2012年江西省高考文科数学试卷
2012年江西省高考数学试卷(文科)答案与解析
2012年江西省高考数学试卷(文科)参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的1.(5分)(2012•江西)若复数z=1+i(i为虚数单位)是z的共轭复数,则z2+2的虚部为()A.0B.﹣1 C.1D.﹣2考点:复数代数形式的混合运算;复数的基本概念.专题:计算题.分析:由z2+ 2 =(1+i)2+(1﹣i)2=2i﹣2i=0,由此得出结论.解答:解:由题意可得z2+ 2 =(1+i)2+(1﹣i)2=2i﹣2i=0,故z2+2的虚部为0,故选A.点评:本题主要考查复数的基本概念,两个复数代数形式的乘法,虚数单位i的幂运算性质,属于基础题.2.(5分)(2012•江西)若全集U={x∈R|x2≤4},则集合A={x∈R||x+1|≤1}的补集∁U A为()A.{x∈R|0<x<2|} B.{x∈R|0≤x<2|} C.{x∈R|0<x≤2|} D.{x∈R|0≤x≤2|}考点:补集及其运算.专题:集合.分析:先一元二次不等式的解法以及带绝对值不等式的解法求出全集U以及集合A,再结合补集的定义求出结论.解答:解:因为:全集U={x∈R|x2≤4}={x|﹣2≤x≤2},∵|x+1|≤1⇒﹣1≤x+1≤1⇒﹣2≤x≤0,∴集合A={x∈R||x+1|≤1}={x|﹣2≤x≤0},所以:∁U A={x|0<x≤2}.故选:C.点评:本题考查了一元二次不等式的解法以及带绝对值不等式的解法,集合的交、并、补的运算,熟练掌握不等式的解法是解决问题的关键.3.(5分)(2012•江西)设函数f(x)=,则f(f(3))=()A.B.3C.D.考点:函数的值.专题:计算题.分析:由条件求出f(3)=,结合函数解析式求出f(f(3))=f()=+1,计算求得结果.解答:解:函数f(x)=,则f(3)=,∴f(f(3))=f()=+1=,故选D.点评:本题主要考查利用分段函数求函数的值的方法,体现了分类讨论的数学思想,求出f (3)=,是解题的关键,属于基础题.4.(5分)(2012•江西)若,则tan2α=()A.﹣B.C.﹣D.考点:二倍角的正切;同角三角函数间的基本关系.专题:计算题.分析:将已知等式左边的分子分母同时除以cosα,利用同角三角函数间的基本关系弦化切得到关于tanα的方程,求出方程的解得到tanα的值,然后将所求的式子利用二倍角的正切函数公式化简后,将tanα的值代入即可求出值.解答:解:∵==,∴tanα=﹣3,则tan2α===.故选B点评:此题考查了二倍角的正切函数公式,以及同角三角函数间的基本关系,熟练掌握公式及基本关系是解本题的关键.5.(5分)(2012•江西)观察下列事实|x|+|y|=1的不同整数解(x,y)的个数为4,|x|+|y|=2的不同整数解(x,y)的个数为8,|x|+|y|=3的不同整数解(x,y)的个数为12 ….则|x|+|y|=20的不同整数解(x,y)的个数为()A.76 B.80 C.86 D.92考点:归纳推理.专题:阅读型.分析:观察可得不同整数解的个数可以构成一个首项为4,公差为4的等差数列,则所求为第20项,可计算得结果.解答:解:观察可得不同整数解的个数4,8,12,…可以构成一个首项为4,公差为4的等差数列,通项公式为a n=4n,则所求为第20项,所以a20=80故选B.点评:本题考查归纳推理,分寻找关系式内部,关系式与关系式之间数字的变化特征,从特殊到一般,进行归纳推理.6.(5分)(2012•江西)小波一星期的总开支分布图如图1所示,一星期的食品开支如图2所示,则小波一星期的鸡蛋开支占总开支的百分比为()A.30% B.10% C.3% D.不能确定考点:分布的意义和作用.专题:计算题.分析:计算鸡蛋占食品开支的百分比,利用一星期的食品开支占总开支的百分比,即可求得一星期的鸡蛋开支占总开支的百分比解答:解:根据一星期的食品开支图,可知鸡蛋占食品开支的百分比为%,∵一星期的食品开支占总开支的百分比为30%,∴一星期的鸡蛋开支占总开支的百分比为30%×10%=3%.故选:C.点评:本题考查分布的意义和作用,考查学生的读图能力,属于基础题.7.(5分)(2012•江西)若一个几何体的三视图如图所示,则此几何体的体积为()A.B.5C.D.4考点:由三视图求面积、体积.专题:计算题.分析:先根据三视图判断此几何体为直六棱柱,再分别计算棱柱的底面积和高,最后由棱柱的体积计算公式求得结果解答:解:由图可知,此几何体为直六棱柱,底面六边形可看做两个全等的等腰梯形,上底边为1,下底边为3,高为1,∴棱柱的底面积为2×=4,棱柱的高为1∴此几何体的体积为V=4×1=4故选D点评:本题主要考查了简单几何体的结构特征及其三视图,棱柱的体积计算公式等基础知识,属基础题8.(5分)(2012•江西)椭圆(a>b>0)的左、右顶点分别是A,B,左、右焦点分别是F1,F2.若|AF1|,|F1F2|,|F1B|成等比数列,则此椭圆的离心率为()A.B.C.D.考点:椭圆的简单性质;等比关系的确定.专题:计算题.分析:由题意可得,|AF1|=a﹣c,|F1F2|=2c,|F1B|=a+c,由|AF1|,|F1F2|,|F1B|成等比数列可得到e2==,从而得到答案.解答:解:设该椭圆的半焦距为c,由题意可得,|AF1|=a﹣c,|F1F2|=2c,|F1B|=a+c,∵|AF1|,|F1F2|,|F1B|成等比数列,∴(2c)2=(a﹣c)(a+c),∴=,即e2=,∴e=,即此椭圆的离心率为.故选B.点评:本题考查椭圆的简单性质,考查等比数列的性质,用a,c分别表示出|AF1|,|F1F2|,|F1B|是关键,属于基础题.9.(5分)(2012•江西)已知f(x)=sin2(x+),若a=f(lg5),b=f(lg),则()A.a+b=0 B.a﹣b=0 C.a+b=1 D.a﹣b=1考点:二倍角的余弦;对数的运算性质;余弦函数的定义域和值域.专题:计算题;压轴题.分析:由题意,可先将函数f(x)=sin2(x+)化为f(x)=,再解出a=f(lg5),b=f(lg)两个的值,对照四个选项,验证即可得到答案解答:解:f(x)=sin2(x+)==又a=f(lg5),b=f(lg)=f(﹣lg5),∴a+b=+=1,a﹣b=﹣=sin2lg5故C选项正确故选C点评:本题考查二倍角的余弦及对数的运算性质,解题的关键是对函数的解析式进行化简,数学形式的化简对解题很重要10.(5分)(2012•江西)如图,|OA|=2(单位:m),OB=1(单位:m),OA与OB的夹角为,以A为圆心,AB 为半径作圆弧与线段OA延长线交与点C.甲、乙两质点同时从点O出发,甲先以速度1(单位:m/s)沿线段OB行至点B,再以速度3(单位:m/s)沿圆弧行至点C后停止;乙以速率2(单位:m/s)沿线段OA行至A点后停止.设t时刻甲、乙所到的两点连线与它们经过的路径所围成图形的面积为S(t)(S(0)=0),则函数y=S(t)的图象大致是()A.B.C.D.考点:函数的图象.专题:压轴题;探究型.分析:由题意,所围成的面积的变化可分为两段研究,一秒钟内与一秒钟后,由题设知第一秒内所围成的面积增加较快,一秒钟后的一段时间内匀速增加,一段时间后面积不再变化,由此规律可以选出正确选项解答:解:由题设知,|OA|=2(单位:m),OB=1,两者行一秒后,甲行到B停止,乙此时行到A,故在第一秒内,甲、乙所到的两点连线与它们经过的路径所围成图形的面积为S(t)的值增加得越来越快,一秒钟后,随着甲的运动,所围成的面积增加值是扇形中AB所扫过的面积,由于点B是匀速运动,故一秒钟后,面积的增加是匀速的,且当甲行走到C后,即B与C重合后,面积不再随着时间的增加而改变,故函数y=S (t)随着时间t的增加先是增加得越来越快,然后转化成匀速增加,然后面积不再变化,考察四个选项,只有A符合题意故选A点评:本题考查审题与识图的能力,解题的关键是通过审题得出面积的变化规律,再结合四个选项找出符合题意要求的图象来,本题是能力型、探究型题,偏重于理解,是高考中的创新题,要悉心理解掌握此类题的切入点与研究规律二、填空题:本大题共5小题,每小题5分,共25分.11.(5分)(2012•江西)不等式的解集是{x|﹣3<x<2 或x>3}.考点:其他不等式的解法.专题:计算题.分析:由不等式可得(x﹣2)(x2﹣9)>0,由此解得不等式的解集.解答:解:由不等式可得(x﹣2)(x2﹣9)>0,解得﹣3<x<2 或x>3,故不等式的解集为{x|﹣3<x<2 或x>3},故答案为:{x|﹣3<x<2 或x>3}.点评:本题主要考查分式不等式的解法,体现了等价转化的数学思想,属于中档题.12.(5分)(2012•江西)设单位向量=(x,y),=(2,﹣1).若⊥,则|x+2y|=.考点:数量积判断两个平面向量的垂直关系.专题:计算题.分析:由题意,可由题设条件单位向量=(x,y)及⊥,建立关于x,y的方程组,解出x,y的值,从而求出|x+2y|得到答案解答:解:由题意,单位向量=(x,y),=(2,﹣1).且⊥,∴,解得x=±,y=±,∴|x+2y|=故答案为点评:本题考查数量积判断两个向量的垂直关系及单位向量的概念,模的坐标表示,解题的关键是熟练掌握向量中的基本公式,属于较简单的计算题13.(5分)(2012•江西)等比数列{a n}的前n项和为S n,公比不为1.若a1=1,且对任意的n∈N+都有a n+2+a n+1﹣2a n=0,则S5=11.考点:等比数列的性质;数列的求和.专题:计算题.分析:由题意可得a n q2+a n q=2a n ,即q2+q=2,解得q=﹣2,或q=1(舍去),由此求得S5=的值.解答:解:∵等比数列{a n}的前n项和为S n,a1=1,且对任意的n∈N+都有a n+2+a n+1﹣2a n=0,∴a n q2+a n q=2a n ,即q2+q=2,解得q=﹣2,或q=1(舍去).∴S5==11,故答案为11.点评:本题主要考查等比数列的定义和性质,等比数列的前n项和公式,求出公比,是解题的关键,属于中档题.14.(5分)(2012•江西)过直线x+y﹣2=0上点P作圆x2+y2=1的两条切线,若两条切线的夹角是60°,则点P的坐标是(,).考点:圆的切线方程;两直线的夹角与到角问题.专题:直线与圆.分析:根据题意画出相应的图形,设P的坐标为(a,b),由PA与PB为圆的两条切线,根据切线的性质得到OA与AP垂直,OB与BP垂直,再由切线长定理得到PO为角平分线,根据两切线的夹角为60°,求出∠APO和∠BPO都为30°,在直角三角形APO 中,由半径AO的长,利用30°角所对的直角边等于斜边的一半求出OP的长,由P 和O的坐标,利用两点间的距离公式列出关于a与b的方程,记作①,再由P在直线x+y﹣2=0上,将P的坐标代入得到关于a与b的另一个方程,记作②,联立①②即可求出a与b的值,进而确定出P的坐标.解答:解:根据题意画出相应的图形,如图所示:直线PA和PB为过点P的两条切线,且∠APB=60°,设P的坐标为(a,b),连接OP,OA,OB,∴OA⊥AP,OB⊥BP,PO平分∠APB,∴∠OAP=∠OBP=90°,∠APO=∠BPO=30°,又圆x2+y2=1,即圆心坐标为(0,0),半径r=1,∴OA=OB=1,∴OP=2AO=2BO=2,∴=2,即a2+b2=4①,又P在直线x+y﹣2=0上,∴a+b﹣2=0,即a+b=2②,联立①②解得:a=b=,则P的坐标为(,).故答案为:(,)点评:此题考查了圆的切线方程,涉及的知识有:切线的性质,切线长定理,含30°直角三角形的性质,以及两点间的距离公式,利用了数形结合的思想,根据题意画出相应的图形是解本题的关键.15.(5分)(2012•江西)下图是某算法的程序框图,则程序运行后输出的结果是3.考点:循环结构.专题:算法和程序框图.分析:直接计算循环后的结果,当k=6时不满足判断框的条件,推出循环输出结果即可.解答:解:第1次,满足循环,a=1,T=1,K=2,第2次满足2<6;sin,不成立,执行a=0,T=1,k=3,第3次有,不满足条件循环,a=0,T=1,k=4,满足,a=1,T=2,k=5,满足k<6,此时成立,a=1,T=3,k=6,不满足6<6,退出循环,输出结果T=3.故答案为:3.点评:本题考查循环结构的作用,循环中两次判断框,题目比较新,考查学生分析问题解决问题的能力.三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.16.(12分)(2012•江西)△ABC中,角A,B,C的对边分别为a,b,c.已知3cos(B ﹣C)﹣1=6cosBcosC.(1)求cosA;(2)若a=3,△ABC的面积为,求b,c.考点:余弦定理;诱导公式的作用;两角和与差的余弦函数;正弦定理.专题:计算题.分析:(1)利用两角和与差的余弦函数公式化简已知等式左边的第一项,移项合并后再利用两角和与差的余弦函数公式得出cos(B+C)的值,将cosA用三角形的内角和定理及诱导公式变形后,将cos(B+C)的值代入即可求出cosA的值;(2)由cosA的值及A为三角形的内角,利用同角三角函数间的基本关系求出sinA 的值,利用三角形的面积公式表示出三角形ABC的面积,将已知的面积及sinA的值代入,得出bc=6,记作①,再由a及cosA的值,利用余弦定理列出关于b与c的关系式,记作②,联立①②即可求出b与c的值.解答:解:(1)3cos(B﹣C)﹣1=6cosBcosC,化简得:3(cosBcosC+sinBsinC)﹣1=6cosBcosC,变形得:3(cosBcosC﹣sinBsinC)=﹣1,即cos(B+C)=﹣,则cosA=﹣cos(B+C)=;(2)∵A为三角形的内角,cosA=,∴sinA==,又S△ABC=2,即bcsinA=2,解得:bc=6①,又a=3,cosA=,∴由余弦定理a2=b2+c2﹣2bccosA得:b2+c2=13②,联立①②解得:或.点评:此题考查了余弦定理,三角形的面积公式,两角和与差的余弦函数公式,诱导公式,以及同角三角函数间的基本关系,熟练掌握公式及定理是解本题的关键.17.(12分)(2012•江西)已知数列{a n}的前n项和S n=kc n﹣k(其中c,k为常数),且a2=4,a6=8a3.(1)求a n;(2)求数列{na n}的前n项和T n.考点:数列的求和;等比数列的通项公式.专题:计算题.分析:(1)先根据前n项和求出数列的通项表达式;再结合a2=4,a6=8a3求出c,k,即可求出数列的通项;(2)直接利用错位相减法求和即可.解答:解:(1)由S n=kc n﹣k,得a n=s n﹣s n﹣1=kc n﹣kc n﹣1;(n≥2),由a2=4,a6=8a3.得kc(c﹣1)=4,kc5(c﹣1)=8kc2(c﹣1),解得;所以a1=s1=2;a n=s n﹣s n﹣1=kc n﹣kc n﹣1=2n,(n≥2),于是a n=2n.(2):∵na n=n•2n;∴T n=2+2•22+3•23+…+n•2n;2T n=22+2•23+3•24+…+(n﹣1)•2n+n•2n+1;∴﹣T n=2+22+23…+2n﹣n•2n+1=﹣n•2n+1=﹣2+2n+1﹣n•2n+1;即:T n=(n﹣1)•2n+1+2.点评:本题主要考察数列求和的错位相减法.数列求和的错位相减法适用于一等差数列乘一等比数列组合而成的新数列.数列求和的错位相减法也是这几年高考的常考点.18.(12分)(2012•江西)如图,从A1(1,0,0),A2(2,0,0),B1(0,1,0,)B2(0,2,0),C1(0,0,1),C2(0,0,2)这6个点中随机选取3个点.(1)求这3点与原点O恰好是正三棱锥的四个顶点的概率;(2)求这3点与原点O共面的概率.考点:等可能事件的概率.专题:概率与统计.分析:根据题意,分情况讨论,列举可得从6点中随机取出3个点的情况数目,(1)由正三棱锥的定义,在列举的结果中分析可得选取的3点与原点O恰好是正三棱锥的四个顶点的情况数目,由等可能事件的概率公式,计算可得答案;(2)根据题意,在列举的结果中分析可得选取的3点与原点O共面的情况数目,由等可能事件的概率公式,计算可得答案.解答:解:从这6点中随机取出3个点,其所有的情况有x轴上取2个点的有A1A2B1,A1A2B2,A1A2C1,A1A2C2,共4种情况,y轴上取2个点的有B1B2A1,B1B2A2,B1B2C1,B1B2C2,共4种情况,Z轴上取2个点的有C1C2A1,C1C2A2,C1C2B1,C1C2B2,共4种情况,3个点在不同的坐标轴上有A1B1C1,A1B1C2,A1B2C1,A1B2C2,A2B1C1,A2B1C2,A2B2C1,A2B2C2,共8种情况,则从这6点中随机取出3个点,其所有的情况共有4+4+4+12=20种,(1)选取的3点与原点O恰好是正三棱锥的四个顶点的情况有A1B1C1,A2B2C2,共2种,则其概率P1==,(2)选取的3点与原点O共面的情况,有A1A2B1,A1A2B2,A1A2C1,A1A2C2,B1B2A1,B1B2A2,B1B2C1,B1B2C2,C1C2A1,C1C2A2,C1C2B1,C1C2B2,共12种,则选取的3点与原点O共面的概率P2==.点评:本题考查等可能事件的概率计算,关键是结合空间几何的知识,列举得到(1)(2)小题中事件的情况数目.19.(12分)(2012•江西)如图,在梯形ABCD中,AB∥CD,E,F是线段AB上的两点,且DE⊥AB,CF⊥AB,AB=12,AD=5,BC=4,DE=4.现将△ADE,△CFB分别沿DE,CF折起,使A,B两点重合与点G,得到多面体CDEFG.(1)求证:平面DEG⊥平面CFG;(2)求多面体CDEFG的体积.考点:平面与平面垂直的判定;棱柱、棱锥、棱台的体积.专题:计算题;证明题.分析:(1)判断四边形CDEF为矩形,然后证明EG⊥GF,推出CF⊥EG,然后证明平面DEG⊥平面CFG.(2)在平面EGF中,过点G作GH⊥EF于H,求出GH,说明GH⊥平面CDEF,利用求出体积.解答:解:(1)证明:因为DE⊥EF,CF⊥EF,所以四边形CDEF为矩形,由AD=5,DE=4,得AE=GE==3,由GC=4,CF=4,得BF=FG==4,所以EF=5,在△EFG中,有EF2=GE2+FG2,所以EG⊥GF,又因为CF⊥EF,CF⊥FG,得CF⊥平面EFG,所以CF⊥EG,所以EG⊥平面CFG,即平面DEG⊥平面CFG.(2)解:在平面EGF中,过点G作GH⊥EF于H,则GH==,因为平面CDEF⊥平面EFG,得GH⊥平面CDEF,=16.点评:本题考查平面与平面垂直的判定,棱柱、棱锥、棱台的体积的求法,考查逻辑推理能力,计算能力.20.(13分)(2012•江西)已知三点O(0,0),A(﹣2,1),B(2,1),曲线C上任意一点M(x,y)满足||=•(+)+2(1)求曲线C的方程;(2)点Q(x0,y0)(﹣2<x0<2)是曲线C上动点,曲线C在点Q处的切线为l,点P的坐标是(0,﹣1),l与PA,PB分别交于点D,E,求△QAB与△PDE的面积之比.考点:抛物线的标准方程;利用导数研究曲线上某点切线方程.专题:圆锥曲线的定义、性质与方程.分析:(1)先求出、的坐标,由此求得||和•(+)+2的值,由题意可得=4﹣2y,化简可得所求.(2)根据直线PA,PB的方程以及曲线C在点Q(x0,y0)(﹣2<x0<2)处的切线方程,求出F点的坐标,D、E两点的横坐标,可得S△PDE和S△QAB的值,从而求得△QAB与△PDE的面积之比.解答:解:(1)由=(﹣2﹣x,1﹣y),=(2﹣x,1﹣y)可得=(﹣2x,2﹣2y),∴||=,•(+)+2=(x,y)•(0,2)+2=2+2y.由题意可得=2+2y,化简可得x2 =4y.(2)由题意可得直线PA,PB的方程分别为y=﹣x﹣1、y=x﹣1,且y0 =x0,曲线C在点Q(x0,y0)(﹣2<x0<2)处的切线斜率为k=x0,∴曲线C在点Q(x0,y0)(﹣2<x0<2)处的切线方程为y=x0x﹣,且与y轴的交点F(0,﹣).由求得x D=,由求得x E=.故x E﹣x D=2,故|FP|=1﹣.故S△PDE=|PF|•|x E﹣x D|=(1﹣)•2=,而S△QAB=×4×(1﹣)=,∴=2,即△QAB与△PDE的面积之比等于2.点评:本题主要考查抛物线的标准方程的应用,利用导数求曲线上某点的切线方程,求得F 点的坐标,D、E两点的横坐标,是解题的关键,属于中档题.21.(14分)(2012•江西)已知函数f(x)=(ax2+bx+c)e x在[0,1]上单调递减且满足f(0)=1,f(1)=0.(1)求a取值范围;(2)设g(x)=f(x)﹣f′(x),求g(x)在[0,1]上的最大值和最小值.考点:利用导数求闭区间上函数的最值;利用导数研究函数的单调性.专题:综合题;压轴题;探究型;转化思想.分析:(1)由题意,函数f(x)=(ax2+bx+c)e x在[0,1]上单调递减且满足f(0)=1,f (1)=0,可求出函数的导数,将函数在[0,1]上单调递减转化为导数在[0,1]上的函数值恒小于等于0,再结合f(0)=1,f(1)=0这两个方程即可求得a取值范围;(2)由题设条件,先给出g(x)=f(x)﹣f′(x)的解析式,求出导函数,g′(x)=(﹣2ax﹣a+1)e x,由于参数a的影响,函数在[0,1]上的单调性不同,结合(1)的结论及g′(x)可得.(i)当a=0时;(ii)当a=1时;(iii)当0<a<1时,分三类对函数的单调性进行讨论,确定并求出函数的最值解答:解:(1)由f(0)=1,f(1)=0得c=1,a+b=﹣1,则f(x)=[ax2﹣(a+1)x+1]e x,∴f′(x)=[ax2+(a﹣1)x﹣a]e x,由题意函数f(x)=(ax2+bx+c)e x在[0,1]上单调递减可得对于任意的x∈(0,1),都有f′(x)<0当a>0时,因为二次函数y=ax2+(a﹣1)x﹣a图象开口向上,而f′(0)=﹣a<0,所以只需要f′(1)=(a﹣1)e≤0,即a≤1,故有0<a≤1;当a=1时,对于任意的x∈(0,1),都有f′(x)=(x2﹣1)e x<0,函数符合条件;当a=0时,对于任意的x∈(0,1),都有f′(x)=﹣xe x<0,函数符合条件;当a<0时,因f′(0)=﹣a>0函数不符合条件;综上知,a的取值范围是0≤a≤1(2)因为g(x)=f(x)﹣f′(x)=(ax2﹣(a+1)x+1)e x﹣[ax2+(a﹣1)x﹣a]e x=(﹣2ax+a+1)e x,g′(x)=(﹣2ax﹣a+1)e x,(i)当a=0时,g′(x)=e x>0,g(x)在[0,1]上的最小值是g(0)=1,最大值是g (1)=e(ii)当a=1时,对于任意x∈(0,1)有g′(x)=﹣2xe x<0,则有g(x)在[0,1]上的最小值是g(1)=0,最大值是g(0)=2;(iii)当0<a<1时,由g′(x)=0得x=>0,①若,即0<a≤时,g(x)在[0,1]上是增函数,所以g(x)在[0,1]上最大值是g(1)=(1﹣a)e,最小值是g(0)=1+a;②若,即<a<1时,g(x)在x=取得最大值g()=2a,在x=0或x=1时取到最小值,而g(0)=1+a,g(1)=(1﹣a)e,则令g(0)=1+a≤g(1)=(1﹣a)e可得<a≤;令g(0)=1+a≥g(1)=(1﹣a)e可得≤a<1综上,当<a≤时,g(x)在x=0取到最小值g(0)=1+a,当≤a<1时,g(x)在x=1取到最小值g(1)=(1﹣a)e点评:本题考查利用导数求函数在闭区间上的最值,利用导数研究函数的单调性,此类题解题步骤一般是求导,研究单调性,确定最值,求最值,第一掌上明珠解题的关键是把函数在闭区间上递减转化为函数的导数在此区间上小于等于0恒成立,将单调递减的问题转化为不等式恒成立是此类题常用的转化思路,第二小题求含有参数的函数在某个区间上的最值,解题的关键是分类讨论确定出函数的最值,本题考查了转化的思想,推理判断的能力,计算量大,难度较大,极易因为判断不准转化出错或计算出错,常作为高考的压轴题.。
2012年高考试题:文科数学(全国卷)——含答案及解析
2012年普通高等学校招生全国统一考试文科数学(必修+选修Ⅰ)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至2页,第Ⅱ卷3至4页。
考试结束后,将本卷和答题卡一并交回。
第Ⅰ卷注意事项:1、答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。
请认真核准条形码上的准考证号、姓名和科目。
2、每小题选出答案后,用2B 铅笔把答题卡上对应题目答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在试题卷上作答无效。
3、第Ⅰ卷共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项符合题目要求。
一、选择题(1)已知集合{|}{|}{|}{|}A x xB x xC x xD x x ==是平行四边形,是矩形,是正方形,是菱形,则( ).()()()()A A B B C B C D C D A D⊆⊆⊆⊆【考点】集合【难度】容易【点评】本题考查集合之间的运算关系,即包含关系。
在高一数学强化提高班上学期课程讲座1,第一章《集合》中有详细讲解,在高考精品班数学(文)强化提高班中有对集合相关知识的总结讲解。
(2)函数1(1)y x x =+-≥的反函数为( ). 2()1(0)A yx x =-≥ 2()1(1)B yx x =-≥ 2()1(0)C yx x =+≥ 2()1(1)D yx x =+≥ 【考点】反函数【难度】容易【点评】本题考查反函数的求解方法,注意反函数的定义域即为原函数的值域。
在高一数学强化提高班上学期课程讲座1,第二章《函数与初等函数》中有详细讲解,在高考精品班数学(文)强化提高班中有对函数相关知识的总结讲解。
(3)若函数()s i n [0,2]3x fx ϕϕ+=∈(π)是偶函数,则ϕ=( ).()2A π 2()3B π 3()2C π 5()3D π 【考点】三角函数与偶函数的结合【难度】中等【点评】本题考查三角函数变换,及偶函数的性质。
2012高考江西卷数学真题及答案
第- 1 -/7页2012年普通高等学校招生全国统一考试(江苏卷)数学Ⅰ参考公式:棱锥的体积13V Sh =,其中S 为底面积,h 为高.一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上......... 1.已知集合{124}A =,,,{246}B =,,,则A B = ▲ .2.某学校高一、高二、高三年级的学生人数之比为334::,现用分层抽样的方法从该校高中三个年级的学生中抽取容量为50的样本,则应从高二年级抽取 ▲ 名学生.3.设a b ∈R ,,117ii 12ia b -+=-(i 为虚数单位),则a b +的值 为 ▲ .4.右图是一个算法流程图,则输出的k 的值是 ▲ . 5.函数()f x 的定义域为 ▲ .6.现有10个数,它们能构成一个以1为首项,3-等比数列,若从这10个数中随机抽取一个数,则它小于8 的概率是 ▲ .开始 结束输出k Y (第4题)第- 2 -/7页7.如图,在长方体1111ABCD A B C D -中,3cm AB AD ==,12cm AA =, 则四棱锥11A BB D D -的体积为 ▲ cm 3.8.在平面直角坐标系xOy 中,若双曲线22214x y m m -=+的离心率 m 的值为 ▲ .9.如图,在矩形ABCD 中,2AB BC ==,点E 为BC 的中点,点F 在边CD 上,若AB AF = AE BF的值是 ▲ . 10.设()f x 是定义在R 上且周期为2的函数,在区间[11]-,上, 0111()201x x ax f x bx x <+-⎧⎪=+⎨⎪+⎩≤≤≤,,,,其中a b ∈R ,.若1322f f ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭, 则3a b +的值为 ▲ .11.设α为锐角,若4cos 65απ⎛⎫+= ⎪⎝⎭,则4sin 2125απ⎛⎫+= ⎪⎝⎭的值为 ▲ .12.在平面直角坐标系xOy 中,圆C 的方程为228150x y x +-+=,若直线2y kx =-上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点,则k 的最大值是 ▲ .13.已知函数2()()f x x ax b a b =++∈R ,的值域为[0)+∞,,若关于x 的不等式()f x c <的解集为(6)m m +,,则实数c 的值为 ▲ .14.已知正数a b c ,,满足:4ln 53ln b c a a c c c a c b -+-≤≤≥,,则ba的取值范围是 ▲ .二、解答题:本大题共6小题,共计90分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤. 15.(本小题满分14分)在ABC ∆中,已知3AB AC BA BC =.(1)求证:tan 3tan B A =; (2)若cos C =求A 的值.DABC1C 1D 1A1B(第7题)(第9题)第- 3 -/7页16.(本小题满分14分)如图,在直三棱柱111ABC A B C -中,1111AB AC =,D E ,分别是棱1BC CC ,上的点(点D 不同于点C ),且AD DE F ⊥,为11B C 的中点. 求证:(1)平面ADE ⊥平面11BCC B ; (2)直线1//A F 平面ADE .17.(本小题满分14分)如图,建立平面直角坐标系xOy ,x 轴在地平面上,y 轴垂直于地平面,单位长度为1千米.某炮位于坐标原点.已知炮弹发射后的轨迹在方程221(1)(0)20y kx k x k =-+>表示的曲线上,其中k 与发射方向有关.炮的射程是指炮弹落地点的横坐标. (1)求炮的最大射程;(2)设在第一象限有一飞行物(忽略其大小),其飞行高度为3.2千米,试问它的横坐标a 不超过多少时,炮弹可以击中它?请说明理由.18.(本小题满分16分)已知a ,b 是实数,1和1-是函数32()f x x ax bx =++的两个极值点. (1)求a 和b 的值;(2)设函数()g x 的导函数()()2g x f x '=+,求()g x 的极值点;1A1C(第16题)FDCABE1B第- 4 -/7页(3)设()(())h x f f x c =-,其中[22]c ∈-,,求函数()y h x =的零点个数.19.(本小题满分16分)如图,在平面直角坐标系xOy 中,椭圆22221(0)x y a b a b+=>>的左、右焦点分别为1(0)F c -,,2(0)F c ,.已知(1)e ,和e ⎛ ⎝⎭都在椭圆上,其中e 为椭圆的离心率. (1)求椭圆的离心率;(2)设A ,B 是椭圆上位于x 轴上方的两点,且直线与直线2BF 平行,2AF 与1BF 交于点P .(i )若12AF BF -=,求直线1AF 的斜率; (ii )求证:12PF PF +是定值.20.(本小题满分16分)已知各项均为正数的两个数列{}n a 和{}n b 满足:1n a n *+=∈N .(1)设11n n n b b n a *+=+∈N ,,求证:数列2nn b a ⎧⎫⎛⎫⎪⎪⎨⎬ ⎪⎝⎭⎪⎪⎩⎭是等差数列;(2)设1nn nb b n a *+=∈N ,,且{}n a 是等比数列,求1a 和1b 的值.(第19题)第- 5 -/7页数学Ⅱ(附加题)21.【选做题】 本大题包括A 、B 、C 、D 四小题,请选定期中两小题,并在相应的..............答题区域内作答.......,若多做,则按作答的前两小题评分. 解答时应写出文字说明、证明过程或演算步骤。
2012高考江西文科数学试题及答案(高清版)
2012年普通高等学校夏季招生全国统一考试数学文史类(江西卷)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分,考试时间120分钟. 参考公式: 锥体体积公式 13V Sh =其中S 为底面积,h 为高第Ⅰ卷一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若复数z =1+i(i 为虚数单位),z 是z 的共轭复数,则22z z +的虚部为( ) A .0 B .-1 C .1 D .-22.若全集U ={x ∈R |x 2≤4},则集合A ={x ∈R ||x +1|≤1}的补集∁U A 为( ) A .{x ∈R |0<x <2} B .{x ∈R |0≤x <2} C .{x ∈R |0<x ≤2} D .{x ∈R |0≤x ≤2}3.设函数21,1,()2,1,x x f x x x⎧+≤⎪=⎨>⎪⎩则f (f (3))=( )A .15B .3C .23D .1394.若sin cos 1sin cos 2αααα+=-,则tan 2α=( )A .34-B .34C .43- D .435.观察下列事实:|x |+|y |=1的不同整数解(x ,y )的个数为4,|x |+|y |=2的不同整数解(x ,y )的个数为8,|x |+|y |=3的不同整数解(x ,y )的个数为12,…,则|x |+|y |=20的不同整数解(x ,y )的个数为( )A .76B .80C .86D .926.小波一星期的总开支分布如图1所示,一星期的食品开支如图2所示,则小波一星期的鸡蛋开支占总开支的百分比为()图1图2A .30%B .10%C .3%D .不能确定7.若一个几何体的三视图如图所示,则此几何体的体积为( )A .112B .5C .92D .48.椭圆22221xya b+=(a >b >0)的左、右顶点分别是A ,B ,左、右焦点分别是F 1,F 2.若|AF 1|,|F 1F 2|,|F 1B |成等比数列,则此椭圆的离心率为( )A .14B .5C .12D 29.已知f (x )=sin 2(x +π4).若a =f (lg 5),1(lg)5b f =,则( )A .a +b =0B .a -b =0C .a +b =1D .a -b =110.如下图,|OA |=2(单位:m),|OB |=1(单位:m),OA 与OB 的夹角为π6,以A 为圆心,AB 为半径作圆弧 BD C 与线段OA 延长线交于点C .甲、乙两质点同时从点O 出发,甲先以速率1(单位:m/s)沿线段OB 行至点B ,再以速率3(单位:m/s)沿圆弧 BD C 行至点C 后停止;乙以速率2(单位:m/s)沿线段OA 行至点A 后停止.设t 时刻甲、乙所到达的两点连线与它们经过的路径所围成图形的面积为S (t )(S (0)=0),则函数y =S (t )的图像大致是( )第Ⅱ卷二、填空题:本大题共5小题,每小题5分,共25分. 11.不等式2902x x ->-的解集是__________. 12.设单位向量m =(x ,y ),b =(2,-1).若m ⊥b ,则|x +2y |=__________.13.等比数列{a n }的前n 项和为S n ,公比不为1.若a 1=1,且对任意的n ∈N +都有a n +2+a n +1-2a n =0,则S 5=__________.14.过直线x +y -0上点P 作圆x 2+y 2=1的两条切线,若两条切线的夹角是60°,则点P 的坐标是__________.15.下图为某算法的程序框图,则程序运行后输出的结果是__________.三、选做题:请考生在下列两题中任选一题作答.若两题都做,则按所做的第一题评阅计分.本题共5分.四、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤. 16.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .已知3cos(B -C )-1=6cos B cos C . (1)求cos A ;(2)若a =3,△ABC 的面积为,求b ,c .17.已知数列{a n }的前n 项和S n =kc n -k (其中c ,k 为常数),且a 2=4,a 6=8a 3. (1)求a n ;(2)求数列{na n }的前n 项和T n .18.如图,从A 1(1,0,0),A 2(2,0,0),B 1(0,1,0),B 2(0,2,0),C 1(0,0,1),C 2(0,0,2)这6个点中随机选取3个点.(1)求这3点与原点O 恰好是正三棱锥的四个顶点的概率; (2)求这3点与原点O 共面的概率. 19.如图,在梯形ABCD 中,AB ∥CD ,E ,F 是线段AB 上的两点,且DE ⊥AB ,CF ⊥AB ,AB =12,AD =5,BC =DE =4.现将△ADE ,△CFB 分别沿DE ,CF 折起,使A ,B 两点重合于点G ,得到多面体CDEFG .(1)求证:平面DEG ⊥平面CFG ;(2)求多面体CDEFG 的体积.20.已知三点O (0,0),A (-2,1),B (2,1),曲线C 上任意一点M (x ,y )满足||()2M A M B O M O A O B +=⋅++ . (1)求曲线C 的方程;(2)点Q (x 0,y 0)(-2<x 0<2)是曲线C 上的动点,曲线C 在点Q 处的切线为l ,点P 的坐标是(0,-1),l 与PA ,PB 分别交于点D ,E ,求△QAB 与△PDE 的面积之比.21.已知函数f (x )=(ax 2+bx +c )e x在[0,1]上单调递减且满足f (0)=1,f (1)=0. (1)求a 的取值范围;(2)设g (x )=f (x )-f ′(x ),求g (x )在[0,1]上的最大值和最小值.1. A 因为z =1+i ,所以z =1-i. 而z 2=(1+i)2=2i ,2z =(1-i)2=-2i ,所以z 2+2z =0,故选A 项.2. C 由已知得,全集U ={x ∈R |-2≤x ≤2},集合A ={x ∈R |-2≤x ≤0}, 结合数轴得∁U A ={x ∈R |0<x ≤2},故选C 项. 3. D 因为3>1,所以2(3)3f =.又因为213≤,所以22213()()1339f =+=.于是213((3))()39f f f ==,故选D 项. 4. B 因为sin cos 1sin cos 2αααα+=-, 所以tan 11tan 12αα+=-,解方程得tan α=-3.所以22tan 3tan 21tan 4ααα==-,故选B 项.5. B 由已知条件得,|x |+|y |=n (n ∈N +)的不同整数解(x ,y )的个数为4n ,所以|x |+|y |=20的不同整数解(x ,y )的个数为80,故选B 项.6. C 由题图2知,小波一星期的食品开支为300元,其中鸡蛋开支为30元,占食品开支的10%,而食品开支占总开支的30%,所以小波一星期的鸡蛋开支占总开支的3%,故选C 项.7. D 由三视图可判断该几何体为直六棱柱,其底面积为4,高为1,所以体积为4,故选D 项.8. B 因为A ,B 为左,右顶点,F 1,F 2为左,右焦点, 所以|AF 1|=a -c ,|F 1F 2|=2c ,|F 1B |=a +c . 又因为|AF 1|,|F 1F 2|,|F 1B |成等比数列,所以(a -c )(a +c )=4c 2,即a 2=5c 2.所以离心率5c e a ==,故选B 项.9. C 由降幂公式得f (x )=sin 2(x +π4)=π1cos(2)112sin 2222x x -+=+, 于是a =f (lg 5)=12+12sin(2lg 5),b =f (lg 15)=f (-lg 5)=12+12sin(-2lg 5)=12-12sin(2lg 5),所以a +b =1,故选C 项.10. A 因为|OB |=1,甲在OB 段的速率为1,所以在OB 段行至点B 恰好为1 s ;|OA |=2,乙在OA 段的速率为2,所以在OA 段行至点A 恰好为1 s ,所以在甲由点O 至点B ,乙由点O 至点A 这段时间,S (t )=12t 2(0≤t ≤1)是增函数而且S 加速增大.由于乙到点A 后停止,所以在甲由点B 沿圆弧 BD C 运动过程中,面积S 是在匀速增大,所以图像应为一条线段,而在甲到达点C 后面积S 不再变化,所以图像应为一条平行于x 轴的直线,故选A 项.11.答案:(-3,2)∪(3,+∞)解析:不等式2902x x ->-可化为(x -2)·(x -3)(x +3)>0, 由穿根法(如图),得所求不等式的解集为(-3,2)∪(3,+∞). 12.解析:因为m ⊥b ,所以m ·b =2x -y =0.① 又因为m 为单位向量, 所以x 2+y 2=1.②由①②解得55x y ⎧=⎪⎪⎨⎪=⎪⎩或55x y ⎧=-⎪⎪⎨⎪=-⎪⎩所以|x +2y |=13.答案:11解析:设等比数列{a n }的公比为q ,则a n +2+a n +1-2a n =a 1·q n +1+a 1·q n -2a 1·q n -1=0, 即q 2+q -2=0,解得q =-2,q =1(舍去), 所以551(2)111(2)S --==--.14.答案:解析:如图所示,过点P 作圆x 2+y 2=1的两条切线,切点分别为A ,B , 由已知得,∠APO =30°, 所以|PO |=2.设P 点坐标为(x 0,y 0),则0022000,4,x y x y ⎧+-=⎪⎨+=⎪⎩解得00x y ⎧=⎪⎨=⎪⎩故所求点P坐标为.15.答案:3解析:当T =0,k =1时,π(1)πsinsin22k k ->,所以a =1,T =1,k =2;当T =1,k =2时,π(1)πsin sin 22k k -<,所以a =0,T =1,k =3; 当T =1,k =3时,π(1)πsin sin 22k k -<,所以a =0,T =1,k =4; 当T =1,k =4时,π(1)πsin sin 22k k ->,所以a =1,T =2,k =5; 当T =2,k =5时,π(1)πsinsin22k k ->,所以a =1,T =3,k =6.此时k ≥6,所以输出T =3.16.解:(1)由3cos(B -C )-1=6cos B cos C , 得3(cos B cos C -sin B sin C )=-1, 即cos(B +C )=13-,从而cos A =-cos(B +C )=13.(2)由于0<A <π,cos A =13,所以sin A=3.又S △ABC=1sin 2bc A =bc =6.由余弦定理a 2=b 2+c 2-2bc cos A ,得b 2+c 2=13. 解方程组22613bc b c =⎧⎨+=⎩,,得23b c =⎧⎨=⎩,,或32.b c =⎧⎨=⎩,17.解:(1)由S n =kc n-k ,得a n =S n -S n -1=kc n -kc n -1(n ≥2),由a 2=4,a 6=8a 3,得kc (c -1)=4,kc 5(c -1)=8kc 2(c -1), 解得2,2,c k =⎧⎨=⎩所以a 1=S 1=2,a n =kc n -kc n -1=2n (n ≥2),于是a n =2n .(2)112nnin ii i T iai ====⋅∑∑,即T n =2+2·22+3·23+4·24+…+n ·2n ,T n =2T n -T n =-2-22-23-24-…-2n +n ·2n +1=-2n +1+2+n ·2n +1=(n -1)2n +1+2. 18.解:从这6个点中随机选取3个点的所有可能结果是:x 轴上取2个点的有A 1A 2B 1,A 1A 2B 2,A 1A 2C 1,A 1A 2C 2,共4种, y 轴上取2个点的有B 1B 2A 1,B 1B 2A 2,B 1B 2C 1,B 1B 2C 2,共4种, z 轴上取2个点的有C 1C 2A 1,C 1C 2A 2,C 1C 2B 1,C 1C 2B 2,共4种.所选取的3个点在不同坐标轴上有A 1B 1C 1,A 1B 1C 2,A 1B 2C 1,A 1B 2C 2,A 2B 1C 1,A 2B 1C 2,A 2B 2C 1,A 2B 2C 2,共8种.因此,从这6个点中随机选取3个点的所有可能结果共20种.(1)选取的这3个点与原点O 恰好是正三棱锥的四个顶点的所有可能结果有:A 1B 1C 1,A 2B 2C 2,共2种,因此,这3个点与原点O 恰好是正三棱锥的四个顶点的概率为1212010p ==.(2)选取的这3个点与原点O 共面的所有可能结果有:A 1A 2B 1,A 1A 2B 2,A 1A 2C 1,A 1A 2C 2,B 1B 2A 1,B 1B 2A 2,B 1B 2C 1,B 1B 2C 2,C 1C 2A 1,C 1C 2A 2,C 1C 2B 1,C 1C 2B 2,共12种,因此,这3个点与原点O 共面的概率为2123205p ==.19. (1)证明:因为DE ⊥EF ,CF ⊥EF , 所以四边形CDEF 为矩形.由GD =5,DE =4,得3GE ==,由GC =CF =4,得4FG ==,所以EF =5.在△EFG 中,有EF 2=GE 2+FG 2, 所以EG ⊥GF .又因为CF ⊥EF ,CF ⊥FG ,得CF ⊥平面EFG , 所以CF ⊥EG .所以EG ⊥平面CFG ,即平面DEG ⊥平面CFG .(2)解:在平面EGF 中,过点G 作GH ⊥EF 于点H , 则125E G GFGH E F⋅==,因为平面CDEF ⊥平面EFG ,得GH ⊥平面CDEF ,V CDEFG =13S CDEF ·GH =16.20.解:(1)由M A=(-2-x,1-y ),M B =(2-x,1-y ),得M A M B +=()O M O A O B ⋅+ =(x ,y )·(0,2)=2y ,由已知得22y =+,化简得曲线C 的方程:x =4y .(2)直线PA ,PB 的方程分别是y =-x -1,y =x -1,曲线C 在Q 处的切线l 的方程是20024x x y x =-,且与y 轴的交点为F (0,24x -),分别联立方程组2001,,24y x x x y x =--⎧⎪⎨=-⎪⎩2001,,24y x x x y x =-⎧⎪⎨=-⎪⎩解得D ,E 的横坐标分别是022Dx x -=,022E x x +=,则x E -x D =2,|FP |=1-204x , 故S △PDE =12|FP |·|x E -x D |=2241(1)2244x x -⋅-⋅=,而2200414(1)242QAB x x S ∆-=⋅⋅-=,则2Q A B P D ES S ∆∆=,即△QAB 与△PDE 的面积之比为2.21.解:(1)由f (0)=1,f (1)=0得c =1,a +b =-1,则f (x )=[ax 2-(a +1)x +1]e x ,f ′(x )=[ax 2+(a -1)x -a ]e x ,依题意须对于任意x ∈(0,1),有f ′(x )<0.当a >0时,因为二次函数y =ax 2+(a -1)x -a 的图像开口向上, 而f ′(0)=-a <0,所以须f ′(1)=(a -1)e <0,即0<a <1;当a=1时,对任意x∈(0,1)有f′(x)=(x2-1)e x<0,f(x)符合条件;当a=0时,对于任意x∈(0,1),f′(x)=-x e x<0,f(x)符合条件;当a<0时,因f′(0)=-a>0,f(x)不符合条件.故a的取值范围为0≤a≤1.(2)因g(x)=(-2ax+1+a)e x,g′(x)=(-2ax+1-a)e x,当a=0时,g′(x)=e x>0,g(x)在x=0上取得最小值g(0)=1,在x=1上取得最大值g(1)=e.当a=1时,对于任意x∈(0,1)有g′(x)=-2x e x<0,g(x)在x=0取得最大值g(0)=2,在x=1时取得最小值g(1)=0.当0<a<1时,由g′(x)=0得12axa-=>.①若112aa-≥,即0<a≤13时,g(x)在[0,1]上单调递增,g(x)在x=0取得最小值g(0)=1+a,在x=1时取得最大值g(1)=(1-a)e.②若112aa-<,即13<a<1时,g(x)在12axa-=时取得最大值121()2e2aaag aa--=,在x=0或x=1时取得最小值,而g(0)=1+a,g(1)=(1-a)e,则当1e13e1a-<≤+时,g(x)在x=0时取得最小值g(0)=1+a;当e11e1a-<<+时,g(x)在x=1时取得最小值g(1)=(1-a)e.。
2012年全国统一高考数学试卷(文科)(新课标)(含解析版)
2012年全国统一高考数学试卷(文科)(新课标)一、选择题:本大题共12小题,每小题5分,在每小题给同的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={x|x2﹣x﹣2<0},B={x|﹣1<x<1},则()A.A⊊B B.B⊊A C.A=B D.A∩B=∅2.(5分)复数z=的共轭复数是()A.2+i B.2﹣i C.﹣1+i D.﹣1﹣i3.(5分)在一组样本数据(x1,y1),(x2,y2),…,(x n,y n)(n≥2,x1,x2,…,x n不全相等)的散点图中,若所有样本点(x i,y i)(i=1,2,…,n)都在直线y=x+1上,则这组样本数据的样本相关系数为()A.﹣1B.0C.D.14.(5分)设F1、F2是椭圆E:+=1(a>b>0)的左、右焦点,P为直线x=上一点,△F2PF1是底角为30°的等腰三角形,则E的离心率为()A.B.C.D.5.(5分)已知正三角形ABC的顶点A(1,1),B(1,3),顶点C在第一象限,若点(x,y)在△ABC内部,则z=﹣x+y的取值范围是()A.(1﹣,2)B.(0,2)C.(﹣1,2)D.(0,1+)6.(5分)如果执行下边的程序框图,输入正整数N(N≥2)和实数a1,a2,…,a n,输出A,B,则()A.A+B为a1,a2,…,a n的和B.为a1,a2,…,a n的算术平均数C.A和B分别是a1,a2,…,a n中最大的数和最小的数D.A和B分别是a1,a2,…,a n中最小的数和最大的数7.(5分)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为()A.6B.9C.12D.188.(5分)平面α截球O的球面所得圆的半径为1,球心O到平面α的距离为,则此球的体积为()A.πB.4πC.4πD.6π9.(5分)已知ω>0,0<φ<π,直线x=和x=是函数f(x)=sin(ωx+φ)图象的两条相邻的对称轴,则φ=()A.B.C.D.10.(5分)等轴双曲线C的中心在原点,焦点在x轴上,C与抛物线y2=16x的准线交于点A和点B,|AB|=4,则C的实轴长为()A.B.C.4D.811.(5分)当0<x≤时,4x<log a x,则a的取值范围是()A.(0,)B.(,1)C.(1,)D.(,2)12.(5分)数列{a n}满足a n+1+(﹣1)n a n=2n﹣1,则{a n}的前60项和为()A.3690B.3660C.1845D.1830二.填空题:本大题共4小题,每小题5分.13.(5分)曲线y=x(3lnx+1)在点(1,1)处的切线方程为.14.(5分)等比数列{a n}的前n项和为S n,若S3+3S2=0,则公比q=.15.(5分)已知向量夹角为45°,且,则=.16.(5分)设函数f(x)=的最大值为M,最小值为m,则M+m=.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(12分)已知a,b,c分别为△ABC三个内角A,B,C的对边,c=asinC ﹣ccosA.(1)求A;(2)若a=2,△ABC的面积为,求b,c.18.(12分)某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售.如果当天卖不完,剩下的玫瑰花做垃圾处理.(Ⅰ)若花店一天购进17枝玫瑰花,求当天的利润y(单位:元)关于当天需求量n(单位:枝,n∈N)的函数解析式.(Ⅱ)花店记录了100天玫瑰花的日需求量(单位:枝),整理得如表:(i)假设花店在这100天内每天购进17枝玫瑰花,求这100天的日利润(单位:元)的平均数;(ii)若花店一天购进17枝玫瑰花,以100天记录的各需求量的频率作为各需求量发生的概率,求当天的利润不少于75元的概率.19.(12分)如图,三棱柱ABC﹣A1B1C1中,侧棱垂直底面,∠ACB=90°,AC=BC=AA1,D是棱AA1的中点.(Ⅰ)证明:平面BDC1⊥平面BDC(Ⅱ)平面BDC1分此棱柱为两部分,求这两部分体积的比.20.(12分)设抛物线C:x2=2py(p>0)的焦点为F,准线为l,A∈C,已知以F为圆心,FA为半径的圆F交l于B,D两点;(1)若∠BFD=90°,△ABD的面积为,求p的值及圆F的方程;(2)若A,B,F三点在同一直线m上,直线n与m平行,且n与C只有一个公共点,求坐标原点到m,n距离的比值.21.(12分)设函数f(x)=e x﹣ax﹣2.(Ⅰ)求f(x)的单调区间;(Ⅱ)若a=1,k为整数,且当x>0时,(x﹣k)f′(x)+x+1>0,求k的最大值.22.(10分)如图,D,E分别为△ABC边AB,AC的中点,直线DE交△ABC的外接圆于F,G两点,若CF∥AB,证明:(1)CD=BC;(2)△BCD∽△GBD.23.选修4﹣4;坐标系与参数方程已知曲线C1的参数方程是(φ为参数),以坐标原点为极点,x轴的正半轴为极轴建立坐标系,曲线C2的坐标系方程是ρ=2,正方形ABCD的顶点都在C2上,且A,B,C,D依逆时针次序排列,点A的极坐标为(2,).(1)求点A,B,C,D的直角坐标;(2)设P为C1上任意一点,求|PA|2+|PB|2+|PC|2+|PD|2的取值范围.24.已知函数f(x)=|x+a|+|x﹣2|①当a=﹣3时,求不等式f(x)≥3的解集;②f(x)≤|x﹣4|若的解集包含[1,2],求a的取值范围.2012年全国统一高考数学试卷(文科)(新课标)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,在每小题给同的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={x|x2﹣x﹣2<0},B={x|﹣1<x<1},则()A.A⊊B B.B⊊A C.A=B D.A∩B=∅【考点】18:集合的包含关系判断及应用.【专题】5J:集合.【分析】先求出集合A,然后根据集合之间的关系可判断【解答】解:由题意可得,A={x|﹣1<x<2},∵B={x|﹣1<x<1},在集合B中的元素都属于集合A,但是在集合A中的元素不一定在集合B中,例如x=∴B⊊A.故选:B.【点评】本题主要考查了集合之间关系的判断,属于基础试题.2.(5分)复数z=的共轭复数是()A.2+i B.2﹣i C.﹣1+i D.﹣1﹣i【考点】A1:虚数单位i、复数;A5:复数的运算.【专题】11:计算题.【分析】利用复数的分子、分母同乘分母的共轭复数,把复数化为a+bi的形式,然后求法共轭复数即可.【解答】解:复数z====﹣1+i.。
2012年全国统一高考数学试卷及解析(文科)(新课标)
2012年全国统一高考数学试卷(文科)(新课标)一、选择题:本大题共12小题,每小题5分,在每小题给同的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={x|x2﹣x﹣2<0},B={x|﹣1<x<1},则()A.A⊊B B.B⊊A C.A=B D.A∩B=∅2.(5分)复数z=的共轭复数是()A.2+i B.2﹣i C.﹣1+i D.﹣1﹣i3.(5分)在一组样本数据(x1,y1),(x2,y2),…,(x n,y n)(n≥2,x1,x2,…,x n不全相等)的散点图中,若所有样本点(x i,y i)(i=1,2,…,n)都在直线y=x+1上,则这组样本数据的样本相关系数为()A.﹣1 B.0 C.D.14.(5分)设F1、F2是椭圆E:+=1(a>b>0)的左、右焦点,P为直线x=上一点,△F2PF1是底角为30°的等腰三角形,则E的离心率为()A.B.C.D.5.(5分)已知正三角形ABC的顶点A(1,1),B(1,3),顶点C 在第一象限,若点(x,y)在△ABC内部,则z=﹣x+y的取值范围是()A.(1﹣,2) B.(0,2)C.(﹣1,2)D.(0,1+)6.(5分)如果执行右边的程序框图,输入正整数N(N≥2)和实数a1,a2,…,a n,输出A,B,则()A.A+B为a1,a2,…,a n的和B.为a1,a2,…,a n的算术平均数C.A和B分别是a1,a2,…,a n中最大的数和最小的数D.A和B分别是a1,a2,…,a n中最小的数和最大的数7.(5分)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为()A.6 B.9 C.12 D.188.(5分)平面α截球O的球面所得圆的半径为1,球心O到平面α的距离为,则此球的体积为()A.πB.4πC.4πD.6π9.(5分)已知ω>0,0<φ<π,直线x=和x=是函数f(x)=sin (ωx+φ)图象的两条相邻的对称轴,则φ=()A. B. C. D.10.(5分)等轴双曲线C的中心在原点,焦点在x轴上,C与抛物线y2=16x的准线交于点A和点B,|AB|=4,则C的实轴长为()A. B.C.4 D.811.(5分)当0<x≤时,4x<log a x,则a的取值范围是()A.(0,) B.(,1) C.(1,)D.(,2)12.(5分)数列{a n}满足a n+1+(﹣1)n a n=2n﹣1,则{a n}的前60项和为()A.3690 B.3660 C.1845 D.1830二.填空题:本大题共4小题,每小题5分.13.(5分)曲线y=x (3lnx +1)在点(1,1)处的切线方程为 .14.(5分)等比数列{a n }的前n 项和为S n ,若S 3+3S 2=0,则公比q= .15.(5分)已知向量夹角为45°,且,则= .16.(5分)设函数f (x )=的最大值为M ,最小值为m ,则M +m= .三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(12分)已知a ,b ,c 分别为△ABC 三个内角A ,B ,C 的对边,c=asinC ﹣ccosA . (1)求A ;(2)若a=2,△ABC 的面积为,求b ,c .18.(12分)某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售.如果当天卖不完,剩下的玫瑰花做垃圾处理.(Ⅰ)若花店一天购进17枝玫瑰花,求当天的利润y (单位:元)关于当天需求量n (单位:枝,n ∈N )的函数解析式.(Ⅱ)花店记录了100天玫瑰花的日需求量(单位:枝),整理得如表:(i)假设花店在这100天内每天购进17枝玫瑰花,求这100天的日利润(单位:元)的平均数;(ii)若花店一天购进17枝玫瑰花,以100天记录的各需求量的频率作为各需求量发生的概率,求当天的利润不少于75元的概率.19.(12分)如图,三棱柱ABC﹣A1B1C1中,侧棱垂直底面,∠ACB=90°,AC=BC=AA1,D是棱AA1的中点.(Ⅰ)证明:平面BDC1⊥平面BDC(Ⅱ)平面BDC1分此棱柱为两部分,求这两部分体积的比.20.(12分)设抛物线C:x2=2py(p>0)的焦点为F,准线为l,A ∈C,已知以F为圆心,FA为半径的圆F交l于B,D两点;(1)若∠BFD=90°,△ABD的面积为,求p的值及圆F的方程;(2)若A,B,F三点在同一直线m上,直线n与m平行,且n与C 只有一个公共点,求坐标原点到m,n距离的比值.21.(12分)设函数f(x)=e x﹣ax﹣2.(Ⅰ)求f(x)的单调区间;(Ⅱ)若a=1,k为整数,且当x>0时,(x﹣k)f′(x)+x+1>0,求k的最大值.22.(10分)如图,D,E分别为△ABC边AB,AC的中点,直线DE 交△ABC的外接圆于F,G两点,若CF∥AB,证明:(1)CD=BC;(2)△BCD∽△GBD.23.选修4﹣4;坐标系与参数方程已知曲线C1的参数方程是(φ为参数),以坐标原点为极点,x轴的正半轴为极轴建立坐标系,曲线C2的坐标系方程是ρ=2,正方形ABCD的顶点都在C2上,且A,B,C,D依逆时针次序排列,点A 的极坐标为(2,).(1)求点A,B,C,D的直角坐标;(2)设P为C1上任意一点,求|PA|2+|PB|2+|PC|2+|PD|2的取值范围.24.已知函数f(x)=|x+a|+|x﹣2|(1)当a=﹣3时,求不等式f(x)≥3的解集;(2)若f(x)≤|x﹣4|的解集包含[1,2],求a的取值范围.2012年全国统一高考数学试卷(文科)(新课标)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,在每小题给同的四个选项中,只有一项是符合题目要求的.1.(5分)(2012•新课标)已知集合A={x|x2﹣x﹣2<0},B={x|﹣1<x<1},则()A.A⊊B B.B⊊A C.A=B D.A∩B=∅【分析】先求出集合A,然后根据集合之间的关系可判断【解答】解:由题意可得,A={x|﹣1<x<2},∵B={x|﹣1<x<1},在集合B中的元素都属于集合A,但是在集合A中的元素不一定在集合B中,例如x=∴B⊊A.故选B.2.(5分)(2012•新课标)复数z=的共轭复数是()A.2+i B.2﹣i C.﹣1+i D.﹣1﹣i【分析】利用复数的分子、分母同乘分母的共轭复数,把复数化为a+bi的形式,然后求法共轭复数即可.【解答】解:复数z====﹣1+i.所以复数的共轭复数为:﹣1﹣i.故选D.3.(5分)(2012•新课标)在一组样本数据(x1,y1),(x2,y2),…,(x n,y n)(n≥2,x1,x2,…,x n不全相等)的散点图中,若所有样本点(x i,y i)(i=1,2,…,n)都在直线y=x+1上,则这组样本数据的样本相关系数为()A.﹣1 B.0 C.D.1【分析】所有样本点(x i,y i)(i=1,2,…,n)都在直线y=x+1上,故这组样本数据完全正相关,故其相关系数为1.【解答】解:由题设知,所有样本点(x i,y i)(i=1,2,…,n)都在直线y=x+1上,∴这组样本数据完全正相关,故其相关系数为1,故选D.4.(5分)(2012•新课标)设F1、F2是椭圆E:+=1(a>b>0)的左、右焦点,P为直线x=上一点,△F2PF1是底角为30°的等腰三角形,则E的离心率为()A.B.C.D.【分析】利用△F2PF1是底角为30°的等腰三角形,可得|PF2|=|F2F1|,根据P为直线x=上一点,可建立方程,由此可求椭圆的离心率.【解答】解:∵△F2PF1是底角为30°的等腰三角形,∴|PF2|=|F2F1|∵P为直线x=上一点∴∴故选C.5.(5分)(2012•新课标)已知正三角形ABC的顶点A(1,1),B(1,3),顶点C在第一象限,若点(x,y)在△ABC内部,则z=﹣x+y的取值范围是()A.(1﹣,2) B.(0,2)C.(﹣1,2)D.(0,1+)【分析】由A,B及△ABC为正三角形可得,可求C的坐标,然后把三角形的各顶点代入可求z的值,进而判断最大与最小值,即可求解范围【解答】解:设C(a,b),(a>0,b>0)由A(1,1),B(1,3),及△ABC为正三角形可得,AB=AC=BC=2即(a﹣1)2+(b﹣1)2=(a﹣1)2+(b﹣3)2=4∴b=2,a=1+即C(1+,2)则此时直线AB的方程x=1,AC的方程为y﹣1=(x﹣1),直线BC的方程为y﹣3=﹣(x﹣1)当直线x﹣y+z=0经过点A(1,1)时,z=0,经过点B(1,3)z=2,经过点C(1+,2)时,z=1﹣∴故选A6.(5分)(2012•新课标)如果执行右边的程序框图,输入正整数N (N≥2)和实数a1,a2,…,a n,输出A,B,则()A.A+B为a1,a2,…,a n的和B.为a1,a2,…,a n的算术平均数C.A和B分别是a1,a2,…,a n中最大的数和最小的数D.A和B分别是a1,a2,…,a n中最小的数和最大的数【分析】分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是求出a1,a2,…,a n中最大的数和最小的数.【解答】解:分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知,该程序的作用是:求出a1,a2,…,a n中最大的数和最小的数其中A为a1,a2,…,a n中最大的数,B为a1,a2,…,a n中最小的数故选:C.7.(5分)(2012•新课标)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为()A.6 B.9 C.12 D.18【分析】通过三视图判断几何体的特征,利用三视图的数据求出几何体的体积即可.【解答】解:该几何体是三棱锥,底面是俯视图,三棱锥的高为3;底面三角形斜边长为6,高为3的等腰直角三角形,此几何体的体积为V=×6×3×3=9.故选B.8.(5分)(2012•新课标)平面α截球O的球面所得圆的半径为1,球心O到平面α的距离为,则此球的体积为()A.πB.4πC.4πD.6π【分析】利用平面α截球O的球面所得圆的半径为1,球心O到平面α的距离为,求出球的半径,然后求解球的体积.【解答】解:因为平面α截球O的球面所得圆的半径为1,球心O 到平面α的距离为,所以球的半径为:=.所以球的体积为:=4π.故选B.9.(5分)(2012•新课标)已知ω>0,0<φ<π,直线x=和x=是函数f(x)=sin(ωx+φ)图象的两条相邻的对称轴,则φ=()A. B. C. D.【分析】通过函数的对称轴求出函数的周期,利用对称轴以及φ的范围,确定φ的值即可.【解答】解:因为直线x=和x=是函数f(x)=sin(ωx+φ)图象的两条相邻的对称轴,所以T==2π.所以ω=1,并且sin(+φ)与sin(+φ)分别是最大值与最小值,0<φ<π,所以φ=.故选A.10.(5分)(2012•新课标)等轴双曲线C的中心在原点,焦点在x 轴上,C与抛物线y2=16x的准线交于点A和点B,|AB|=4,则C 的实轴长为()A. B.C.4 D.8【分析】设等轴双曲线C:x2﹣y2=a2(a>0),y2=16x的准线l:x=﹣4,由C与抛物线y2=16x的准线交于A,B两点,,能求出C的实轴长.【解答】解:设等轴双曲线C:x2﹣y2=a2(a>0),y2=16x的准线l:x=﹣4,∵C与抛物线y2=16x的准线l:x=﹣4交于A,B两点,∴A(﹣4,2),B(﹣4,﹣2),将A点坐标代入双曲线方程得=4,∴a=2,2a=4.故选C.11.(5分)(2012•新课标)当0<x≤时,4x<log a x,则a的取值范围是()A.(0,) B.(,1) C.(1,)D.(,2)【分析】由指数函数和对数函数的图象和性质,将已知不等式转化为不等式恒成立问题加以解决即可【解答】解:∵0<x≤时,1<4x≤2要使4x<log a x,由对数函数的性质可得0<a<1,数形结合可知只需2<log a x,∴即对0<x≤时恒成立∴解得<a<1故选B12.(5分)(2012•新课标)数列{a n}满足a n+1+(﹣1)n a n=2n﹣1,则{a n}的前60项和为()A.3690 B.3660 C.1845 D.1830【分析】由题意可得a2﹣a1=1,a3+a2=3,a4﹣a3=5,a5+a4=7,a6﹣a5=9,a7+a6=11,…a50﹣a49=97,变形可得a3+a1=2,a4+a2=8,a7+a5=2,a8+a6=24,a9+a7=2,a12+a10=40,a13+a11=2,a16+a14=56,…利用数列的结构特征,求出{a n}的前60项和.【解答】解:由于数列{a n}满足a n+1+(﹣1)n a n=2n﹣1,故有a2﹣a1=1,a3+a2=3,a4﹣a3=5,a5+a4=7,a6﹣a5=9,a7+a6=11,…a50﹣a49=97.从而可得a3+a1=2,a4+a2=8,a7+a5=2,a8+a6=24,a11+a9=2,a12+a10=40,a15+a13=2,a16+a14=56,…从第一项开始,依次取2个相邻奇数项的和都等于2,从第二项开始,依次取2个相邻偶数项的和构成以8为首项,以16为公差的等差数列.{a n}的前60项和为15×2+(15×8+)=1830,故选D.二.填空题:本大题共4小题,每小题5分.13.(5分)(2012•新课标)曲线y=x(3lnx+1)在点(1,1)处的切线方程为y=4x﹣3.【分析】先求导函数,求出切线的斜率,再求切线的方程.【解答】解:求导函数,可得y′=3lnx+4,当x=1时,y′=4,∴曲线y=x(3lnx+1)在点(1,1)处的切线方程为y﹣1=4(x﹣1),即y=4x﹣3.故答案为:y=4x﹣3.14.(5分)(2012•新课标)等比数列{a n}的前n项和为S n,若S3+3S2=0,则公比q=﹣2.【分析】由题意可得,q≠1,由S3+3S2=0,代入等比数列的求和公式可求q【解答】解:由题意可得,q≠1∵S3+3S2=0∴∴q3+3q2﹣4=0∴(q﹣1)(q+2)2=0∵q≠1∴q=﹣2故答案为:﹣215.(5分)(2012•新课标)已知向量夹角为45°,且,则=3.【分析】由已知可得,=,代入|2|====可求【解答】解:∵,=1∴=∴|2|====解得故答案为:316.(5分)(2012•新课标)设函数f(x)=的最大值为M,最小值为m,则M+m=2.【分析】函数可化为f(x)==,令,则为奇函数,从而函数的最大值与最小值的和为0,由此可得函数f(x)=的最大值与最小值的和.【解答】解:函数可化为f(x)==,令,则为奇函数,∴的最大值与最小值的和为0.∴函数f(x)=的最大值与最小值的和为1+1+0=2.即M+m=2.故答案为:2.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(12分)(2012•新课标)已知a,b,c分别为△ABC三个内角A,B,C的对边,c=asinC﹣ccosA.(1)求A;(2)若a=2,△ABC的面积为,求b,c.【分析】(1)由正弦定理有:sinAsinC﹣sinCcosA﹣sinC=0,可以求出A;(2)有三角形面积以及余弦定理,可以求出b、c.【解答】解:(1)c=asinC﹣ccosA,由正弦定理有:sinAsinC﹣sinCcosA﹣sinC=0,即sinC•(sinA﹣cosA﹣1)=0,又,sinC≠0,所以sinA﹣cosA﹣1=0,即2sin(A ﹣)=1,所以A=;(2)S△ABC =bcsinA=,所以bc=4,a=2,由余弦定理得:a2=b2+c2﹣2bccosA,即4=b2+c2﹣bc,即有,解得b=c=2.18.(12分)(2012•新课标)某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售.如果当天卖不完,剩下的玫瑰花做垃圾处理.(Ⅰ)若花店一天购进17枝玫瑰花,求当天的利润y(单位:元)关于当天需求量n(单位:枝,n∈N)的函数解析式.(Ⅱ)花店记录了100天玫瑰花的日需求量(单位:枝),整理得如表:(i)假设花店在这100天内每天购进17枝玫瑰花,求这100天的日利润(单位:元)的平均数;(ii)若花店一天购进17枝玫瑰花,以100天记录的各需求量的频率作为各需求量发生的概率,求当天的利润不少于75元的概率.【分析】(Ⅰ)根据卖出一枝可得利润5元,卖不出一枝可得赔本5元,即可建立分段函数;(Ⅱ)(i)这100天的日利润的平均数,利用100天的销售量除以100即可得到结论;(ii)当天的利润不少于75元,当且仅当日需求量不少于16枝,故可求当天的利润不少于75元的概率.【解答】解:(Ⅰ)当日需求量n≥17时,利润y=85;当日需求量n <17时,利润y=10n﹣85;(4分)∴利润y关于当天需求量n的函数解析式(n∈N*)(6分)(Ⅱ)(i)这100天的日利润的平均数为元;(9分)(ii)当天的利润不少于75元,当且仅当日需求量不少于16枝,故当天的利润不少于75元的概率为P=0.16+0.16+0.15+0.13+0.1=0.7.(12分)19.(12分)(2012•新课标)如图,三棱柱ABC﹣A1B1C1中,侧棱垂直底面,∠ACB=90°,AC=BC=AA1,D是棱AA1的中点.(Ⅰ)证明:平面BDC1⊥平面BDC(Ⅱ)平面BDC1分此棱柱为两部分,求这两部分体积的比.【分析】(Ⅰ)由题意易证DC1⊥平面BDC,再由面面垂直的判定定理即可证得平面BDC1⊥平面BDC;(Ⅱ)设棱锥B﹣DACC1的体积为V1,AC=1,易求V1=××1×1=,三棱柱ABC﹣A1B1C1的体积V=1,于是可得(V﹣V1):V1=1:1,从而可得答案.【解答】证明:(1)由题意知BC⊥CC1,BC⊥AC,CC1∩AC=C,∴BC⊥平面ACC1A1,又DC1⊂平面ACC1A1,∴DC1⊥BC.由题设知∠A1DC1=∠ADC=45°,∴∠CDC1=90°,即DC1⊥DC,又DC∩BC=C,∴DC1⊥平面BDC,又DC1⊂平面BDC1,∴平面BDC1⊥平面BDC;(2)设棱锥B﹣DACC1的体积为V1,AC=1,由题意得V1=××1×1=,又三棱柱ABC﹣A1B1C1的体积V=1,∴(V﹣V1):V1=1:1,∴平面BDC1分此棱柱两部分体积的比为1:1.20.(12分)(2012•新课标)设抛物线C:x2=2py(p>0)的焦点为F,准线为l,A∈C,已知以F为圆心,FA为半径的圆F交l于B,D两点;(1)若∠BFD=90°,△ABD的面积为,求p的值及圆F的方程;(2)若A,B,F三点在同一直线m上,直线n与m平行,且n与C 只有一个公共点,求坐标原点到m,n距离的比值.【分析】(1)由对称性知:△BFD是等腰直角△,斜边|BD|=2p点A=,知到准线l的距离,由△ABD的面积S=,由此能求出圆F的方程.(2)由对称性设,则点A,B关于点F对称得:,得:,由此能求出坐标原点到m,n距离的比值.【解答】解:(1)由对称性知:△BFD是等腰直角△,斜边|BD|=2p 点A到准线l的距离,∵△ABD的面积S △ABD=,∴=,解得p=2,所以F坐标为(0,1),∴圆F的方程为x2+(y﹣1)2=8.(2)由题设,则,∵A,B,F三点在同一直线m上,又AB为圆F的直径,故A,B关于点F对称.由点A,B关于点F对称得:得:,直线,切点直线坐标原点到m,n距离的比值为.21.(12分)(2012•新课标)设函数f(x)=e x﹣ax﹣2.(Ⅰ)求f(x)的单调区间;(Ⅱ)若a=1,k为整数,且当x>0时,(x﹣k)f′(x)+x+1>0,求k的最大值.【分析】(Ⅰ)求函数的单调区间,可先求出函数的导数,由于函数中含有字母a,故应按a的取值范围进行分类讨论研究函数的单调性,给出单调区间;(II)由题设条件结合(I),将不等式,(x﹣k)f´(x)+x+1>0在x >0时成立转化为k<(x>0)成立,由此问题转化为求g(x)=在x>0上的最小值问题,求导,确定出函数的最小值,即可得出k的最大值;【解答】解:(I)函数f(x)=e x﹣ax﹣2的定义域是R,f′(x)=e x﹣a,若a≤0,则f′(x)=e x﹣a≥0,所以函数f(x)=e x﹣ax﹣2在(﹣∞,+∞)上单调递增.若a>0,则当x∈(﹣∞,lna)时,f′(x)=e x﹣a<0;当x∈(lna,+∞)时,f′(x)=e x﹣a>0;所以,f(x)在(﹣∞,lna)单调递减,在(lna,+∞)上单调递增.(II)由于a=1,所以,(x﹣k)f´(x)+x+1=(x﹣k)(e x﹣1)+x+1 故当x>0时,(x﹣k)f´(x)+x+1>0等价于k<(x>0)①令g(x)=,则g′(x)=由(I)知,当a=1时,函数h(x)=e x﹣x﹣2在(0,+∞)上单调递增,而h(1)<0,h(2)>0,所以h(x)=e x﹣x﹣2在(0,+∞)上存在唯一的零点,故g′(x)在(0,+∞)上存在唯一的零点,设此零点为α,则有α∈(1,2)当x∈(0,α)时,g′(x)<0;当x∈(α,+∞)时,g′(x)>0;所以g(x)在(0,+∞)上的最小值为g(α).又由g′(α)=0,可得eα=α+2所以g(α)=α+1∈(2,3)由于①式等价于k<g(α),故整数k的最大值为2.22.(10分)(2012•新课标)如图,D,E分别为△ABC边AB,AC的中点,直线DE交△ABC的外接圆于F,G两点,若CF∥AB,证明:(1)CD=BC;(2)△BCD∽△GBD.【分析】(1)根据D,E分别为△ABC边AB,AC的中点,可得DE∥BC,证明四边形ADCF是平行四边形,即可得到结论;(2)证明两组对应角相等,即可证得△BCD~△GBD.【解答】证明:(1)∵D,E分别为△ABC边AB,AC的中点∴DF∥BC,AD=DB∵AB∥CF,∴四边形BDFC是平行四边形∴CF∥BD,CF=BD∴CF∥AD,CF=AD∴四边形ADCF是平行四边形∴AF=CD∵,∴BC=AF,∴CD=BC.(2)由(1)知,所以.所以∠BGD=∠DBC.因为GF∥BC,所以∠BDG=∠ADF=∠DBC=∠BDC.所以△BCD~△GBD.23.(2012•新课标)选修4﹣4;坐标系与参数方程已知曲线C1的参数方程是(φ为参数),以坐标原点为极点,x轴的正半轴为极轴建立坐标系,曲线C2的坐标系方程是ρ=2,正方形ABCD的顶点都在C2上,且A,B,C,D依逆时针次序排列,点A 的极坐标为(2,).(1)求点A,B,C,D的直角坐标;(2)设P为C1上任意一点,求|PA|2+|PB|2+|PC|2+|PD|2的取值范围.【分析】(1)确定点A,B,C,D的极坐标,即可得点A,B,C,D 的直角坐标;(2)利用参数方程设出P的坐标,借助于三角函数,即可求得|PA|2+|PB|2+|PC|2+|PD|2的取值范围.【解答】解:(1)点A,B,C,D的极坐标为点A,B,C,D的直角坐标为(2)设P(x0,y0),则为参数)t=|PA|2+|PB|2+|PC|2+|PD|2=4x2+4y2+16=32+20sin2φ∵sin2φ∈[0,1]∴t∈[32,52]24.(2012•新课标)已知函数f(x)=|x+a|+|x﹣2|(1)当a=﹣3时,求不等式f(x)≥3的解集;(2)若f(x)≤|x﹣4|的解集包含[1,2],求a的取值范围.【分析】(1)不等式等价于,或,或,求出每个不等式组的解集,再取并集即得所求.(2)原命题等价于﹣2﹣x≤a≤2﹣x在[1,2]上恒成立,由此求得求a的取值范围.【解答】解:(1)当a=﹣3时,f(x)≥3 即|x﹣3|+|x﹣2|≥3,即①,或②,或③.解①可得x≤1,解②可得x∈∅,解③可得x≥4.把①、②、③的解集取并集可得不等式的解集为{x|x≤1或x≥4}.(2)原命题即f(x)≤|x﹣4|在[1,2]上恒成立,等价于|x+a|+2﹣x≤4﹣x在[1,2]上恒成立,等价于|x+a|≤2,等价于﹣2≤x+a≤2,﹣2﹣x≤a≤2﹣x在[1,2]上恒成立.故当1≤x≤2时,﹣2﹣x的最大值为﹣2﹣1=﹣3,2﹣x的最小值为0,故a的取值范围为[﹣3,0].。
2012年高考文科数学江西卷(含详细答案)
数学试卷 第1页(共28页) 数学试卷 第2页(共28页)绝密★启用前2012年普通高等学校招生全国统一考试(江西卷)文科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷第1至2页,第Ⅱ卷第3至第4页.满分150分,考试时间120分钟. 考生注意:1.答题前,考生务必将自己的准考证号、姓名填写在答题卡上.考生要认真核对答题 卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致.2.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.第Ⅱ卷用0.5毫米的黑色墨水签字笔在答题卡上书写作答,若在试题卷上作答,答案无效.3.考试结束,监考员将试题卷、答题卡一并收回. 参考公式:锥体体积公式13V Sh =,其中S 为底面积,h 为高第Ⅰ卷一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若复数=1+i z (i 为虚数单位),z 是z 的共轭复数,则2z +2z 的虚部为( ) A .0 B .-1 C .1 D .-2 2.若全集2{|4}U x x =∈R ≤,则集合{||+1|1}A x x =∈R ≤的补集U C A 为 ( )A .||02|x x ∈R <<B .||02|x x ∈R ≤<C .||02|x x ∈R <≤D .||02|x x ∈R ≤≤3.设函数211()2,1x x f x x x⎧+⎪=⎨⎪⎩,≤>,则((3))f f =( ) A .15 B .3 C .23 D .1394.若sin cos 1sin cos 2αααα+=-,则tan2α=( ) A .34- B .34 C .43-D .435.观察下列事实||+||=1x y 的不同整数解(),x y 的个数为4,||+||=2x y 的不同整数解(),x y 的个数为8,||+||=3x y 的不同整数解(),x y 的个数为12,…,则||+||=20x y 的不同整数解(),x y 的个数为( ) A .76B .80C .86D .92 6.小波一星期的总开支分布如图1所示,一星期的食品开支如图2所示,则小波一星期的鸡蛋开支占总开支的百分比为( ) A .30%B .10%C .3%D .不能确定7.若一个几何体的三视图如右图所示,则此几何体的体积为( )A .112 B .5 C .92D .4 8.椭圆22221(0)x y a b a b+=>>的左、右顶点分别是A ,B ,左、右焦点分别是F 1,F 2.若1||AF ,12||F F ,1||F B 成等比数列,则此椭圆的离心率为 ( )A .14 BC .12D29.已知2π()sin ()4f x x =+.若(lg5)a f =,1(lg )5b f =则( )A .0a b +=B .0a b -=C .1a b +=D .1a b -= 10.如右图,||2OA =(单位:m ),||1OB =(单位:m ),OA与OB 的夹角为π6,以A 为圆心,AB 为半径作圆弧BDC 与线段OA 延长线交于点C .甲、乙两质点同时从点O 出发,甲先以速率1(单位:m s )沿线段OB 行至点B ,再以速率3(单位:m s )沿圆弧BDC 行至点C 后停止;乙以速率2(单位:m s )沿线--------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------姓名________________ 准考证号_____________数学试卷 第3页(共28页) 数学试卷 第4页(共28页)段OA 行至A 点后停止.设t 时刻甲、乙所到达的两点连线与它们经过的路径所围成图形的面积为S t ()S 00S =(()),则函数y S t =()的图像大致是 ( )ABCD第Ⅱ卷注意事项:第Ⅱ卷共2页,须用黑色墨水签字笔在答题卡上书写作答.在试题卷上作答,答案无效.二、填空题:本大题共5小题,每小题5分,共25分.11.不等式2902x x >--的解集是 . 12.设单位向量(,)x y =m ,(2,1)=-b .若⊥m b ,则|+2|x y = .13.等比数列{}n a 的前n 项和为n S ,公比不为1.若11a =,且对任意的n ∈+N 都有2120n n n a a a -=+++,则5S = .14.过直线x y +-上点P 作圆221x y +=的两条切线,若两条切线的夹角是60,则点P 的坐标是 .15.下图为某算法的程序框图,则程序运行后输出的结果是 .三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤. 16.(本小题满分12分)在ABC △中,角,,A B C 的对边分别为,,a b c .已知3cos()16cos cos B C B C -=-. (Ⅰ)求cos A ;(Ⅱ)若3a =,ABC △的面积为求,b c .17.(本小题满分12分)已知数列||n a 的前n 项和n n S kc k =-(其中,c k 为常数),且2634,8a a a ==. (Ⅰ)求n a ;(Ⅱ)求数列||n na 的前n 项和n T .18.(本题满分12分)如图,从1(1,0,0)A ,2(2,0,0)A ,1(0,1,0)B ,2(0,2,0)B ,1(0,0,1)C ,2(0,0,2)C 这6个点中随机选取3个点.(Ⅰ)求这3点与原点O 恰好是正三棱锥的四个顶点的概率; (Ⅱ)求这3点与原点O 共面的概率.19.(本题满分12分)如图,在梯形A B C D 中,AB CD ∥,E ,F 是线段AB 上的两点,且DE AB ⊥,CF AB ⊥,12AB =,5AD =,BC =,4DE =.现将A D E △,CFB △分别沿DE ,CF 折起,使,A B 两点重合与点G ,得到多面体CDEFG .(Ⅰ)求证:平面DEG ⊥平面CFG ; (Ⅱ)求多面体CDEFG 的体积.20.(本题满分13分)已知三点(0,0)O ,(2,1)A -,(2,1)B ,曲线C 上任意一点(,)M x y 满足||()2MA MB OM OA OB +=++.(Ⅰ)求曲线C 的方程;数学试卷 第5页(共28页) 数学试卷 第6页(共28页)(Ⅱ)点000(,)(22)Q x y x -<<是曲线C 上的动点,曲线C 在点Q 处的切线为l ,点P 的坐标是(0,-1),l 与PA ,PB 分别交于点D ,E ,求QAB △与PDE △的面积之比.21.(本小题满分14分)已知函数2()()e x f x ax bx c =++在[0,1]上单调递减且满足(0)1f =,(1)0f =. (Ⅰ)求a 的取值范围;(Ⅱ)设()()()g x f x f x '=-,求()g x 在[0,1]上的最大值和最小值.45 / 14C.故选a c+,)()12=,562x->2)(9)2x->2)(9)2x->2)(9)7 / 148【解析】由题意,可由题设条件单位向量(,)n x y =-及n b ⊥,建立关于解答:解:由题意,单位向量(,)n x y =-,(2,1)b =-。
2012年全国高考(新课标-)文科数学试卷及参考答案-2
2012年普通高等学校招生全国统一考试 (新课标文科数学试卷及参考答案)第Ⅰ卷一、选择题1.已知集合A={x |x 2-x -2<0},B={x |-1<x <1},则( )(A )A ⊂≠B (B )B ⊂≠A (C )A=B (D )A ∩B=∅ 2.复数z =-3+i2+i的共轭复数是 ( )(A )2+i (B )2-i (C )-1+i (D )-1-i 3.在一组样本数据(x 1,y 1),(x 2,y 2),…,(x n ,y n )(n ≥2,x 1,x 2,…,x n 不全相等)的散点图中,若所有样本点(x i ,y i )(i =1,2,…,n )都在直线y =12x +1上,则这组样本数据的样本相关系数为 ( )(A )-1 (B )0 (C )12(D )14.设F 1、F 2是椭圆E :x 2a 2+y 2b2=1(a >b >0)的左、右焦线x =3a2上一点,△F 1PF 2是底角为30°的等腰三角E 的离心率为( )(A )12 (B )23 (C )34 (D )455.已知正三角形ABC 的顶点A(1,1),B(1,3),顶点C 象限,若点(x ,y )在△ABC 内部,则z=-x+y 的取值是( )(A )(1-3,2) (B )(0,2) (C )(3-1,2) (D )(0,1+3)6.如果执行右边的程序框图,输入正整数N(N ≥2)和数a 1,a 2,…,a N ,输出A,B ,则( ) (A )A+B 为a 1,a 2,…,a N 的和(B )A +B 2为a 1,a 2,…,a N 的算术平均数(C )A 和B 分别是a 1,a 2,…,a N 中最大的数和最小的(D )A 和B 分别是a 1,a 2,…,a N 中最小的数和最大的7.如图,网格纸上小正方形的边长为1,粗线画出的何体的三视图,则此几何体的体积为( ) (A )6 (B )9 (C )12 (D )188.平面α截球O 的球面所得圆的半径为1,球心O 到平面α的距离为2,则此球的体积为 ( )(A )6π (B )43π (C )46π (D )63π9.已知ω>0,0<φ<π,直线x =π4和x =5π4是函数f (x 条相邻的对称轴,则φ=( )(A )π4 (B )π3 (C )π2 (D )3π410.等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线y 2=16x 的准线交于A ,B 两点,|AB|=43,则C 的实轴长为( )(A ) 2 (B )2 2 (C )4 (D )811.当0<x ≤12时,4x<log a x ,则a 的取值范围是 ( )(A )(0,22) (B )(22,1) (C )(1,2) (D )(2,2) 12.数列{a n }满足a n +1+(-1)na n =2n -1,则{a n }的前60项和为( ) (A )3690 (B )3660 (C )1845 (D )1830 第Ⅱ卷二.填空题13.曲线y =x (3ln x +1)在点(1,1)处的切线方程为________14.等比数列{a n }的前n 项和为S n ,若S 3+3S 2=0,则公比q =_______ 15.已知向量a ,b 夹角为45°,且|a |=1,|2a -b |=10,则|b |=16.设函数f (x )=(x +1)2+sin xx 2+1的最大值为M ,最小值为m ,则M+m =____三、解答题17.已知a ,b ,c 分别为△ABC 三个内角A ,B ,C 的对边,c = 3a sinC -c cosA (1) 求A(2) 若a =2,△ABC 的面积为3,求b ,c 18.某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售。
2012年普通高等学校招生全国统一考试数学(江西卷)
2012年普通高等学校招生全国统一考试数学(江西卷)无
【期刊名称】《新高考:高二数学》
【年(卷),期】2012(000)007
【总页数】8页(P78-81,I0038-I0041)
【作者】无
【作者单位】不详
【正文语种】中文
【中图分类】G41
【相关文献】
1.2009年普通高等学校招生全国统一考试江西卷(理科数学) [J],
2.2008年普通高等学校招生全国统一考试(江西卷)理科数学 [J], 龚晓洛
3.2007年普通高等学校招生全国统一考试 (江西卷)理科数学 [J], 龚晓洛
4.2007年普通高等学校招生全国统一考试(江西卷)理科数学 [J],
5.平稳适中重视基础——2012年高考数学江西卷评析 [J], 黄寿礼
因版权原因,仅展示原文概要,查看原文内容请购买。
2012年江西数学高考题答案详解
2012年高考题答案详解1.【答案】A 【解析】先由1i z =+,求出1i z =-,然后代入代数式求解;也可先化简代数式,后求解.因为1i z =+,所以1i z =-,故()()2222110+=++-=z z i i ,其虚部为0.故选A.【点评】本题考查共轭复数的概念及复数的运算,难度较小.体现了考纲中要求理解复数的基本概念及会进行复数的代数形式的四则运算,来年的考查点应该不会有大的区别,仍以考查复数的基本运算为主. 2.【答案】C【解析】本题先通过解不等式求出,U A ,再根据补集的定义求解. 解不等式可求得,{}22=∈-≤≤R U x x ,{}20=∈-≤≤R A x x ,故{}02U A x x =∈<≤R ð.故选C.【点评】本题考查补集的计算,一元二次不等式及绝对值不等式的运算.体现了考纲中要求会求给定子集的补集及会行进简单的绝对值不等式,一元二次不等式的运算,来年可能出现集合的交集、并集等与不等式的综合运用.求解时,一般可借助维恩图及数轴来辅助解题. 3.【答案】D【解析】根据自变量的区间,利用复合函数的性质求解. 因为31>,所以()233f =,又因为213<,所以()()2221331339f f f ⎛⎫⎛⎫==+= ⎪ ⎪⎝⎭⎝⎭.故选D.【点评】本题考查复合函数,体现了考纲中要求会求简单的复合函数的值,来年复合函数与定义域结合考查仍是热点之一.简单的复合函数问题一般都比较简单,把握好函数的定义域与对应的函数解析式之间的关系即可. 4.【答案】B【解析】先利用同角函数间的关系求出tan α,再利用二倍角公式求出tan 2α. 因为s i n c o s1s i n c o s2αααα+=-,所以2(s i n c o s )s i n αααα+=-,则s i n 3c o αα=-,所以sin tan 3cos ααα==-.故22tan 3tan 21tan 4ααα==-.故选B.【点评】本题考查同角三角函数间的基本关系,二倍角公式等. 体现了考纲中要求会进行简单的恒等变换,来年关于恒等变换的考查可能会涉及到和与差的三角函数公式. 熟练掌握三角公式,灵活变换是解决这类问题的关键. 5.【答案】B 【解析】由已知x y +的值为1,2,3时,对应的(,)x y 的不同整数解个数为4,8,12,可推出当x y n +=时,对应的不同整数解(,)x y 的个数为4n ,所以20x y +=的不同整数解(,)x y 的个数为80. 故选B.【点评】本题考查观察、归纳、推理能力,体现了考纲对于创新意识的考查,来年必不可少,考查方式多种多样.我们解这类题时,要仔细观察,大胆推理,严密论证. 6.【答案】C【解析】观察图2得,小波一星期的食品开支为:30401008050300++++=元;观察图1得,小波一星期的总开支为300100030%=元,所以小波一星期的鸡蛋开支占总开支的百分比为303%1000=.故选C. 【点评】本题考查统计图的实际应用,体现了考纲中要求了解常见的统计方法,并能利用这些方法解决一些实际问题,来年统计图很可能仍与实际问题结合考查,难度一般较小.7.【答案】D【解析】通过观察三视图,确定几何体的形状,继而求解.通过观察几何体的三视图可知,该几何体是一个底面为六边形(2条对边长为1,其余4条边长为2),高为1的直棱柱.所以该几何体的体积为1122222⎛⎫⨯+⨯⨯⨯ ⎪⎝⎭V =sh =14⨯=故选D.【点评】本题考查三视图及空间想象能力,体现了考纲中能掌握三视图所表示的简单的立体图形以及对空间想象能力的要求,来年三视图考查仍然围绕根据三视图求几何体的表面积或体积,以及根据几何体来求三视图等问题展开,难度适中. 8. 同理13 【答案】B【解析】本题着重考查等比中项的性质,以及椭圆的离心率等几何性质,同时考查了函数与方程,转化与化归思想.利用椭圆及等比数列的性质解题.由椭圆的性质可知:1AF a c =-,122F F c =,1F B a c=+.又已知1AF ,12F F ,1F B成等比数列,故2()()(2)a c a c c -+=,即2224a c c -=,则225ac =.故55c e a ==.即椭圆的离心率为55. 【点评】求双曲线的离心率一般是通过已知条件建立有关,a c 的方程,然后化为有关,a c 的齐次式方程,进而转化为只含有离心率e 的方程,从而求解方程即可. 体现考纲中要求掌握椭圆的基本性质.来年需要注意椭圆的长轴,短轴长及其标准方程的求解等. 9.【答案】C【解析】先利用三角恒等变换化简()f x 函数解析式,再通过换元寻找,a b 之间的数量关系.因为()21cos 21sin 22sin 422x x f x ππθ⎛⎫-+ ⎪+⎛⎫⎝⎭=+== ⎪⎝⎭,不妨令lg 5t =,则1lg 5t =-,所以()()1s in2l g 52ta f f t +===,()11sin 2lg 52t b f f t -⎛⎫==-=⎪⎝⎭,所以1a b +=.故选C.【点评】本题考查三角恒等变换,二倍角公式以及换元思想,综合性较强,体现了考纲中对于综合能力的考查解决,来年这种题型仍必不可少,涉及知识点多种多样,主要考查考生的综合素质.本题的难点在于三角函数的变换,熟练掌握三角函数的各种公式,并能灵活应用是解题的关键.10.【答案】A【解析】本题破题的切入点关键是抓住几个重要的时间点,确定不同时间段()S t 的形状,从而求出解析式,然后根据解析式来确定函数图象. 由2,1==OA OB 知,当1t ≤时,所围成的图形为三角形,()2112sin 262S t t t t π==,对应的函数图像为开口向上的抛物线的一部分;存在0t ,使得当01t t <≤时,所围成的图形为ABO ∆与一部分扇形,扇形的弧长为()31t -.又由由余弦定理,得222123c o s 2122AB AOB +-∠==⨯⨯,求得523AB =-,故 ()()113122S t t AB =+⨯-⨯ 135233222t -=-+,对应的函数图像为过一、三、四象限的直线的一部分;当0t t >时,甲乙两质点停止运动,()S t 的值恒定不变,对应图像为平行于x 轴的直线.故选A.【点评】本题考查余弦定理、三角函数的图像、分段函数的综合运用,体现了考纲中要求了解简单的分段函数并能进行简单的应用以及对综合能力的要求,来年考查的核心仍是综合能力,考查知识点可以千变万化,难度较大. 1.【答案】A 【解析】先由1i z =+,求出1i z =-,然后代入代数式求解;也可先化简代数式,后求解. 因为1i z =+,所以1i z =-,故()()2222110+=++-=z z i i ,其虚部为0.故选A.【点评】本题考查共轭复数的概念及复数的运算,难度较小.体现了考纲中要求理解复数的基本概念及会进行复数的代数形式的四则运算,来年的考查点应该不会有大的区别,仍以考查复数的基本运算为主. 2.【答案】C【解析】本题先通过解不等式求出,U A ,再根据补集的定义求解. 解不等式可求得,{}22=∈-≤≤R U x x ,{}20=∈-≤≤R A x x ,故{}02U A x x =∈<≤R ð.故选C.【点评】本题考查补集的计算,一元二次不等式及绝对值不等式的运算.体现了考纲中要求会求给定子集的补集及会行进简单的绝对值不等式,一元二次不等式的运算,来年可能出现集合的交集、并集等与不等式的综合运用.求解时,一般可借助维恩图及数轴来辅助解题. 3.【答案】D【解析】根据自变量的区间,利用复合函数的性质求解. 因为31>,所以()233f =,又因为213<,所以()()2221331339f f f ⎛⎫⎛⎫==+= ⎪ ⎪⎝⎭⎝⎭.故选D.【点评】本题考查复合函数,体现了考纲中要求会求简单的复合函数的值,来年复合函数与定义域结合考查仍是热点之一.简单的复合函数问题一般都比较简单,把握好函数的定义域与对应的函数解析式之间的关系即可. 4.【答案】B【解析】先利用同角函数间的关系求出tan α,再利用二倍角公式求出tan 2α. 因为s i n c o s1s i n c o s2αααα+=-,所以2(s i n c o s )s i n αααα+=-,则s i n 3c o αα=-,所以sin tan 3cos ααα==-.故22tan 3tan 21tan 4ααα==-.故选B.【点评】本题考查同角三角函数间的基本关系,二倍角公式等. 体现了考纲中要求会进行简单的恒等变换,来年关于恒等变换的考查可能会涉及到和与差的三角函数公式. 熟练掌握三角公式,灵活变换是解决这类问题的关键. 5.【答案】B 【解析】由已知x y +的值为1,2,3时,对应的(,)x y 的不同整数解个数为4,8,12,可推出当x y n +=时,对应的不同整数解(,)x y 的个数为4n ,所以20x y +=的不同整数解(,)x y 的个数为80. 故选B.【点评】本题考查观察、归纳、推理能力,体现了考纲对于创新意识的考查,来年必不可少,考查方式多种多样.我们解这类题时,要仔细观察,大胆推理,严密论证. 6.【答案】C【解析】观察图2得,小波一星期的食品开支为:30401008050300++++=元;观察图1得,小波一星期的总开支为300100030%=元,所以小波一星期的鸡蛋开支占总开支的百分比为303%1000=.故选C. 【点评】本题考查统计图的实际应用,体现了考纲中要求了解常见的统计方法,并能利用这些方法解决一些实际问题,来年统计图很可能仍与实际问题结合考查,难度一般较小.7.【答案】D【解析】通过观察三视图,确定几何体的形状,继而求解.通过观察几何体的三视图可知,该几何体是一个底面为六边形(2条对边长为1,其余4条边长为2),高为1的直棱柱.所以该几何体的体积为1122222⎛⎫⨯+⨯⨯⨯ ⎪⎝⎭V =sh =14⨯=故选D.【点评】本题考查三视图及空间想象能力,体现了考纲中能掌握三视图所表示的简单的立体图形以及对空间想象能力的要求,来年三视图考查仍然围绕根据三视图求几何体的表面积或体积,以及根据几何体来求三视图等问题展开,难度适中. 8. 同理13 【答案】B【解析】本题着重考查等比中项的性质,以及椭圆的离心率等几何性质,同时考查了函数与方程,转化与化归思想.利用椭圆及等比数列的性质解题.由椭圆的性质可知:1AF a c =-,122F F c =,1F B a c=+.又已知1AF ,12F F ,1F B成等比数列,故2()()(2)a c a c c -+=,即2224a c c -=,则225ac =.故55c e a ==.即椭圆的离心率为55. 【点评】求双曲线的离心率一般是通过已知条件建立有关,a c 的方程,然后化为有关,a c 的齐次式方程,进而转化为只含有离心率e 的方程,从而求解方程即可. 体现考纲中要求掌握椭圆的基本性质.来年需要注意椭圆的长轴,短轴长及其标准方程的求解等. 9.【答案】C【解析】先利用三角恒等变换化简()f x 函数解析式,再通过换元寻找,a b 之间的数量关系.因为()21cos 21sin 22sin 422x x f x ππθ⎛⎫-+ ⎪+⎛⎫⎝⎭=+== ⎪⎝⎭,不妨令lg 5t =,则1lg 5t =-,所以()()1s in2l g 52ta f f t +===,()11sin 2lg 52t b f f t -⎛⎫==-=⎪⎝⎭,所以1a b +=.故选C.【点评】本题考查三角恒等变换,二倍角公式以及换元思想,综合性较强,体现了考纲中对于综合能力的考查解决,来年这种题型仍必不可少,涉及知识点多种多样,主要考查考生的综合素质.本题的难点在于三角函数的变换,熟练掌握三角函数的各种公式,并能灵活应用是解题的关键.10.【答案】A【解析】本题破题的切入点关键是抓住几个重要的时间点,确定不同时间段()S t 的形状,从而求出解析式,然后根据解析式来确定函数图象. 由2,1==OA OB 知,当1t ≤时,所围成的图形为三角形,()2112sin 262S t t t t π==,对应的函数图像为开口向上的抛物线的一部分;存在0t ,使得当01t t <≤时,所围成的图形为ABO ∆与一部分扇形,扇形的弧长为()31t -.又由由余弦定理,得222123c o s 2122AB AOB +-∠==⨯⨯,求得523AB =-,故 ()()113122S t t AB =+⨯-⨯ 135233222t -=-+,对应的函数图像为过一、三、四象限的直线的一部分;当0t t >时,甲乙两质点停止运动,()S t 的值恒定不变,对应图像为平行于x 轴的直线.故选 A.【点评】本题考查余弦定理、三角函数的图像、分段函数的综合运用,体现了考纲中要求了解简单的分段函数并能进行简单的应用以及对综合能力的要求,来年考查的核心仍是综合能力,考查知识点可以千变万化,难度较大.。
2012年高考试题:文科数学(全国卷)含答案及解析
【考点】对数函数
【难度】中等
【点评】本题考查对数函数的相关性质。在高一数学强化提高班上学期课程讲座2,第四章《初等函数》有详细讲解,在高考精品班数学(文)强化提高班中有对指数函数、对数函数相关知识的总结讲解。
(12)正方形 的边长为1,点 在边AB上,点 在边 上, ,动点 从 出发沿直线向 运动,每当碰到正方形的边时反弹,反弹时反射角等于入射角,当点p第一次碰到E时,p与正方形的边碰撞的次数为( ).
面授课程
·1对1个性化辅导
·小升初:中小学教育网学习中心
2012年普通高等学校招生全国统一考试
文科数学(必修+选修Ⅰ)
本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。第Ⅰ卷1至2页,第Ⅱ卷3至4页。考试结束后,将本卷和答题卡一并交回。
第Ⅰ卷
注意事项:
1、答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。请认真核准条形码上的准考证号、姓名和科目。
(7)6位选手依次演讲,其中选手甲不在第一个也不在最后一个演讲,则不同的演讲次序共有( ).
(A)240种(B)360种(C)480种(D)720种
【考点】排列
【难度】中等
【点评】本题考查排列的定义及计算方法。在高二数学(文)强化提高班,第三章《概率》有详细讲解,在高考精品班数学(文)强化提高班中对概率、排列、组合相关知识的总结讲解。
【考点】三角函数与偶函数的结合
【难度】中等
【点评】本题考查三角函数变换,及偶函数的性质。在高一数学强化提高班上学期课程讲座1,第五章《三角函数》中有详细讲解,在高考精品班数学(文)强化提高班、百日冲刺班中均有对三角函数及向量相关知识的总结讲解。
2012年全国统一高考数学试卷(文科)(全国一卷)
2012年全国统一高考数学试卷(文科)(新课标)一、选择题:本大题共12小题,每小题5分,在每小题给同的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={x|x2﹣x﹣2<0},B={x|﹣1<x<1},则()A.A⊊B B.B⊊A C.A=B D.A∩B=∅2.(5分)复数z=的共轭复数是()A.2+i B.2﹣i C.﹣1+i D.﹣1﹣i3.(5分)在一组样本数据(x1,y1),(x2,y2),…,(x n,y n)(n≥2,x1,x2,…,x n不全相等)的散点图中,若所有样本点(x i,y i)(i=1,2,…,n)都在直线y=x+1上,则这组样本数据的样本相关系数为()A.﹣1B.0C.D.14.(5分)设F1、F2是椭圆E:+=1(a>b>0)的左、右焦点,P为直线x=上一点,△F2PF1是底角为30°的等腰三角形,则E的离心率为()A.B.C.D.5.(5分)已知正三角形ABC的顶点A(1,1),B(1,3),顶点C在第一象限,若点(x,y)在△ABC内部,则z=﹣x+y的取值范围是()A.(1﹣,2)B.(0,2)C.(﹣1,2)D.(0,1+)6.(5分)如果执行下边的程序框图,输入正整数N(N≥2)和实数a1,a2,…,a n,输出A,B,则()A.A+B为a1,a2,…,a n的和B.为a1,a2,…,a n的算术平均数C.A和B分别是a1,a2,…,a n中最大的数和最小的数D.A和B分别是a1,a2,…,a n中最小的数和最大的数7.(5分)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为()A.6B.9C.12D.188.(5分)平面α截球O的球面所得圆的半径为1,球心O到平面α的距离为,则此球的体积为()A.πB.4πC.4πD.6π9.(5分)已知ω>0,0<φ<π,直线x=和x=是函数f(x)=sin(ωx+φ)图象的两条相邻的对称轴,则φ=()A.B.C.D.10.(5分)等轴双曲线C的中心在原点,焦点在x轴上,C与抛物线y2=16x的准线交于点A和点B,|AB|=4,则C的实轴长为()A.B.C.4D.811.(5分)当0<x≤时,4x<log a x,则a的取值范围是()A.(0,)B.(,1)C.(1,)D.(,2)12.(5分)数列{a n}满足a n+1+(﹣1)n a n=2n﹣1,则{a n}的前60项和为()A.3690B.3660C.1845D.1830二.填空题:本大题共4小题,每小题5分.13.(5分)曲线y=x(3lnx+1)在点(1,1)处的切线方程为.14.(5分)等比数列{a n}的前n项和为S n,若S3+3S2=0,则公比q=.15.(5分)已知向量夹角为45°,且,则=.16.(5分)设函数f(x)=的最大值为M,最小值为m,则M+m=.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(12分)已知a,b,c分别为△ABC三个内角A,B,C的对边,c=asinC ﹣ccosA.(1)求A;(2)若a=2,△ABC的面积为,求b,c.18.(12分)某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售.如果当天卖不完,剩下的玫瑰花做垃圾处理.(Ⅰ)若花店一天购进17枝玫瑰花,求当天的利润y(单位:元)关于当天需求量n(单位:枝,n∈N)的函数解析式.(Ⅱ)花店记录了100天玫瑰花的日需求量(单位:枝),整理得如表:日需求量n14151617181920频数10201616151310(i)假设花店在这100天内每天购进17枝玫瑰花,求这100天的日利润(单位:元)的平均数;(ii)若花店一天购进17枝玫瑰花,以100天记录的各需求量的频率作为各需求量发生的概率,求当天的利润不少于75元的概率.19.(12分)如图,三棱柱ABC﹣A1B1C1中,侧棱垂直底面,∠ACB=90°,AC=BC=AA1,D是棱AA1的中点.(Ⅰ)证明:平面BDC1⊥平面BDC(Ⅱ)平面BDC1分此棱柱为两部分,求这两部分体积的比.20.(12分)设抛物线C:x2=2py(p>0)的焦点为F,准线为l,A∈C,已知以F为圆心,FA为半径的圆F交l于B,D两点;(1)若∠BFD=90°,△ABD的面积为,求p的值及圆F的方程;(2)若A,B,F三点在同一直线m上,直线n与m平行,且n与C只有一个公共点,求坐标原点到m,n距离的比值.21.(12分)设函数f(x)=e x﹣ax﹣2.(Ⅰ)求f(x)的单调区间;(Ⅱ)若a=1,k为整数,且当x>0时,(x﹣k)f′(x)+x+1>0,求k的最大值.22.(10分)如图,D,E分别为△ABC边AB,AC的中点,直线DE交△ABC的外接圆于F,G两点,若CF∥AB,证明:(1)CD=BC;(2)△BCD∽△GBD.23.选修4﹣4;坐标系与参数方程已知曲线C1的参数方程是(φ为参数),以坐标原点为极点,x轴的正半轴为极轴建立坐标系,曲线C2的坐标系方程是ρ=2,正方形ABCD的顶点都在C2上,且A,B,C,D依逆时针次序排列,点A的极坐标为(2,).(1)求点A,B,C,D的直角坐标;(2)设P为C1上任意一点,求|PA|2+|PB|2+|PC|2+|PD|2的取值范围.24.已知函数f(x)=|x+a|+|x﹣2|①当a=﹣3时,求不等式f(x)≥3的解集;②f(x)≤|x﹣4|若的解集包含[1,2],求a的取值范围.。
2012高考数学压轴题(文科)及答案
2012高考数学压轴题(文科)及答案2012年江西省高考压轴卷数学文一、选择题 1、命题:若函数是幂函数,则函数的图像不经过第四象限.那么命题的逆命题、否命题、逆否命题这三个命题中假命题的个数是() 0 1 2 3 2.已知数据是江西普通职工个人的年收入,设这个数据的中位数为,平均数为,方差为,如果再加上世界首富的年收入,则这个数据中,下列说法正确的是() A.年收入平均数大大增大,中位数一定变大,方差可能不变 B.年收入平均数大大增大,中位数可能不变,方差变大 C.年收入平均数大大增大,中位数可能不变,方差也不变D.年收入平均数可能不变,中位数可能不变,方差可能不变。
3.设函数,对于任意不相等的实数,代数式的值等于() A. B. C.、中较小的数 D.、中较大的数 4.有下面四个判断:①命题:“设、,若,则”是一个假命题;②若“p或q”为真命题,则p、q均为真命题;③命题“ 、”的否定是:“ 、”;④若函数的图象关于原点对称,则其中正确的个数共有()A. 0个 B. 1个 C. 2个 D. 3个 5.数列的前n项和;(n∈N*);则数列的前50项和为()A.49 B.50 C.99 D.100 6.已知m>0,且mcosα-sinα= sin (α+),则tan =( ) A.-2 B.- C. D.2 7.一个几何体的三视图如右图所示,则该几何体的体积为( ) A. B. C. D. 8.若直线mx+ny=16和圆x2+y2=64没有交点,则过点(m,n)的直线与椭圆的交点个数为( ) A. 0 B.2个 C.1个 D.不确定 9.设变量满足约束条件:的最大值为( ) A.10 B.8 C.6 D.4 10.等比数列{ }中,a1=2,a8=4,f(x)=x(x-a1)(x-a2)…(x-a8),为函数f(x)的导函数,则=( ) A.0 B. C. D.二、填空题 11.某市有三所学校共有高三文科学生1500人,且三所学校的高三文科学生人数成等差数列,在三月进行全市联考后,准备用分层抽样的方法从所有高三文科学生中抽取容量为120的样本,进行成绩分析,则应从校学生中抽取________人. 12.已知如图所示的程序框图(未完成),设当箭头a指向①时,输出的结果为S=m,当箭头a指向②时,输出的结果为S=n,则m+n的值为. 13.某种产品的广告费支出x与销售额y之间有如下对应数据(单位:百万元). x 2 4 56 8 y 30 40[来 60 t 70 根据上表提供的数据,求出y关于x的线性回归方程为y^=6.5x+17.5,则表中t的值为. 14.已知△ABC 及其平面内一点P满足++=0,若实数λ满足+=λ.则λ=__________. 15. AB是半径为1的圆的直径,M为直径AB上任意一点,过点M作垂直于直径AB的弦,则弦长大于的概率是_____三、解答题 16 已知关于的一元二次函数(Ⅰ)设集合和,分别从集合和中随机取一个数作为和,求函数在区间[ 上是增函数的概率;(Ⅱ)设点是区域内的随机点,记有两个零点,其中一个大于,另一个小于 ,求事件发生的概率。
2012年江西高考数学文科试卷带详解
2012年普通高等学校招生全国统一考试(江西卷)年普通高等学校招生全国统一考试(江西卷)数学(文科)一、一、 选择题:本大题共10小题,每小题5分,共50分,分, 在每小题给出的四个选项中,只有一项是符合题目要求的有一项是符合题目要求的1. 若复数z =1+i (i 为虚数单位),z 是z 的共轭复数,则2z +2z 的虚部为的虚部为 ( ) A . 0 B. -2 C. 1 D. -4 【测量目标】复数的四则运算和共轭复数的概念. 【考查方式】直接给出复数进行代数运算. 【参考答案】A 【试题解析】先由1i z =+,求出1i z =-,然后代入代数式求解;也可先化简代数式,后求解. 因为1i z =+,所以1i z =-,故2222(1i)(1i)0z z +=++-=,其虚部为0.故选A 2 若全集U ={x ∈R |x 24…} A ={x ∈R ||x +1|…1}的补集U A ð为 ( )A. |x ∈R |0<x <2| B . |x ∈R |0…x <2| C. |x ∈R |0<x …2| D . |x ∈R |0…x …2| 【测量目标】集合的补集和不等式的运算. 【考查方式】通过不等式的运算考查集合的补集. 【参考答案】C 【试题解析】{22}U x=-剟,{|20}A x x =-剟,则{|02}U A x x =…ð<. 3.设函数21,1()2,1x x f x x xì+ï=íïî…>,则f (f (3))= ( ) A. 15 B. 3 C. 23 D. 139【测量目标】分段函数和复合函数的基本运算. 【考查方式】给出分段函数,判断定义域进而求值【考查方式】给出分段函数,判断定义域进而求值 【参考答案】D【试题解析】考查分段函数,f (3)=23,f (f (3))=f (23)=1394.若sin cos sin cos a a a a +=-12,则tan2αtan2α= = ( ) A. 34- B. 34 C. -43 D. 43【测量目标】同角三角函数的基本关系和二倍角公式. 【考查方式】通过给出等式进行化简变换. 【参考答案】B 【试题解析】.因为s i n c o s s i n c o s a aa a+=-12,所以2(s i n c o s )s i n c a a a a+=-,则s i n 3c o s a a-=,所以sin tan cos a a a ==3-.故22tan 3tan 21tan 4a a a ==-.故选B. 5. 观察下列事实|x|+|y|=1的不同整数解(x,y )的个数为4 , |x|+|y|=2的不同整数解(x,y )的个数为8, |x|+|y|=3的不同整数解(x,y )的个数为12 ….则|x|+|y|=20的不同整数解(x ,y )的个数为的个数为 ( ) A. 76 B. 80 C. 86 D. 92 【测量目标】已知递推关系求通项. 【考查方式】通过条件找规律,判断通项【考查方式】通过条件找规律,判断通项 【参考答案】B 【试题解析】由已知||||x y +的值为1,2,3时,对应的(,)x y 的不同整数解个数为4,8,12,可推出当||||x y n +=时,对应的不同整数解(,)x y 的个数为4n ,所以||||20x y +=的不同整数解(,)x y 的个数为80. 故选B. .6.小波一星期的总开支分布图如图1所示,一星期的食品开支如图2所示,则小波一星期的鸡蛋开支占总开支的百分比为的鸡蛋开支占总开支的百分比为( )A. 30%B. 10%C. 3%D. 不能确定不能确定 【测量目标】统计图的实际运用. 【考查方式】通过图形直接考查. 【参考答案】C 【试题解析】【试题解析】 观察图2得,小波一星期的食品开支为:30401008050300++++=元;观察图1得,小波一星期的总开支为300100030%=元,所以小波一星期的鸡蛋开支占总开支的百分比为303%1000=.故选C. 7.若一个几何体的三视图如图所示,则此几何体的体积为则此几何体的体积为( )A .112 B.5 C.4 D. 92【测量目标】由三视图求几何体的体积. 【考查方式】通过三视图判断几何体的形状并求体积. 【参考答案】C 【试题解析】【试题解析】 通过观察三视图,确定几何体的形状,继而求解. 通过观察几何体的三视图可知,该几何体是一个底面为六边形,2条对边长为1,其余4条边长为2,高为1的直棱柱.所以该几何体的体积为1122222V sh æö==´+´´´ç÷èø1=4´故选C. 8.椭圆22221(0)x y a b a b+=>>的左、右顶点分别是A ,B ,左、右焦点分别是F 1,F 2.若|AF 1|,|F 1F 2|,|F 1B |成等比数列,则此椭圆的离心率为则此椭圆的离心率为 ( ) A. 14 B. 55C. 12D. 52- 【测量目标】椭圆的简单性质和等比数列的运用. 【考查方式】给出条件,直接利用椭圆和等比数列的性质求解. 【参考答案】B【试题解析】利用椭圆及等比数列的性质解题.由椭圆的性质可知:1AF a c =-,12||2F F c =,1F B a c =+.又已知1||AF ,12||F F ,1||F B 成等比数列,故2()()(2)a c a c c -+=,即2224a c c -=,则225a c =.故55c e a ==.即椭圆的离心率为55. 9.已知2π()sin ()4f x x =+若(lg5)a f =,1(lg )5b f =则 ( )A. 0a b +=B. 0a b -=C. 1a b +=D. 1a b -=【测量目标】三角函数的恒等变换及对数的化简. 【考查方式】给出函数表达式,利用换元进行化简运算. 【参考答案】C 【解析】先利用三角恒等变换化简()f x 函数解析式,再通过换元寻找,a b 之间的数量关系.因为2π1cos(2)π1sin 22()sin ()=422x x f x x -++=+=,不妨令lg 5t =,则1lg 5t =-,所以1sin 2(lg 5)()2t a f f t +===,11sin 2(lg )()52t b f f t -==-=,所以1a b +=故选C. 10.如右图,OA =2(单位:m ),OB =1(=1(单位:单位:单位:m),m),OA 与OB 的夹角为π6,以A 为圆心,AB 为半径作圆弧BDC 与线段OA 延长线交与点C .甲.乙两质点同时从点O 出发,甲先以速度1(单位:m/s )沿线段OB 行至点B ,再以速度3(单位:m/s )沿圆弧BDC 行至点C 后停止,乙以速率2(单位:m/s )沿线段OA 行至A 点后停止.设t 时刻甲、乙所到的两点连线与它们经过的路径所围成图形的面积为S (t )(S (0)=0),则函数y=S(t)的图像大致是的图像大致是( )A B C D【测量目标】余弦定理、三角函数图像、分段函数的综合运用. 【考查方式】通过图像和实际问题考查. 【参考答案】A 【试题解析】由||2,||1OA OB ==可知,当1t …时,所围成的图形为三角形时,所围成的图形为三角形1π()2sin 26S t t t = =212t ,对应的函数图像为开口向上的抛物线的一部分;对应的函数图像为开口向上的抛物线的一部分;存在存在0t ,使得当01t t <…时,所围成的图形为ABO △与一部分扇形,扇形的弧长为3(1)t -.又由余弦定理得222123cos 2122AB AOB +-Ð==´´求得523AB =-,故,故3523-55 55 5设数列{}n a 的公比为q .因为22+1220n n n n n n a a a a q a q a ++-=+-=,又显然0n a ¹,所以220q q +-=.解得2q =-或1q =(已知1q ¹,故舍去).所以5511(2)111(2)S éù´--ëû==--. 14.过直线x y +22-=0上点P 作圆221x y +=的两条切线,若两条切线的夹角是60°,则点P 的坐标是__________. 【测量目标】直线与圆的位置关系. 【考查方式】通过直线与圆相交综合考查. 【参考答案】(2,2)【试题解析】先根据直线的方程巧设点P 的坐标,再利用相切构成的直角三角形,求出点P 与点O 的距离,从而求得P 的坐标. 点P 在直线220x y +-=上,则可设点00(,22)P x x -+,设其中一个切点为M .因为两条切线的夹角为60,所以30OPM Ð=.故在Rt OPM △中,有22OP OM ==.由点到点的距离公式得2200(22)4x x +-+=,解得02x =.故点(2,2)P . 15.下图是某算法的程序框图,则程序运行后输入的结果是_________. 【测量目标】程序框图的基本算法. 【考查方式】直接给出程序框图进行考查. 【参考答案】3 【试题解析】当k =1,a =1,T =1 当k =2,a =0,T =1 当k =3,a =0,T =1 当k =4,a=1,T =2 当k =5,a =1,T =3,则此时k =k +1=6所以输出T =3. 三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤. 16.(本小题满分12分)分)△ABC 中,角A ,B ,C 的对边分别为a ,b ,c.已知3cos (B-C )-1=6cos B cos C . (1)求cos A ;2222两式联立可得,6恰好是正三棱锥的四个顶点的概率;恰好是正三棱锥的四个顶点的概率; 共面的概率. 【考查方式】将立体几何与概率综合考查,通过列举法求概率)总的结果数为20种,又满足条件的种数为1211221,,),(,,),(,A A B A A B A 所以所求概率为632010=. CD ,E ,F 是线段AB 上的两点,42Z-13⊥平面CFG的体积. 【测量目标】面面垂直的判定与求多面体的体积. 【考查方式】给出图形直接考查. )由已知可得AE=3,BF=4,则折叠完后1)又因为CF EGF ^底面,可得CF EG ^,即EG C F G ^面所以平面DEG ⊥平面CFG .(步骤2)(2)过G 作GO 直垂直于于EF ,GO 即为棱四棱锥锥G-EFCD 的,高,所以所以所所体求体积积为11124516335DECFS GO =´´´=矩形(步骤3) 20.(本小题满分13分)分) 三已知三点点O (0,0),A (-2,1),B (2,1),曲线C 一上任意一点点M (x,y )满足||()2MA MB OM OA OB +=++(1)求曲线C 的方程;的方程;(2)点Q (x 0,y 0)(-2<x 0<2)是曲线C 上动点,曲线C 在点Q 处的切线为l ,点P 的坐标是(0,-1),l 与PA ,PB 分别交于点D ,E ,求△QAB 与△PDE 的面积之比. 【测量目标】抛物线的标准方程与性质的运用. 【考查方式】将向量与圆锥曲线结合考查. 【试题解析】(1)(2,1),(2,1)MA x y MB x y =---=--(,),(0,2)OM x y OA OB =+=, 代入式子可得22244(1)224x y y x y +-=+=整理得(步骤1) (2)设022(,);2(1),|442QABl x x xxxQ x Sk y =¢=-==△则得:22200000:()(0)||14244x x x x l y x x y M PM -=--Þ=-交轴于点,(步骤2)联立得2:10,:10:()42PA PB x x l x y l x y l y x x ++=--=-=-与2022,||2221||||124:2(D E D E PDE D E QAB PDE x x x x x x x S x x PM S S -+==Þ-=Þ=´-´=-Þ=△步骤步骤33)21.(本小题满分14分)分)已知函数2()()e xf x ax bx c =++在[]0,1上单调递减且满足(0)1,(1)0f f ==. (1)求a 的取值范围;的取值范围; (2)设()()()g x f x f x ¢=-,求()g x 在[0,1]上的最大值和最小值上的最大值和最小值【测量目标】函数导数与不等式的综合运用. ,,222a a a =><(1)(e 1-+)e 1<+时,11a a -当111(23a a -<<()2a a得:当e 1e 1-+剟e 1e 1-<+时,13时,,13<()2a a。
江西省各地市2012年高考数学最新联考试题分类大汇编(8)立体几何
江西省各地市2012年高考数学最新联考试题分类大汇编第8部分 立体几何一、选择题:5.(江西省师大附中、鹰潭一中2012年4月高三联考文科)某圆柱被一平面所截得到的几何体如图(1)所示,若该几何体的正视图是等腰直角三角形,俯视图是圆(如右图),则它的侧视图是( D )8.(江西省南昌市2012届高三第一次模拟理科)已知a 、b 、c 是三条不同的直线,命题“a ∥b 且a ⊥c ⇒b ⊥c ”是正确的,如果把a 、b 、c 中的两个或三个换成平面,在所得的命题中,真命题有A .1个B .2个C .3个D .4个 【答案】C6.(江西省九江市2012届高三下学期第一次模拟理科)一个物体的底座是两个相同的几何体,它的三视图及其尺寸(单位:dm )如图所示,则这个物体的体积为( A )A .3(12016)dm π+ B .3(1208)dm π+ C .3(1204)dm π+D .3(608)dm π+7.(江西省六校2012届高三联考理科)如果空间三条直线a, b, c 两两成异面直线,那么与a, b, c 都相交的直线有( D ) A .0条B .1条C .多于1条但为有限条D .无数条3. (2012届江西省八所重点中学高三联合考试文科)底面水平放置的正三棱柱的所有棱长均为2,当其在主视图有最大面积时,其左视图的面积为( )A .B . 3C .D . 4二、填空题:14.(江西省师大附中、鹰潭一中2012年4月高三联考文理科)已知三棱锥O ABC -,OA OB OC 、、两两垂直且长度均为6, 长为2的线段MN 的一个端点M 在棱OA 上运动,另一个端点N 在OBC ∆内运动(含边界),则MN 的中点P 的轨迹与三棱锥的面OAB OBC OAC 、、围成的几何体的体积为 .6π三、解答题:18.(江西省师大附中、鹰潭一中2012年4月高三联考文科)(本小题满分12分)如图,在边长为4的菱形ABCD 中, 60DAB ︒∠=.点E F 、分别在边CD CB 、上,点E 与点C D 、不重合,,EF AC EF AC O ⊥=.沿EF 将CEF ∆翻折到PEF ∆的位置,使平面PEF ⊥平面ABFED .(1)求证:BD ⊥平面POA ;(2)当PB 取得最小值时,求四棱锥P BDEF -的体积.18.解:(1)证明:∵ 菱形ABCD 的对角线互相垂直,∴BD AC ⊥,∴BD AO ⊥, ∵ E F A C ⊥,∴PO EF ⊥.∵ 平面PEF ⊥平面ABFED ,平面PEF 平面ABFED EF =,且PO ⊂平面PEF ,OABMN CP∙∴ PO ⊥平面ABFED , ∵ BD ⊂平面ABFED ,∴ PO BD ⊥. ∵ A O P O O=,∴ BD ⊥平面POA .……………………………… 4分 (2)如图,设.AO BD H = 因为60DAB ∠=︒,所以BDC ∆为等边三角形, 故4BD =,2,23HB HC ==.又设PO x =,则23OH x =-,43OA x =-. 由OH BD ⊥,则222(23)2OB x =-+,又由(Ⅰ)知,PO ⊥平面,BFED 则PO OB ⊥ 所以2222(23)22(3)10PB x x x =-++=-+,当3x =时,min 10PB =.此时3PO =,………………………………8分所以221133(42)333344P BFED BFED V S PO -=⋅⋅=⋅⨯-⨯⨯=四棱锥梯形.……………12分设点Q 的坐标为(),0,a c ,由(1)知,3OP 则(33,0,0)A ,(3,2,0)B ,(3,2,0)D -,3)P .所以()33,0,AQ a c =-,()3QP a c =-,∵AQ=QP λ, ∴,a a c cλλ⎧-=-⎪⎨-⎪⎩⇒ .19.(江西省南昌市2012届高三第一次模拟理科)(本小题满分12分)如图,已知E ,F 分别是正方形ABCD 边BC 、CD 的中点,EF 与AC 交于点O ,P A ,NC 都垂直于平面ABCD ,且P A =AB =4,NC =2,M 是线段P A 上的一动点.(1)求证:平面P AC ⊥平面NEF ;(2)若PC ∥ 平面MEF ,试求PM ∶MA 的值; (3)当M 的是P A 中点时,求二面角M -EF -N 的余弦值.19. 解:法1:(1)连结BD ,∵PA ⊥平面ABCD ,BD ⊂平面ABCD , ∴PA BD ⊥,……………………… 1分又∵BD AC ⊥,AC PA A =,∴BD ⊥平面PAC ,…………………. 2分 又∵E ,F 分别是BC 、CD 的中点, ∴//EF BD ,………………………….3分 ∴EF ⊥平面PAC ,又EF ⊂平面NEF , ∴平面PAC ⊥平面NEF ;……………4分 (2)连结OM ,∵//PC 平面MEF ,平面PAC 平面MEF OM =, ∴//PC OM ,∴14PM OC PA AC ==,故:1:3PM MA = ………………………………………8分 (3)(4,4,2)N ,则(0,2,2)EN =,设平面NEF 的法向量为(,,)m x y z =,则00m EN m EF ⎧⋅=⎪⎨⋅=⎪⎩,即220220y z x y +=⎧⎨-+=⎩,………9分令1x =,则1y =,1z =-,即(1,1,1)m =-,……………………………10分 当M 是PA 中点时,2m =, 则(1,1,3)n =,∴cos ,33m n <>==-, ∴二面角M EF N --的余弦值为.……12分19.(江西省南昌市2012届高三第一次模拟文科)(本小题满分12分)在三棱锥P-ABC 中,△PAC 和△PBC 都是边长为 2 的等边三角形,AB=2,O,D 分别是AB,PB 的中点. (1) 求证:OD ∥平面PAC (2) 求证:OP ⊥平面ABC (3) 求三棱锥P-ABC 的体积18.(江西省六校2012届高三联考理科)(12分)如图所示的多面体,它的正视图为直角三角形,侧视图为正三角形,俯视图为正方形(尺寸如图所示),E 为VB 的中点. (1)求证:VD ∥平面EAC ;(2)求二面角A —VB —D 的余弦值.P OD CBA解:(1)由正视图可得:平面VAB ⊥平面ABCD ,连接BD 交AC 于O 点,连EO ,由已知可得BO=OD ,VE=EB∴ VD ∥EO ………………2分 又VD ⊄平面EAC ,EO ⊂平面EAC∴ VD ∥平面EAC ………………5分(2)设AB 的中点为P ,则由题意可知VP ⊥平面ABCD ,建立如图所示坐标系 设=(x,y,z)是平面VBD 法向量,=(-2,2,0) )3,0,1(-=)0,1,0(=由⊥,⊥∴⎩⎨⎧=-=+-03022z x y x∴)1,3,3(= …………10分 ∴二面角A —VB —D 的余弦值721cos ==θ …12分 18. (江西省六校2012届高三联考文科)(本小题满分12分)如图:C 、D 是以AB 为直径的圆上两点,==AD AB 232,BC AC =,F 是AB 上一点,且AB AF 31=,将圆沿直径AB 折起,使点C 在平面ABD 的射影E 在BD 上. (1)求证:⊥AD 平面BCE ; (2)求证://AD 平面CEF ; (3)求三棱锥CFD A -的体积.18.(本小题满分12分)(1)证明:依题意:⊥AD BD⊥CE 平面ABD ∴⊥CE AD BD E CE =∴⊥AD 平面BCE . ………………………4分 (2).证明:ABD Rt ∆中,32=AB ,3=AD∴3=BD .连接AE 在R t △ACE 和BCE Rt ∆中,AC BC CE CE ==,Rt ACE Rt BCE ∴∆≅∆,AE BE ∴=设DE=x,则AE=BE=3-x,222Rt ADE AD DE AE ∆+=在中,,223(3),1x x x ∴+=-=解得18. (2012届江西省八所重点中学高三联合考试文科) (本小题12分)如图,把边长为2的正六边形ABCDEF 沿对角线BE折起,使AC =BB(1)求证:面ABEF 面BCDE;(2)求五面体ABCDEF的体积。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2012年普通高等学校招生全国统一考试(江西卷)
文科数学
本试卷分第I 卷(选择题)和第n 卷(非选择题)两部分,第I 卷第 1至第2页,第n
卷第3页至第4页。
全卷满分150分,考试时间120分钟。
考生注意:
1.答题前,考生务必将自己的准考证号、姓名填写在答题卡上,考生要认真核对答题卡 上所粘贴的
条形码中准考证号、姓名、考试科目与考生本人准考证号、姓名、考试科 目是否一致。
2 .第I 卷每小题选出答案后,用 2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改 动,用橡皮
擦干净后,再选涂其他答案标号。
第n 卷用 0.5毫米的黑色墨水签字笔在
答题卡上作答,在试题卷上作答无效。
考试结束后,务必将试题卷和答题卡一并上交。
参考公式:
1
锥体体积公式 V=-Sh,其中S 为底面积,h 为高。
3
一、选择题:本大题共 10小题,每小题5分,共50分,在每小题给出的四个选英中,只有 一项是符合
题目要求的。
1.若复数:=1+i (Io 虚数单位)z 是Z 的共轭复数,则 z 2 z 2 的虚都为
A . 0
B. -1
C.1
D.-2
2.a 若全集U { 2
R|x 4|,则集合A {x R |x 2 4|x 1| 1}的补集C U A 为
A . {x
R|0 x 2} B . {X R|0 2} C. {x
R|0
x 2}
D . {X
R|0
2}
3•设函数 f(x)
x 2 1,x
2
,x 1 x
1 A.-
5
B . 3 C.
D .
13 9
COSa
4.若竺^
sin a COS a
—则 tan 2
2a =
4 C.-- 3
5.观察下列事实|x|+|y|=1 3
3 A. -
B.- 4
4
4 D. 一
3
的不同整数解( 4 , |x|+|y|的不同整数解(x,y )的 个数为8, |x|+|y|=3 的不同整数解(x,y ) x,y )的个数为 的个数为12 ••:则|x|+|y|=20的不同整数解(x , y )
的个数为
A.76
B.80
C.86
D.92
6•小波一星期的总开支分布图如图1所示,一星期的食品开支如图2所示,则小波一星期的鸡
蛋开支占总开支的百分比为
A.30%
7•若一个几何体的三视图如图所示,则此几何体的体积为
2
+ ^ - I (a > h > 0)
8.椭圆
若|AF1|,|F 1F2|,|F 1B|成等比数列,则此椭圆的离心率为
A. 4
B. f
C. 2
D. 5-29•已知
A.a+b=0
B. a-b=0
C.a+b=1
D. a-b=1
10. 如右图,{0A) =2 (单位:
m) ,0B=1(单位:m),OA与OB的夹角为一,以A为圆心,AB
6
为半径作圆弧?DC与线段OA延长线交与点C•甲。
乙两质点同时从点0出发,甲先以速度1 (单位:ms)眼线段OB行至点B,在以速度3 (单位:ms)延圆弧B D C乙以速率2 (单位:
m/s )沿线段OA行至A点后停止。
设t时刻甲、乙所到的两点连与它们经过的路径所围成图形的面积为S( t) ( S( 0) =0),贝V函数y=S (t)的图像大致是
/(<) = + 普)=
若a=f (lg5), J
1
I1
9
D.-
2
的左、右顶点分别是A, B,左、右焦点分别是F i, F2。
D.不能确定
B.10%
C.3%
则
注意事项:
第n卷共2页,须用黑色墨水签字笔在答题卡上书写作答,在试题卷上作答,答案无效。
二。
填空题:
本大题共5小题,每小题5分,共25分。
T _ 9
——v > 0
11. 不等式~ - ___________ 的解集是。
13. 等比数列{a n}的前n项和为S,公比若不为1。
若a i=1,且对任意的“电"•都有a n+ 2+ a n +
1-2a n=0,贝U S5 = ______________ 。
14. 过直线x+y-l ' =0上点P作圆x2+y2=1的两条切线,若两条切线的夹角是60°,则点P的
坐标是___________ 。
16. (本小题满分12分)
△ ABC中,角A, B, C 的对边分别为a, b, c。
已知3cos ( B-C) -1=6cosBcosG
(1)求cosA;
(2)若a=3,A ABC的面积为 2.2,求b, c。
17. (本小题满分12分)
已知数列|a n|的前n项和人- “ ■衣(其中c, k为常数),且a2=4, a6=8a3。
(1)求a n;
(2)求数列{na n}的前n项和T n。
18. (本小题满分12分)如图,从A i (1,0,0) , A (2,0,0) , B i ( 0,1,0,) B2 ( 0,2,0), C (0,0,1) , C2 ( 0,0,2 )这 6 个点中随机选取3个点。
12.设单位向量m=( x.
文科数学
y),
b=( 2,
(1)求着3点与原点O恰好是正三棱锥的四个顶点的概率;
(2)求着3点与原点O共面的概率。
19. (本小题满分12分)
如图,在梯形ABCD中,AB// CD, E, F是线段AB上的两点,且DE丄AB, CF丄AB, AB=12,
AD=5, BC=4.2 , DE=4现将△ ADE,^ CFB分别沿DE, CF折起,使A, B两点重合与点G, 得到多面体CDEFG.
(1)求证:平面DEG丄平面CFG;
(2)求多面体CDEFG的体积。
20. (本小题满分13分)
已知三点O ( 0,0 ) , A ( -2,1 ) , B ( 2,1 ),曲线C上任意一点M ( x,y)满足
wT* wi -何 + bS) * 1
(1)求曲线C的方程;
(2)点Q (X0,y0) (-2<X0<2)是曲线C上动点,曲线C在点Q处的切线为I,点P的坐标是(0, -1), l与PA, PB分别交于点D,丘,求厶QAB与厶PDE的面积之比。
21. (本小题满分14分)
已知函数f(x)= (ax2+bx+c) e x在0,1上单调递减且满足f(0)=1, f(1)=0.
(1)求a上午取值范围;
(2)设g(x)= f(-x)- f' (x),求g(x)在0,1上的最大值和最小值。