第十四讲地震波层析成像
地震层析成像原理

地震层析成像原理地震层析成像(Seismic Tomography)是利用地震波在地下传播的波速变化,通过对地震波数据的观测和处理,反演出地下介质的速度结构和构造特征的一种方法。
它是地球物理学中的一项重要研究领域,可以帮助我们深入了解地球内部的构造和演化过程。
地震层析成像的原理基于地震波在不同介质中传播速度不同的特性。
地震波在地下传播时,会受到地下结构的影响,传播速度会发生变化。
当地震波经过不同介质时,它们的传播速度会发生改变,这种改变可以通过对地震波的观测和分析来反演出地下介质的速度结构。
1.数据采集:首先需要在地表布置一定数量的地震台站,用于记录地震波的传播情况。
这些地震台站会同时记录到来的P波(纵波)和S波(横波)的到达时间。
2. 数据处理:利用地震波到达的时间信息,可以通过计算波传播路径的长度来估计地下介质的速度。
传统方法中常使用迭代法(如Gauss-Newton算法)来求解速度模型。
3.反演:根据数据处理得到的波速数据,通过数学反演的方法建立地下速度模型和构造特征。
其中常用的方法包括射线追踪、线性反演、全耦合反演等。
4.分辨率评价:为了评价反演结果的可靠性,需要进行分辨率评价,判断反演结果的可信程度。
常见的评价方法包括主分量分析、模拟能力谱等。
地震层析成像的应用范围非常广泛。
在地质勘探中,通过层析成像可以直接观测到地下的速度结构变化,识别地下的构造和岩性界面,并预测可能存在的矿床等重要资源;在地震地质学中,层析成像可以用来研究地壳的构造和演化过程,例如地震断层的产生和活动等;在地球科学中,利用层析成像可以研究地球内部的动力学过程,了解地球的内部结构和演化历史。
总结起来,地震层析成像通过对地震波传播速度的观测和处理,能够反演出地下介质的速度结构和构造特征。
它是地球物理学中的重要研究方法,对于深入了解地球内部的构造和演化过程具有重要的意义。
地震波层析成像和电磁波层析成像

地震波层析成像和电磁波层析成像地震波层析成像和电磁波层析成像1.地震波CT地震层析成像的主要目标是确定地球内部的精细结构和局部不均匀性。
这不仅可以促进地球科学的发展,而且还可以解决许多地质勘探和矿产资源开发中的难题。
第一个原因是岩石地震波与岩性性质有比较稳定的相关性,易于对地球内部成像,反之,对找水活确定流体性质时,电磁波层析成像较好。
第二个原因是对于主要频段的电磁波,其衰减比地震波大。
对于地址勘探、采矿工程、勘察工程等来说目标提一般为几米到几百米,对应波长为几十米,频率为数十赫兹。
这种的地震波在不松散的岩石中传播为几公里后耍贱一般不超过120dB,接收起来不费力。
反而相应波长的电磁波在岩石中传播几十米后就可能衰减100dB,难以穿透几百米的岩层。
第三个原因是电磁波速度太快,反映波速的到时参数难以测量。
地震波波速为每秒几千米,振幅、到时都易于测量,而且在地震记录上可以区分不同的震相,从而得到丰富地质信息。
1.井间地震波数据的采集方法一般地层观测排列均匀布置在风化层一下,以使提高成像分辨率。
一般采集方法及对应的观测方式有:1.共激发点道集数据采集方法单点激发,多点接收的观测方式采集地震数据。
这种方法比较适用于在震源连续性能较差且接收为多道检波系统的情况下使用。
这种方法有采集快,效率高的特点。
但要求至少有一口井的井深超过目的层且满足目的层覆盖要求。
2.共接收点道集数据采集方法这种方法以移动式多点源激发,单点接收的观测方式采集地震数据。
适合在震源连续激发性能较好且接收器为单级检波器系统情况下使用。
但施工效率不高,也有井深要求。
3.YO-YO道集数据采集这种方法采用激发点和接收点反向移动的观测方式采集地震数据。
要求震源系统具有良好的连续激发性能,获得道集多用于反射波成像。
适合井深不符合透射层析成像要求的目的层成像问题。
4.井间地震连续测井方法这种方法采用激发点和接收点等间距同向移动的观测方式采集地震数据。
工程物探中地震层析成像的研究

工程物探中地震层析成像的研究本文从工程物探的实际出发,首先分析了资料采集的步骤和方法,接着论述了工程物探中地震层析成像的几种方法,其中包括了弯曲射线成像方法、最短路径射线追踪法,最后,本文结合实例分析了地震层析成像技术在工程物探中的具体应用。
标签:工程;物探;地震层析成像一、前言近年来,对地震层析成像的研究不断深入,工程物探中对地震层析成像的应用也越来越广泛,所以,分析工程物探中的地震层析成像非常的有必要,具有很高的研究价值。
二、资料采集层析成象与其它物探方法的最主要区别是要求有各种不同方向的人射射线通过探侧目标,因此要求震源和接收器或者可以旋转,或者可以沿两条平行线移动(称为跨孔方式)。
跨孔方式的层析成象可以利用两条大致平行的巷道或两个钻孔进行施工观测,其中一边安放震源,另一边移动检波器,探测范围在二者之间。
地震层析成象使用的震源可用以下几种:1、炸藥。
在坑道中常用几十克的炸药引爆作震源,放入坑道壁的小孔洞内引爆。
对于有瓦斯的巷道要用专用的防爆装置才不会产生危险。
2、电火花震源。
在钻孔中使用效率较高,对不超过100m的探测间距,要求几万焦耳的能量。
国产的电火花震源可在中国科学院电工所购买。
3、专用的井中震源。
具有定向功能,价格比较昂贵,如美国和日本OYO 公司出产的水枪式井中定向振源,价格都在百万美元以上。
对浅层勘探而言,地矿部物化探所(河北廊坊)研制的晶体声波发生器亦可用于声层析成象。
4、敲击产生震动。
只能用于坑道或堤坝探测,重复性较差。
震源下井时还需绞车和电缆配套。
各种工程地震仪都可用于地震CT的资料采集(如E2401),其动态范围要在100dB以上,频带最好达到1000Hz,记录的格式为SEG—1或SEG—2。
下井观测的方式垂直地震剖面。
三、弯曲射线成像方法直射线的假设只在介质近似均匀情况下成立,已有数值模拟的结果说明当速度差异小于巧多时,直射线反演可以给出较好的近似结果,但工程实际中完整围岩与断层、溶洞等异常体速度差异往往高达50%多以上,这时必须考虑弯曲射线成像方法.设成像区域中速度分布为v(x,y),走时为t,则两者关系用下式表示:(1)若将成像区域剖分成网格,设第j个网格中的慢度为Xj,则对于第i条射线有:(2)其中N为射线数,M为网格数。
地震层析成像之模型参数化

地震层析成像——(一)模型参数化冷独行整理地震层析成像(seismic tomography)是指利用大量地震观测数据反演研究区域三维结构的一种方法。
其原理类似于医学上的CT,但地震层析成像比医学上的CT技术更复杂。
大量数据以及其他许多不定因素,包括存在多种数据误差、解的不唯一性在内的地球内部成像问题。
Aki和Lee[3]以及Aki等[4]利用区域台阵的三维成像,以及Dziewonski等[5]对全球大尺度上地幔速度结构的勾画成为成像研究中开拓性的工作地震层析成像是典型的地球物理反演问题,大多数地震层析成像问题都涉及到以下几个方面:①模型参数化,②正演(射线追踪),③反演,④解的评价。
一、模型参数化成像的目的就是要获得接近实际地下结构的模型,所以在成像前必需要建立模型来描述地层结构,而且选取模型的好坏决定了获得地层结构信息能力的好坏。
过于简化的模型可能使结构中有意义的信息被忽略,复杂的模型可能使反演的不确定性增强,同时可能引入虚假信息。
模型参数化可分为两类。
一类是Tarantola和Nercessian等提出了“不分块”的参数化。
不对模型进行离散化,反演完全在泛函空间中进行,只是在最后计算想要的截面时采取离散化。
由于反演在泛函空间中进行,理论上可以计算空间任何位置上的速度,结果不受离散化的影响,有利于成像的显示。
另一类是离散化的模型参数化。
其优点是数学上容易处理,运算相对简单;缺点是在一般方法中出现的某些简化,在用离散时可能被掩盖掉。
现在通用的大都是离散化的模型参数化,通常采用两种方法来表示地层结构。
一种是使用少量参数确定三维解析函数(如,Dziewonski;Spencer和Gubbins),例如:Woodhouse、Dziewonski[19]和Su等[20]在全球地震层析成像使用球谐展开来表示模型;Burmakov等将速度扰动展开成一定阶数的切比雪夫多项式,以减少未知量个数,提高求解效率;朱露培提出的频谱参数化法,将待求扰动场按其空间频率展开,反演各阶频率系数。
地球内部结构的地震层析成像技术及其应用

地球内部结构的地震层析成像技术及其应用地球内部结构是地球科学中非常重要的研究领域,了解地球内部结构可以帮助我们更好地理解地球的演化历史、地壳运动以及地球上发生的地震等现象。
在地球内部结构的研究中,地震层析成像技术是一种重要的手段,它可以通过地震波的传播路径来推断地下结构的性质和分布。
本文将对地震层析成像技术及其应用进行详细介绍。
地震层析成像技术是基于地震波传播的原理,通过解析地震波经过地球内部不同材料介质时的传播特性,推断出地球内部结构的性质和分布。
在地震层析成像中,地震波是一种机械波,它在地球内部的传播受到不同材料介质的密度、弹性参数等因素的影响。
当地震波经过地球内部的不同材料边界时,会发生折射、反射和散射等现象,这些现象提供了用于成像的可靠信息。
地震层析成像技术的基本原理是通过测量地震波的到达时间和振幅,进行逆问题的求解,从而推断出地球内部的结构信息。
具体而言,地震层析成像分为正问题和逆问题两个步骤。
正问题是指通过给定的地下结构模型,模拟地震波的传播路径和到达时间,计算出地震数据;逆问题则是根据观测到的地震数据和初始地下结构模型,通过反演算法来确定最优的地下结构模型,从而实现地震波的成像。
地震层析成像技术在地球科学研究中有着广泛的应用。
首先,地震层析成像技术可以提供地球内部的三维地质结构信息,帮助我们了解地球的构造和演化历史。
通过地震层析成像,我们可以获得地球内部岩石的密度、速度等物理参数,从而推断出地球内部的物质组成和结构分布。
例如,地震层析成像揭示了地球的外核和内核之间存在着衰减带,这对理解地球内部的热运动和地磁场的生成机制具有重要意义。
其次,地震层析成像技术在勘探地球资源方面也有着重要的应用。
地震勘探是一种常用的地球资源勘探方法,通过地震波的传播和反射特性来探测地球内部岩石层的性质和分布,从而确定储层的位置和特征。
地震层析成像技术可以提供高分辨率的地下成像结果,帮助勘探者准确定位储层,并评估其储量和可采性,从而指导油气勘探开发工作。
地震层析成像

Company Logo
四、应用
广泛应用于内部地球物理和地球动力学、 能源勘探开发、工程和灾害地质、金属矿勘探 等领域。 如:地震层析成像结果从三个方面展示出 地球内部横向不均匀结构(参考文献:地震层 析成像板块构造及地幔演化动力学,2001)
Company Logo
四、应用
首次发现非洲超级地慢柱等大型地慢柱均起源 于核慢边界。 还有一个最重要的结力学对其给出 了很好的解释, 为板块运动的热对流学说提供了 证据。在大洋洋脊、板块消减带、克拉通地区, 地壳和上地慢中的火山、地壳和地慢顶部、造山 带、 断裂区和震源区等地方层析成像技术也都有 大量的应用成果。无论是能源和矿产等资源勘探, 还是地球内部结构及地球动力学研究, 地震层析 成像技术都是有效的、重要的技术之一。
结构以及其它物 性参数
Company Logo
二、分类
研究区域的尺度:全球层析成像、区域层析成像、 局部层析成像; 按所用资料的来源:天然地震层析成像(大尺度深 部横向不均匀性研究)、人工地震测深(主要研究 浅部界面分布); 反演的物性参数:利用地震波走时反演地震波速 度的波速层析成像、利用地震波振幅衰减反演地 震波衰减系数的层析成像;
Company Logo
二、分类
所依据的 理论基础
基于射线方程 的层析成像 基于波动方程 的层析成像
体波(反射波 、折射波)层 析成像
面波层析成 像
射线追踪时所用的地 震波资料的不同
Company Logo
二、分类
基于射线理论, 地震波走时层析成像方法由于 走时具有较高信噪比、无论是柱面波还是球面波走 时的规律都相同等优点, 相对来说发展较早, 技术 方法比较成熟,是目前地震层析成像的主要方法;
地震层析成像方法及其应用研究

感谢观看
2、环境监测:地震层析成像方法也可以应用于环境监测领域。例如,通过 观测地震波在地壳中的传播特征,可以评估地球表面的沉降和隆起状况,监测地 壳运动和地震活动,为环境预警和减灾提供支持。
3、地球科学:地震层析成像方法在地球科学领域的研究中也具有重要意义。 它可以帮助科学家了解地球的内部结构和动力学过程,深化对地球演化历史的认 识。
电阻率法层析成像的原理与方法
电阻率法层析成像基于电阻抗测量技术,通过施加激励信号于研究对象,测 量其内部电学特征,如电阻抗等,并将测量结果转化为图像。具体实验设计包括 选择合适的激励信号、设计测量电路、采集数据及图像处理等步骤。
在物理学领域,电阻率法层析成像被广泛应用于研率的变化,可以推断出材料内部的 导电性能与微观结构。
地震层析成像方法的应用与发展
地震层析成像方法在地球物理领域的应用广泛,主要包括以下几个方面:
1、资源勘探与开发:地震层析成像方法在石油、天然气和地热等资源的勘 探与开发中具有重要作用。通过对地震数据的分析和处理,可以获取地下岩层的 分布、厚度、结构和属性等信息,为资源勘探和开发提供可靠的地质依据。
结论
电阻率法层析成像作为一种无损、非侵入性的成像方法,在物理学、化学、 生物医学等多个领域具有广泛的应用前景。本次演示详细介绍了电阻率法层析成 像的原理、方法及其在各领域的应用,并展望了其未来发展方向。随着技术的不 断进步和应用领域的拓展,电阻率法层析成像将在未来发挥更加重要的作用,为 科学研究与实际应用提供有力支持。
在应用前景方面,地震层析成像方法仍然有很大的发展空间。例如,利用该 方法进行深部矿产资源勘探、地下水污染监测以及地壳运动和地质灾害预警等领 域的应用研究,都具有重要的现实意义和社会价值。
(完整word版)地震层析成像概论

《地震层析成像概论》大作业张义蜜,2012260301272016-01-04目录1简述用于地震走时成像方法中的射线追踪算法及原理。
(1)1.1打靶法 (1)1.1.1近(旁)轴射线追踪 (1)1.1.2完全非线性打靶算法 (2)1.2弯曲(调整)法 (2)1.2.1伪弯曲法 (2)1.2.2其它弯曲算法 (3)1.3基于网格(节点)波前扩展的算法 (4)1.3.1快速行进法(FastMarchingMethod) (5)1.3.2最短路径算法 (6)1.3.3改进型最短路径算法 (8)1.4多次反射与透射波射线追踪 (9)1.4.1分区多步快速行进法(MultistageFMM) (9)1.4.2分区多步不规则最短路径算法(MultstageISPM) (10)1.5球坐标系中MultistageISPM算法原理 (11)1.6多值波前(射线)追踪 (12)2简述用于地震走时成像方法中的反演算法及原理。
(13)2.1反向投影算法 (13)2.1.1代数重建技术(ART) (13)2.1.2同时迭代重建技术(SIRT) (14)2.2梯度法 (14)2.2.1最速下降法 (14)2.2.2高斯-牛顿法 (15)2.2.3阻尼最小二乘法 (15)2.2.4共轭梯度(CG)法 (16)2.3 全局最优化法 (16)2.3.1蒙特卡罗(MonteCarlo)方法 (16)2.3.2遗传(GeneticMethod)方法 (17)2.3.3模拟退火(SimulatedAnnealing)法 (17)3简述用于地方震走时成像方法中的炮检排列(作图)、基本步骤、以及最终目的 (19)3.1炮检排列 (19)3.2基本步骤 (19)3.3最终目的 (19)4如何进行反演解的评价,解得评价在地震成像中的意义如何? (20)4.1分辨率和协方差矩阵 (20)4.2合成实验 (23)5简述采用L1和L2范数下的反演目标函数各自的优缺点,是否可以采用L1/L2范数混合下的反演目标函数,简述如何实现这一混合的反演目标函数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
where p is the radon transform of f(x, y), and is a Dirac Delta Function (an infinite spike
3. AK135 速度模型 Kennett et al. (1995);
Montagner and Kennett (1996).
另外 还有: MC35, STW105, TNA/SNA.模型等
• • 莫霍诺维齐(前南斯拉夫)——莫霍面(壳幔边界) • --地壳与地幔分界面的发现者
• 古登堡(美国)——核幔边界 • --地幔与地核分界面的发现者
at 0 with an integral area of 1) p is also called sinogram, and it is a sine wave when f(x, y) is a point value.
.
Shepp-Logan Phantom (human cerebral)
Present Generation of models: Dense receiver sets, all rotating, great coverage and crossing rays.
Brain Scanning Cool Fact:
According to an earlier report, the best valentine’s gift to your love ones is a freshly taken brainogram. The spots of red shows your love, not your words!
• 莱曼(丹麦,女)—— (内外核边界)
•
--外核与内核分界面的发现者
.
地球一维结构是远远不够的! Plate tectonics
Topography
.
mantle convection
Travel time table from ak135 model
Travel time picks
.
Shearer, 2009
第六章 地震层析成像
.
From IRIS
Seismic waves
• Seismic wave is currently the only effective tool that can penetrate the entire earth
.
1939:
Jeffreys & Bullen
First travel-time tables:JeffreysBullen Seismological Tables 区域地震层. 析成像
大洋中脊 区域地震层. 析成像
俯冲带 区域地震层. 析成像
局部地震层析成像
.
地震层析成像的基础——Radon 变换 Tomo— Greek for “tomos” (body), graphy --- study or subject Where it all began: Radon transform: (Johan Radon, 1917): integral of function over a straight line segment.
3-D variations of Earth’s Structure from Seismic Tomography
Seismic waves in the Earth
Traveltime/waveform
3-D wave speeds
Inverse problem
Researchers at MIT and Harvard, led by Keiti Aki and Adam Dziewonski in late 1970’s and 1980’s, pioneered the technique of se.ismic tomography.
Input
Radon Projected
Recovered (output)
Back projection of the function is a way to solve f() from p()
(“Inversion”):
f ( x , y ) p ( x c y s o ) ) d i , s n
Cunningham & Jurdy, 2000
Broader fan beam, Moving source, fixed receivers, fast moving (1976)
Different “generations” of X-Ray Computed Tomography (angled beams are used to increase resolution). Moral: .good coverage & cross-crossing
PREM模型给出了地球的一维结构,而地球内部三维结构需要更精细的刻画。 地震层析成像方法是给出地球内部三维结构的最重要的方法。 某种意义上说,地震是照亮地球内部的明灯。 地震层析成像方法可以给出:
全球地球结构的横向不均匀性; 典型地球动力学过程的三维结构:俯冲带、地幔柱、大洋中脊等; 小尺度的构造(断层等); 地震分布特征。
0
.
A few of the early medical tomo setups
Parallel beam
Fan beam, Multi-receiver, Moves in big steps
Broader fan beam, Coupled, moving source receivers, fast moving
→ 1D Earth model
Jeffreys-Bullen 1-D Earth Model
.
地球内部结构
PREM一维全球速度模型
1. PREM参考地球模型: Preliminary Reference Earth Model (Dziewonski & Anderson, 1981)
2. IASP91速度模型 (Kennett and Engdahl, 1991)