1≤x ≤2},所以⎩⎨⎧a -12=1,a +12=2,于是a =3.[规律方法] 1.研究含有绝对值的函数问题时,根据绝对值的定义,分类讨论去掉绝对值符号,转化为分段函数,然后数形结合解决是常用的思维方法.2.对于求y =|x -a |+|x -b |或y =|x +a |-|x -b |型的最值问题利用绝对值三角不等式更方便.形如y =|x -a |+|x -b |的函数只有最小值,形如y =|x -a |-|x -b |的函数既有最大值又有最小值.3.(2015·唐山市第一次模拟)已知函数f (x )=|2x -a |+a ,a ∈R ,g (x )=|2x -1|.若当x ∈R 时,恒有f (x )+g (x )≥3,求a 的取值范围.解:f (x )+g (x )=|2x -a |+|2x -1|+a ≥|2x -a -2x +1|+a =|a -1|+a , 当且仅当(2x -a )(2x -1)≤0时等号成立.解不等式|a -1|+a ≥3,得a 的取值范围是[2,+∞).1.求不等式|x +3|-|x -2|≥3的解集.解:原不等式等价于⎩⎪⎨⎪⎧x ≤-3,-x -3+x -2≥3或⎩⎪⎨⎪⎧-3<x <2,x +3+x -2≥3或⎩⎪⎨⎪⎧x ≥2,x +3-x +2≥3,解得1≤x <2或x ≥2,故原不等式的解集为{x |x ≥1}. 2.在实数范围内,解不等式||x -2|-1|≤1.解:依题意得-1≤|x -2|-1≤1,即|x -2|≤2,解得0≤x ≤4.故x 的取值范围是[0,4]. 3.(2015·山西省忻州市联考)已知|2x -3|≤1的解集为[m ,n ]. (1)求m +n 的值;(2)若|x -a |<m ,求证:|x |<|a |+1.解:(1)由不等式|2x -3|≤1可化为-1≤2x -3≤1,解得1≤x ≤2,∴m =1,n =2,m +n =3. (2)证明:若|x -a |<1,则|x |=|x -a +a |≤|x -a |+|a |<|a |+1. 4.(2014·高考课标全国卷Ⅱ)设函数f (x )=|1|ax ++|x -a |(a >0). (1)证明:f (x )≥2;(2)若f (3)<5,求a 的取值范围. 解:(1)证明:由a >0,有f (x )=|1|a x ++|x -a |≥|)(1|a x ax --+=1a +a ≥2.所以f (x )≥2. (2)f (3)=|13|a++|3-a |. 当a >3时,f (3)=a +1a ,由f (3)<5,得3<a <5+212.当0<a ≤3时,f (3)=6-a +1a ,由f (3)<5,得1+52<a ≤3.综上,a 的取值范围是⎝⎛⎭⎪⎫1+52,5+212.5.(2015·大连市模拟)设不等式|x -2|+|3-x |<a (a ∈N *)的解集为A ,且2∈A ,32∉A .(1)求a 的值;(2)求函数f (x )=|x +a |+|x -2|的最小值.解:(1)由题可得⎩⎪⎨⎪⎧a >1a ≤2所以1<a ≤2,因为a ∈N *所以a =2.(2)因为|x +2|+|x -2|≥|(x +2)-(x -2)|=4,所以f (x )的最小值是4. 6.(2015·新乡许昌平顶山调研)已知函数f (x )=|x -1|+|x -a |.若a >1,∀x ∈R ,f (x )+|x -1|≥1,求实数a 的取值范围.解:令F (x )=f (x )+|x -1|,则F (x )=⎩⎪⎨⎪⎧-3x +2+a ,x <1x -2+a ,1≤x <a ,3x -2-a ,x ≥a所以当x =1时,F (x )有最小值F (1)=a -1,只需a -1≥1,解得a ≥2,所以实数a 的取值范围为[2,+∞).1.(2015·辽宁五校协作体联考)已知函数f (x )=|2x -a |+a . (1)若不等式f (x )≤6的解集为{x |-2≤x ≤3},求实数a 的值;(2)在(1)的条件下,若存在实数t ,使f )(2t≤m -f (-t )成立,求实数m 的取值范围.解:(1)由|2x -a |+a ≤6,得|2x -a |≤6-a ,∴a -6≤2x -a ≤6-a ,即a -3≤x ≤3,∴a -3=-2, ∴a =1.(2)∵f )(2t ≤m -f (-t ),∴|t -1|+|2t +1|+2≤m ,令y =|t -1|+|2t +1|+2,则y =⎩⎪⎨⎪⎧-3t +2,t ≤-12,t +4,-12<t <1,3t +2,t ≥1.∴y min =72,∴m ≥72.2.(2013·高考课标全国卷Ⅰ)已知函数f (x )=|2x -1|+|2x +a |,g (x )=x +3.(1)当a =-2时,求不等式f (x )<g (x )的解集;(2)设a >-1,且当x ∈[-a 2,12)时,f (x )≤g (x ),求a 的取值范围.解:(1)当a =-2时,不等式f (x )<g (x )化为|2x -1|+|2x -2|-x -3<0. 设函数y =|2x -1|+|2x -2|-x -3,则y =⎩⎪⎨⎪⎧-5x ,x <12,-x -2,12≤x ≤1,3x -6,x >1,其图象如图所示,由图象可知,当且仅当x ∈(0,2)时,y <0,所以原不等式的解集是{x |0<x <2}.(2)当x ∈[-a 2,12)时,f (x )=1+a ,不等式f (x )≤g (x )化为1+a ≤x +3,所以x ≥a -2对x ∈[-a 2,12)都成立,故-a 2≥a -2,即a ≤43.从而a 的取值范围是(-1,43].3.(2015·云南省统考)已知a 、b 都是实数,a ≠0,f (x )=|x -1|+|x -2|.(1)若f (x )>2,求实数x 的取值范围;(2)若|a +b |+|a -b |≥|a |f (x )对满足条件的所有a 、b 都成立,求实数x 的取值范围. 解:(1)f (x )=⎩⎪⎨⎪⎧3-2x ,x ≤11,1<x ≤2.2x -3,x >2由f (x )>2得⎩⎪⎨⎪⎧x ≤13-2x >2或⎩⎪⎨⎪⎧x >22x -3>2,解得x <12或x >52.∴所求实数x 的取值范围为(-∞,12)∪(52,+∞).(2)由|a +b |+|a -b |≥|a |f (x )且a ≠0得|a +b |+|a -b ||a |≥f (x ).又∵|a +b |+|a -b ||a |≥|a +b +a -b ||a |=2,∴f (x )≤2.∵f (x )>2的解集为{x |x <12或x >52},∴f (x )≤2的解集为{x |12≤x ≤52},∴所求实数x 的取值范围为[12,52].4.已知函数f (x )=|x -4|+|x -a |(a <3)的最小值为2.(1)解关于x 的方程f (x )=a ;(2)若存在x ∈R ,使f (x )-mx ≤1成立,求实数m 的取值范围.解:(1)由f (x )=|x -4|+|x -a |≥|x -4-(x -a )|=|a -4|(当(x -4)(x -a )≤0时取等号),知|a -4|=2,解得a =6(舍去)或a =2.方程f (x )=a 即|x -4|+|x -2|=2,由绝对值的几何意义可知2≤x ≤4.(2)不等式f (x )-mx ≤1即f (x )≤mx +1,由题意知y =f (x )的图象至少有一部分不在直线y =mx +1的上方,作出对应的图象观察可知,m ∈(-∞,-2)∪[14,+∞).。

绝对值不等式总结

绝对值不等式总结

1设函数f(x)中含有绝对值,则(1)绝对值三角不等式定理|a|-|b|≤|a±b|≤|a|+|b|(2)|a+b+c|≤|a|+|b|+|c|.2.f(x)>a有解⇔f(x)max>a.(2)f(x)>a恒成立⇔f(x)min>a.(3)f(x)>a恰在(c,b)上成立⇔c,b是方程f(x)=a的解.3.不等式恰成立问题(1)不等式f(x)>A在区间D上恰成立,等价于不等式f(x)>A的解集为D;(2)不等式f(x)<B在区间D上恰成立,等价于不等式f(x)<B的解集为D.定理1:如果a,b是实数,则|a+b| ≤|a|+|b|,当且仅当ab≥0时,等号成立;定理2:如果a,b,c是实数,那么|a-c|≤|a-b|+|b-c|,当且仅当(a-b)(b-c)≥0时,等号成立.2.绝对值不等式的解法(1)含绝对值的不等式|x|<a与|x|>a的解集(2)|ax+b|≤c(c>0)和|ax+b|≥c(c>0)型不等式的解法①|ax+b|≤c⇔-c≤ax+b≤c;②|ax+b|≥c⇔ax+b≥c或ax+b≤-c.3.|x-a|+|x-b|≥c(c>0)和|x-a|+|x-b|≤c(c>0)型不等式的解法1.若关于x的不等式|a|≥|x+1|+|x-2|,存在实数解,则实数a的取值范围是________.2.不等式3≤|5-2x|<9的解集为()A.[-2,1)∪[4,7)B.(-2,1]∪(4,7]C.(-2,-1]∪[4,7)D.(-2,1]∪[4,7)3.不等式|x-5|+|x+3|≥1的解集是()A.[-5,7]B.[-4,6]C.(-∞,-5]∪[7,+∞)D.(-∞,+∞)4.已知不等式|2x-5|+|2x+1|>ax-1.(1)当a=1时,求不等式的解集;(2)若不等式的解集为R,求a的取值范围.5.已知f(x)=|x+1|-|ax-1|.(1)当a=1时,求不等式f(x)>1的解集;(2)若x∈(0,1)时不等式f(x)>x成立,求a的取值范围.6.设函数f(x)=5-|x+a|-|x-2|.①当a=1时,求不等式f(x)≥0的解集;②若f(x)≤1,求a的取值范围.7. (1)若对于实数x,y有|1-x|≤2,|y+1|≤1,求|2x+3y+1|的最大值.(2)若a≥2,x∈R,证明:|x-1+a|+|x-a|≥3.8.对于任意实数a,b,已知|a-b|≤1,|2a-1|≤1,且恒有|4a-3b+2|≤m,求实数m的取值范围.9.已知函数f(x)=|x+1|-|x-2|.(1)求不等式f(x)≥1的解集;(2)若不等式f(x)≥x2-x+m的解集非空,求m的取值范围.10(1)已知函数f (x )=|x -a |+|x -3a |.①若f (x )的最小值为2,求a 的值;②若对∀x ∈R ,∃a ∈[-1,1],使得不等式m 2-|m |-f (x )<0成立,求实数m 的取值范围.11.已知函数f (x )=|x +1|+|x -3|-m 的定义域为R . (1)求实数m 的取值范围;(2)若m 的最大值为n ,解关于x 的不等式:|x -3|-2x ≤2n -4.12.已知函数f (x )=|x -a |.(1)若不等式f (x )≤3的解集为{x |-1≤x ≤5},求实数a 的值;(2)在(1)的条件下,若f (x )+f (x +5)≥m 对一切实数x 恒成立,求实数m 的取值范13. 已知函数f (x )=|x -a |+|2x -a |(a ∈R ).(1)若f (1)<11,求a 的取值范围;(2)若∀a ∈R ,f (x )≥x 2-x -3恒成立,求x 的取值范围.14.设函数f (x )=|2x +3|+|x -1|.(1)解不等式f (x )>4;(2)若存在x ∈⎣⎡⎦⎤-32,1使不等式a +1>f (x )成立,求实数a 的取值范围. 14.已知函数f (x )=|x -a |+12a(a ≠0).(1)若不等式f (x )-f (x +m )≤1恒成立,求实数m 的最大值; (2)当a <12时,函数g (x )=f (x )+|2x -1|有零点,求实数a 的取值范围. 15..已知函数f (x )=|x -1|+|x -a |.(1)若函数f (x )的值域为[2,+∞),求实数a 的值;(2)若f (2-a )≥f (2),求实数a 的取值范围.16.设函数f (x )=|2x -3|.(1)求不等式f (x )>5-|x +2|的解集;(2)若g (x )=f (x +m )+f (x -m )的最小值为4,求实数m 的值.17..已知函数f (x )=|2x -a |+|x -1|,a ∈R .(1)若不等式f (x )≤2-|x -1|有解,求实数a 的取值范围;(2)当a <2时,函数f (x )的最小值为3,求实数a 的值.18.设函数f (x )=|x -1|,x ∈R . (1)求不等式f (x )≤3-f (x -1)的解集;(2)已知关于x 的不等式f (x )≤f (x +1)-|x -a |的解集为M ,若⎝⎛⎭⎫1,32⊆M ,求实数a 的取值范围. 19.设函数f (x )=⎪⎪⎪⎪x +8m +|x -2m |(m >0).(1)求证:f (x )≥8恒成立; (2)求使得不等式f (1)>10成立的实数m 的取值范围.20.设a ,b 为满足ab <0的实数,那么( )A.|a +b |>|a -b |B.|a +b |<|a -b |C.|a -b |<||a |-|b || D .|a -b |<|a |+|b |21..不等式|2x -a |<b 的解集为{x |-1<x <4},则a +b 的值为( )A.-2B.2C.8D.-822.设函数f (x )=x 2-x -15,且|x -a |<1.(1)解不等式|f (x )|>5.(2)求证:|f (x )-f (a )|<2(|a |+1).23.已知函数f (x )=-x 2+ax +4,g (x )=|x +1|+|x -1|.(1)当a =1时,求不等式f (x )≥g (x )的解集;(2)若不等式f (x )≥g (x )的解集包含[-1,1],求a 的取值范围24.已知函数f (x )=|x -1|+|x -a |.(1)若函数f (x )的值域为[2,+∞),求实数a 的值;(2)若f (2-a )≥f (2),求实数a 的取值范围.25.设函数f(x)=|x-3|,g(x)=|x-2|.(1)解不等式f(x)+g(x)<2;(2)对于实数x,y,若f(x)≤1,g(y)≤1,证明:|x-2y+1|≤3.。

选修4-5 不等式选讲 第一节 绝对值不等式

选修4-5  不等式选讲 第一节 绝对值不等式

第一节绝对值不等式1.绝对值三角不等式定理1:如果a,b是实数,则|a+b|≤|a|+|b|,当且仅当ab≥0时,等号成立.定理2:如果a,b,c是实数,那么|a-c|≤|a-b|+|b-c|,当且仅当(a-b)(b-c)≥0时,等号成立.2.绝对值不等式的解法(1)含绝对值的不等式|x|<a与|x|>a的解集(2)|ax+①|ax+b|≤c⇔-c≤ax+b≤c;②|ax+b|≥c⇔ax+b≥c或ax+b≤-c.(3)|x-a|+|x-b|≥c(c>0)和|x-a|+|x-b|≤c(c>0)型不等式的解法法一:利用绝对值不等式的几何意义求解,体现了数形结合的思想. 法二:利用“零点分段法”求解,体现了分类计论的思想;法三:通过构造函数,利用函数的图象求解,体现了函数与方程的思想.1.不等式|x -2|>x -2的解集是________. 解析:原不等式同解于x -2<0,即x <2. 答案:x <22.已知|x -a |<b 的解集为{x |2<x <4},则实数a 等于________. 解析:由|x -a |<b 得a -b <x <a +b ,由已知得⎩⎪⎨⎪⎧a -b =2,a +b =4,解得a =3,b =1.答案:33.若不等式|8x +9|<7和不等式ax 2+bx >2的解集相等,则实数a 、b 的值分别为________.解析:据题意可得|8x +9|<7⇒-2<x <-14,故由{x |-2<x <-14}是二次不等式的解集可知x 1=-2,x 2=-14是一元二次方程ax 2+bx -2=0的两根,根据根与系数关系可知x 1x 2=-2a =12⇒a =-4,x 1+x 2=-b a =-94⇒b =-9.答案:a =-4,b =-94.不等式|2x -1|<3的解集为________. 解析:原不等式可化为-3<2x -1<3, 解得-1<x <2.故所求解集为{x |-1<x <2}. 答案:{x |-1<x <2}5.(2011年陕西)若关于x 的不等式|a |≥|x +1|+|x -2|存在实数解,则实数a 的取值范围是______________.解析:令y =|x +1|+|x -2|,由题意知应|a |≥y min ,而y =|x +1|+|x -2|≥|x +1-x +2|=3,∴a ≥3或a ≤-3.答案:(-∞,-3]∪[3,+∞)例1 解不等式|x -1|+|x +2|<5.【解析】 法一:分别求|x -1|,|x +2|的零点,即1,-2. 由-2,1把数轴分成三部分:x <-2,-2≤x ≤1,x >1. 当x <-2时,原不等式即1-x -2-x <5, 解得-3<x <-2;当-2≤x ≤1时,原不等式即1-x +2+x <5, 因为3<5,恒成立,即-2≤x ≤1; 当x >1时,原不等式即x -1+2+x <5, 解得1<x <2.综上,原不等式的解集为{x |-3<x <2}.法二:不等式|x -1|+|x +2|<5的几何意义为数轴上到-2,1两个点的距离之和小于5的点组成的集合,而-2,1两个端点之间的距离为3,由于分布在-2,1以外的点到-2,1的距离在-2,1外部的距离要计算两次,而在-2,1内部的距离则只计算一次,因此只要找出-2左边到-2的距离等于5-32=1的点-3,以及1右边到1的距离等于5-32=1的点2,这样就得到原不等式的解集为{x |-3<x <2}.【点评】 含绝对值的不等式的解法应想法去掉绝对值符号,转化为不含绝对值的方法求解.其方法有:(1)利用公式或平方法转化;(2)利用绝对值的定义转化;(3)利用数形结合思想转化;(4)利用“零点分段法”等.1.(2011年课标全国)设函数f (x )=|x -a |+3x ,其中a >0. (1)当a =1时,求不等式f (x )≥3x +2的解集; (2)若不等式f (x )≤0的解集为{x |x ≤-1},求a 的值. 解析:(1)当a =1时,f (x )≥3x +2 可化为|x -1|≥2. 由此可得x ≥3或x ≤-1.故不等式f (x )≥3x +2的解集为{x |x ≥3或x ≤-1}. (2)由f (x )≤0得|x -a |+3x ≤0. 此不等式化为不等式组⎩⎪⎨⎪⎧ x ≥a ,x -a +3x ≤0或⎩⎪⎨⎪⎧x ≤a ,a -x +3x ≤0,即⎩⎪⎨⎪⎧ x ≥a ,x ≤a 4或⎩⎪⎨⎪⎧x ≤a ,x ≤-a 2.因为a >0,所以不等式组的解集为⎩⎨⎧⎭⎬⎫x |x ≤-a 2.由题设可得-a2=-1,故a =2.例2 已知函数f (x )=1+x 2,设a ,b ∈R ,且a ≠b , 求证:|f (a )-f (b )|<|a -b |.【证明】 证法一:|f (a )-f (b )|<|a -b | ⇔|1+a 2-1+b 2|<|a -b |⇔(1+a 2-1+b 2)2<(a -b )2⇔2+a 2+b 2-2(1+a 2)(1+b 2)<a 2+b 2-2ab⇔1+ab <(1+a 2)(1+b 2).①当ab ≤-1时,式①显然成立;当ab >-1时,式①⇔(1+ab )2<(1+a 2)(1+b 2) ⇐2ab <a 2+b 2.②∵a ≠b ,∴②式成立,故原不等式成立. 证法二:当a =-b 时,原不等式显然成立; 当a ≠-b 时,∵|1+a 2-1+b 2| =|(1+a 2)-(1+b 2)|1+a 2+1+b 2<|a 2-b 2||a |+|b |≤|(a +b )(a -b )||a +b |=|a -b |,∴原不等式成立.证法三:设x =(1,a ),y =(1,b ),则|x |=1+a 2,|y |=1+b 2,x -y =(0,a -b ),|x -y |=|a -b |,而||x |-|y ||≤|x -y |,∴|1+a 2-1+b 2|≤|a -b |,又a ≠b , 即|f (a )-f (b )|<|a -b |.证法四:设y =1+x 2(x ∈R ),则y =1+x 2表示双曲线y 2-x 2=1上支的部分.其渐近线为y =±x ,设A (a ,f (a )),B (b ,f (b ))为曲线y =1+x 2上两不同的点.则|k AB |<1,即⎪⎪⎪⎪⎪⎪f (b )-f (a )b -a <1.∴|f (a )-f (b )|<|a -b |.【点评】 (1)证法一用的是分析法;(2)证法二是综合法,其证明中用到的技巧有:①分子有理化,②不等式|a |+|b |≥|a +b |,③放缩法;(3)证法三用的是构造向量,利用向量不等式;(4)证法四是数形结合思想.2.(2010年广东卷)设A (x 1,y 1),B (x 2,y 2)是平面直角坐标系xOy 上的两点,现定义由点A 到点B 的一种折线距离ρ(A ,B )为ρ(A ,B )=|x 2-x 1|+|y 2-y 1|.对于平面xOy 上给定的不同的两点A (x 1,y 1),B (x 2,y 2),(1)若点C (x ,y )是平面xOy 上的点,试证明:ρ(A ,C )+ρ(C ,B )≥ρ(A ,B ); (2)在平面xOy 上是否存在点C (x ,y ),同时满足 ①ρ(A ,C )+ρ(C ,B )=ρ(A ,B );②ρ(A ,C )=ρ(C ,B ). 若存在,请求出所有符合条件的点;若不存在,请予以证明. 解析:证明:∵ρ(A ,C )=|x -x 1|+|y -y 1|, ρ(C ,B )=|x 2-x |+|y 2-y |. ρ(A ,B )=|x 2-x 1|+|y 2-y 1|,∴ρ(A ,C )+ρ(C ,B )=|x -x 1|+|y -y 1|+|x 2-x |+|y 2-y | =(|x -x 1|+|x 2-x |)+(|y -y 1|+|y 2-y |) ≥|(x -x 1)+(x 2-x )|+|(y -y 1)+(y 2-y )| =|x 2-x 1|+|y 2-y 1|=ρ(A ,B ).(2)注意到点A (x 1,y 1)与点B (x 2,y 2)不同,下面分三种情形讨论. ①若x 1=x 2,则y 1≠y 2,由条件②得 |x -x 1|+|y -y 1|=|x 2-x |+|y 2-y |, 即|y -y 1|=|y -y 2|,∴y =y 1+y 22.由条件①得|x -x 1|+|y -y 1|+|x 2-x |+|y 2-y |=|x 2-x 1|+|y 2-y 1|.∴2|x -x 1|+12|y 2-y 1|+12|y 2-y 1|=|y 2-y 1|,∴|x -x 1|=0, ∵x =x 1.因此,所求的点C 为(x 1,y 1+y 22)②若y 1=y 2,则x 1≠x 2,类似于①, 可得符合条件的点C 为(x 1+x 22,y 1).③当x 1≠x 2,且y 1≠y 2时,不妨设x 1<x 2.(ⅰ)若y 1<y 2,则由(1)中的证明知,要使条件①成立,当且仅当(x -x 1)(x 2-x )≥0与(y -y 1)(y 2-y )≥0同时成立,故x 1≤x ≤x 2且y 1≤y ≤y 2.从而由条件②,得x +y =12(x 1+x 2+y 1+y 2).此时所求点C 的全体为M =⎩⎨⎧(x ,y )|x +y =12(x 1+x 2+y 1+y 2),x 1≤x ≤x 2}且y 1≤y ≤y 2.(ⅱ)若y 1>y 2,类似地由条件①可得x 1≤x ≤x 2且y 2≤y ≤y 1,从而由条件②得x -y =12(x 1+x 2-y 1-y 2).此时所求点的全体为N =⎩⎨⎧(x ,y )|x -y =12(x 1+x 2-y 1-y 2),x 1≤x ≤x 2}且y 2≤y ≤y 1.例3 设函数f (x )=|x -1|+|x -a |. (1)设a =-1,解不等式f (x )≥3;(2)如果∀x ∈R ,f (x )≥2,求a 的取值范围.【解析】 (1)当a =-1时,f (x )=|x -1|+|x +1|,由f (x )≥3得|x -1|+|x +1|≥3. ①x ≤-1时,不等式化为1-x -1-x ≥3, 即-2x ≥3.不等式组⎩⎪⎨⎪⎧x ≤-1f (x )≥3,的解集为⎝ ⎛⎦⎥⎤-∞,-32. ②当-1<x ≤1时,不等式化为 1-x +x +1≥3,不可能成立.不等式组⎩⎪⎨⎪⎧-1<x ≤1,f (x )≥3的解集为∅.③当x >1时,不等式化为 x -1+x +1≥3,即2x ≥3.不等式组⎩⎪⎨⎪⎧x >1,f (x )≥3的解集为⎣⎡⎭⎫32,+∞. 综上得,f (x )≥3的解集为⎝⎛⎦⎤-∞,-32∪⎣⎡⎭⎫32,+∞. (2)若a =1,f (x )=2|x -1|,不满足题设条件. 若a <1,∴f (x )=⎩⎪⎨⎪⎧-2x +a +1, x ≤a ,1-a , a <x <1,2x -(a +1), x ≥1.即,f (x )的最小值为1-a . 若a >1,∴f (x )=⎩⎪⎨⎪⎧-2x +a +1, x ≤1,a -1, 1<x <a ,2x -(a +1), x ≥a .即,f (x )的最小值为a -1.所以∀x ∈R ,f (x )≥2的充要条件是|a -1|≥2,从而a 的取值范围为(-∞,-1)∪[3,+∞).【点评】 如果一个不等式中含有两个(或两个以上)的绝对值符号,应考虑用零点分段讨论法去掉绝对值符号,这时实质是将原不等式转化为n 个不等式组,把每个不等式组的解求出后,取它们的并集得到原不等式的解集.3.已知函数f (x )=|x -a |.(1)若不等式f (x )≤3的解集为{x |-1≤x ≤5},求实数a 的值;(2)在①的条件下,若f (x )+f (x +5)≥m 对一切实数x 恒成立,求实数m 的取值范围.解析:(1)由f (x )≤3得|x -a |≤3, 解得a -3≤x ≤a +3.又已知不等式f (x )≤3的解集为{x |-1≤x ≤5},所以⎩⎪⎨⎪⎧a -3=-1,a +3=5,解得a =2.(2)法一:当a =2时,f (x )=|x -2|. 设g (x )=f (x )+f (x +5),于是g (x )=|x -2|+|x +3|=⎩⎪⎨⎪⎧-2x -1,x <-3;5,-3≤x ≤2;2x +1,x >2.所以当x <-3时,g (x )>5; 当-3≤x ≤2时,g (x )=5; 当x >2时,g (x )>5. 综上可得,g (x )的最小值为5.从而,若f (x )+f (x +5)≥m ,即g (x )≥m 对一切实数x 恒成立,则m 的取值范围为(-∞,5].法二:当a =2时,f (x )=|x -2|. 设g (x )=f (x )+f (x +5).由|x -2|+|x +3|≥|(x -2)-(x +3)|=5(当且仅当-3≤x ≤2时等号成立)得,g (x )的最小值为5.从而,若f (x )+f (x +5)≥m ,即g (x )≥m 对一切实数x 恒成立,则m 的取值范围为(-∞,5].一、填空题 1.不等式⎪⎪⎪⎪x -2x >x -2x 的解集是________.解析:由绝对值的意义知,原不等式同解于x -2x <0,即x (x -2)<0,∴0<x <2. 答案:(0,2)2.设集合A ={x ||x -a |<1,x ∈R },B ={x ||x -b |>2,x ∈R }.若A ⊆B ,则实数a ,b 必满足________.解析:由|x -a |<1得a -1<x <a +1. 由|x -b |>2得x <b -2或x >b +2.∵A ⊆B ,∴a -1≥b +2或a +1≤b -2, 即a -b ≥3或a -b ≤-3,∴|a -b |≥3. 答案:|a -b |≥33.已知不等式|x -m |+|x |≥1的解集为R ,则实数m 的取值范围是________. 解析:由绝对值不等式的几何意义知|x -m |+|x |≥|(x -m )-x |=|m |,故|m |≥1,∴m ≥1或m ≤-1.答案:(-∞,-1]∪[1,+∞)4.若关于x 的不等式|x +1|+k <x 有解,则实数k 的取值范围是________. 解析:∵|x +1|+k <x , ∴k <x -|x +1|.若不等式有解则需k <(x -|x +1|)max . 设f (x )=x -|x +1|,则f (x )=⎩⎪⎨⎪⎧-1,x ≥-1,2x +1,x <-1.由解析式可以看出f (x )max =-1,∴k <-1. 答案:(-∞,-1)5.已知关于x 的不等式|x -1|+|x +a |≤8的解集不是空集,则a 的最小值是________. 解析:由|x -1|+|x +a |≥|1-x +x +a |=|a +1|知|a +1|≤8,故-9≤a ≤7,因此a 的最小值是-9.答案:-96.若不等式|x -a |+|x -2|≥1对任意实数x 均成立,则实数a 的取值范围为________. 解析:由|x -a |+|x -2|≥|(x -a )-(x -2)|=|a -2|. ∴|a -2|≥1解之得a ≤1或a ≥3. 答案:(-∞,1]∪[3,+∞)7.不等式||x +3|-|x -3||>3的解集为________.解析:由绝对值不等式的含义得到:x 到-3和3的距离之差的绝对值大于3, 结合数轴不难得出x >32或x <-32,故x ∈{x |x >32或x <-32}.答案:{x |x >32或x <-32}8.(2011年江西)对于实数x ,y ,若|x -1|≤1,|y -2|≤1,则|x -2y +1|的最大值为________. 解析:法一:|x -1|≤1⇒0≤x ≤2,|y -2|≤1⇒1≤y ≤3,可得可行域如图(阴影部分).∵|x -2y +1|=5,|x -2y +1|5.其中z =|x -2y +1|5为点(x ,y )到直线x -2y +1=0的距离.当(x ,y )为(0,3)时z 取得最大值|0-2×3+1|5=55. 故|x -2y +1|max =5.法二:|x -2y +1|=|(x -1)-2(y -2)-2|≤|x -1|+2|y -2|+2≤1+2+2=5,当且仅当x =0,y =3时,|x -2y +1|取最大值为5.答案:59.给出下列四个命题:①若log a (a 2+4)≤log a (4a )<0,则a 的取值范围是(1,+∞); ②函数f (x )=log 2(x 2-5x +1)的单调递减区间为(-∞,52);③不等式|x |+|log 2 x |>|x +log 2 x |的解集为(0,1); ④若|a +b |<-c (a ,b ,c ∈R ),则|a |<|b |-c . 以上四个命题中,正确命题的序号为________. 解析:对于①,由于a 2+4≥4a且log a (a 2+4)≤log a (4a ),∴0<a <1,∴①错; 对于②,由x 2-5x +1>0, 得x >5+212或x <5-212,∴f (x )=log 2(x 2-5x +1)的递减区间为 ⎝ ⎛⎭⎪⎫-∞,5-212,故②错; 对于③,必有x >0且log 2 x <0, ∴0<x <1故③正确.对于④,∵|a |-|b |≤|a +b |<-c , ∴|a |<|b |-c ,故④正确. 答案:③④ 三、解答题10.(2011年江苏)解不等式x +|2x -1|<3.解析:法一:原不等式可化为|2x -1|<3-x .∴⎩⎪⎨⎪⎧ 2x -1<3-x 2x -1>x -3,∴⎩⎪⎨⎪⎧ x <43x >-2.∴原不等式的解集是{x |-2<x <43} 法二:原不等式可化为⎩⎪⎨⎪⎧ 2x -1≥0,x +(2x -1)<3或⎩⎪⎨⎪⎧2x -1<0,x -(2x -1)<3. 解得12≤x <43或-2<x <12. 所以原不等式的解集是⎩⎨⎧⎭⎬⎫x |-2<x <43. 11.(2011年福建)设不等式|2x -1|<1的解集为M .(1)求集合M :(2)若a ,b ∈M ,试比较ab +1与a +b 的大小.解析:(1)由|2x -1|<1得-1<2x -1<1,解得0<x <1,所以M ={x |0<x <1}.(2)由(1)和a ,b ∈M 可知0<a <1,0<b <1.所以(ab +1)-(a +b )=(a -1)(b -1)>0,故ab +1>a +b .12.已知二次函数f (x )=x 2+ax +b (a ,b ∈R )的定义域为[-1,1],且|f (x )|的最大值为M .(1)试证明|1+b |≤M ;(2)试证明M ≥12; (3)当M =12时,试求出f (x )的解析式. 解析:证明:(1)∵M ≥|f (-1)|=|1-a +b |,M ≥|f (1)|=|1+a +b |,∴2M ≥|1-a +b |+|1+a +b |≥|(1-a +b )+(1+a +b )|=2|1+b |,∴|1+b | ≤M .(2)证明:依题意,M ≥|f (-1)|,M ≥|f (0)|,M ≥|f (1)|,又|f (-1)|=|1-a +b |,|f (1)|=|1+a +b |,|f (0)|=|b |,∴4M ≥|f (-1)|+2|f (0)|+|f (1)|=|1-a +b |+2|b |+|1+a +b |≥|(1-a +b )-2b +(1+a +b )|=2,∴M ≥12. (3)当M =12时,|f (0)|=|b |≤12,-12≤b ≤12① 同理-12≤1+a +b ≤12② -12≤1-a +b ≤12③ ②+③得-32≤b ≤-12④ 由①④得b =-12,当b =-12时,分别代入②③得⎩⎪⎨⎪⎧ -1≤a ≤00≤a ≤1⇒a =0,因此f (x )=x 2-12.。

绝对值三角不等式

绝对值三角不等式

综合法 : ab a b , 且当且仅当ab 0取等 a2 b2 2ab a2 b2 2 a b (a b)2 a 2 b 2 2 a b (a b)2 ( a b )2 当且仅当ab 0等号成立
绝对值三角不等式:
若 a,b 是实数,则 a b a b a b
oa b ba o
当a 0,b 0时,a b a b 当a 0,b 0时,a b a b
b
oa
ao
b
综上 ab 0时,a b a b ab 0时,a b a b
当a 0,b 0时,a b a b 当a 0,b 0时,a b a b 当a b 0时,a b a b
应用一: 证明不等式成立源自定理2 如果a、b、c是实数,
-
-------那么|a-c|≤|a-b|+|b-c|
-------当且仅当(a-b)(b-c) ≥0时,等号成立.
证明:由绝对值三角不等式
a b b c (a b) (b c) a c
ab bc ac
当且仅当(a b)(b c) 0时等号成立
的点 B 之间的距离.如图:
即,
a b AB a b的几何意义?
关于绝对值还有什么性质呢?
① a a2
a 2 a2
② ab a b , a a ,…… bb
猜想:
① a b 与 a b 之间有什么关系? ② a b 与 a b 之间有什么关系?
在数轴上表示 a 、b 、a b 时需要注意些什么?
rr r r 角形法则,易知 a b ≤ a b .(同向时取等号)
rr
ab
r
rb
a
rr ab
rr ab
推论 1 a1 a2 L an ≤ a1 a2 L an

绝对值不等式的解法与绝对值的三角不等式

绝对值不等式的解法与绝对值的三角不等式

绝对值不等式的解法与绝对值的三角不等式规律方法指导1、解绝对值不等式的基本思路解绝对值不等式的基本思路是去掉绝对值符号,因此如何去掉绝对值符号是解决这类问题的关键。

常利用绝对值的代数意义和几何意义。

2、解绝对值不等式常用的同解变形①|f(x)|>|g(x)|f2(x)>g2(x)②|f(x)|>g(x)f(x)>g(x)或f(x)<-g(x)③|f(x)|<g(x)-g(x)<f(x)<g(x)④含有两个或两个以上绝对值符号的不等式可用“按零点分区间”讨论的方法来脱去绝对值符号去求解;也可以用函数图像法来解决。

3、绝对值三角不等式等号成立的条件:①取等号②取等号③取等号④取等号经典例题透析类型一:含有一个绝对值符号的绝对值不等式的解法1、解下列不等式(1);(2);(3)解析:(1)由原不等式可得,得,∴原不等式的解集是;(2)原不等式可化为,得或整理得,或∴原不等式的解集是;(3)由原不等式可得或整理得或∴原不等式的解集是总结升华:不等式的解集为;不等式的解集为.举一反三:【变式】(2011山东,4)不等式|x-5|+|x+3|≥10的解集是(A)[-5,7] (B)[-4,6](C)(-∞,-5]∪[7,+∞) (D)(-∞,-4]∪[6,+∞)【答案】D2、解不等式|x2+4x-1|<4解析:原不等式-4<x2+4x-1<4-5<x<-3或-1<x<1.即原不等式的解集是(-5,-3)∪(-1,1).举一反三:【变式】解不等式|x2+4x-1|>4.【答案】原不等式的解集是(-∞,-5)∪(-3,-1)∪(1, +∞)3、解不等式1|2x-1|<5.解析:法一:原不等式等价于①或②解①得:1x<3 ;解②得:-2< x 0.∴原不等式的解集为{x | -2< x 0或1x<3}法二:原不等式等价于12x-1<5或–5<2x-1-1即22x<6或–4<2x0.解得1x<3或–2<x0.∴原不等式的解集为{x|-2<x0或1x<3}总结升华:比较两种解法,第二种解法比较简单,在解法二中,去掉绝对值符号的依据是a|x|b a x b或-b x-a(a0).举一反三:【变式1】解不等式:【答案】原不等式的解集是【变式2】解不等式4<|x2-5x|≤6.【答案】原不等式等价于不等式组不等式(1)等价于x2-5x<-4或x2-5x>4不等式(2)等价于-6≤x2-5x≤6利用数轴取不等式(1),(2)的解的交集:∴原不等式的解集为:4、解不等式:|4x-3|>2x+1.思路点拨:关键是去掉绝对值符号。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
求证 2x3y2a3b5
绝对值不等式的解法(一)
2020年6月7日星期日
一、复习回顾
a ,a>0
1.绝对值的定义: |a|= 0 ,a=0
-a ,a<0
2.绝对值的几何意义:
|a|
A
0
a
实数a绝对值|a|表示 数轴上坐标为A的点 到原点的距离.
|a-b|
A
B
a
b
实数a,b之差的绝对值 |a-b|,表示它们在数轴上 对应的A,B之间的距离.
这也是解其他含绝对值不等式的四种常用思路.
探索:不等式|x|<1的解集.
方法一:利用绝对值的几何意义观察
不等式|x|<1的解集表示到原点的距离小于1的点的集合.
-1
0
1
∴不等式|x|<1的解集为{x|-1<x<1}
方法二:利用绝对值的定义去掉绝对值符号,需要分类讨论
①当x≥0时,原不等式可化为x<1, ∴ 0≤x<1
-a
0
a
②不等式|x|>a的解集为{x|x<-a或x>a }
-a
0
a
想一想:如果 a ≤0 ,以上不等式的解集是什么?
例 1 . 解 不 等 式 |3 2 x| 7 . 解 :原 不 等 式 2x37
2 x 3 7 或 2 x 3 7
x2或 x5
原 不 等 式 的 解 集 为 { x |x 2 或 x 5 } .
定理2
1、求证:(1)abab2a
(2) abab2b
2、求证:(1) xaxbab
(2) xaxbab 1.求 x3的x最大9值
2.求 x3的x最9小值
3.若变为|x+1|+|x-2|>k恒成立,则k的取值范围是 4.若变为不等式|x-1|+|x-3|<k的解集为空集,则k的 取值范围是
3、已知 0,xa,yb,
( 2 )fx a ( a 0 ) a fx a
( 3 )f x g ( x ) f x g ( x ) 或 f x g ( x ) ( 4 )fx g ( x ) g ( x ) fx g ( x ) ( 5 )fx g x fx 2 g x 2
x 2 2 x 3 0 或 x 2 4 x 5 0
( x 1 ) ( x 3 ) 0 ,或 ( x 1 ) ( x 5 ) 0
1 x 3 ,或 x 1 ,或 x 5 , 原 不 等 式 的 解 集 为 { x |x 1 , 或 1 x 3 , 或 x 5 } .
3.绝对值的运算性质:
a
a 2 a , ab a b, | b
|
ቤተ መጻሕፍቲ ባይዱ
|a |b
| |
提出问题:
你能看出下面两个不等式的解集吗?
⑴ x 1
⑵ x 1
主要方法有:
法一:利用绝对值的几何意义观察; 法二:利用绝对值的定义去掉绝对值符号,需要分类讨论; 法三:两边同时平方去掉绝对值符号; 法四:利用函数图象观察.
变 式 练 习 : 解 不 等 式 |3 x 2 | 1 . 答 案 :( ,0)U (1 , )
例 2 . 解 不 等 式 |x2 5 x|6 .
解 : 原 不 等 式 6 x 2 5 x 6
x 2
x
2
5x 5x
6 6
xx2 2 5 5xx 6 6 0 0 x12或 xx63
②当x<0时,原不等式可化为-x<1,即x>-1
∴ -1<x<0 综合①②得,原不等式的解集为{x|-1<x<1}
探索:不等式|x|<1的解集.
方法三:两边同时平方去掉绝对值符号.
对原不等式两边平方得x2<1, 即(x+1)(x-1)<0
∴-1<x<1
∴不等式|x|<1的解集为{x|-1<x<1}.
小关系吗?
当ab>0时,ab ab 当ab<0时,ab a b 当ab=0时,ab ab
abab
定理1
如果a,b是实数,则 ab a b
当且仅当 ab 时0,等号成立。
把实数 a,b换成相a量 , b,你能得出什么结果?
你能解释它的几何意义吗?
rr 当向量 a , 不b 共线时,
rr r r ab a b
rr 当向量 a , 共b 线时,
rr r r 同向: ab ab
rr r r 反向: abab
y
rr ab
r b
r
a
O
x
rr r r ab a b
定理1 如果a,b是实数,则 ab a b
定理1的完善
绝对值三角不等式
ababab
ababab
定理1的推广 如果a,b,c是实数,则
(1).abcabc (2).acabbc
1x2 或 3x6 ,
原 不 等 式 的 解 集 为 ( 1 ,2 ) U ( 3 ,6 ) .
变 式 练 习 : 解 不 等 式 1 |3 x 4 | 6 .
答 案 :[10,5)U(1,2] 33 3
解绝对值不等式的思路是转化为等价的不含 绝对值符号的不等式(组),常见的类型有:
( 1 )f x a ( a 0 ) f x a 或 f x a
x 1 ,或 x 5 , 或 1 x 3 , 原 不 等 式 的 解 集 为 { x |x 1 , 或 1 x 3 , 或 x 5 } .
例 3 . 解 不 等 式 |x 2 3 x 4 | x 1 .
解 2:原 不 等 式 x23x4 (x 1 )或 x23x4x 1
例 3 . 解 不 等 式 |x 2 3 x 4 | x 1 .
解 1 : 原 不 等 式 x x 2 2 3 3 x x 4 4 x 0 1 或 x2 ( x2 3 x 3 x 4 4 ) 0 x 1 xx 54或 或 xx 11或 1 1 xx 34
绝对值不等式
1、绝对值三角不等式 2、绝对值不等式的解法
1、绝对值三角不等式
在数轴上,
a 的几何意义 表示点A到原点的距离
a b 的几何意义 表示数轴上A,B两点之间的距离
a b 的几何意义 表示数轴上A,-B两点之间的距

a A
0
a
x
ab
ab
-B
A
B
-b
a
O
b
x
探究
设a, b为实数, 你能比较 ab与之a间b的大
方法四:利用函数图象观察
从函数观点看,不等式|x|<1的解集,是函
数y=|x|的图象位于函数y=1的图象下方的部
分对应的x的取值范围.
y
∴不等式|x|<1的解集为
1 y=1
{x|-1<x<1}
-1 o 1 x
一般结论: 形如|x|<a和|x|>a (a>0)的不等式的解集:
①不等式|x|<a的解集为{x|-a<x<a}
相关文档
最新文档