如果看了这篇文章你还不懂傅里叶变换,那就过来掐死我吧

合集下载

傅里叶分析报告教程(完整版)

傅里叶分析报告教程(完整版)

傅里叶分析之掐死教程(完整版)更新于2014.06.06Heinrich · 6 个月前作者:韩昊知乎:Heinrich 微博:@花生油工人知乎专栏:与时间无关的故事谨以此文献给大连海事大学的吴楠老师,柳晓鸣老师,王新年老师以及张晶泊老师。

转载的同学请保留上面这句话,谢谢。

如果还能保留文章来源就更感激不尽了。

我保证这篇文章和你以前看过的所有文章都不同,这是12年还在果壳的时候写的,但是当时没有来得及写完就出国了……于是拖了两年,嗯,我是拖延症患者……这篇文章的核心思想就是:要让读者在不看任何数学公式的情况下理解傅里叶分析。

傅里叶分析不仅仅是一个数学工具,更是一种可以彻底颠覆一个人以前世界观的思维模式。

但不幸的是,傅里叶分析的公式看起来太复杂了,所以很多大一新生上来就懵圈并从此对它深恶痛绝。

老实说,这么有意思的东西居然成了大学里的杀手课程,不得不归咎于编教材的人实在是太严肃了。

(您把教材写得好玩一点会死吗?会死吗?)所以我一直想写一个有意思的文章来解释傅里叶分析,有可能的话高中生都能看懂的那种。

所以,不管读到这里的您从事何种工作,我保证您都能看懂,并且一定将体会到通过傅里叶分析看到世界另一个样子时的快感。

至于对于已经有一定基础的朋友,也希望不要看到会的地方就急忙往后翻,仔细读一定会有新的发现。

——————————————以上是定场诗——————————————下面进入正题:抱歉,还是要啰嗦一句:其实学习本来就不是易事,我写这篇文章的初衷也是希望大家学习起来更加轻松,充满乐趣。

但是千万!千万不要把这篇文章收藏起来,或是存下地址,心里想着:以后有时间再看。

这样的例子太多了,也许几年后你都没有再打开这个页面。

无论如何,耐下心,读下去。

这篇文章要比读课本要轻松、开心得多……p.s.本文无论是cos还是sin,都统一用“正弦波”(Sine Wave)一词来代表简谐波。

一、什么是频域从我们出生,我们看到的世界都以时间贯穿,股票的走势、人的身高、汽车的轨迹都会随着时间发生改变。

(完整版)从头到尾彻底理解傅里叶变换算法

(完整版)从头到尾彻底理解傅里叶变换算法
这是将频率域的函数F(ω)表示为时间域的函数f(t)的积分形式。 连续傅里叶变换的逆变换(inverse Fourier transform)为:
即将时间域的函数f(t)表示为频率域的函数F(ω)的积分。 一般可称函数f(t)为原函数,而称函数F(ω)为傅里叶变换的像函数,原函数和像函数构成一个傅里叶变换对(transform pair)。 除此之外,还有其它型式的变换对,以下两种型式亦常被使用。在通信或是信号处理方面,常以来代换,而形成新的变换对:
(完整版)从头到尾彻底理解傅里叶变换算法
从头到尾彻底理解傅里叶变换算法、上 从头到尾彻底理解傅里叶变换算法、上 前言 第一部分、DFT 第一章、傅立叶变换的由来 第二章、实数形式离散傅立叶变换(Real DFT) 从头到尾彻底理解傅里叶变换算法、下 第三章、复数 第四章、复数形式离散傅立叶变换 前言: “关于傅立叶变换,无论是书本还是在网上可以很容易找到关于傅立叶变换的描述,但是大都是些故弄玄虚的文章,太过抽象, 尽是一些让人看了就望而生畏的公式的罗列,让人很难能够从感性上得到理解”---dznlong, 那么,到底什么是傅里叶变换算法列?傅里叶变换所涉及到的公式具体有多复杂列? 傅里叶变换(Fourier transform)是一种线性的积分变换。因其基本思想首先由法国学者傅里叶系统地提出,所以以其名字来 命名以示纪念。 哦,傅里叶变换原来就是一种变换而已,只是这种变换是从时间转换为频率的变化。这下,你就知道了,傅里叶就是一种变 换,一种什么变换列?就是一种从时间到频率的变化或其相互转化。 ok,咱们再来总体了解下傅里叶变换,让各位对其有个总体大概的印象,也顺便看看傅里叶变换所涉及到的公式,究竟有多复 杂: 以下就是傅里叶变换的4种变体(摘自,维基百科) 连续傅里叶变换 一般情况下,若“傅里叶变换”一词不加任何限定语,则指的是“连续傅里叶变换”。连续傅里叶变换将平方可积的函数f(t)表示 成复指数函数的积分或级数形式。

傅里叶变换最通俗的理解

傅里叶变换最通俗的理解

傅里叶变换最通俗的理解傅里叶变换是一种数学工具,它可以将一个周期性信号分解成多个不同频率的正弦波,并且可以将非周期性信号转换成一个连续的频谱图。

在信号处理、图像处理、音频处理等领域中,傅里叶变换被广泛应用。

本文将从以下几个方面来解释傅里叶变换的原理和应用。

一、什么是傅里叶级数在介绍傅里叶变换之前,我们需要先了解傅里叶级数。

傅里叶级数是一种将周期性函数表示为无穷多个正弦和余弦函数之和的方法。

具体地说,给定一个周期为T的函数f(t),可以表示为以下形式:f(t) = a0 + Σ(an*cos(nωt) + bn*sin(nωt))其中ω=2π/T,a0、an和bn是常数系数。

这个式子意味着,任何一个周期函数都可以被分解成由不同频率的正弦波组成的和。

这就是傅里叶级数的基本思想。

二、什么是离散时间傅里叶变换离散时间傅里叶变换(Discrete Fourier Transform, DFT)是一种将离散时间序列(例如数字信号)转换为频域表示的方法。

它可以将一个长度为N的离散时间序列x(n)转换成一个长度为N的复数序列X(k),其中k=0,1,...,N-1。

具体地说,DFT可以用以下公式表示:X(k) = Σ(x(n)*exp(-j2πnk/N))其中j是虚数单位,n和k分别是时间和频率的索引。

这个式子意味着,任何一个离散信号都可以被分解成由不同频率的正弦波组成的和。

DFT将原始信号转换成了一组复数表示,其中每个复数表示了对应频率上正弦波和余弦波的振幅和相位。

三、什么是傅里叶变换傅里叶变换(Fourier Transform, FT)是一种将连续时间信号转换为频域表示的方法。

它可以将一个连续时间函数f(t)转换成一个连续频谱函数F(ω),其中ω是角频率。

具体地说,FT可以用以下公式表示:F(ω) = ∫f(t)*exp(-jωt)dt这个式子意味着,任何一个连续信号都可以被分解成由不同角频率的正弦波组成的积分。

傅里叶分析之掐死教程(完整版)

傅里叶分析之掐死教程(完整版)

傅里叶分析之掐死教程(完整版)投递人itwriter发布于2014-06-07 10:50 评论(24)有34667人阅读原文链接[收藏]«»作者:韩昊知乎:Heinrich微博:@花生油工人知乎专栏:与时间无关的故事谨以此文献给大连海事大学的吴楠老师,柳晓鸣老师,王新年老师以及张晶泊老师。

转载的同学请保留上面这句话,谢谢。

如果还能保留文章来源就更感激不尽了。

——更新于,想直接看更新的同学可以直接跳到第四章————我保证这篇文章和你以前看过的所有文章都不同,这是12 年还在果壳的时候写的,但是当时没有来得及写完就出国了……于是拖了两年,嗯,我是拖延症患者……这篇文章的核心思想就是:要让读者在不看任何数学公式的情况下理解傅里叶分析。

傅里叶分析不仅仅是一个数学工具,更是一种可以彻底颠覆一个人以前世界观的思维模式。

但不幸的是,傅里叶分析的公式看起来太复杂了,所以很多大一新生上来就懵圈并从此对它深恶痛绝。

老实说,这么有意思的东西居然成了大学里的杀手课程,不得不归咎于编教材的人实在是太严肃了。

(您把教材写得好玩一点会死吗会死吗)所以我一直想写一个有意思的文章来解释傅里叶分析,有可能的话高中生都能看懂的那种。

所以,不管读到这里的您从事何种工作,我保证您都能看懂,并且一定将体会到通过傅里叶分析看到世界另一个样子时的快感。

至于对于已经有一定基础的朋友,也希望不要看到会的地方就急忙往后翻,仔细读一定会有新的发现。

————以上是定场诗————下面进入正题:抱歉,还是要啰嗦一句:其实学习本来就不是易事,我写这篇文章的初衷也是希望大家学习起来更加轻松,充满乐趣。

但是千万!千万不要把这篇文章收藏起来,或是存下地址,心里想着:以后有时间再看。

这样的例子太多了,也许几年后你都没有再打开这个页面。

无论如何,耐下心,读下去。

这篇文章要比读课本要轻松、开心得多…….本文无论是cos 还是sin,都统一用“正弦波”(Sine Wave)一词来代表简谐波。

傅里叶变换的简单理解

傅里叶变换的简单理解

傅⾥叶变换的简单理解⼀,信号与系统学的是什么?信号与系统两个基本的概念:信号可以表⽰成有若⼲变量的函数,⽽系统则对信号作出响应,产⽣新的信号。

这个科⽬研究的就是这⼀⼤类问题。

例如:在电路系统中,电源电压和电流可以当成随时间变换的函数,⽽负载上的电压和电流可以看作是电源电压电流经过整个电路系统后输出的响应。

实现信号的分析的⽅法是傅⾥叶分析⽅法,⽽在实际⽣活中,最常遇到的就是线性时不变系统(LTI)。

我们就以这两个点为重点,⼊门信号与系统。

⼆,信号与系统的两⼤部分2.1 信号2.1.1 信号分类连续时间信号:电路中电源电压随时间变化的信号,可以表⽰为函数v(t),或者声⾳信号,声压随时间变化的波形也可以作为⼀个信号。

这些信号在时间上是连续的,看起来像⼀条线。

离散时间信号:如股票市场指数随⽇期的变化;⼈⼝数量随年份的变化;这些信号在时间是离散的,是⼀个个点组成。

以t表⽰连续时间,n表⽰离散时间。

它们⼤部分情况下是相同的。

本章主要以连续时间信号为重点。

2.1.2 重要的基本信号下⾯的三种信号在接下来的学习中会经常使⽤,先熟悉他们。

1,复指数信号复指数信号是⼀个周期信号,频率为w。

2,冲激信号3,阶跃信号以及他们的关系:2.2 系统系统就是⼀个⿊盒⼦,包括输⼊和输出。

⼀般的,可以⽤微分⽅程来表⽰⼀个系统。

2.2.1,两个重要的性质1,线性叠加:假设输⼊x1(t),输出y1(t);和输⼊x2(t),输出y2(t);具有线性叠加性质的系统有如下:输⼊x1(t)+x2(t),输出y1(t)+y2(t);2,时不变性:系统的性质不会随着时间⽽改变。

即输⼊x(t),输出y(t),当输⼊产⽣⼀个时延x(t-1),那么输出也会是y(t-1).2.2.2 线性时不变系统卷积和为了引⼊信号线性组合的概念,我们先从离散信号⼊⼿,⼀个离散信号如下:我们把这个离散信号看成是以下⼀个个⽆数的冲激函数的叠加:这些冲激函数可以表⽰为:...........将上式在全时域上求和,就能得到原函数x[n],即:x[n] = .......+x[1] δ[n-1] + x[2] δ[n-2] + x[3] δ[n-3]+...;使⽤求和符号整理得:这个⽅法的思路就是将原信号表⽰成⽆数个冲激函数的叠加为何要将原信号分解成冲激信号呢?这是因为冲激信号是⼀个⾮常简单的信号,δ[n]经过系统后得到输出y[n] = h[n],h[n]称为冲激响应,也是⼀个相对简单的信号。

傅里叶变换的基础知识

傅里叶变换的基础知识

傅里叶变换的基础知识傅里叶变换是一项基础的数学工具,广泛应用于物理学、工程学、计算机科学、信号处理等领域。

本文将介绍傅里叶变换的基本概念,其中包括连续傅里叶变换和离散傅里叶变换。

1. 连续傅里叶变换在介绍傅里叶变换之前,我们需要先了解两个概念:周期函数和Fourier 级数。

周期函数是指在一定区间内具有重复特征的函数,而 Fourier 级数是将一个周期函数表示为正弦和余弦函数的和。

傅里叶变换是将一个函数表示为一系列不同频率的正弦和余弦函数的和,可以理解为是将 Fourier 级数推广到了一般的非周期函数上。

具体来说,若一个函数 f(x) 满足某些条件,那么它可以被表示为如下形式:F(ω) = ∫ f(x) e^(-iωx) dx其中,F(ω) 是函数 f(x) 的傅里叶变换,ω 表示角频率,即单位时间内变化的弧度数。

从公式可以看出,傅里叶变换将函数 f(x) 转化成一个复数F(ω),表示了该函数在不同频率下的振幅和相位信息。

特别地,若函数f(x) 是实函数且满足对称性条件,那么它的傅里叶变换F(ω) 是一个实函数。

2. 离散傅里叶变换连续傅里叶变换适用于连续信号的处理,但在实际应用中,我们往往处理的是数字信号,即离散信号。

为了将连续傅里叶变换推广到离散信号上,人们发明了离散傅里叶变换。

离散傅里叶变换的定义如下:F_k = ∑_{n=0}^{N-1} f_n e^{(-i2πkn)/N}其中,f_n 表示离散信号在第 n 个采样点处的取值,N 表示采样点数量,k 表示在 K 点处的频率。

离散傅里叶变换是计算机领域中常用的算法,广泛应用于音频、图像等信号处理领域。

它可以将复杂的信号分解成一组频率,从而实现信号的压缩、降噪等处理操作。

需要注意的是,离散傅里叶变换对于周期信号是有局限性的,因为在离散信号中,我们无法表示无穷长的周期函数,因此在处理周期信号时,我们需要采用其他方法。

3. 傅里叶变换的应用傅里叶变换广泛应用于多个领域,下面简要介绍几个应用场景:(1) 信号处理:傅里叶变换可以将一个信号分解成它的频率成分,从而实现信号降噪、信号压缩等处理操作。

傅里叶变换基础知识

傅里叶变换基础知识

傅里叶变换基础知识1. 傅里叶级数展开最简单有最常用的信号是谐波信号,一般周期信号利用傅里叶级数展开成多个乃至无穷多个不同频率的谐波信号,即一般周期信号是由多个乃至无穷多个不同频率的谐波信号线性叠加而成。

1.1 周期信号的傅里叶级数在有限区间上,任何周期信号()x t 只要满足狄利克雷(dirichlet )条件,都可以展开成傅里叶级数。

1.1.1 狄利克雷(dirichlet )条件狄利克雷(dirichlet )条件为:(1)信号()x t 在一个周期内只有有限个第一类间断点(当t 从左或右趋向于这个间断点时,函数有左极限值和右极限值);(2)信号()x t 在一周期内只有有限个极大值和极小值;(3)信号在一个周期内是绝对可积分的,即00/2/2()dt T T x t -⎰应为有限值。

1.1.2 间断点在非连续函数()y f x =中某点处0x 处有中断现象,那么,0x 就称为函数的不连续点。

(1)第一类间断点(有限型间断点):a. 可去间断点:函数在该点左极限、右极限存在且相等,但不等于该点函数值或函数在该点无定义(0x 令分母为零时等情况);b. 跳跃间断点:函数在该点左极限、右极限存在,但不相等(0/y x x =在点0x =处等情况)。

(2)第二类间断点:除第一类间断点的间断点。

1.1.3 傅里叶级数三角函数表达式傅里叶级数三角函数表达式为0001()(cos sin )n n n x t a a n t b n t ωω∞==++∑式中:0a 为信号的常值分量;n a 为信号的余弦信号幅值;n b 为信号的正弦信号幅值。

0a 、n a 、n b 分别表示为: 000000/20/20/20/20/20/201()2()cos 2()sin T T T n T T n T a x t dtT a x t n tdt T b x t n tdtT ωω---===⎧⎪⎪⎪⎨⎪⎪⎪⎩⎰⎰⎰ 式中:0T 为信号的周期;0ω为信号的基频,即角频率,002/T ωπ=,1,2,3...n =。

傅里叶变换原理

傅里叶变换原理

傅里叶变换原理傅里叶变换是一种非常重要的数学工具,它在信号处理、图像处理、通信系统等领域都有着广泛的应用。

傅里叶变换的原理是将一个信号分解成不同频率的正弦和余弦函数的叠加,从而可以分析信号的频谱特性。

在本文中,我们将详细介绍傅里叶变换的原理及其在实际应用中的重要性。

首先,让我们来了解一下傅里叶变换的数学表达式。

对于一个连续信号 f(t),它的傅里叶变换F(ω) 定义为:F(ω) = ∫f(t)e^(-jωt)dt。

其中,e^(-jωt) 是复指数函数,ω 是频率。

这个公式表示了信号 f(t) 在频域上的表示,也就是说,它将信号 f(t) 转换成了频率域上的复数函数F(ω)。

通过傅里叶变换,我们可以得到信号的频谱信息,从而可以分析信号的频率成分和能量分布。

傅里叶变换的原理可以通过一个简单的例子来说明。

假设我们有一个周期为 T 的正弦信号f(t) = Asin(2πft),其中 A 是振幅,f 是频率。

对这个信号进行傅里叶变换,我们可以得到频谱F(ω)= A/2 (δ(ω-f) δ(ω+f)),其中δ(ω) 是狄拉克δ函数。

这个频谱表示了信号只包含了频率为 f 的正弦成分,而其他频率成分的能量为零。

这样,我们就可以通过傅里叶变换来分析信号的频率特性。

在实际应用中,傅里叶变换有着广泛的应用。

在信号处理中,我们可以通过傅里叶变换来对信号进行滤波、频谱分析等操作。

在图像处理中,傅里叶变换可以用来进行图像的频域滤波、频谱分析等操作。

在通信系统中,傅里叶变换可以用来对调制信号进行频谱分析、信道估计等操作。

可以说,傅里叶变换已经成为了现代科学技术中不可或缺的数学工具。

总之,傅里叶变换是一种非常重要的数学工具,它可以将一个信号从时域转换到频域,从而可以分析信号的频率特性。

通过傅里叶变换,我们可以对信号进行频谱分析、滤波等操作,从而可以更好地理解和处理信号。

傅里叶变换在信号处理、图像处理、通信系统等领域都有着广泛的应用,它已经成为了现代科学技术中不可或缺的数学工具。

傅里叶变换详解

傅里叶变换详解

狄利克雷( 狄利克雷(Dirichlet)定理 7.1.1 若函数 )
满足条件: 满足条件:
(1)处处连续,或在每个周期内只有有限个第一类间断点; 处处连续,或在每个周期内只有有限个第一类间断点; 处处连续 (2)在每个周期内只有有限个极值点,则级数(7.1.3)收敛, )在每个周期内只有有限个极值点,则级数( )收敛, 且 收敛点有 在收敛点有:
(1)特别当核函数 ) 变量 改写为变量 ),当 ),当
(注意已将积分参 ,则
称函数 简称 为
为函数 为函数
的傅里叶(Fourier)变换, 傅里叶( )变换, 的傅氏变换.同时我们称 傅氏变换.
的傅里叶逆变换. 傅里叶逆变换.
(2)特别当核函数 ) 改写为变量 ),当 ),当
(注意已将积分参变量 ,则
(7.2.5)式称为非周期函数 式称为非周期函数 式称为 叶积分表示式. 叶积分表示式.
的(实数形式)傅里 实数形式)
事实上,上式( 事实上,上式(7.2.5)还可以进一步改写为 )
(7.2.6) )
上式(7.2.6)的物理意义为: 的物理意义为: 上式 的物理意义为 称为
称为
的振幅谱, 振幅谱,
的相位谱.可以对应于物理现象中波动(或振动) 相位谱.可以对应于物理现象中波动(或振动)
我们把上述推导归纳为下述严格定理: 我们把上述推导归纳为下述严格定理: 1.傅里叶积分定理 . 定理7.2.1 傅里叶积分定理 若函数 定理 上满足条件 (1) ) (2) ) 在任一有限区间上满足狄利克雷条件; 在任一有限区间上满足狄利克雷条件; 狄利克雷条件 在 上绝对可积, 上绝对可积,则 可表为傅 在区间
(7.1.7) 由于余弦级数的导数是正弦级数, 由于余弦级数的导数是正弦级数,所以余弦级数的导数在 处为零. 处为零. 而对于定义在有限区间上的非周期函数 的傅里叶级

傅里叶变换基础知识

傅里叶变换基础知识

傅里叶变换基础知识1. 傅里叶级数展开最简单有最常用的信号是谐波信号,一般周期信号利用傅里叶级数展开成多个乃至无穷多个不同频率的谐波信号,即一般周期信号是由多个乃至无穷多个不同频率的谐波信号线性叠加而成。

1.1 周期信号的傅里叶级数在有限区间上,任何周期信号()x t 只要满足狄利克雷(dirichlet )条件,都可以展开成傅里叶级数。

1.1.1 狄利克雷(dirichlet )条件狄利克雷(dirichlet )条件为:(1)信号()x t 在一个周期内只有有限个第一类间断点(当t 从左或右趋向于这个间断点时,函数有左极限值和右极限值);(2)信号()x t 在一周期内只有有限个极大值和极小值;(3)信号在一个周期内是绝对可积分的,即00/2/2()dt T T x t -⎰应为有限值。

1.1.2 间断点在非连续函数()y f x =中某点处0x 处有中断现象,那么,0x 就称为函数的不连续点。

(1)第一类间断点(有限型间断点):a. 可去间断点:函数在该点左极限、右极限存在且相等,但不等于该点函数值或函数在该点无定义(0x 令分母为零时等情况);b. 跳跃间断点:函数在该点左极限、右极限存在,但不相等(0/y x x =在点0x =处等情况)。

(2)第二类间断点:除第一类间断点的间断点。

1.1.3 傅里叶级数三角函数表达式傅里叶级数三角函数表达式为式中:0a 为信号的常值分量;n a 为信号的余弦信号幅值;n b 为信号的正弦信号幅值。

0a 、n a 、n b 分别表示为:式中:0T 为信号的周期;0ω为信号的基频,即角频率,002/T ωπ=,1,2,3...n =。

合并同频项也可表示为式中:信号的幅值n A 和初相位n θ分别为1.1.4 频谱的相关概念(1)信号的频谱(三角频谱):构成信号的各频率分量的集合,表征信号的幅值和相位随频率的变化关系,即信号的结构,是n A ω-(或n A f -)和n θω-(或n f θ-)的统称;(2)信号的幅频谱:周期信号幅值n A 随ω(或f )的变化关系,用n A ω-(或n A f -)表示;(3)信号的相频谱:周期信号相位n θ随ω(或f )的变化关系,用n θω-(或n f θ-)表示;(4)信号的频谱分析:对信号进行数学变换,获得频谱的过程; (5)基频:0ω或0f ,各频率成分都是0ω或0f 的整数倍; (6)基波:0ω或0f 对应的信号;(7)n 次谐波: 0(n 2,3,...)n ω=或0(n 2,3,...)nf =的倍频成分0c o s ()n n A n t ωϕ+或0cos(2)n n A nf t πθ+;1.1.5 周期信号的傅里叶级数的复指数函数展开根据欧拉公式cos sin (j te t j t j ωωω±=±=,则1cos ()21sin j()2j t j t j tj t t e e t e e ωωωωωω--=+=- 因此,傅里叶级数三角函数表达式()0001()cos sin n n n x t a a n t b n t ωω∞==++∑可改写成令 则 或这就是周期信号的傅里叶复指数形式的表达式。

傅里叶变换的由来及复数下的傅里叶变换公式证明

傅里叶变换的由来及复数下的傅里叶变换公式证明

1、考虑到一个函数可以展开成一个多项式的和,可惜多项式并不能直观的表示周期函数,由于正余弦函数是周期函数,可以考虑任意一个周期函数能否表示成为一系列正余弦函数的和。

假设可以,不失一般性,于是得到:/(!2 如+ 工A a sin(mvt + 各),Fl = 12、将后面的正弦函数展开:sin( ncvt + 竹)=A rt sin % cos + cos <p n sin ,令 ^-= A o pfl(J—A K3\n ^,b…- A a cos 平八吠二’于是得到:22 科cos njr + stn riM〉・n = 1那么如何计算a n,b n,a 0这些参数成为能否展开成为正余弦函数的关键。

cos njc dj:— 0 (7i = 1,2,3,…)*sin AX -0 ( w IZ3严儿(fe = 1,2,3n;r.sin Jt_r Kin w.r ci ±—0-fl上面的这些积分为0被称之为正余弦函数的正交性。

这些证明很简单,可惜当初学习正余弦函数的时候可能遇到过,但是却不知道这些东西能干什么用。

下面的处理手段凸显了大师的风范:如果我们队原函数进行如下积分,得到很神奇的东西:/Cr)d.r =后面的积分很明显是0,于是我们求出了a o的值。

那么如何求出a n,如果让原函数乘以cos(nx)再进行积分。

/(工)ms利用三角函数的正交性,可以得到:/(rtrdj-再用sin(nx)乘,再进行积分就会得到b n,4 =丄[/(nxdjr (- 1,3 .…)”J ■*■ fir于是乎得到了一个任意函数展开成为正余弦函数的通用表达式,同时为什么会出现A o/2而不是直接的A o的原因也很明朗:就是让整个表达式更具有通用性,体现一种简洁的美。

通过了以上的证明过程,应该很容易记住傅里叶变换的公式。

到此为止,作为一个工程人员不用再去考虑了,可是作为每一个数学家他们想的很多,他们需要知道右侧的展开式为什么收敛于原函数,这个好难,有个叫Dirichlet 的家伙证明出如下结论:定理f收敏宦理■狱利克需(DiMh冶)充分条件)设/Cr)Jg周期为2削的周期苗数,如果它満足:(1}在一个周期内连续或只有有限个第一类间斷点*(2)在一个周期内至务只有有限个曲值点.则"工〉的傅里叶飯数收歟,井且当工是的连嫌点时.级数收敕于当丁S/(.r)的闾新点时•级數收飯于i[ /(X ) + f(jt * )]-有兴趣的可以继续找书看,可惜我有兴趣没时间・•…至此以2n为周期的傅里叶变换证明完毕,只不过我们经常遇到的周期函数我想应该不会这么凑巧是2n,于是乎任意的一个周期函数如何知道其傅里叶变换呢,数学向来都是一个很具有条理性的东西,任意周期的函数的傅里叶变换肯定也是建立在2n周期函数的基础之上的。

傅里叶变换

傅里叶变换

傅立叶原理表明:任何连续测量的时序或信号,都可以表示为不同频率的正弦波信号的无限叠加。

而根据该原理创立的傅立叶变换算法利用直接测量到的原始信号,以累加方式来计算该信号中不同正弦波信号的频率、振幅和相位。

傅立叶变换要求连续信号在时间上必须可积这一充分非必要条件F(jw)是频谱密度函数或频谱函数傅立叶级数明确地表示了谐波频率与其幅值与相位的关系,根据频率就可以确定各次谐波的幅值。

那对非周期信号做傅立叶变换得到的是连续频谱密度函数,某一频率点的信号幅度是无穷小,没有意义,那这个频谱密度函数有什么用呢?前四种傅里叶变换都是针对正无穷大和负无穷大的信号,即信号的的长度是无穷大的,计算机无法处理。

针对长度有限的信号,解决方法有两种:(1).长度有限的信号表示成长度无限的信号,可以把信号无限地从左右进行延伸,延伸的部分用零来表示,这样,这个信号就可以被看成是非周期性离散信号,我们就可以用到离散时域傅立叶变换的方法。

(2).也可以把信号用复制的方法进行延伸,这样信号就变成了周期性离散信号,这时我们就可以用离散傅立叶变换方法进行变换。

但是对于非周期性的信号,我们需要用无穷多不同频率的正弦曲线来表示,这对于计算机来说是不可能实现的。

所以对于有限离散信号的变换只有方法(2)才可以。

当离散的信号为周期序列时,严格的讲,傅立叶变换是不存在的,因为它不满足信号序列绝对级数和收敛(绝对可和)这一傅立叶变换的充要条件,但是采用DFS(离散傅立叶级数)这一分析工具仍然可以对其进行傅立叶分析。

得出每个主值序列在各频率上的频谱分量,这样就表示出了周期序列的频谱特性。

时域上连续的信号在频域上都有非周期的特点,但对于周期信号和非周期信号又有在频域离散和连续之分。

DTFT:时域上是离散的,频域上是连续的DFT:时域上是离散的,频域上是离散的,就相当于DTFT变换成连续频谱后再对其采样,此时采样频率等于序列延拓后的周期N,即主值序列的个数。

傅里叶变换、拉普拉斯变换、Z变换

傅里叶变换、拉普拉斯变换、Z变换

错过这篇文章,可能你这辈子不懂什么叫傅里叶变换了(一)图片:TMAB2003 / CC BY-ND 如果看了这篇文章你还不懂傅里叶变换,那就过来掐死我吧Heinrich,生娃学工打折腿这篇文章的核心思想就是:要让读者在不看任何数学公式的情况下理解傅里叶分析。

傅里叶分析不仅仅是一个数学工具,更是一种可以彻底颠覆一个人以前世界观的思维模式。

但不幸的是,傅里叶分析的公式看起来太复杂了,所以很多大一新生上来就懵圈并从此对它深恶痛绝。

老实说,这么有意思的东西居然成了大学里的杀手课程,不得不归咎于编教材的人实在是太严肃了。

(您把教材写得好玩一点会死吗?会死吗?)所以我一直想写一个有意思的文章来解释傅里叶分析,有可能的话高中生都能看懂的那种。

所以,不管读到这里的您从事何种工作,我保证您都能看懂,并且一定将体会到通过傅里叶分析看到世界另一个样子时的快感。

至于对于已经有一定基础的朋友,也希望不要看到会的地方就急忙往后翻,仔细读一定会有新的发现。

————以上是定场诗————下面进入正题:抱歉,还是要啰嗦一句:其实学习本来就不是易事,我写这篇文章的初衷也是希望大家学习起来更加轻松,充满乐趣。

但是千万!千万不要把这篇文章收藏起来,或是存下地址,心里想着:以后有时间再看。

这样的例子太多了,也许几年后你都没有再打开这个页面。

无论如何,耐下心,读下去。

这篇文章要比读课本要轻松、开心得多……一、嘛叫频域从我们出生,我们看到的世界都以时间贯穿,股票的走势、人的身高、汽车的轨迹都会随着时间发生改变。

这种以时间作为参照来观察动态世界的方法我们称其为时域分析。

而我们也想当然的认为,世间万物都在随着时间不停的改变,并且永远不会静止下来。

但如果我告诉你,用另一种方法来观察世界的话,你会发现世界是永恒不变的,你会不会觉得我疯了?我没有疯,这个静止的世界就叫做频域。

先举一个公式上并非很恰当,但意义上再贴切不过的例子:在你的理解中,一段音乐是什么呢?这是我们对音乐最普遍的理解,一个随着时间变化的震动。

深入浅出地讲解傅里叶变换

深入浅出地讲解傅里叶变换

深入浅出的讲解傅里叶变换我保证这篇文章和你以前看过的所有文章都不同,这是12年还在果壳的时候写的,但是当时没有来得及写完就出国了……于是拖了两年,嗯,我是拖延症患者……这篇文章的核心思想就是:要让读者在不看任何数学公式的情况下理解傅里叶分析。

傅里叶分析不仅仅是一个数学工具,更是一种可以彻底颠覆一个人以前世界观的思维模式。

但不幸的是,傅里叶分析的公式看起来太复杂了,所以很多大一新生上来就懵圈并从此对它深恶痛绝。

老实说,这么有意思的东西居然成了大学里的杀手课程,不得不归咎于编教材的人实在是太严肃了。

(您把教材写得好玩一点会死吗?会死吗?)所以我一直想写一个有意思的文章来解释傅里叶分析,有可能的话高中生都能看懂的那种。

所以,不管读到这里的您从事何种工作,我保证您都能看懂,并且一定将体会到通过傅里叶分析看到世界另一个样子时的快感。

至于对于已经有一定基础的朋友,也希望不要看到会的地方就急忙往后翻,仔细读一定会有新的发现。

————以上是定场诗————下面进入正题:抱歉,还是要啰嗦一句:其实学习本来就不是易事,我写这篇文章的初衷也是希望大家学习起来更加轻松,充满乐趣。

但是千万!千万不要把这篇文章收藏起来,或是存下地址,心里想着:以后有时间再看。

这样的例子太多了,也许几年后你都没有再打开这个页面。

无论如何,耐下心,读下去。

这篇文章要比读课本要轻松、开心得多……一、嘛叫频域从我们出生,我们看到的世界都以时间贯穿,股票的走势、人的身高、汽车的轨迹都会随着时间发生改变。

这种以时间作为参照来观察动态世界的方法我们称其为时域分析。

而我们也想当然的认为,世间万物都在随着时间不停的改变,并且永远不会静止下来。

但如果我告诉你,用另一种方法来观察世界的话,你会发现世界是永恒不变的,你会不会觉得我疯了?我没有疯,这个静止的世界就叫做频域。

先举一个公式上并非很恰当,但意义上再贴切不过的例子:在你的理解中,一段音乐是什么呢?这是我们对音乐最普遍的理解,一个随着时间变化的震动。

傅里叶变换、拉氏变换、z变换的含义

傅里叶变换、拉氏变换、z变换的含义

傅里叶变换、拉氏变换、z变换的含义1、关于傅里叶变换变换?答:fourier变换是将连续的时间域信号转变到频率域;它可以说是laplace变换的特例,laplace变换是fourier变换的推广,存在条件比fourier变换要宽,是将连续的时间域信号变换到复频率域(整个复平面,而fourier变换此时可看成仅在jΩ轴);z变换则是连续信号经过理想采样之后的离散信号的laplace变换,再令z=e^sT时的变换结果(T为采样周期),所对应的域为数字复频率域,此时数字频率ω=ΩT。

——参考郑君里的《信号与系统》。

傅里叶变换的实质是将一个信号分离为无穷多多正弦/复指数信号的加成,也就是说,把信号变成正弦信号相加的形式——既然是无穷多个信号相加,那对于非周期信号来说,每个信号的加权应该都是零——但有密度上的差别,你可以对比概率论中的概率密度来思考一下——落到每一个点的概率都是无限小,但这些无限小是有差别的。

所以,傅里叶变换之后,横坐标即为分离出的正弦信号的频率,纵坐标对应的是加权密度。

对于周期信号来说,因为确实可以提取出某些频率的正弦波成分,所以其加权不为零——在幅度谱上,表现为无限大——但这些无限大显然是有区别的,所以我们用冲激函数表示。

已经说过,傅里叶变换是把各种形式的信号用正弦信号表示,因此非正弦信号进行傅里叶变换,会得到与原信号频率不同的成分——都是原信号频率的整数倍。

这些高频信号是用来修饰频率与原信号相同的正弦信号,使之趋近于原信号的。

所以说,频谱上频率最低的一个峰(往往是幅度上最高的),就是原信号频率。

傅里叶变换把信号由时域转为频域,因此把不同频率的信号在时域上拼接起来进行傅里叶变换是没有意义的——实际情况下,我们隔一段时间采集一次信号进行变换,才能体现出信号在频域上随时间的变化。

我的语言可能比较晦涩,但我已尽我所能向你讲述我的一点理解——真心希望能对你有用。

我已经很久没在知道上回答过问题了,之所以回答这个问题,是因为我本人在学习傅里叶变换及拉普拉斯变换的过程中着实受益匪浅——它们几乎改变了我对世界的认识。

傅里叶变换及其性质课件

傅里叶变换及其性质课件
若 $f(t)$ 的傅里叶变换为 $F(omega)$,则 $f(at)(a>0)$ 的傅里叶变换为 $aF(frac{omega}{a})$。
应用
频移性质在信号调制和解调中非常有 用,例如在通信系统中的振荡器设计 和频率调制。
共轭性质
共轭性质
若 $f(t)$ 的傅里叶变换为 $F(omega)$,则 $f(-t)$ 的傅里叶 变换为 $overline{F(-omega)}$。
05
傅里叶变换的扩展
离散傅里叶变换
定义
离散傅里叶变换(DFT)是一种将离散时间信号转换为频域表示的方法。它将一个有限长 度的离散时间信号序列通过数学运算转换为复数序列,表示信号的频域特征。
性质
离散傅里叶变换具有线性、时移性、频移性、共轭对称性和周期性等性质。这些性质使得 离散傅里叶变换在信号处理、图像处理、数字通信等领域得到广泛应用。
度和相位信息。
02 03
信号处理
傅里叶变换在信号处理中有着广泛的应用,如滤波、去噪、压缩等。通 过对信号进行傅里叶变换,可以提取出信号中的特征信息,实现信号的 分类、识别和分类。
图像处理
傅里叶变换在图像处理中也有着重要的应用,如图像滤波、图像增强、 图像压缩等。通过对图像进行傅里叶变换,可以提取出图像中的特征信 息,实现图像的分类、识别和分类。
傅里叶变换的分类
离散傅里叶变换(DFT)
对时间域或空间域的信号进行离散采样,然后对离散的采样值进行傅里叶变换 。DFT广泛应用于数字信号处理和图像处理等领域。
快速傅里叶变换(FFT)
一种高效计算DFT的算法,能够在 $O(Nlog N)$ 的时间内计算出 $N$ 个采样 值的 DFT,大大提高了计算效率。FFT广泛应用于信号处理、图像处理等领域 。

傅里叶变换超详细总结

傅里叶变换超详细总结

“周期信号都可表示为谐波关系的正弦信号的加权”——傅里叶的第一个主要论点——“非周期信号都可用正弦信号的加权积分表示”——傅里叶的第二个主要论点——频域分析:傅里叶变换,自变量为 j Ω复频域分析:拉氏变换,自变量为 S = σ +j ΩZ域分析:Z 变换,自变量为z傅立叶级数是一种三角级数,它的一般形式是)sin cos (10t n b t n a A n n n ωω++∑∞=将周期性的(非正弦的)波,用一系列的正弦波的迭加来表示,然后对每一项正弦波进行分析,因此提出了把周期函数 f(x) 展开成三角级数01()sin()n n n f t A A n t ωϕ∞==++∑01(cos sin )n n n A a n t b n t ωω∞==++∑为了讨论如何把周期函数展开成三角级数,首先考虑三角函数系的正交性。

{}1,cos ,sin ,cos 2,sin 2,,cos ,sin ,t t t t n t n t ωωωωωω⋯⋯正交性:不同的基本单位向量的点积(内积)等于零,而相同的基本单位向量不等于零傅里叶变换•周期信号的傅里叶级数分析(FS)•非周期信号的傅里叶变换(FT)•周期序列的傅里叶级数(DFS)•非周期的离散时间信号的傅里叶变换(DTFT)•离散傅里叶变换(DFT)1 周期信号的傅里叶级数分析(FS)三角函数集是最重要的基本正交函数集,正、余弦函数都属是三角函数集。

优点:(1)三角函数是基本函数;(2)用三角函数表示信号,建立了时间与频率两个基本物理量之目的联系;(3)单频三角函数是简谐信号,简谐信号容易产生、传输、处理;(4)三角函数信号通过线性时不变系统后,仍为同频三角函数信号,仅幅度和相位有变化,计算方便。

由于三角函数的上述优点,周期信号通常被表示(分解)为无穷多个正弦信号之和。

利用欧拉公式还可以将三角函数表示为复指数函数,所以周期函数还可以展开成无穷多个复指数函数的之和,其优点是与三角函数级数相同。

傅里叶变换原理

傅里叶变换原理
基于这种思想,便产生了积分变换.
其主要体现在:
数学上:求解方程的重要工具; 能实现卷积与 普通乘积之间的互相转化.
工程上:是频谱分析、信号分析、线性系统分析
的重要工具.
4
第八章 傅立叶变换
主要内容:
1、 傅立叶积分公式 2、傅立叶变换及其性质 3、卷积
5
§1 傅立叶级数与积分
1、傅立叶级数的指数形式
a0 2

an n1
ibn 2
e i n t

an
ibn 2
e

i
n
t

.
8
令c0

a0 2
,
cn

an
i bn 2
, cn

an
i bn 2
,n
1,2,3,
,


fT (t )
cne in t .
(2)
n
(2)式称为傅立叶级数的复指数形式,具有明显 的物理意义.
在《高等数学》中有下列定理:
定理1 设fT (t )是以T为周期的实函数,且在 [ T , T ]上满足狄氏条件,即在一个周期上满足: 22 (1)连续或只有有限个第一类间断点; (2)只有有限个极值点. 则在连续点处,有
6
fT (t )
a0 2

(an cos nt bn sin nt ).
2

Ae 4
e d t

t i 2
2



2
Ae 4
.

这里利用了以下 结果:
e x2 dx
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

如果看了这篇文章你还不懂傅里叶变换,那就过来掐死我吧这篇文章的核心思想就是:要让读者在不看任何数学公式的情况下理解傅里叶分析。

傅里叶分析不仅仅是一个数学工具,更是一种可以彻底颠覆一个人以前世界观的思维模式。

但不幸的是,傅里叶分析的公式看起来太复杂了,所以很多大一新生上来就懵圈并从此对它深恶痛绝。

老实说,这么有意思的东西居然成了大学里的杀手课程,不得不归咎于编教材的人实在是太严肃了。

(您把教材写得好玩一点会死吗?会死吗?)所以我一直想写一个有意思的文章来解释傅里叶分析,有可能的话高中生都能看懂的那种。

所以,不管读到这里的您从事何种工作,我保证您都能看懂,并且一定将体会到通过傅里叶分析看到世界另一个样子时的快感。

至于对于已经有一定基础的朋友,也希望不要看到会的地方就急忙往后翻,仔细读一定会有新的发现。

————以上是定场诗————下面进入正题:抱歉,还是要啰嗦一句:其实学习本来就不是易事,我写这篇文章的初衷也是希望大家学习起来更加轻松,充满乐趣。

但是千万!千万不要把这篇文章收藏起来,或是存下地址,心里想着:以后有时间再看。

这样的例子太多了,也许几年后你都没有再打开这个页面。

无论如何,耐下心,读下去。

这篇文章要比读课本要轻松、开心得多……一、嘛叫频域从我们出生,我们看到的世界都以时间贯穿,股票的走势、人的身高、汽车的轨迹都会随着时间发生改变。

这种以时间作为参照来观察动态世界的方法我们称其为时域分析。

而我们也想当然的认为,世间万物都在随着时间不停的改变,并且永远不会静止下来。

但如果我告诉你,用另一种方法来观察世界的话,你会发现世界是永恒不变的,你会不会觉得我疯了?我没有疯,这个静止的世界就叫做频域。

先举一个公式上并非很恰当,但意义上再贴切不过的例子:在你的理解中,一段音乐是什么呢?这是我们对音乐最普遍的理解,一个随着时间变化的震动。

但我相信对于乐器小能手们来说,音乐更直观的理解是这样的:好的!下课,同学们再见。

是的,其实这一段写到这里已经可以结束了。

上图是音乐在时域的样子,而下图则是音乐在频域的样子。

所以频域这一概念对大家都从不陌生,只是从来没意识到而已。

现在我们可以回过头来重新看看一开始那句痴人说梦般的话:世界是永恒的。

将以上两图简化:时域:频域:在时域,我们观察到钢琴的琴弦一会上一会下的摆动,就如同一支股票的走势;而在频域,只有那一个永恒的音符。

所(前方高能!~~~~~~~~~~~非战斗人员退散~~~~~~~)以(~~~~~~~~~~~~~~~前方高能预警~~~~~~~~~~~~~~前方高能~~~~~~~~)你眼中看似落叶纷飞变化无常的世界,实际只是躺在上帝怀中一份早已谱好的乐章。

(众人:鸡汤滚出知乎!)抱歉,这不是一句鸡汤文,而是黑板上确凿的公式:傅里叶同学告诉我们,任何周期函数,都可以看作是不同振幅,不同相位正弦波的叠加。

在第一个例子里我们可以理解为,利用对不同琴键不同力度,不同时间点的敲击,可以组合出任何一首乐曲。

而贯穿时域与频域的方法之一,就是传中说的傅里叶分析。

傅里叶分析可分为傅里叶级数(Fourier Serie)和傅里叶变换(Fourier Transformation),我们从简单的开始谈起。

二、傅里叶级数(Fourier Series)还是举个栗子并且有图有真相才好理解。

如果我说我能用前面说的正弦曲线波叠加出一个带90度角的矩形波来,你会相信吗?你不会,就像当年的我一样。

但是看看下图:第一幅图是一个郁闷的正弦波cos(x)第二幅图是2个卖萌的正弦波的叠加cos(x)+a.cos(3x)第三幅图是4个发春的正弦波的叠加第四幅图是10个便秘的正弦波的叠加随着正弦波数量逐渐的增长,他们最终会叠加成一个标准的矩形,大家从中体会到了什么道理?(只要努力,弯的都能掰直!)随着叠加的递增,所有正弦波中上升的部分逐渐让原本缓慢增加的曲线不断变陡,而所有正弦波中下降的部分又抵消了上升到最高处时继续上升的部分使其变为水平线。

一个矩形就这么叠加而成了。

但是要多少个正弦波叠加起来才能形成一个标准90度角的矩形波呢?不幸的告诉大家,答案是无穷多个。

(上帝:我能让你们猜着我?)不仅仅是矩形,你能想到的任何波形都是可以如此方法用正弦波叠加起来的。

这是没有接触过傅里叶分析的人在直觉上的第一个难点,但是一旦接受了这样的设定,游戏就开始有意思起来了。

还是上图的正弦波累加成矩形波,我们换一个角度来看看:在这几幅图中,最前面黑色的线就是所有正弦波叠加而成的总和,也就是越来越接近矩形波的那个图形。

而后面依不同颜色排列而成的正弦波就是组合为矩形波的各个分量。

这些正弦波按照频率从低到高从前向后排列开来,而每一个波的振幅都是不同的。

一定有细心的读者发现了,每两个正弦波之间都还有一条直线,那并不是分割线,而是振幅为0的正弦波!也就是说,为了组成特殊的曲线,有些正弦波成分是不需要的。

这里,不同频率的正弦波我们成为频率分量。

好了,关键的地方来了!!如果我们把第一个频率最低的频率分量看作“1”,我们就有了构建频域的最基本单元。

对于我们最常见的有理数轴,数字“1”就是有理数轴的基本单元。

(好吧,数学称法为——基。

在那个年代,这个字还没有其他奇怪的解释,后面还有正交基这样的词汇我会说吗?)时域的基本单元就是“1秒”,如果我们将一个角频率为t)看作基础,那么频域的基本单元就是的吧。

正弦波就是一个圆周运动在一条直线上的投影。

所以频域的基本单元也可以理解为一个始终在旋转的圆知乎不能传动态图真是太让人惋惜了……想看动图的同学请戳这里:File:Fourier series square wave circles animation.gif以及这里:File:Fourier series sawtooth wave circles animation.gif点出去的朋友不要被wiki拐跑了,wiki写的哪有这里的文章这么没节操是不是。

介绍完了频域的基本组成单元,我们就可以看一看一个矩形波,在频域里的另一个模样了:这是什么奇怪的东西?这就是矩形波在频域的样子,是不是完全认不出来了?教科书一般就给到这里然后留给了读者无穷的遐想,以及无穷的吐槽,其实教科书只要补一张图就足够了:频域图像,也就是俗称的频谱,就是——再清楚一点:可以发现,在频谱中,偶数项的振幅都是0,也就对应了图中的彩色直线。

振幅为0的正弦波。

动图请戳:File:Fourier series and transform.gif老实说,在我学傅里叶变换时,维基的这个图还没有出现,那时我就想到了这种表达方法,而且,后面还会加入维基没有表示出来的另一个谱——相位谱。

但是在讲相位谱之前,我们先回顾一下刚刚的这个例子究竟意味着什么。

记得前面说过的那句“世界是静止的”吗?估计好多人对这句话都已经吐槽半天了。

想象一下,世界上每一个看似混乱的表象,实际都是一条时间轴上不规则的曲线,但实际这些曲线都是由这些无穷无尽的正弦波组成。

我们看似不规律的事情反而是规律的正弦波在时域上的投影,而正弦波又是一个旋转的圆在直线上的投影。

那么你的脑海中会产生一个什么画面呢?我们眼中的世界就像皮影戏的大幕布,幕布的后面有无数的齿轮,大齿轮带动小齿轮,小齿轮再带动更小的。

在最外面的小齿轮上有一个小人——那就是我们自己。

我们只看到这个小人毫无规律的在幕布前表演,却无法预测他下一步会去哪。

而幕布后面的齿轮却永远一直那样不停的旋转,永不停歇。

这样说来有些宿命论的感觉。

说实话,这种对人生的描绘是我一个朋友在我们都是高中生的时候感叹的,当时想想似懂非懂,直到有一天我学到了傅里叶级数……如果看了这篇文章你还不懂傅里叶变换,那就过来掐死我吧(二)师!当时大三他教我通信原理,但是他先用了4结课帮我们复习了很多信号与系统的基本概念,那个用乐谱代表频域的概念就是他讲的,一下子让我对这门课豁然开朗,才有了今天的这篇文章。

————————————今天的定场诗有点长——————————下面继续开始我们无节操的旅程:上次的关键词是:从侧面看。

这次的关键词是:从下面看。

在第二课最开始,我想先回答很多人的一个问题:傅里叶分析究竟是干什么用的?这段相对比较枯燥,已经知道了的同学可以直接跳到下一个分割线。

先说一个最直接的用途。

无论听广播还是看电视,我们一定对一个词不陌生——频道。

频道频道,就是频率的通道,不同的频道就是将不同的频率作为一个通道来进行信息传输。

下面大家尝试一件事:先在纸上画一个sin(x),不一定标准,意思差不多就行。

不是很难吧。

好,接下去画一个sin(3x)+sin(5x)的图形。

别说标准不标准了,曲线什么时候上升什么时候下降你都不一定画的对吧?好,画不出来不要紧,我把sin(3x)+sin(5x)的曲线给你,但是前提是你不知道这个曲线的方程式,现在需要你把sin(5x)给我从图里拿出去,看看剩下的是什么。

这基本是不可能做到的。

但是在频域呢?则简单的很,无非就是几条竖线而已。

所以很多在时域看似不可能做到的数学操作,在频域相反很容易。

这就是需要傅里叶变换的地方。

尤其是从某条曲线中去除一些特定的频率成分,这在工程上称为滤波,是信号处理最重要的概念之一,只有在频域才能轻松的做到。

再说一个更重要,但是稍微复杂一点的用途——求解微分方程。

(这段有点难度,看不懂的可以直接跳过这段)微分方程的重要性不用我过多介绍了。

各行各业都用的到。

但是求解微分方程却是一件相当麻烦的事情。

因为除了要计算加减乘除,还要计算微分积分。

而傅里叶变换则可以让微分和积分在频域中变为乘法和除法,大学数学瞬间变小学算术有没有。

傅里叶分析当然还有其他更重要的用途,我们随着讲随着提。

————————————————————————————————————下面我们继续说相位谱:通过时域到频域的变换,我们得到了一个从侧面看的频谱,但是这个频谱并没有包含时域中全部的信息。

因为频谱只代表每一个对应的正弦波的振幅是多少,而没有提到相位。

基础的正弦波A.sin(wt+θ)中,振幅,频率,相位缺一不可,不同相位决定了波的位置,所以对于频域分析,仅仅有频谱(振幅谱)是不够的,我们还需要一个相位谱。

那么这个相位谱在哪呢?我们看下图,这次为了避免图片太混论,我们用7个波叠加的图。

鉴于正弦波是周期的,我们需要设定一个用来标记正弦波位置的东西。

在图中就是那些小红点。

小红点是距离频率轴最近的波峰,而这个波峰所处的位置离频率轴有多远呢?为了看的更清楚,我们将红色的点投影到下平面,投影点我们用粉色点来表示。

当然,这些粉色的点只标注了波峰距离频率轴的距离,并不是相位。

这里需要纠正一个概念:时间差并不是相位差。

如果将全部周期看作2Pi或者360度的话,相位差则是时间差在一个周期中所占的比例。

相关文档
最新文档